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Infection and invasion mechanisms of Trypanosoma cruzi in the
congenital transmission of Chagas’ disease: A proposal
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ABSTRACT

Chagas’ disease is produced by the haemophlagelated protozoan Trypanosoma cruzi and transmitted by haematophages insects such as
Triatoma infestans (vinchuca). Due to vector control, congenital transmission gains importance and is responsible for the presence and
expansion of this disease in non-endemic areas.
The mechanisms of congenital infection are uncertain. It has been suggested that the parasite reaches the fetus through the
bloodstream by crossing the placental barrier, and that congenital Chagas’ disease is the result of complex interactions between the
immune response, placental factors, and the parasite’s characteristics.
We review the cellular and molecular mechanisms of infection and invasion of the parasite and how immune and placental factors may
modulate this process. Finally, we propose a possible model for the vertical transmission of Chagas´ disease.
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Dr. Gustavo Hoecker: Your definitive departure was
sorrowful for all your friends.

However,  we also feel proud and happy for the
opportunity to have had you among us. It is not possible to
forget your imposing presence. Your acute intelligence,
sharp and deep, always inquiring, always producing
surprising and unexpected answers,  in a context of
enormous sympathy and humor. To talk with you was
always a moment of learning, of enthusiasm and of looking
for new aspects of the same old problem. Today, Science is
measured by the number of approved projects and the
impact index of publications. Time given over to thinking
and reasoning, as well as the possibility of playing with
ideas, is considered by many as a wasted. Gone are the
happy days in which thinking was the main task of a
scientist. You were a Professor, a Teacher, a person always
giving time for reading the scientific literature, for thinking
and for sharing your knowledge and ideas. You were always
ready to listen. Dear Gustavo: Thanks for giving us the
opportunity of your friendship.

CHAGAS´ DISEASE

One of the major health problems in Latin America is
Chagas´  disease,  caused by different  clones of  the
flagellated protozoan Trypanosoma cruzi, affecting more
than 18 million people (WHO Expert Committee, 2002) in
poor and marginal populations in Central and South
America. At present it is one the major public health
concerns in Latin America. In vector related diseases, it is
second to malaria in prevalence and mortality (WHO
Expert Committee, 2002). Chagas´ disease is one of the
“Neglected Tropical Diseases” that have received little
attention and resources despite their magnitude and impact
on both economic development and quality of  l i fe .
However, in recent years, growing attention has been

focused on neglected tropical diseases as both a public
health issue and a human rights issue. (www.who.int/hhr).
The disease spreads from southern United States through
southern Argentina and Chile. At least twenty-eight million
people are at risk of exposure to infection, with an
estimated total of fifteen million cases.

Of these, Chile contributes with an estimated 150,000
presumably infected cases. On the other hand, according to
reports from the World Health Organization, mortality rates
vary from 8 to 12% depending on the country studied, age,
patients’ physiologic status, and modality of treatment
(WHO Expert Committee, 2002).

CHAGAS’ DISEASE AND ITS AGENTS

T. cruzi  presents  an indirect  l i fe  cycle ,  with
haematophagous insects (Triatomids) as intermediary
hosts, and mammals, including man, as definitive hosts (de
Souza, et al 2002). The main T. cruzi triatomid vectors in
South America are Triatoma infestans (“vinchuca”), Rhodnius
prolixus, and Panstrongylus megistus. In addition to T.
infestans (domiciliary cycle), Mepraia spinolai and Mepraia
gajardoi (sylvatic cycle) are also found in Chile (WHO
Expert Committee, 2002).

Disease transmission is mainly produced by the bite of T.
cruzi infected insects that, upon feeding on mammal blood,
deposit feces contaminated with infecting metacyclic
trypomastigotes on the skin. The parasites then enter the
blood stream through the skin by a mechanism facilitated by
self-inflicted scratching and proteolytic enzymes found in
the insect’s saliva (Amino, et al. 2002). Upon entering the
blood stream, trypomastigotes are phagocytosed by
macrophages and leucocytes, thus differentiating into
amastigotes, the obligate cytoplasmatic form of replication.
After a certain number of replications,  amastigotes
differentiate into trypomastigotes and then escape from
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these cells into circulation, heading into target tissues such
as myocardium, skeletal muscle, smooth visceral muscle,
glial cells of the nervous system, and the placenta. Other
important forms of infection are blood transfusions, organ
transplants (10% of cases) (Prata, 2001; Coura, 2007), oral
infection through the ingestion of contaminated foods
(Coura, 2006; Yoshida,), and transplacental transmission in
Chagasic mothers (Prata, 2001; Coura, 2007; Fragata Filho, et
al 2008).  These alternative forms of infection have
progressively gained epidemiologic importance (Prata, 2001;
Coura, 2007; Yoshida, 2008).

T. cruzi is basically divided into two divergent genetic
groups or lineages (T. cruzi I y II), that supposedly belong to
two different ecologic environments (Di Noia, et al 2002;
Freitas,  et  al  2005; Manoel-Caetano and Silva 2007;
Cerqueira, et al 2008). T. cruzi I is mainly detected in the
sylvatic cycle, infecting American marsupials and mammals,
whereas T. cruzi II is mainly present in the domestic cycle
and associated with human pathogenesis (Di Noia, et al 2002;
Freitas, et al 2005; Manoel-Caetano and Silva 2007).

The parasite’s biological cycle includes three
morphologic aspects characterized by the relative positions
of the flagellum, kinetoplast, and nucleus (Prata, 2001): 1)
Trypomastigotes: 20 micrometers in length, sub-terminal
kinetoplast, and fusiform. They constitute the parasite’s
infecting and non-replicative forms, which are found in
mammal blood and in the posterior intestine of triatomids. In
mammals, this is the cellular form that disseminates
infection through blood. 2) Epimastigotes:  Also 20
micrometers in length, kinetoplast anterior to the nucleus,
and fusiform. They represent the parasite’s form of
replication in the anterior intestine of the triatomid, and the
predominant form in axenic cultures. 3) Amastigotes:
approximately 2 micrometers in diameter, round, with no
emergent flagellum. It multiplies within the host mammal’s
cells until they rupture free (after 8-9 cell divisions). Before
their release from the host cells, amastigotes differentiate
back into trypomastigotes that invade the blood stream; they
may then enter any other nucleated cell. Amastigotes can be
grown in cell cultures inside muscle cells, fibroblasts, and
macrophages (Morello, et al 1987; Burleigh and Andrews
1995; Yoshida, 2006), from which infecting forms of T. cruzi
(trypomastigotes) may be harvested. Chagas’ disease
develops in three phases. First the acute phase, immediately
post infection, with high levels of parasitemia and symptoms
in only some patients (regional lymph node enlargement,
bipalpebral unilateral edema or Romana’s sign, and
characteristic electrocardiogram alterations). In most cases,
acute infection is not accompanied by clinical findings, thus
moving on to the latent phase that can last for months or
years (Soares, et al 2001). The chronic phase, present in 30%
of infected individuals, is associated with mega colon, mega
esophagus, degeneration of the autonomous nervous system,
arrhythmias, and abnormal growth of the heart with
progressive insufficiency (Prata, 2001) and evident negative
impact on the patient’s health. In this phase the disease can
be handicapping, and either be the concurrent or the direct
cause of death. The course of the disease depends on diverse
factors: parasite load at the site of inoculation, both the
parasite’s genetic group and strain, whether it is an infection
de novo or re-infection, the host’s immunologic status, and
the type of vector (triatomid) (Coura, 2007).

CONGENITAL CHAGAS’ DISEASE

In the past few years congenital transmission of T. cruzi has
increasingly become more important, and partly responsible
for the “globalization of Chagas’ disease” (Schmunis, 2007),
constituting a public health problem of increasing relevance
(Torrico et al 2005; Carlier et al 2005, Lescoure et al 2008). As
a result of vector control (triatomids), the number of new
cases per year has greatly decreased, from 700000 in 1990 to
41000 in 2006. Nonetheless, the number of congenital Chagas
cases was 14,385 in 2006, which is why this form of
transmission is of growing importance epidemiologically
(WHO Expert Committee, 2002). Children and women are
disproportionately affected by neglected tropical diseases
(such as Chagas´disease) and may face additional barriers to
seeking and receiving treatment (www.who.int/hhr).
Serologic prevalence among pregnant women can reach 80%,
and rates of congenital infection vary from 1-21% (Kirchhoff,
1993; Blanco, et al 2000; Shippey III, et al 2005, Torrico, et al
2005, Burgos, et al 2007). Rates of congenital transmission
vary from 1% in Brazil to 4.12% in Argentina, Chile, and
Paraguay. The cure for chronic Chagas´ disease was recently
reported in mice,  following two treatments with
benznidazole, which induces an antigen-independent CD8+T
cell memory (Bustamante, et al 2008). Unfortunately,
benznidazole is a toxic drug (Maya, et al 2007; Castro, et al
2006) that cannot be used in pregnant women. Therefore, in
the event that the aforementioned treatment is effective in
humans, vertical transmission cannot be prevented due to
the toxicity and teratogenicity of the drugs available to treat
Chagas´ disease (Castro, et al 2006).

The requirements in order to consider a Chagas case as
congenital are the following: 1) T. cruzi seropositive mother;
2) Postpartum detection of parasites in newborns; or 3)
Detection of parasites or specific anti-T.cruzi antibodies
(generated by the child) at a later time, only if contamination
due to transfusion or vector transmission can be ruled out
(Carlier, 2005). Congenital T. cruzi infection is associated
with premature labor, low birth weight, and still births
(Bittencourt, 1976; Altemani, 2000; Shippey III, et al 2005).
About 50% of premature babies born to mothers with Chagas
do not survive (Shippey SH III, et al 2005). Pathophysiology
of congenital infection is unknown (WHO Expert Committee
2002, Shippey SH III, et al 2005). It has been suggested that
the parasite reaches the fetus by crossing the placental
barrier (Bittencourt, 1976; Andrade, 1982; Nisida, 1999;
Carlier, 2005). Nevertheless, knowledge of the cellular and
molecular mechanisms of transplacental infection is scarce
(WHO Expert Committee 2002; Shippey III, et al 2005;
Burgos, et al 2007). It is thought that congenital Chagas´
disease is product of a complex interaction among the
maternal immune response, placental factors, and the
characteristics of the parasite (Carlier, 2005; Burgos, et al
2007). The placenta is the principal site for the exchange of
nutrients and gases between mother and fetus (Syme, et al
2004; Moore and Persaud 2004). In addition, it plays an
important role in hormone, peptide, and steroid synthesis
that are fundamental for a successful pregnancy (Syme, et al
2004). The placenta is composed of a fetal portion, developed
from the chorion frondosum, and a maternal portion, or basal
decidua, which originates from the endometrium (Moore and
Persaud 2004; Cross, 2006). The human placenta presents a
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maternofetal hemo-monochorial barrier or “membrane”
according to the Grosser classification (Benirschke, 2006).
This type of maternofetal barrier is composed of extra fetal
tissue that separates maternal blood in the intervillous space
from that of the fetus. Until week 20 of gestation this barrier
is composed of syncytiotrophoblast,  cytotrophoblast,
connective tissue in the villous stroma of chorionic villi, and
fetal capillary endothelium (Figure 1AB). After week 20, the

placenta undergoes adaptations that improve metabolic
exchange, cytotrophoblastic cells diminish, and the nuclei of
syncytiotrophoblast cells group together forming nodes
(Figure 1C-D). This restructuring favors metabolic exchange
due to the formation of thin cytoplasmatic areas devoid of
nuclei,  so that fetal capillaries come close to the
syncytiotrophoblast and thus the placental membrane
transforms into a thinner barrier (Moore and Persaud, 2004).

Figure 1: Placental maternofetal barrier: The maternofetal barrier is composed of syncytiotrophoblast (ST), cytotrophoblast (CT),
fetal connective tissue of the villous stroma (VS), fetal capillary (FC) and basal lamina between Villous stroma and trophoblast
(BLT) and around fetal endothelium (FCBL) (A-E). After week 20, the placenta undergoes adaptations that improve metabolic
exchange, cytotrophoblastic cells diminish in number, the nuclei of syncytiotrophoblast cells group together forming nodes and the
fetal capillaries come close to the trophoblast (C-D) and thus the placental membrane transforms into a thinner barrier.
Microphotography of a placental membrane from a human term placenta is shown in E: Microvilli at the apical surface of the
syncytium (arrow) toward the intervillous space (IS); nucleous of the cytotrophoblast (NC), nucleous of the syncyitum (NS), basal
lamina of the trophoblast (BLT), collagen fiber of the fetal connective tissue (CL), fetal capillary (FC) and the basal lamina of the
fetal capillary (BLFC), bar 2.86 µm.
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The restructured placental barrier possibly facilitates the
invasion of diverse pathogens. Among these are the human
immunodeficiency virus (HIV), the viruses that cause
hepatitis B and C, varicella zoster, rubella, parvovirus B19
(Koi, et al 2001) and cytomegalovirus (Koi, et al 2001;
Halwachs-Baumann, 2006), as well as mycoplasma (Dische et
al 1979). In addition to T. cruzi, other congenital diseases
caused by parasites have also been described, among which
Plasmodium falciparum, the agent responsible for causing
malaria, (Rogerson, et al.2007; Desai, et al 2007), schistosoma
(Friedman, et al. 2007), Toxoplasma gondii (Biedermann, 1995;
Correa, et al 2007) and Trypanosoma brucei (Rocha, et al 2004)
are of importance.

During pregnancy, there is a predominating Th2 immune
response that favors immunologic tolerance to the fetus
(Raghupathy, 2001, Lin, et al 2005; Raghupathy and Kalinka
2008), but there is also increased susceptibility to certain
autoimmune diseases and intracellular infections (Guilbert,
et al 1993; Lin, et al 2005). Among these are the following:
Acquired Immune Deficiency Syndrome (AIDS) (Derrien, et
al 2005), infections associated with AIDS (Margono, et al
1994), malaria (Gamain, et al 2006) and toxoplasmosis
(Biedermann,1995).

In non-infected newborns with Chagasic mothers, a
strong activation of their innate immune response with an
increased capacity to produce both proinflammatory (IL1-β,
IL-6, TNF-α) and anti-inflammatory (IL-10) cytokines by
monocytes is observed. In addition, an increase in TNF-α
receptors is also observed, when compared to infected
newborns or healthy newborns with healthy mothers
(Hermann, et al 2004; Carlier, 2005; Truyens, et al 2005;
Hermann, et al 2006). Therefore, non-infected newborns with
Chagasic mothers are able to mount a T CD8+ cellular
immune response similar to that of an adult (Hermann, et al
2002). Similarly, transmitting mothers have a higher parasite
load associated with higher parasitemia, diminished capacity
to produce IFN-γ by mononuclear blood cells, inability to
produce IL-2 as a specific response to the parasite (Hermann,
et al 2004; Carlier, 2005; Alonso-Vega, et al 2005), a greater
capacity to produce IL-10 (anti-inflammatory cytokine)
(Alonso-Vega, et al 2005), and low levels of circulating TNF
(Garcia, et al 2008). On the contrary, non-transmitting
Chagasic mothers show high monocyte activation levels
(Carlier, 2005; Alonso-Vega, et al 2005; Hermann, et al 2006)
and high levels of circulating TNF (Garcia, et al 2008).

There are only a few studies that describe the
histopathological lesions of placentas from both transmitting
and non-transmitting mothers infected with Chagas’ disease.
These analyses were carried out with routine histological
techniques (haematoxilin-eosin) and the lesions were
described as “chorionitis”,  “chorioamnionitis”,  and
“umbilical chord edema” (Fernandez-Aguilar, et al 2005).
Unfortunately, histochemical and immunohistochemical
techniques were not applied in order to determine with
greater certainty the presence of parasites and that of cellular
and molecular alterations in the chorionic villi. Another
study, classified inflammatory cells present in placentas
infected with T. cruzi, describing a predomination of CD68+
macrophages, T lymphocytes (CD4+: CD8+ ratio between
0.04 and 0.38), some NK cells (natural killer), and almost no
or null presence of B lymphocytes (Altemani, et al 2000).
Predomination of mononuclear cells is characteristic of any

chronic inflammatory response to an infectious agent
(Kumar, et al  2005).  The cytotoxic lymphocyte
predomination could be explained by a response to an
intracellular pathogen (Hermann, et al 2002). In that study,
no difference was made between transmitting and non-
transmitting mothers with Chagas’ disease, nor was
placental histopathology described in detail. Placentas from
live newborn births and still births were separated. In
placentas from stillbirths, extended areas of necrosis and
abundant parasites were observed when compared to
placentas from live births (Altemani, et al 2000).

MECHANISMS OF T. CRUZI INFECTION AND INVASION

Parasite invasion in cell cultures has been studied in some
depth (Andrade, et al 2005). On the other hand, studies that
analyze parasite invasion in tissues and organs are rare. T.
cruzi penetration in host cells occurs through a complex
multi-step process that includes both parasite and host cells.
Parasite attachment to host cells is receptor mediated. T.
cruzi possesses a series of surface molecules that interact in a
differential manner with molecules from the host’s cells and
extracellular matrix (ECM) (Yoshida, 2006). T. cruzi cellular
invasion induces calcium signals and activation of signal
transduction pathways both in the parasite and the host
(Yoshida, 2006; Yoshida 2008). The parasite’s capacity to
generate calcium signals in the host is related to its
infectivity (Manque et al 2003, Yoshida 2008). The activation
of signal transduction pathways that lead to the generation
of calcium signals requires two peptidases (Burleigh and
Woolsey 2002), a serine endopeptidase, oligopeptidase B
(Burleigh and Andrews 1995), and a secreted lysosomal
cystein protease, cruzipain (Scharfstein, et al 2000).

Signal transduction pathway activation in the host:

Phospholipase C (PLC) activation is one of the most
important signal transduction pathways because it generates
Inositol-3-phosphate (IP3), which leads to calcium liberation
from intracellular deposits (Rodriguez, et al 1995; Yoshida
2006).  This increase in calcium induces recruitment
(Andrews, 2002) and fusion of lysosomes (Jaiswal, et al 2002)
with the plasma membrane at the site of parasite invasion.
This process is boosted by a concomitant rise in cyclic AMP
(Rodriguez, et al 1999). Disorganization of the cytoskeleton is
also produced by de-polymerization of actin filaments
(Rodriguez, et al 1995; Woolsey and Burleigh 2004; Yoshida,
2006; Yoshida, 2008).

During cell invasion, phosphoinositol 3-kinases (PI 3Ks)
are also activated; inhibition of these kinases blocks the
parasite’s internalization (Todorov, et al 2000; Yoshida,
2006). The regulatory sub-unit of PI-3K, p85, co-localizes
with actin filaments at the sites of parasite entry into
macrophages (Vieira, et al 2002).

In phagocytic cells, such as macrophages, a protein
tyrosinekinase (PTK) has been associated with parasite
cellular invasion due to that PTK inhibition lowers the rate
of parasite endocytosis (Vieira, et al 1994; Woolsey and
Burleigh 2004).  When these cells are invaded, an
accumulation of tyrosine phosphorylated residues have been
observed, in domains rich in actin F on the cell surface
(Vieira, et al 2002). On the contrary, in non-phagocytic cells
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PTKs seem to be unnecessary. In these cells, parasite
invasion induces phosphatases, since the inhibition of
tyrosine-protein phosphatases significantly reduces the rate
of infection (Zhong, et al 1998).

During parasite invasion, other proteinkinase B (PKB/
Akt) is activated and its inhibition also reduces the rate of
infection (Wilkowsky et al  2001).  Another signal
transduction pathway that has been associated with the
process of parasite invasion is protein kinase C (PKC)
activation (Burleigh and Woolsey 2002); in macrophage
culture, the presence of recombinant gp83, a parasite surface
glycoprotein, activates PKC (Villalta, et al 1999; Yoshida,
2006). In macrophages, activation of signal transduction
pathways that lead to stimulation of transcription factor NF-
B, that participates in the regulation of the expression of a

wide number of pro-inflammatory cytokine genes, has been
described, which in turn could reduce the infection rate
(Ropert, et al 2001; Burleigh and Woolsey 2002). On the
contrary, in cardiac muscle cells NF-κB activation might
facilitate parasite invasion (Machado, et al 2000; Nagajyothi
et al 2006). In other cell types, such as smooth and skeletal
muscle cells (Hall, et al 2000), as in fibroblasts (Vaena de
Avalos, et al 2002), no NF-κB activation is observed. In
addition, in cardiac muscle NF-κB activation and
transcription factor AP-1 via MAPK ERK1/2 (mitogen-
activated protein kinases, serine treonine kinases) could be
partially responsible for changing hypertrophic to
hyperplasic growth (Nagajyothi, et al 2006). MAPK ERK1/2
activation has also been observed in smooth muscle cells,
endothelial cells (Mukherjee, et al 2004), and macrophages
(Villalta, et al 1998). In cardiac muscle cells (Huang 2003)
and cardiac vessel endothelium (Mukherjee, 2004) MAPK
ERK1/2 activation induces an increase in cyclin D1 protein
levels. In smooth muscle cells, cellular proliferation is
induced by MAPK ERK1/2-cyclinD1 activation (Hassan,
2006). In PC12 cells, the parasite surface glycoprotein,
transialidase, induces differentiation into a neuronal
phenotype via MAPK ERK 1/2 (Villalta, et al 1998) and PKC
(Villalta, et al 1999). In macrophages, during phagocytosis of
the parasite, MAPK ERK1/2 (Villalta, et al 1998) and PKC
(Villalta, et al 1999) are also activated. Parasite endocytosis
in these cells is inhibited by specific inhibitors of these
kinases. Therefore, activation of this pathway participates
both in the internalization of the parasite into different cell
types and in the induction of cell  proliferation and
differentiation.

T. cruzi interaction with the host ECM:

ECM is composed of different combinations of protein fibers
(collagen and elastic fibers) and ground substance. Ground
substance is a highly hydrophilic, viscous complex of anionic
macromolecules (glycoaminoglycans and proteoglycans) and
multiadhesive glycoproteins (laminin, fibronectin and
others), that impair strength and rigidity of the matrix by
binding to receptor proteins like integrins on the surface of
cells and other matrix components. The ECM also forms
basal laminas, structures found between epithelial and
connective tissues. Besides its structural function, the ECM
serves other important biological functions such as being a
reservoir of hormones and growth factors (Junqueira and
Carneiro 2005), and a cytokine and chemokine modulator

during immune and inflammatory responses (Kumar, et al
2005). During tissue invasion by the parasite, interaction
between T. cruzi and the ECM is fundamental. The parasite
must cross the basal laminae located between different
epithelia and adjacent connective tissue, and to mobilize
itself within these tissues. Macrophages are found in
connective tissues,  where they participate in the
inflammatory response and in the initiation of a more
specific immune response (Junqueira and Carneiro 2005;
Kumar et al 2005). On the other hand, macrophages are the
first connective tissue cells that are invaded by T. cruzi
(Burleigh and Woolsey 2002). During the inflammatory
response cell-cell and cell-ECM interactions are established
that are mediated by adhesion molecules and integrins
(Marino, et al 2003). The parasite presents surface molecules,
such as gp 85 (Merino, et al 2003) and gp83 (Nde, et al 2006)
glycoproteins, with which it binds to ECM glycoproteins
such as laminin (Giordano, et al 1999, Marino, et al 2003,
Nde, et al 2006) and fibronectin (Marino, et al 2003), sulfated
glycosamineglicans such as heparansulfate (Lima, et al 2002),
and elements from the cytoskeleton (intermediate filaments)
that are exposed in the plasma membrane, such as
cytokeratine 18 (Magdesian, et al 2001, Marino, et al 2003).
There is evidence that fibronectin promotes adhesion and
endocytosis of the parasite in macrophages and fibroblasts
(Wirth and Kierszenbaum 1984; Ouaissi, et al 1984; Marino,
et al 2003). T. cruzi presents another surface molecule,
penetrin, with which it binds to heparin, heparansulphate,
and collagen thus promoting adhesion and internalization
into fibroblasts (Ortega-Barria and Perreira 1991). The
binding of gp83 to laminin promotes parasite internalization
into macrophages (Nde et al 2006) and activates the MAK
ERK1/2 signal transduction (Villalta, et al 1998) and PLC
(Villalta, et al 1999) pathways.

The parasite secretes proteases (cruzipains) capable of
degrading ECM components such as collagen type I, IV and
fibronectin, exposing hidden epitopes (Santana, et al 1997;
Scharfstein and Morrot 1999). Plasma fibronectin fragments
have a growth factor type activity that induces
differentiation of trypomastigotes into their intracellular
replicative form, amastigotes (Ouaissi, et al 1992). In
addition, heparansulphate increases cruzipain catalytic
activity (Lima, et al 2002) which could favor the parasite
advancement in tissues. Cruzipain could also have an anti-
apoptotic effect in cardiac muscle cells in culture since it
activates different signal transduction pathways such as
PI3K and MAPK ERK1/2 (Aoki, et al 2004) that, as described
above, are activated during parasite internalization.

It has been proposed that ECM alterations produced by
the parasite not only promote its motility in tissues and its
entrance into cells, but also alter the presence of cytokines
and chemokines, which in turn permits T. cruzi to modulate
and escape both the inflammatory response and the immune
response (Marino, et al 2003; Mendes-da-Silva, et al 2006).
The use of RNA aptamers has been proposed in order to
interfere with the interaction between parasites and laminin,
fibronectin,  trombospodin, or heparansulphate,  thus
inhibiting cellular invasion, objective that is partially
reached in cell cultures (Ulrich, et al 2002).

The ECM is maintained by a variety of proteases and
protease inhibitors, such as matrix metalloproteinases
(MMPs) and their respective tissue inhibitors (Werb, et al
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1996; Gomez, et al 1997). MMPs comprise a vast class of zinc-
dependent endopeptidases that are divided into families
according to their substrates (Nagase and Woessner 1999).
Increased levels of various MMPs (collagenases,
stromelysins, and gelatinases) have been associated with
inflammatory diseases of connective tissues (Opdenaker, et
al 2001). Two of the most studied members of this family are
MMP-2 (gelatinase A, 72 kDa) and MMP-9 (gelatinase B, 92
kDa) (Corthorn, et al 2007). The actions of collagenases
MMP-2 and MMP-9 are involved in regulation of the
inflammatory response in several circumstances, including
the direct cleavage of immune system proteins (Odenaker et
al 2001). T. cruzi infection leads to increased levels of MMP-2
and MMP-9 and its inhibition reduce myocarditis and
improve survival during the acute phase of infection
(Gutierrez, et al 2008). On the contrary, ECM composition
alterations, specifically an increase in the amount of
collagen, have been described in the myocardium of patients
with chronic chagasic myocarditis (Higushi, et al 1999). In T.
cruzi infected mice, increased expression of laminin,
fibronectin, collagen type III and IV, and a decrease in the
amount of collagen type I are observed (Andrade, et al 1989).
In three-dimensional myocardial cell cultures, a significant
increase was reported of fibronectin, laminin and collagen
type IV, 6 days post-infection with T. cruzi was (Garzoni, et
al 2008). ECM alterations have also been described in other
organs in T. cruzi infected mice. Thus, in increases of
fibronectin and collagen type IV are observed in the thymus
(Mendesda-Cruz, et al  2006);  and increases laminin
expression in the spleen and lymph nodes (Marino, et al
2003). It is probable that during the infection, the parasite
initially promotes ECM degradation and, as a secondary
response, the host produces an increase in ECM components.

Hence, parasite-ECM interactions induce intra and
extracellular alterations. On the one hand, T. cruzi alters the
ECM to the extent that the advancement of the parasite in
tissues is facilitated, and allows the parasite to modulate the
presence of growth factors, cytokines, and chemokines, that
in turn permit the parasite to modify the inflammatory and
immune responses. On the other hand, these parasite-ECM
interactions induce signal transduction pathways that
facilitate the entrance of T. cruzi into cells, a step that is
crucial in the parasite’s life cycle since it requires the
intracellular medium in order to replicate in the host.
Probably, during the early stages of invasion, the parasite
promotes the degradation of the ECM, and thereafter, during
the chronic stage of the disease an increase in the
components of the ECM in infected tissues is produced, as
one of the host’s responses to intracellular amastigotes.

PLACENTAL CHORIONIC VILLI INFECTION BY T. CRUZI:

Induction of cellular alterations and interaction with the
ECM during T. cruzi infection has been studied mainly in
mammalian cell cultures. These cultures correspond to cell
lines and not to primary cultures, nor do they correspond to
human cells. Studies in human tissue are focused on the
histopathologic examination of necropsies of Chagasic
patients that do not provide information on mechanisms of
invasion.

Nevertheless, there are some studies of parasite invasion
on a cellular and tissue level. Thus, human placental tissue

has been used as a possible study model for ex vivo parasitic
tissue infection (Sartori, et al 2003 ; Lin, et al. 2004; Lujan, et
al. 2004; Sartori, et al. 2005; Shippey, et al 2005; Mezzano, et
2005; Triquell, et al 2009, Duaso et al 2010). The possibility of
having on a tissue culture for the study of parasitic invasion
creates working conditions that are more like those in vivo.

Another advantage of this model is the possibility of
using tissues of human origin. The placenta, which is
expulsed from the mother’s body during the placental stage
of labor, does not serve any other purpose in the organism it
originated from. It is easily obtained after labor, and its use
does not harm the child’s or mother’s health. The use of
placental tissue has been widespread for a long time in basic
biomedical studies (Grimm, 1955; Seeho, et al 2008).
Chorionic villi explant cultures have been used in studies on
the effect of partial O2 pressures (especially hypoxia) in
placental tissue related to pathologies such as pre-eclampsia
(Benyo, et al 1997; James, et al 2006; Robinson, et al 2008;
Seeho, et al 2008). In addition, this model has been used in
cell differentiation studies (Fujiwara, 2007), effects of drugs
(Gedeon and Koren 2006), viral cellular invasion (Halwachs-
Baumann 2006), and intracellular T. cruzi invasion (Sartori,
et al 2003; Lin, et al. 2004; Lujan, et al. 2004; Sartori, et al.
2005; Mezzano, et al. 2005, Triquell, et al 2009, Duaso et al
2010). During ex vivo infection of human chorionic villi
explants, T. cruzi induces syncytiotrophoblast destruction
and detachment, selective disorganization of basal lamina
and disorganization of collagen I in the connective tissue of
villous stroma (Duaso et al 2010). Actin filaments in the
syncytiotrophoblast became disorganizated (Sartori et al
2003), placental alkaline phosphatase is activated (Sartori, et
al. 2005; Mezzano, et al 2005) and expression of the receptor
for epidermic growth factor is increased (Lin, et al 2004).

Other studies have described the trypanocidal effect of
supernatants from culture media in which chorionic villi
were incubated (Lujan, et al 2004, Triquell, et al 2009). These
trypanocidal effects could account for local placental
antiparasitic defense mechanisms, such as trypanocidal “heat
sensitive factors” (Lujan, et al. 2004), but unfortunately these
factors have not been identified. The possible antiparasitic
effect of local factors in the human placenta may explain the
low rate (1-21%) of congenital transmission and represents
an important problem to be studied. During congenital
transmission, maternal blood trypomastigotes must cross the
placental barrier. We propose that the maternal blood
tripomastigotes in the intervillous space infects
syncytiotrophoblast, cytotrophoblast and fetal placental
connective tissue of the villous stroma invading the different
types of cells that constitutes these tissues. In the interior of
the cells the trypomastigotes differentiate into amastigotes,
proliferate and after a certain number of replications the
amastigotes differentiate again into trypomastigotes, which
could invades the fetal capillary and in this way reach the
fetus (Fig. 2). This invasion of the placental tissue may be
facilitated after week 20 of pregnancy due to the
physiological metabolic adaptation of the placenta (Fig 1).
The use of placental tissue explants in order to study both
the mechanisms of infectivity and invasion will advance our
knowledge of the physiopathology of congenital Chagas’
disease. In particular, the study of the parasite-ECM
interactions at structural and ultrastructural levels and their
relationships with the parasite’s internalization into different
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human placental cells is of particular importance.
Additionally, the possibility to study possible antiparasitic
mechanisms in this tissue may allow development of new
therapeutic and preventive strategies. Last but not least, this
model may be useful to study the effect and toxicity of
antichagasic drugs.
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