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THE CONCEPT OF BEHAVIORAL STATE, A FUNDA-
MENTAL NOTION FOR SLEEP NEUROPHYSIOLOGY, 
ASSERTS THAT THE BRAIN IS NORMALLY ORCHES-
TRATED into 1 of 3 discrete modes of functioning, each with 
its own principles of organization: wakefulness (W), non-rapid 
eye movement (NREM), and rapid eye movement (REM) sleep. 
The discrete character of behavioral states as stable configura-
tions requires rapid transitions when switching from one state to 
another, a concept that has been illustrated by comparison with 
the flip-flop, a bistable electronic circuit.1-3 The high variability 
observed in the duration of state bouts suggests that the tim-
ing of the switching process has a strong stochastic component. 
Although the overt expression of behavioral states is discrete 
and the transitions are abrupt, the likelihood of a transition into 
or out of a given state at any given moment could be conceived 
as being the result of a continuous underlying process. The un-
veiling of the processes that account for either permanence in 
a given state or a transition to another state may contribute to a 
better understanding of sleep mechanisms and functions.4 The 
spontaneous sequential occurrence of the 3 behavioral states 
unfolding as a time series may be a useful source of informa-
tion for that purpose.

REM sleep, a state that involves the activation of widespread 
areas in the brain,5-7 has attracted much attention because of 

its phylogenetic and ontogenetic peculiarities, its circadian and 
homeostatic regulatory mechanisms, its proposed relationship 
with dreaming, and its relevance for many psychiatric and neu-
rologic entities. This report is concerned with the occurrence 
and duration of REM sleep episodes and with the duration of 
the intervals between the end of one such episode and the start 
of the next one, which are here referred to, respectively, by the 
terms “Episode” and “Interval.” Studies involving REM sleep 
usually determine its total amount and assess its recurrence 
pattern by stating the number of Episodes and some measure 
of central tendency and variability of the duration of Episodes 
and Intervals. The actual distribution of those durations can be 
more informative, since there are many very short and few very 
long Episodes.8-11 The high variability in the length of Episodes 
and Intervals suggests a substantial degree of randomness in 
sleep regulation. Acknowledging this stochastic nature, it has 
been proposed that REM sleep analysis should be based on the 
modeling of the distribution of the duration of Episodes and 
Intervals.12,13

Our analysis emphasizes that duration of REM sleep Episodes 
and Intervals is the overt result of underlying processes that do 
not necessarily operate with the same time course. If the under-
lying process were the concentration of a given neurotransmit-
ter in a key neural location, that process would not be expressed 
as a behavioral state in a straightforward deterministic manner. 
A state is not expressed because a process is above or below a 
fixed threshold; the process simply makes more or less likely 
either the permanence of the current state or the transition into 
a different state. The description of a hidden process must be 
inferred from actual data. The knowledge and characterization 
of that process should be relevant for understanding state tran-
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sitions and permanence. Two aspects are worth emphasizing: 
firstly, in a transition, a new state attempts to settle itself, but the 
previous state may linger and interfere with the consolidation of 
the new state; secondly, after a state is consolidated, processes 
may come into play that could undermine its permanence or 
build up a pressure to transit to a different state.

The main proposition of the present study is that the dynam-
ics of underlying continuous processes that account for the 
likelihood of a transition at any given time after the beginning 
of an Episode or Interval can be statistically constructed. The 
distribution of the lengths of Episodes and Intervals should be 
understood as the result of those processes.

It must be noted that this approach markedly resembles what 
in biomedical literature is known as survival analysis. In sur-
vival analysis, there is a starting point, such as birth or the first 
symptoms of a disease, and an evolution where, at some point, a 
given outcome occurs. It makes sense at any point in time to ask 
about the likelihood that the outcome occurs at that precise time. 
This instantaneous measure is the hazard function, also called 
failure rate or instantaneous death rate,14 that describes the dy-
namics of the underlying process. Knowing these dynamics, 
answers are found to questions such as what is the probability 
that, given the fact that the outcome has not yet occurred after 
a given time, it will occur in a given consecutive time lapse. 
Rounding up the analogy, “instantaneous death rate” becomes 
“instantaneous transition rate” for exiting a REM sleep episode 
or exiting an Interval. According to our previously outlined ra-
tionale, a histogram of the distribution of age at death is limited 
to the results of a process; what should matter is the underlying 
process itself that has to do with endogenous and environmen-
tal aspects of human development and how they relate to the 
greater or lesser likelihood of occurrence of lethal diseases or 
other causes of death at any given age.

Stochastic events are usually modeled by a Poisson process 
characterized by a single parameter, usually called λ, which is 
technically called intensity, and corresponds to the expected 
rate of event occurrence. In homogeneous Poisson processes, λ 
is constant, and the result is an exponential distribution of time 
Intervals between events. In inhomogeneous Poisson processes, 
λ may vary linearly, as is the case of the Rayleigh distribution,15 
in which λ increases with time. Alternatively, if no assumption is 
made on constancy or linearity of the modulation of the rate of 
occurrence, a nonparametric approach must be followed to assess 
how λ changes in time. Furthermore, since we deal with discrete 
epoch data, λ can be approximated by normalizing the probabil-
ity of occurrence of the transition event in an epoch by the dura-
tion of the epoch. The estimation of λ can then be achieved by the 
use of standard statistical methods such as logistic regression.

The overt dynamics of REM sleep occurrence involves the 
tendency to enter and exit REM sleep. The purpose of the pres-
ent study was to determine the time course of these 2 processes 
that are here designated, respectively, as REM sleep propensity 
and REM sleep volatility. REM sleep propensity is quantified 
by the rate of occurrence of the NREM-sleep-to-REM-sleep 
transition process as an Interval evolves and represents the like-
lihood of entering a new Episode. REM sleep volatility is de-
termined by the rate of occurrence of the out-of-REM transition 
process as an Episode evolves and is related to the likelihood of 
exiting a REM sleep episode. Since transitions into REM sleep 

normally occur only from NREM sleep, a third variable must 
be defined, REM sleep opportunity, which is the probability of 
NREM sleep occurrence throughout an Interval.

Finally, the modeling of REM sleep occurrence in terms of 
its propensity and volatility is examined in the context of its 24-
hour distribution; its relationship to NREM sleep and W; and its 
short-term homeostasis, ie, the fact that longer Episodes tend to 
be followed by longer Intervals.10,12,13,16-20

METHODS

Sleep Recordings and Scoring

Data were obtained from 16 male Sprague-Dawley rats. 
Continuous recordings of 3 consecutive days from each rat 
were analyzed. Experiments conformed to the policies of the 
American Physiological Society. The animals weighed 250 to 
300 g and were previously implanted with chronic electrodes 
under intraperitoneal chlornembutal 3 mL/kg anesthesia. After 
surgery, rats were housed in a 30x30x25 cm cage, placed within 
an 80x80x80 cm sound-isolated cube, under a light-dark sched-
ule with lights-on, approximately 500 lux, from 08:00 to 20:00 
local time. Throughout this report, time of day is indicated as 
zeitgeber time (ZT), so lights go on at hour 00 and off at hour 
12. At least 10 days were allowed for recovery from surgery 
and acclimatization to the recording environment. More de-
tailed information can be found elsewhere about the recording 
conditions, the computer-based data-acquisition system, and 
the algorithm used for state diagnosis.21-23

The data-acquisition program sampled 2 cortical, �����������1���������� hippocam-
pal, and 1 neck muscle channel every 2 milliseconds searching 
for relevant graphoelements: single delta waves (1-4 Hz), trains 
of 3 consecutive sigma waves (11-16 Hz), trains of 8 theta waves 
(4-8 Hz), and muscle spikes or movement artifacts. The software 
quantified and stored the amount of detected elements in each 
successive 15-second epoch. Epochs were assigned to NREM 
sleep, REM sleep, or W by means of an off-line automated state 
scoring procedure that related the actual values of the 4 variables 
in a given epoch with their respective thresholds. If the muscle 
signal was above its threshold, the epoch was ascribed to W. If 
theta was above its threshold, the epoch was assigned to REM 
sleep. On the other hand, if either delta or sigma or both were 
above their thresholds, it was considered NREM sleep. If no vari-
able was above threshold, the epoch was assigned to W. Each day 
of recording was thus summarized into a state-by-epoch array 
containing 5760 assignments. The automated detection proce-
dure was manually corroborated by periodic visual inspection of 
raw data. Typical agreement of automated and visual scoring was 
around 90%. A REM sleep episode was considered to start at a 
transition from NREM sleep to REM sleep. An Interval was con-
sidered to start at a transition from REM sleep to either NREM 
sleep or W. For clarity, we will use the term episode to refer to 
only an uninterrupted sequence of REM sleep epochs and will 
use the term bout to refer to a sequence of uninterrupted NREM 
sleep epochs within an interval.

Since state distributions throughout the 12:12 L:D cycle are 
strongly modulated, the 24-hour database was subdivided into 
3 segments. Boundaries were chosen based on results from a 
previous report20 on the hourly distribution of the 3 states and 
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of a subset of NREM sleep (“delta-rich NREM sleep”) consist-
ing of its upper quintile in each day that had the highest content 
of delta waves. NREM sleep and W had step distributions with 
the higher level in the dark or light phase, respectively, whereas 
REM sleep had a sinusoidal distribution with a summit in the 
second half of the light phase. These results will be later cor-
roborated here in Figures 1 and 3. Delta-rich NREM sleep had 
a remarkably sharp modal distribution around the first hour of 
the light phase. If a state were distributed evenly throughout 
the day, each hour would contain 1/24 or 4.16% of the daily to-
tal. The fraction of daily total delta-rich NREM sleep exceeded 
12% in the first hour of the light phase, and the sum of the last 
hour of the dark phase and the first 2 hours of the light phase 
exceeded 30% of daily total. That fraction fell very quickly af-
terward. REM sleep, on the other hand, rose from near 4% to 
near 5 % from the third to the fourth hour of the light phase and 
increased rapidly. These facts suggested that ZT 03 would be an 
appropriate boundary between the delta-rich NREM sleep seg-
ment and the high REM sleep incidence segment. REM sleep 
hourly fraction of the day total was maintained above 4% until 
the first hour of the dark phase. Nevertheless, because of some 
peculiarities of REM sleep expression20,24 and of its short-term 
homeostasis25 that occur at the beginning of the dark phase, it 
seemed prudent to set the REM-sleep-rich segment boundary at 
ZT 11. All facts considered, the 3 time segments were defined 
as ZT 23-03, ZT 03-11, and ZT 11-23. A total of 6871 cycles 
were detected in the 48 days examined. The ZT 23-03 segment 
contained 2811 cycles, the ZT 03-11 segment contained 3404 
cycles, and the ZT 11-23 segment contained 656 cycles.

Discrete Time Approximation for Inhomogeneous Poisson 
Processes

A Poisson process is a stochastic system in which discrete 
events take place independently so that the probability of ob-
serving N events over a time interval of length t obeys the Pois-
son distribution:

P{N(t) = n} = (λt)n
 e-λt

	  n! 

It is worth noticing that, for data such as ours in which dis-
crete epochs are assigned to a given state, whenever a state tran-
sition event occurs, the system ends up in a setting in which 
the same transition cannot be repeated in the same epoch, and, 
hence, only the first event occurrence makes sense (n = 1).

The parameter λ defines the intensity or rate of occurrence of 
the process. If the rate of occurrence is constant, which is the 
standard assumption, it can be estimated from given data as the 
mean number of events per time unit or as the inverse of the 
mean length of the intervals between events:

λ = E[number of events per time unit] = E[interval length]-1

The time interval between the occurrences of events, ie, the 
time for a transition event to take place, follows then the expo-
nential distribution:

P{time between events > t} = e-λt

However, if the underlying Poisson process is assumed to 
be inhomogeneous, the rate of occurrence of the triggering of a 
transition to state s at time t becomes a time variant parameter 
λs(t). This parameter can not be estimated in the simple way 
explained above and must be locally determined as:

λs(t) = lim
 P{observing a transition to s in [t,t + Δt]}

	 Δt→0	 	 Δt	

A discrete time approximation to λs(t) can be constructed 
based on the fact that, according to the Poisson assumption, if 
Δt is small enough, the probability of observing more than 1 
event in an interval [t,t+ Δt] is very low. The probability of de-
tecting a transition to state s at time t considering an observation 
window of length Δt can then be reliably approximated by:

P{observing a transition to state s at time t} = λs(t)Δt

Our database is generated by a scoring procedure that assigns 
each consecutive 15-second epoch of recording to a given state. 
Hence, we start from a sequence of discrete epochs of equal du-
ration Δt, each labeled with a state diagnosis. In this sequence, 
the probability of detecting a transition to state s at time t is the 
same as the probability of observing s at epoch e(t) = [t,t+ Δt] 
under a condition c(t) appropriately defined for t. The problem 
of estimating λs(t) can then be solved using:

λs(t) =
 P{observing state s at e(t)|c(t)}

	 	 Δt	

Frequency-based Probability Estimation

A method directly based on the frequency of events can be 
used to estimate the observation probabilities. For example, the 
probability of observing state b given a previous stay in state a 
totalizing n epochs is calculated from the data as:

P{b|n epochs in a} =
 # sequences totalizing n a’s followed by b

	 	 # sequences totalizing n a’s	

The total number of epochs for a is determined from the on-
set of state a. If the time elapsed is measured likewise, the rate 
of occurrence of the triggering of the transition to b can be es-
timated using:

λb(nΔt) =
 P{b|n epochs in a}

	 	 Δt	

The estimation above is defined for discrete time increments, 
but it can also be interpolated if a continuous result is desired. A 
weakness that this approach may find is that the data are often 
too sparse to provide smooth and statistically sound probability 
estimates.

Model-based Probability Estimation

The estimation of observation probabilities can be achieved 
using logistic regression. The data consist in a set of pairs 
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the output of the models. Input variables ti, te, dpi, and dpe are 
log scaled, providing further smoothing for larger values.

To train the models, first a data set was generated for each 
case from the original state sequences provided by the data-ac-
quisition program. Next, each data set was resampled to create 
25 versions with the same size. Then, for each case, 25 different 
trained models were obtained using the 25 resampled data sets 
to adjust the model variables. Finally, the trained models were 
aggregated to estimate the results.

RESULTS

The results deal with the process of going into REM sleep 
as modeled by the evolution of opportunity and propensity 
throughout an Interval and with the process of going out of 
REM sleep as modeled by the evolution of volatility through-
out an Episode.

Figure 1 displays the hourly amount of W, NREM sleep, and 
REM sleep throughout the 3-day recordings. Figure 2 displays 
the time course of opportunity and propensity through an Inter-
val and of volatility through an Episode. Figure 3 deals with the 
modulation of those variables throughout the 12:12 L:D sched-
ule. Figure 4 reappraises propensity considering specifically the 
NREM sleep bout before the transition to REM. Figure 5 com-
pares propensity with NREM sleep to W transition rate. Finally, 
Figures 6 to 8 refer to short-term homeostasis by examining the 
influence of the previous episode on opportunity and propensity 
and of the previous interval on volatility.

Most computations involved up to minute 4.0 of REM sleep 
episodes and minute 20.0 of Intervals. Those limits included 
99.6% of Episodes and 90.3% of Intervals from the total of 
6871 cycles detected. The distributions of both Episodes and 
Intervals had modes at 1-epoch duration, the modal frequency 
accounting for 47.7% in the case of Episodes and for 16.2% in 
the case of Intervals.

The hourly averages of the incidence of the 3 states in the 16 
rats throughout the 72 recorded hours are displayed in Figure 1. 
The overall amount of each state as a fraction of total recorded 
time is 51.8% for W, 39.4% for NREM sleep, and 8.8% for 
REM sleep. Approximately two thirds of W occurs in the light 
phase and two thirds of NREM sleep occurs in the dark phase. 
The 8 hours of the ZT 03-11 time segment contain 50.6% of 
total time spent in REM sleep. The average hourly amount of 
REM sleep is 2.6% in the 4 hours of ZT 23-03, 6.3% in the 8 
hours of ZT 03-11, and 3.2% in the 12 hours of ZT 11-23.

Time Course of Opportunity and Propensity Through an Interval 
and of Volatility Through a REM Sleep Episode

Figure 2 presents ������������������������������������������ 3�����������������������������������������  columns of panels that display data cor-
responding to the time segments ZT 03-11, 11-23, and 23-03. The 
upper row represents Opportunity. The next ���������������������3�������������������� rows represent Pro-
pensity as a function of, respectively, the elapsed time in the In-
terval, its specific content of NREM sleep, and its specific content 
of W. The bottom row represents Volatility. Each panel shows the 
output of the aggregated model with its error range and the results 
calculated directly from actual frequencies. It can be noted that the 
output of the model follows well the actual frequencies and that 
the model achieves, as intended, a smoothing effect.

D = {(xi,oi)}i = 1,…,K, where xi is a vector that represents an obser-
vation condition and oi is a value that defines the observation 
itself: 1 if the studied case is observed, 0 if not. The logistic 
regression model M(x) is a function of the observation condi-
tion x. Its output represents the probability estimation for the 
observation under the requested condition.

To enhance the quality of the results and provide confidence 
intervals, a bagging or bootstrap aggregation technique can be ad-
vantageously applied.26 The original data set is resampled using 
a random selection with replacement to generate L different data 
sets D j. For each of them, a logistic regression model M j(x) is 
obtained. Finally, an aggregated model is constructed averaging 
the results of the L models thus obtained. The standard deviation of 
the L results represents the expected variability of the method with 
different data sets. It can be used to estimate the confidence interval 
of the result of the aggregated model for the given condition x.

Studied Models

The observation conditions considered in this work are repre-
sented by, firstly, the time elapsed from the beginning of the current 
REM sleep episode or Interval; secondly, for the time of day; and, 
thirdly, when dealing with short-term homeostatic effects, by the 
duration of the Episode preceding the current Interval or of the In-
terval preceding the current Episode. REM sleep opportunity and 
REM sleep propensity are evaluated from the onset of the ongoing 
Intervals, whereas REM sleep volatility is evaluated from the onset 
of the ongoing Episode. Three basic models were defined:

O•	 (ti) for REM opportunity, where ti is the time elapsed since 
the beginning of the Interval,
P•	 (ti) for REM propensity, also dependent of ti, and
V•	 (te) for REM volatility, where te is the time elapsed since 
the beginning of the ongoing REM sleep episode.

These models account for the dynamic evolution of the re-
spective variables. The estimation of O(id) is used directly. In 
contrast, the estimations of P(ti) and V(te) are normalized by Δt, 
as explained above, and are expressed as events per minute. To 
determine the influence of the hour within the light:dark cycle 
(h) over the results, 3 enlarged models were defined, 1 for each 
case, Oh(ti,h), Ph (ti,h), and Vh (te,h), where h represents the 
hour of the day. The influence of the duration of previous REM 
sleep episode (dpe) or Interval (dpi) was taken into account 
by defining the enlarged models Odpe(ti,dpe), Pdpe(ti,dpe) and 
Vdpi(te,dpi). Propensity was also examined in terms of the W 
and NREM sleep content within an Interval, of the time course 
of a NREM sleep bout, and of the duration of the Interval that 
preceded such NREM sleep bout.

Basic models are implemented as a logistic function applied 
to the linear combination of the hyperbolic tangents of 10 cubic 
polynomials of a given input variable. The enlarged models are 
similar except that quadratic forms are used instead of cubic 
polynomials. The input of the model, x, is a vector of ��������1������� compo-
nent for O(ti), P(ti), and V(te); of 2 components for Odpe(ti,dpe), 
Pdpe(ti, dpe), and Vdpi(te dpi); and of 3 components for Oh(ti,h), 
Ph (ti,h), and Vh (te,h). In the latter case, 3 components are 
needed because the parameter h is first expanded to 2 auxiliary 
values hs = sin(2πh/24) and hc = cos(2πh/24) before computing 

Probability of Transition Into and Out of REM Sleep—Bassi et al

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/32/5/655/2454405 by U

niversidad de C
hile - C

asilla C
hoice user on 08 August 2022



SLEEP, Vol. 32, No. 5, 2009 659

Modulation of Opportunity, Propensity and Volatility Through the 
12:12 L:D Schedule

Figure 3 displays, as 3D mesh plots, hourly values of opportu-
nity and propensity through an Interval and of volatility though an 
Episode. Opportunity in Figure 3A displays 3 partitions: a ridge 
corresponding to the last hour of darkness and first 3 hours of 
light, a higher plateau for the rest of the light phase, and a lower 
one for the dark phase. Propensity at the beginning of the interval 
displays a marked modulation with a strong rise through the light 
phase and a nadir some 9 hours into the dark phase. The shape 
of the curve changes through the Interval. The initial high level 
of propensity observed during the light phase diminishes more 
rapidly than the shoulder observed at ZT 16 at the beginning of 
the Interval. The modulation of volatility is also much more pro-
nounced at the beginning of the Episode, being highest at the end 
of the dark phase and lowest at the end of the light phase.

Propensity Through a Bout of NREM Sleep and its Interplay With 
Preceding Interval Duration

So far, we have examined propensity in terms of the variables 
Interval, cumulated NREM sleep, and cumulated W. To assess 
an eventual specific NREM sleep effect, the variable Interval is 
obviously inadequate. The variable “cumulated NREM sleep 

We will first concentrate on the panels of the column corre-
sponding to time segment ZT 03-11. The upper panel displays 
REM sleep opportunity or, as already stated, the probability of 
NREM sleep occurrence as a function of the time elapsed since 
the beginning of the ongoing Interval. The NREM sleep prob-
ability is 0.28 in the first epoch of the Interval, indicating that 
out-of-REM transitions occur mainly toward W. Afterward there 
is a fast rise in NREM sleep so that its probability reaches 0.74 at 
about 4 minutes after the beginning of the Interval, followed by a 
sustained decay for the rest of the 20-minute observation span.

Propensity falls in about 3 minutes to approximately one fifth 
of its initial value. Volatility falls in about 1 minute to approxi-
mately one third of its initial value. After the nadir, the behavior 
of propensity and volatility differ. While the former shows only 
a modest increase, at least in these first 20 minutes, the latter 
displays a conspicuously ascending phase. The third-row panel 
displays propensity as a function of cumulated NREM sleep 
content in the Interval, and the fourth row panel that of W con-
tent. The just mentioned increase in propensity occurs in the 
former, not in the latter.

Two of the variables present noticeable differences when the 
other time segments are compared with ZT 03-11. Opportunity 
displays a faster decay in ZT 11-23 and a very slow decay in ZT 
23-03. The increase in propensity is less evident in ZT 11-23 
and is absent in ZT 23-03.

Probability of Transition Into and Out of REM Sleep—Bassi et al

Figure 1—Average and standard error of the mean of minutes per hour spent in wake (W), non-rapid eye movement (NREM) sleep, and rapid 
eye movement (REM) sleep throughout the 3-day recordings. The 12:12 L:D cycle is highlighted by the bar colors.
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Figure 2—The dynamic courses of opportunity and propensity throughout an Interval and of volatility throughout a rapid eye movement 
(REM) sleep Episode are displayed for 3 time segments in which the 24-hour data is divided. The 3 columns display data for time segments ZT 
03-11, ZT 11-23, and ZT 23-03. The first of the 5 rows display data for opportunity; the second to fourth for propensity as a function of, respec-
tively, Interval, cumulated non-rapid eye movement (NREM) sleep in Interval, and cumulated W in Interval; and the fifth row for volatility. 
Each panel shows the output of the aggregated model (dashed curve) within a 1-standard deviation span (smooth solid curves). The results of 
the model can be compared with those of frequency-based estimation (broken solid curve). Opportunity is measured as NREM sleep prob-
ability, a value between 0 and 1 that is the complement of the probability of being awake at any point of the Interval. Propensity and volatility 
are measured, respectively, as the rate of occurrence of the into-REM and of the out-of-REM transitions expressed as events per minute.
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within the Interval” is also unsatisfactory, since it is equally af-
fected by NREM sleep occurring earlier or later during an Inter-
val. These considerations led to the analysis presented in Figure 
4, in which propensity is expressed as a function of 2 variables, 
the ongoing NREM sleep bout and the time within the interval 
in which that bout starts. The latter variable corresponds to the 
preceding interval or the time lapse from the end of the last 
REM sleep episode to the beginning of the NREM sleep bout 
being examined. The analysis was performed separately for the 
3 time segments. Results are presented in Figure 4 as 3D mesh 
plots at left and as 2D panels at right displaying selected sec-
tions along the ‘preceding Interval’ axis.

In Figure 4A, propensity starts at a high initial level, a rate 
of 0.80. In the mesh plot, there is an asymmetry in the drop of 
the first line of each axis. As we move along the NREM sleep 
bout lacking a preceding interval, propensity equals 0.50, 0.40, 
and 0.31 at minute 0.5, 1.0, and 2.0 into the NREM bout. As we 
move along longer preceding intervals, propensity equals 0.22, 
0.12, and 0.08 when the bout starts at 0.5, 1.0, and 2.0 minutes 
into the Interval.

The first panel in the �������������������������������������3������������������������������������ time segments corresponds to a sec-
tion at preceding Interval equaling ���������������������  0��������������������  , a NREM epoch imme-
diately following a REM sleep episode, so the starting point 
in each of them is the same as in the corresponding graphs of 
the second row of Figure 2. In the next panel, corresponding to 
a preceding interval of 0.5 minutes, there is no longer a high 
starting point with the subsequent flattening of the curves. The 
next panel corresponds to a preceding interval of 3 minutes and 
shows a remarkable change, since the curves start from the low-
est value and increase for approximately the first minute. From 
then on, the graphs of time segments ZT 03-11 and ZT 11-23 
differ from that of ZT 23-03. In the former time segments, pro-
pensity goes through a plateau and later displays a second rising 
phase. The same pattern is observed after 6, 12, and 18 minutes 
of preceding intervals. The plateau being somehow more sus-
tained, some 4 minutes, in ZT 03-11 and somehow earlier, some 
2 minute, in ZT 11-23. On the other hand, in time segment ZT 
23-03, after the initial 1-minute increase, the curve turns down, 
reaching levels close to 0.

For a better judgment of the behavior of propensity through 
a NREM sleep bout, we decided to compare it with the rate of 
occurrence of transitions to W, since, as a NREM sleep bout 
evolves, there are 2 possible ways for it to end: in a transition 
to REM sleep or by waking up. Figure 5 is identical in analysis 
and graphic displays to Figure 4, but, instead of measuring pro-
pensity to REM sleep, it refers to transition from NREM sleep 
to W as a function of the ongoing NREM sleep bout and the 
time within the interval in which that bout starts. The difference 
between the 2 cases is remarkable. Note that REM sleep pro-
pensity starts at its highest level at the beginning of the NREM 
sleep bout only when there is no preceding interval to that bout. 
The behavior of the rate of transition from NREM sleep to W is 
remarkably different, always displaying its highest level at the 
beginning of the NREM sleep bout with its following descent 
being more or less patent. In a few cases, such as the panels of 
6, 12, and 18 minutes of preceding interval in ZT 03-11, some 
rebound is observed in the NREM sleep to W transition rate 
after it reaches its lowest value approximately 1 minute into 
the bout.

Probability of Transition Into and Out of REM Sleep—Bassi et al

Figure 3—The dynamic courses of A. opportunity and B. propen-
sity throughout an Interval and of C. volatility throughout a rapid 
eye movement (REM) sleep Episode are displayed in 3D mesh 
plots that add as a second modulating variable the time-of-day, 
where 0 corresponds to lights-on time.
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Figure 4—The three 3D mesh plots correspond to time segments of 24-hour data: A. 03-11, B. 11-23 and C. 23-043 and display the dynamic 
course of propensity through a given non-rapid eye movement (NREM) sleep bout adding as a second modulating variable the time at which 
the NREM bout began after the Interval started. The 2D panels at the right of each 3D mesh plot are cross sections displaying the modulation 
of propensity as a function of time from the start of the NREM bout at 6 different times elapsed from the beginning of an Interval and the start 
of the NREM sleep bout being examined.
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DISCUSSION

The sleep-wake cycle presents itself as a sequence of dis-
crete states. In transitions from one state to another, neural re-
organization must take place in a strikingly short time. We have 
constructed a nondeterministic model of the processes occur-
ring throughout an Interval or an Episode that are relevant for 
triggering a transition into or out of a REM sleep episode. In a 
sense, the notion of state is extended beyond its overt manifes-
tations to those underlying processes that affect the dynamics of 
state transitions. The results of such a model can be correlated 
with actual physical processes thought to play critical roles in 
transitions between states or continuance of a given state.

Mathematical modeling has been an important driving force 
for conceptual systematization in the sleep field.27-29 Long-term 
monitoring of REM sleep occurrence shows that the lengths 
of Episodes and Intervals are highly variable, a fact that has 
led to modeling the distribution of their lengths as the outcome 
of a stochastic process. Stochastic models have been proposed 
for the duration of W and sleep periods in human subjects and 
other mammalian species.30,31 Closer to our present concern, a 
stochastic model of the distribution of REM sleep Episodes and 
Intervals in rats has been developed based on the observation 
that the distribution of both Episodes and Intervals follow a bi-
modal shape with an initial sharp peak and a second smoother 
increase.13 That model is based on the observed incidence of 
length distributions that is fit to a mixture of 2 Poisson distribu-
tions. In the present report, rather than considering the lengths 
of Episodes and Intervals directly as the stochastic variables, 
emphasis is placed on the occurrence of transitions into and out 
of REM sleep, and stochasticity is associated to the occurrence 
of those transitions. What must be modeled are the underlying 
processes that, as Episodes or Intervals evolve, make more or 
less likely a transition. These processes can be locally modeled 
as Poisson processes characterized by a single parameter. The 
purpose of the present study has been to assess the time course 
of that parameter throughout an Interval or an Episode.

Permanence in behavioral states and transitions between 
states should involve characteristic neural and biochemical cor-
relates. The search for neuroanatomic structures critical for state 
induction and continuance has been a central issue for sleep 
research.3,5,32,33 The role of specific neurotransmitters was em-
phasized early,34 and many neurotransmitter systems were later 
proposed to be involved in sleep-state regulation.35 The search 
for molecular correlates of sleep, such as state-dependent gene 
expression,36,37 is expected to provide a better understanding of 
the cellular biology that underlies state continuance and transi-
tions. The reciprocal interaction model of REM sleep generation 
is based on the interplay between brainstem cholinergic REM-
on neurons and aminergic REM-off neurons and on the time 
course of the building up of neurotransmitter effects and firing 
patterns.5,38-40 The role of mutually inhibiting neural structures 
and ensuing flip-flop mechanisms for stabilizing and switch-
ing states has been highlighted for both sleep-wake and NREM 
sleep-REM sleep alternations.1,2 Information about state-specif-
ic firing patterns from critical neural areas, particularly their 
time course throughout the sleep-wake cycle, becomes a most 
interesting issue.33,40-46

Modulation of Opportunity and Propensity Curves by Previous 
Episode Duration

The dynamics of opportunity as a function of the duration 
of the previous REM sleep episode in ZT 03-11 is presented in 
Figure 6. The pattern of a sharp increase and slow decrease in 
opportunity throughout the ongoing Interval observed in Figure 
2 can now be shown also as a function of the length of the pre-
vious Episode. The highest value of opportunity moves toward 
later times within the Interval when previous Episodes are lon-
ger, as indicated by comparison of the 3 panels of Figure 6B. 
Shorter previous Episodes, as compared with than longer ones, 
tend to be followed more by NREM sleep, as can be seen in the 
upper panel of Figure 6C.

The time course of propensity throughout an Interval as a 
function of the length of the previous REM sleep episode is dis-
played in Figure 7. The 3 panels of Figure 7C indicate that the 
overall time course of propensity displayed by the correspond-
ing panel of Figure 2 (first column, second row) is the resultant 
of different profiles. When the previous Episode is very short, 
the starting point of the curve is lower and the descent is shorter. 
When the previous Episode is very long, an intense and sus-
tained dip is observed. Note that, in the lower panel of Figure 
7C, where very long preceding Episodes are represented, the 
dip is so marked that it seems practically impossible to go back 
to REM sleep in the time window spanning from 1.0 to 5.0 
minutes from the start of the Interval.

The first panel of Figure 7D illustrates propensity as a func-
tion of previous REM sleep episode length at time 0.25 minutes 
after the start of the Interval and indicates that propensity is 
lower for very short and very long previous Episodes, attaining 
a plateau when the previous Episode had a length between 1.0 
and 2.0 minutes.

In the last 6 panels of Figure 7D, the scale of propensity has 
been changed to highlight the evolution of this variable from 
minute 2.5 to 15.0 of the Interval. The sequence of panels il-
lustrate that, at 2.5 minutes after the start of the Interval, the 
propensity curve shows a sharp descent so that, for example, 
a 1.5-minute previous Episode is quite effective in keeping a 
low propensity. As the Interval evolves, the shape and slope of 
the curve change. Note that the all 6 curves start from a similar 
level, ie, a very short previous Episode is followed by a high 
propensity that does not vary along the Interval; on the other 
hand, longer Episodes will have an impact on propensity, an 
impact that will fade as the Interval evolves.

Modulation of the Volatility Curve by Previous Interval Duration

Figure 8 displays the dynamic course of REM sleep volatility 
as a function of the previous Interval duration. The influence of 
the previous Interval, as seen in Figure 8B, is mostly noticeable 
at the very start of the ongoing Episode when the initial volatil-
ity is much higher after longer Intervals with a subsequent a 
sharper drop. The initial volatility is lower for very short Inter-
vals, and the descent that follows is quite modest, an effect that 
can be confirmed in the upper panel of Figure 8C. The next 2 
panels indicate that, afterward, volatility is largely independent 
from previous Interval duration.

Probability of Transition Into and Out of REM Sleep—Bassi et al
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Figure 5—The 3D mesh plots correspond to time segments of 24-hour data: A. 03-11, B. 11-23 and C. 23-043 and display the dynamic course 
of the rate of transition from non-rapid eye movement (NREM) sleep to wake (W) through a given NREM sleep bout adding as a second 
modulating variable the time at which the NREM bout began after the Interval started. The 2D panels at the right of each 3D mesh plot are 
cross sections displaying the modulation of the rate of transition from NREM sleep to W as a function of time from the start of the NREM 
bout at 6 different times elapsed from the beginning of an Interval and the start of the NREM sleep bout being examined.
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The initial high level of propensity and volatility can be in-
terpreted as an inertial effect of the previous state and the sub-
sequent rapid fall as a stabilization process of the new state. 
Inertia is the lingering effect of the previous substrate; stabili-
zation is the successful take over by the new paradigm. In the 
case of propensity, the inertia indicates a high probability that, 

Changes in behavioral states involve a cause-effect sequence. 
Transitions are the result of an underlying neural and biochemi-
cal substrate, but, at the same time, after a transition occurs, the 
new state may determine a new neural and biochemical sub-
strate. Neural discharge, intracellular events, and neurotrans-
mitter concentration may change at different time scales. Part 
of the rationale for the present work has been to account for the 
coupling of abrupt changes triggered at some point by processes 
that may themselves undergo a slower modulation. Homeostatic 
and circadian processes account for the regulation of behavior 
states.27 A bout of a given state involves the transition into the 
state, followed by a stable phase for the duration of the bout, 
and ending with a transition out of the state. The drive to enter, 
stay, and exit a given state depends as much on factors related 
to that state as to factors related to potentially competing ones. 
This is metaphorically implied in the literature by terms such as 
REM sleep pressure and NREM sleep pressure. By definition, 
a transition involves both the process of going out of a given 
state and the process of going into another one. Furthermore, 
since state transitions should involve energy-demanding recon-
figurations, one may expect that many attempts will turn out 
to be unsuccessful, a consideration consistent with the peaks 
of very short Episodes and very short Intervals observed in the 
actual corresponding distributions. Finally, the mechanisms re-
sponsible for going into a state need not be the same with sign 
opposite to those responsible for going out of a state, just as 
hunger and satiety may involve different mechanisms.

The previous paragraph summarizes the context in which 
our results will now be discussed. Our model is based on the 
evolution of ��������������������������������������������������   3�������������������������������������������������    variables: opportunity, propensity, and volatil-
ity. Opportunity shows a rapid ascending phase followed by a 
much slower descent. The ascending phase reflects a tendency 
to transit from REM sleep to W and then rapidly go back to 
NREM sleep. The ensuing decay suggests that longer intervals 
reflect the presence of self-stabilizing W. Propensity and vola-
tility start at their highest level and rapidly decay to rise again, 
sharply in the case of volatility, and moderately in the case 
of propensity. Since sleep variables undergo a strong 24-hour 
modulation, these general features of opportunity, propensity, 
and volatility were analyzed throughout the 12:12 L:D sched-
ule. The time course of opportunity is related to NREM sleep. 
High levels of opportunity throughout the Interval are observed 
in the last hour of the dark phase and first hours of the light 
phase, coinciding with the highest incidence of NREM sleep. 
Coherently, this high occurrence of NREM sleep at a time of 
low propensity for REM sleep keeps offering opportunities that 
are not being realized. Propensity and volatility display a 24-
hour modulation that is particularly noticeable at the beginning 
of the Episode or Interval. Their curves are roughly inverted, 
propensity rising and volatility decreasing through the light 
phase. High propensity and low volatility, plus the high level 
of opportunity, favor REM sleep expression. This is consistent 
with the fact that, in the rat, the sinusoidal 24-hour distribution 
of REM sleep reaches its highest incidence during the second 
half of the rest-predominant, lights-on phase.19,20,24 Based on 
these 24-hour distributions, particularly on that of opportunity, 
we built our databases according to the 3 time segments ZT 23-
03, ZT-03-11, and ZT 11-23.

Probability of Transition Into and Out of REM Sleep—Bassi et al

Figure 6—A. Mesh plot displaying the dynamic course of oppor-
tunity through the Interval as a function of the previous rapid eye 
movement (REM) sleep Episode duration. B. Cross sections dis-
playing opportunity at 3 different values of previous REM sleep 
Episode duration. C. Cross sections displaying the modulation of 
opportunity as a function of previous REM sleep Episode duration 
at 3 different times from the start of the Interval. Panels in B and 
C show the output of the aggregated model (dashed curve) with-
in a 1-standard deviation span (thick solid curves). Opportunity 
is measured as probability of being in non-rapid eye movement 
(NREM) sleep, a value between 0 and 1.
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pressure of the alternative state. Actually, volatility conspicu-
ously doubles its value from minute 1.0 to 3.0 after the start of 
the Episode, whereas, when propensity is assessed through the 
Interval, the rise in the tendency to enter REM sleep is much 
less pronounced. If the NREM sleep and W contents of the In-
terval are considered separately, the rise in propensity seems to 
be related to the NREM sleep content.

The effect of NREM sleep was better assessed by monitor-
ing propensity through a NREM sleep bout while controlling 

given the opportunity to go immediately back to REM sleep, 
it will be taken, but, if it is not, the new Interval will stabilize 
itself. The same can be said for volatility, since, at the beginning 
of the Episode, it is probable that a transition into REM sleep 
will not succeed, but, if it does, the state will be expected to 
endure. After falling from their initial high level, propensity or 
volatility may either stay at a low level or rise. The latter case 
should be interpreted as a destabilization process due either to 
a self-limited saturation of the current state or to an increase 

Probability of Transition Into and Out of REM Sleep—Bassi et al

Figure 7—A. Mesh plot displaying the dynamic course of propensity through the Interval as a function of the previous rapid eye movement 
(REM) sleep Episode duration. B. Mesh plot highlighting the dynamic course of propensity from 2.5 to 15.0 minutes after the start of the 
Interval. Note that the propensity scale is different and that the time-after-start-of-Interval axis is inverted. C. Cross sections displaying pro-
pensity at 3 different values of previous REM sleep Episode duration. D. Cross sections displaying the modulation of propensity as a function 
of previous REM sleep Episode duration at 9 different times from the start of the Interval. Note that ordinates have different scales in the 
first 3 panels. Panels in C and D show the output of the aggregated model (dashed curve) within a 1-standard deviation span (solid curves). 
Propensity is measured as the rate of occurrence of into-REM transitions expressed as events per minute.
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capable of establishing a REM sleep substrate and, in the other, 
that very long ones may have satisfied the REM sleep need and 
hence weakened the propensity to go back to that state. This ef-
fect and its time course throughout the Interval are confirmed 
by the sequence of panels displayed in Figure 7C, in which the 
different starting points of the curves represent an effect on REM 
sleep inertia. In Figure 7C, it is also remarkable that short previ-

for total Interval time. When a NREM sleep bout starts at the 
very beginning of the Interval, an inertial effect is expressed by 
a very high initial propensity. Propensity falls as that NREM 
sleep bout evolves, but it remains at higher levels than the cor-
responding initial ones observed as the NREM sleep bout starts 
later into the Interval; the implication being that intervening W 
counteracts more effectively the REM sleep inertial effect. A 
second remarkable fact is the ascent of propensity after a very 
low initial level observed when the bout starts roughly 2 or 
more minutes into the Interval. This increment of propensity 
through the first minute of the bout illustrates the concept of 
REM sleep priming by NREM sleep or the need for NREM 
sleep to occur after W for a transition into REM sleep to be pos-
sible. After some 4 minutes into the bout, a pronounced further 
increase may be observed, meaning that, at least in this situ-
ation, more NREM sleep makes more likely a transition into 
REM. This late increase occurs only when the NREM sleep 
bout had started after at least 3 minutes of Interval and is not 
present at ZT 23-03. Actually, in that time segment, there is 
a decrease in propensity after the early rise just described as 
corresponding to the priming effect. The late propensity rise 
is also absent during ZT 03-11 and ZT 11-23 when the preced-
ing Interval has been short. This fact may be explained by the 
proximity of the last Episode, which would lessen the drive for 
a new Episode during the NREM sleep bout.

Since the previous analysis examined transitions into REM 
sleep as a NREM sleep bout evolves, we wanted to compare it 
with the evolution of transition rate into W through a NREM 
sleep bout. The data are presented in Figure 5 and show that 
there is a consistent pattern of decrease after the initial high 
point indicative of a W into NREM sleep inertial effect. We 
also performed analysis, not shown in the results section, that 
indicated that, the longer the previous W bout, the stronger its 
inertial effect on the sleep to W transition rate at the beginning 
of a sleep bout.

REM sleep short-term homeostasis was assessed by analyzing 
the effect of the length of the previous Episode on propensity. 
That effect is straightforwardly expressed by the descent of the 
propensity when the previous Episode duration is longer. Short-
term homeostasis can be thought of as the capacity of longer 
REM sleep episodes to lower the propensity curve for longer 
times. Furthermore, the time course of the homeostatic effect can 
be approximated by observing through the panels of Figure 7D 
how the modulation of propensity by previous Episode duration 
fades after minute 5 of the Interval. Note also that only in the first 
panel of Figure 7D is an ascending segment evidenced for short 
previous Episodes of up to 1.0 minute in duration. This fact can 
also be explained by an inertia effect, since the short interven-
ing Episode would have been insufficient to stabilize the REM 
sleep state and to generate REM sleep inertia, and, consequently, 
the underlying substrate of the previous Interval still remains in 
force at the beginning of the new Interval. This fact may be re-
lated to the finding that after 24 hours of sleep deprivation in 
the rat, the large ensuing REM sleep increase is accompanied 
by a reduction in unsuccessful attempts to enter REM sleep and 
an increase in sustained Episodes.12 Note also that propensity at 
the beginning of an Interval is highest when the previous Epi-
sode lasted between 1.0 and 2.0 minutes. This inverted U-shaped 
curve suggests that, at one extreme, very short Episodes are not 

Probability of Transition Into and Out of REM Sleep—Bassi et al

Figure 8—A. Mesh plot displaying the dynamic course of volatility 
through the rapid eye movement (REM) sleep Episode as a function 
of the previous Interval duration. B. Cross sections displaying vola-
tility at 3 different values of previous Interval duration. C. Cross 
sections displaying the modulation of volatility as a function of 
previous Interval duration at 3 different times from the start of the 
REM sleep Episode. Panels in B and C show the output of the ag-
gregated model (dashed curve) within a 1-standard deviation span 
(solid curves). Volatility is measured as the rate of occurrence of 
out-of-REM transitions expressed as events per minute.
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ous episodes display a low starting point and a small descent in 
propensity, whereas longer previous episodes start with a high in-
ertial effect followed by a large dip. A more intense and sustained 
dip represents the most stable phase of the Interval or a relative 
refractory period for REM sleep. It should also be stated that lon-
ger previous Episodes not only affect propensity but also reduce 
initial opportunity and delay its recovery, as observed in Figure 5. 
In the case of volatility, the inertial effect of the previous Interval 
was observed but not the homeostatic one, a fact that confirms 
previous reports10 indicating that, in the basal sleep-wake cycle 
of the rat, the Interval length is subjected to a short-term homeo-
static regulation, but the Episode length is not. Only at the very 
start of an Episode does volatility depend markedly on the length 
of the previous Interval, a fact compatible with the assumption 
that after very short Intervals, the system is resuming the previ-
ous Episode rather than starting a fresh new one, hence the softer 
stabilization and the higher saturation.

In summary, we have proposed a model that conceptualizes 
the stochasticity of the duration of REM sleep Episodes and 
Intervals as arising from continuous underlying processes that, 
as they evolve, set the expected rate of transitions into and out 
of REM sleep. Bearing such a conceptualization, we have re-
visited issues such as REM sleep 24-hour distribution, the ef-
fect of NREM sleep on REM sleep expression, and short-term 
homeostatic aspects of REM sleep regulation

ACKNOWLEDGMENTS

This work was supported by research grant Fondecyt 
1060250. The authors wish to thank the reviewers for sugges-
tions that resulted in substantial improvements to the original 
manuscript.

Disclosure Statement

This was not an industry supported study. The authors have 
indicated no financial conflicts of interest.

REFERENCES

1.	 Saper CB, Chou TC, Scammell TE. The sleep switch: hypo-
thalamic control of sleep and wakefulness. Trends Neurosci 
2001;24:726-31.

2.	 Lu J, Sherman D, Devor M, Saper CB. A putative flip-flop switch 
for control of REM sleep. Nature 2006;441:589-94.

3.	 Fuller PM, Saper CB, Lu J. The pontine REM switch: past and 
present. J Physiol 2007;584:735-41.

4.	 Merica H, Fortune RD. State transitions between wake and sleep, 
and within the ultradian cycle, with focus on the link to neuronal 
activity. Sleep Med Rev 2004;8:473-85.

5.	 Pace-Schott EF, Hobson JA. The neurobiology of sleep: genetics, 
cellular physiology and subcortical networks. Nat Rev Neurosci 
2002;3:591-605.

6.	 Maquet P, Peters J, Aerts J, et al. Functional neuroanatomy 
of human rapid-eye-movement sleep and dreaming. Nature 
1996;383:163-6.

7.	 Siegel JM. The stuff dreams are made of: anatomical substrates of 
REM sleep. Nat Neurosci 2006;9:721-2.

8.	 Trachsel L, Tobler I, Achermann P, Borbely AA. Sleep continuity 
and the REM-nonREM cycle in the rat under baseline conditions 
and after sleep deprivation. Physiol Behav 1991;49:575-80.

Probability of Transition Into and Out of REM Sleep—Bassi et al

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/32/5/655/2454405 by U

niversidad de C
hile - C

asilla C
hoice user on 08 August 2022



SLEEP, Vol. 32, No. 5, 2009 669

41.	 Hobson JA, McCarley RW, Freedman R, Pivik RT. Time course 
of discharge rate changes by cat pontine brain stem neurons dur-
ing sleep cycle. J Neurophysiol 1974;37:1297-309.

42.	 Steriade M, Datta S, Pare D, Oakson G, Curro Dossi RC. Neu-
ronal activities in brain-stem cholinergic nuclei related to tonic 
activation processes in thalamocortical systems. J Neurosci 
1990;10:2541-59.

43.	 Blumberg MS, Seelke AM, Lowen SB, Karlsson KA. Dynamics 
of sleep-wake cyclicity in developing rats. Proc Natl Acad Sci U 
S A 2005;102:14860-4.

44.	 Takahashi K, Lin JS, Sakai K. Neuronal activity of histaminer-
gic tuberomammillary neurons during wake-sleep states in the 
mouse. J Neurosci 2006;26:10292-8.

45.	 Behn CG, Brown EN, Scammell TE, Kopell NJ. Mathematical 
model of network dynamics governing mouse sleep-wake behav-
ior. J Neurophysiol 2007;97:3828-40.

46.	 Best J, Diniz Behn C, Poe GR, Booth V. Neuronal models for 
sleep-wake regulation and synaptic reorganization in the sleeping 
hippocampus. J Biol Rhythms 2007;22:220-32.

quartet neural system model orchestrating sleep and wakefulness 
mechanisms. J Neurophysiol 2006;95:2055-69.

34.	 Jouvet M. The role of monoamines and acetylcholine-containing 
neurons in the regulation of the sleep-waking cycle. Ergeb Phys-
iol 1972;64:166-307.

35.	 Siegel JM. The neurotransmitters of sleep. J Clin Psychiatry 
2004;65 Suppl 16:4-7.

36.	 Cirelli C, Pompeiano M, Tononi G. Neuronal gene expres-
sion in the waking state: a role for the locus coeruleus. Science 
1996;274:1211-5.

37.	 Tononi G, Cirelli C. Modulation of brain gene expression during 
sleep and wakefulness: a review of recent findings. Neuropsy-
chopharmacology 2001;25:S28-35.

38.	 Hobson JA, McCarley RW, Wyzinski PW. Sleep cycle oscillation: 
reciprocal discharge by two brainstem neuronal groups. Science 
1975;189:55-8.

39.	 McCarley RW, Hobson JA. Neuronal excitability modulation 
over the sleep cycle: a structural and mathematical model. Sci-
ence 1975;189:58-60.

40.	 Lydic R, McCarley RW, Hobson JA. The time-course of dorsal 
raphe discharge, PGO waves, and muscle tone averaged across 
multiple sleep cycles. Brain Res 1983;274:365-70.

Probability of Transition Into and Out of REM Sleep—Bassi et al

D
ow

nloaded from
 https://academ

ic.oup.com
/sleep/article/32/5/655/2454405 by U

niversidad de C
hile - C

asilla C
hoice user on 08 August 2022


