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Abstract The molecular mechanism responsible for

degenerative process in the nigrostriatal dopaminergic

system in Parkinson’s disease (PD) remains unknown. One

major advance in this field has been the discovery of sev-

eral genes associated to familial PD, including alpha syn-

uclein, parkin, LRRK2, etc., thereby providing important

insight toward basic research approaches. There is an

consensus in neurodegenerative research that mitochondria

dysfunction, protein degradation dysfunction, aggregation

of alpha synuclein to neurotoxic oligomers, oxidative and

endoplasmic reticulum stress, and neuroinflammation are

involved in degeneration of the neuromelanin-containing

dopaminergic neurons that are lost in the disease. An

update of the mechanisms relating to neurotoxins that are

used to produce preclinical models of Parkinsońs disease is

presented. 6-Hydroxydopamine, 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine, and rotenone have been the

most wisely used neurotoxins to delve into mechanisms

involved in the loss of dopaminergic neurons containing

neuromelanin. Neurotoxins generated from dopamine oxi-

dation during neuromelanin formation are likewise

reviewed, as this pathway replicates neurotoxin-induced

cellular oxidative stress, inactivation of key proteins rela-

ted to mitochondria and protein degradation dysfunction,

and formation of neurotoxic aggregates of alpha synuclein.

This survey of neurotoxin modeling—highlighting newer

technologies and implicating a variety of processes and

pathways related to mechanisms attending PD—is focused

on research studies from 2012 to 2014.

Keywords Parkinson’s disease � 6-Hydroxydopamine �
MPP? � MPTP � Ortho-quinones � Reactive oxygen

species � Rotenone

Abbreviations

Dwm Mitochondrial membrane potential

1MeTIQ 1-Methyl-1,2,3,4-

tetrahydroisoquinoline

3-Me-N-proTIQ 3-Methyl-N-propargyl-TIQ

5-HT 5-Hydroxytryptamine, serotonin

6-OHDA 6-Hydroxydopamine

AIF Apoptosis-inducing factor

AMP Adenosine monophosphate

AMPK AMP activated protein kinase

ASK1 Apoptosis signal-regulating kinase 1

ATF Activating transcription factor

BDNF Brain-derived neurotrophic factor

Ca2? Calcium ion

CHOP C/EBP homologous protein

COX Cyclooxygenase

DA Dopamine

DAT Dopamine transporter

L-dopa L-3,4-Dihydroxyphenylalanine

DOPAC L-3,4-Dihydroxyphenylacetic acid

EP1 receptor Prostaglandin E subtype 1 receptor

ER Endoplasmic reticulum

ERK Extracellular signal-regulated kinase

GDNF Glial-derived neurotrophic factor

GFAP Glial fibrillary acidic protein

GRP78 Glucose regulatory protein 78
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HO-1 Heme oxygenase-1

Hsp Heat shock protein

hUCP2 Human uncoupling protein

HVA Homovanillic acid

IL Interleukin

MAPK Mitogen-activated protein kinase

MPP? 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridinium ion

MPTP 1-Methyl-4-phenyl-1,2,3,6-

tetrahydropyridine

mTOR Mammalian target of rapamycin

NADPH Reduced nicotinamide adenine

dinucleotide phosphate

NOS Neuronal nitric oxide synthase

PARP Poly-ADP-ribose polymerase

PD Parkinson’s disease

p-ERK Phosphorylated ERK

PGE Prostaglandin E

Pink PTEN-induced kinase

PKA cAMP-dependent protein kinase A

PPAR Peroxisome proliferator-activated

receptor

RESP Regulated endocrine-specific protein

ROS Reactive oxygen species

S1P Sphingosine-1 phosphate

S6K1 p70 S6 kinase 1

SNpc Pars compacta Substantia nigra

TH Tyrosine hydroxylase

TH-ir Tyrosine hydroxylase immunoreactivity

TIQ 1,2,3,4-Tetrahydroisoquinoline

TNF-a Tumor necrosis factor- a
TRAP TNF receptor-associated protein

UCHL-1 Ubiquitin carboxy-terminal hydrolase

L-1

VEGFR-2 Vascular endothelial growth factor

receptor-2

Parkinson’s Disease

Parkinson’s disease (PD) is a neurodegenerative disorder

marked by the characteristic syndrome of tremor, rigidity,

and bradykinesia (Wolters and Braak 2006). This aging

disorder is the consequence of spontaneous degeneration of

dopaminergic/neuromelanin-containing neurons in pars

compacta Substantia nigra (SNpc)—a slow progression

beginning many years before motor, olfactory, and mood

disturbances. The development of PD is classified into six

different stages, wherein stage 3 represent a level of SNpc

cell loss approximately 5 years before onset of motor

symptoms (Braak et al. 2004). The reason for such massive

loss of these dopaminergic neurons has been the focus of

intensive research for decades. For the past fifty years, L-

dopa (L-3,4-dihydroxyphenylalanine) has been the main-

stay and drug-of-choice for controlling motor symptoms of

PD. However, the utility of L-dopa is limited by insidious

dopa-induced dyskinesia developing progressively over

time and attaining near maximal severity after 4–5 years

treatment. The absence of new drugs for treatment of PD

might be explained in part by the fact that molecular

mechanism responsible for degeneration of the SNpc

dopaminergic neuropil remains unknown.

The discovery of genes linked to familial forms of PD

represents a major advance in PD basic research. These

genes include those associated with a-synuclein, parkin,

DJ-1, PINK-1, LRRK-2, ATP13A2, PINK-1 (mitochon-

drial phosphatase and PTEN-induced kinase) gene, and

others (Polymeropoulos et al. 1997; Hattori et al. 1998;

Abbas et al. 1999; Bonifati et al. 2003b; Valente et al.

2004, Kachergus et al. 2005; Ramirez et al. 2006). The

derivative proteins attending these familial forms of PD

have additionally advanced our understanding of their roles

in PD.

Although the molecular mechanism responsible for the

loss of SNpc dopaminergic neurons remains unknown, there

is general consensus in the scientific community that the

degenerative process is associated with protein degradation

and resultant protein dysfunction, a-synuclein aggregation

to neurotoxic oligomers, mitochondrial dysfunction with

oxidative stress, endoplasmic reticulum stress and glial-

related neuroinflammation (Ebrahimi-Fakhari et al. 2012;

Exner et al. 2012; Rohn 2012; Yong-Kee et al. 2012a; Hauser

and Hastings 2013; Kalia et al. 2013; Martinez-Vicente and

Vila 2013; Mullin and Schapira 2013; Taylor et al. 2013). A

synergiem between these mechanisms has been suggested

(Yong-Kee et al. 2012b). Several compounds have been used

as model neurotoxins to study potential molecular mecha-

nisms responsible for this dopaminergic neuronal degener-

ation. The most commonly engaged specific neurotoxins

are 6-hydroxydopamine (6-OHDA), 1-methyl-4-phenyl-

1,2,3,6-tetrahydropyridine (MPTP) and active metabolite

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridinium ion (MPP?),

rotenone, and ortho-quinones derived from dopamine (DA)

oxidation (Segura-Aguilar and Paris 2014; Segura-Aguilar

et al. 2014).

This preclinical modeling has likewise uncovered a

myriad of endogenous and exogenously administered

molecules that are imbued with neuroprotective function:

BDNF (brain-derived neurotrophic factor), GDNF (glial-

derived neurotrophic factor), caffeine and adenosine A2A

receptor agonists, nicotine, melatonin, organoselenides,

peroxisome proliferator-activated receptor (PPAR) ago-

nists, natural compounds such as diadzein, theaflavin, and

agents that abate glial-derived inflammation including
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antagonists of the prostaglandin E2 EP1 receptor (Gol-

embiowska and Dziubina 2012; Lopes et al. 2012; Muñoz

et al. 2012a; Ahmad et al. 2013; Anandhan et al. 2013;

Carta Carta and Pisanu 2013; Chinta et al. 2013; Gol-

embiowska et al. 2013; Pandi-Perumal et al. 2013; Tolosa

et al. 2013).

Neurotoxins

A spectrum of neurotoxins has been employed to produce

animal models of PD, with each neurotoxin being imbued

with unique characteristics. Nevertheless, although the

initial primary targets may be different, the end-game of

neuronal destruction is often via mechanisms that are

common among the groups. 6-Hydroxydopamine (6-

OHDA), discovered in the late 1960s, was the first widely-

used neurotoxin to model PD, initially in rodents and

ultimately in primates. 6-OHDA is relatively selective for

catecholamine neurons, being accumulated with relative

selectivity by dopaminergic and noradrenergic neurons. In

the neuron, 6-OHDA undergoes auto-oxidation to quinoi-

dal species which initiate a sequence of oft perpetuating

reactive oxidative species (ROS) which overwhelm the

antioxidant capacity of the neuron, terminating in ultimate

demise of the neuron by necrotic, necroptotic, or apoptotic

cascades (see Kostrzewa and Jacobowitz 1974; Kostrzewa

2014; Papadeas and Breese 2014).

DA per se has a potential similar to that of 6-OHDA to

auto-oxidize to quinoidal species, although at a much

slower rate. However, DA oxidation to quinones and the

more detrimental semiquinones does occur to thus chal-

lenge cellular defense systems. Semiquinone cycling

results in production of oxygen with an unpaired electron

and with self-perpetuation of the semiquinone. Conse-

quently, a host of ROS are formed, including peroxide,

superoxide, hydroxyl radical as well as ortho-quinones

(DA-o-quinone, aminochrome, and 2,6-indolequinone).

The cell death process is analogous to that observed with

6-OHDA (see Segura-Aguilar and Paris 2014).

MPTP was discovered as the contaminant in China

White, an illicit opioid substance of abuse that was avail-

able in the 1980s in California. Within a matter of days,

MPTP produced unfortunate parkonsonian-like motor dis-

ability that is life-long (Langston and Ballard 1984; Ballard

et al. 1985). Able to cross the blood–brain barrier, MPTP is

metabolized by astrocytes to MPP? which is accumulated

with relative selectivity by dopaminergic nerves. Conse-

quent inhibition of complex I in the mitochondrial respi-

ratory transport chain impairs ATP formation, leading to

depletion of cellular energy stores and eventual cell death

(see Pasquali and Caldarazzo-Ienco 2014).

Rotenone is a rodenticide that—like MPTP/MPP?—

inhibits complex I in the mitochondrial respiratory trans-

port chain and ultimately results in cell death. Unlike

6-OHDA and MPP?, rotenone lacks specificity for dopa-

minergic neurons. Yet, rotenone has come into vogue in

modeling PD because rotenone when administered in low

dose over a period of months leads to the appearance of

alpha synuclein in cells, thereby more closely modeling the

features of PD observed in humans (Betarbet et al. 2000;

Cannon and Greenamyre 2010; see Kostrzewa et al. 2010).

6-OHDA, DA auto-oxidation, MPTP/MPP?, and rote-

none are the most common neurotoxic species that produce

cellular events thought to occur in dopaminergic cells in

humans over the age spectrum; and these are the agents

typically used to produce animal modeling of PD. Each

agent is discussed in detail in subsequent sections of this

paper, in reference to newer insights into mechanisms of

action and overall effects.

6-Hydroxydopamine (6-OHDA)

In the late 1960s, 6-OHDA was discovered as a selective

neurotoxin, producing overt degeneration of noradrenergic

neurons (Thoenen and Tranzer 1968). When administered

systemically to perinates or when injected directly into the

central nervous system of adult species, dopaminergic

neurons were also destroyed (see Kostrzewa 2014). This

finding and subsequent 6-OHDA research had an enormous

impact on basic research relating to PD—with there being

more than 11,563 citations for ‘‘6-hydroxydopamine or

6-OHDA’’ in PubMed through January 12, 2015.

Selectivity of 6-OHDA for catecholaminergic neurons

owes to its high affinity for the norepinephrine transporter

and DA transporter (DAT) (see Kostrzewa and Jacobowitz

1974; Redman et al. 2006). Unilateral intrastriatal injection

of 6-OHDA in rats evokes contralateral turning by DA

agonists such as apomorphine—a consequence of devel-

oped DA D2 receptor supersensitization on the lesioned

side (Ungerstedt 1971; Costall et al. 1975; Marshall and

Ungerstedt 1977; Berger et al. 1990; Archer et al. 2003).

6-OHDA is still one of the most commonly employed

model neurotoxins for both in vivo (Simola et al. 2007;

Brus et al. 2012; Ferreira et al. 2012; Golembiowska and

Dziubina 2012; Khan et al. 2012; Kostrzewa and Kos-

trzewa 2012; Wang et al. 2012; McFarland et al. 2013;

Santra et al. 2013; Liu et al. 2014; Modi et al. 2014; Zare

et al. 2015) and in vitro (i.e., cell culture) studies (Lopes

et al. 2012; Toulouse et al. 2012; Arodin et al. 2014; Lei

et al. 2014; Wang et al. 2014a, b, c). 6-OHDA and other

neurotoxins discussed in this paper were recently surveyed

(Kostrzewa 2014).
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6-OHDA and Oxidative Stress

There is abundant experimental evidence that the neuro-

toxic mechanisms of action of 6-OHDA are related to the

promotion of intraneuronal oxidative stress (Kuruvilla et al.

2013; Kwon et al. 2014a, b; Li et al. 2014a, b; Liu et al.

2014; Shukla et al. 2014). This relates to the high insta-

bility of 6-OHDA in the presence of oxygen, leading to

auto-oxidation of 6-OHDA to a 6-OHDA-quinone. A cas-

cade of intracellular events then leads to superoxide radical

formation and generation of hydrogen peroxide, culmi-

nating in the formation of hydroxyl radicals. The presence

of ascorbic acid, glutathione, cysteine, and N-acetyL-cys-

teine prevents formation of cellular ROS during 6-OHDA

autoxidation to the quinone species (Soto-Otero et al.

2000). It appears that 6-OHDA induces oxidative stress

both during its autoxidation to topamine quinone and also

during one-electron reduction of topamine quinone to

topamine semiquinone, catalyzed by flavoenzymes that

transfer one electron. This is supported by the 2.1-fold

increase in oxygen consumption and 4.7-fold increase in

cell death when DT-diaphorase expression is silenced by

70 % in a catecholaminergic cell line (Villa et al. 2013).

These results reveal the importance of topamine quinone

one-electron reduction into topamine semiquinone in

6-OHDA neurotoxicity and the protective role of DT-

diaphorase (Rescigno et al. 1995; Padiglia et al. 1997; Villa

et al. 2013). DT-diaphorase (NAD(P)H:quinone oxidore-

ductase; NQO1) is the unique flavoenzyme that catalyzes

two-electron reduction of quinones to hydroquinones (Se-

gura-Aguilar and Lind 1989). 6-OHDA via auto-oxidation

and direct oxidative effects thus overrides the ability of

cellular defense mechanisms for generated ROS (Kwon

et al. 2012, 2014b). These cellular destructive effects of

6-OHDA are associated with a reduction of cellular GSH

levels, accompanied by lactic acid dehydrogenase (LDH)

release, nuclear pyknosis, and cell death (Kwon et al.

2012).

6-OHDA and Neuroinflammation

6-OHDA-induced cell death is dependent, in part, on

cyclooxygenase-2 (COX-2) activity, wherein the product

protaglandin E2 (PGE2) activates the EP1 receptor (Carr-

asco et al. 2005, 2007). 6-OHDA significantly increases the

expression levels of neuroinflammation markers such as

tumor necrosis factor-a (TNF-a), interleukin-1b (IL-1b),

and IL-6 (Yan et al. 2014). Trans-cinnamaldehyde, an anti-

inflammatory and neuroprotective agent, inhibits 6-OHDA-

dependent induction of inducible nitric oxide synthase

(NOS) and COX-2 (Pyo et al. 2013). 6-OHDA in astrocytes

increases pro-inflammatory molecules TNF-a, iNOS and

NO, COX-2, and PGE2 (Wang et al. 2013a). Deletion of

the PGE2 EP1 receptor in mice confers protection of

dopaminergic neurons in the SNpc against 6-OHDA effects

(Ahmad et al. 2013). Rosiglitazone, a selective agonist of

PPAR-c, attenuated the production of both COX-2 and

TNF-a expression (Lee et al. 2012a, b). In cell cultures,

6-OHDA induces the release of TNF receptor-associated

protein 1 (TRAP 1), a mitochondrial molecular chaperone,

from the mitochondrion into the cytosol (Shin and Oh

2014). Additionally, 6-OHDA promotes nuclear factor

kappa B (NF-jB) translocation to the nucleus (Wang et al.

2013a) an effect blocked by a neuroprotectant (Kwon et al.

2012, 2014a, b; Jiang et al. 2014). Tetramethylpyrazine

bis-nitrone suppresses mRNA expression of pro-inflam-

matory genes, including IL-1b, TNF-a, and COX-2 (Xu

et al. 2014a, b). Conversely, knockdown of IL-1 type 1

receptor in rats does not protect dopaminergic neurons in

the SN and does not abate motor dysfunction induced by

6-OHDA (Walsh et al. 2014).

6-OHDA and Signal Transduction

6-OHDA has been found to act via the PI3 K/Akt pathway

and to inhibit the antioxidant systems regulated by the Nrf2

pathway and accompanied by the up-regulation of kinases

SAP/JNK and p38 (Gomez-Lazaro et al. 2008; Hanrott et al.

2008; Tian et al. 2008; Tobón-Velasco et al. 2013). In

addition, 6-OHDA induces phosphorylation of JNK (c-Jun

N-terminal kinase), p38 MAPK (mitogen-activated protein

kinase), and extracellular signal-regulated kinase (ERK1/2)

(Kulich et al. 2007; Park et al. 2013a, b; Fan et al. 2014)—

effects blocked by neuroprotectants (Kwon et al. 2012,

2014a). The compound isoliquiritigenin isolated from

Glycyrrhiza uralensis inhibits 6-OHDA-induced up-regula-

tion of p–c–Jun N-terminal kinase, Bax, p-p38 mitogen-

activated protein kinase, cytochrome c release, and caspase

3 activation (Hwang and Chun 2012). Many neuroprotec-

tants act by inducing the translocation of Nrf2 into the

nucleus, to activate/phosphorylate PI3 K/Akt and glycogen

synthase kinase 3b, ultimately counteracting 6-OHDA-

induced oxidative stress (Deng et al. 2012b; Gong et al.

2012; Kwon et al. 2012; Xu et al. 2013a, b; Gunjima et al.

2014; Han et al. 2014). Inhibition of JNK translocation

reduces mitochondrial dysfunction, oxidative stress, and

toxicity both in vitro and in vivo (Chambers et al. 2013).

Wnt/b-catenin pathway activation by exogenous Wnt1 pro-

tects against 6-OHDA-dependent impairment of mitochon-

dria and endoplasmic reticulum (ER) (Wei et al. 2013).

6-OHDA produces a cascade of intracellular events.

These include release of cytochrome c as well as cyto-

chrome c translocation into the cytosol from mitochondria,

and also, release of apoptosis-inducing factor (AIF) from

mitochondria into the cytosol. As a consequence, there is

an increase of the Bax/Bcl-2 ratio, and increase of
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caspases-3 and -9 activity (Tian et al. 2008). Piperine is one

of the agents counteracting 6-OHDA effects on cytochrome

c, caspases-3 and -9, and changes in the Bax/Bcl-2 ratio

(Shrivastava et al. 2013).

In a unique study in the dopaminergic MN9D cell line,

6-OHDA was found to induce an early peak (10–15 min)

and a late peak (6–24 h) of ERK1/2 phosphorylation.

While inhibition of the later peak with U0126 had no effect

on 6-OHDA neurotoxicity, U0126 inhibition of the early

peak actually increased 6-OHDA neurotoxicity. The

implication is that early induction of ERK1/2 phosphory-

lation after 6-OHDA serves as a neuroprotective response

in neurons (Lin et al. 2008).

Other cellular pathways are affected by 6-OHDA.

6-OHDA activates cleaved poly-ADP-ribose polymerase

(PARP) (Kwon et al. 2012); deletion of PARP 1 fully

counteracts 6-OHDA-induced dopaminergic neurodegen-

eration (Kim et al. 2013), as shown by the ability of the

adipose tissue-specific hormone resistin to attenuate

apoptotic markers such as PARP and Bcl-2 degradation,

caspase 3 activation, and Bax expression in 6-OHDA-

treated dopaminergic-like MES23.5 cells (Lu et al. 2013).

6-OHDA and Mitochondria Dysfunction

6-OHDA inhibits mitochondrial complexes I and IV, pro-

ducing mitochondria dysfunction and impairment of oxida-

tive phosphorylation, although this 6-OHDA effect is not

related to oxidative stress (Glinka and Youdim 1995; Glinka

et al. 1996; Iglesias-González et al. 2012; Tobón-Velasco

et al. 2013; Kupsch et al. 2014). The flavonoid baicalein,

from the Scutellaria root, effectively attenuated the 6-OHDA

effect on the mitochondrial membrane potential (Dwm) and

concurrently reduced oxidative stress (Wang et al. 2013b).

Other neuroprotectants likewise block mitochondrial effects

of 6-OHDA (Kwon et al. 2012, 2014a).

6-OHDA-induced mitochondrial dysfunction is associ-

ated with mitochondrial release of the molecular chaperone

TRAP 1 (Shin and Oh 2014). The regulation of fusion,

fission, and mitophagy appears to represent relevant

mechanisms determining cellular fate. For example, inhi-

bition of Dynamin-related protein 1 with a mitochondrial

division inhibitor-1 suppresses 6-OHDA-induced mito-

chondrial fission (Galindo et al. 2012). Ubiquinone cova-

lently attached to a triphenylphosphonium lipophilic cation

inhibits both the mitochondrial translocation of Drp1 and

pro-apoptotic protein Bax to the mitochondria in a cell

culture treated with 6-OHDA (Solesio et al. 2013). Stromal

interaction molecule, a regulator of intraneuronal calcium

(Ca2?) homeostasis, is proposed as an intermediary target

leading to neuronal oxidative stress following 6-OHDA-

induced mitochondrial dysfunction and endoplasmic retic-

ulum (ER) stress (Li et al. 2014a, b).

6-OHDA and Endoplasmic Reticulum (ER) Stress

6-OHDA induces prominent ER stress (Deng et al. 2012a;

Kim et al. 2012a, b) which can be counteracted by a

number of agents. Hydrogen sulfide reduces 6-OHDA-

induced ER stress markers such as the increased levels of

expression in C/EBP homologous protein, glucose-regu-

lated protein 78, and eukaryotic initiation factor-2a phos-

phorylation (Xie et al. 2012). Preconditioning in human

neuroblastoma SH-SY5Y cells with the ER stress inducer

thapsigargin protected against 6-OHDA neurotoxicity, an

effect that was associated with lessened thapsigargin-

induced glucose regulatory protein 78 (GRP78) mRNA

induction and translation of activating transcription factor 4

(ATF4) (Hara et al. 2011). Carnosine protects cells treated

with 6-OHDA and markedly inhibits a spectrum of ER

stress responses: mRNA splicing of X-box protein 1,

phosphorylation of eukaryotic initiation factor 2a and

c-jun, expression of GRP78, and C/EBP homologous pro-

tein (Oh et al. 2009).

6-OHDA and Autophagy

6-OHDA suppresses phosphorylation of the mammalian

target of rapamycin (mTOR), p70 S6 kinase 1 (S6K1), and

eukaryotic initiation factor 4E binding protein 1, and

reduces cell viability (Xu et al. 2014a, b). In studies with

SH-SY5Y cells, 6-OHDA promotes phosphorylation of

adenosine monophosphate-activated protein kinase

(AMPK) and its target Raptor, followed by the dephos-

phorylation of mTOR and S6K1. Interestingly, down-reg-

ulation of AMPK with RNA interference prevents

6-OHDA suppression of mTOR/S6 K phosphorylation and

enhanced p62 degradation, cytoplasmatic acidification, and

LC3 conversion (Arsikin et al. 2012).

6-OHDA increases Beclin 1 expression, a regulator of

the autophagy pathway (Zhang et al. 2013). N-{3-[2-(4-

phenyl-piperazin-1-yl)-ethyl]-phenyl}-picolinamide effec-

tively prevents inactivation of mTOR, up-regulation of

beclin-1, conversion LC3-I to LC3-II, and intracytoplasmic

acidification (Tovilovic et al. 2013). 6-OHDA thus up-

regulates Tnfaip8 l1/Oxi-b and induces autophagy, which

can be prevented by knockdown of Tnfaip8 l1/Oxi-b
expression (Ha et al. 2014).

Rotenone

Rotenone and Neurons

The insecticide rotenone, a potent inhibitor of complex I in

the respiratory transport of mitochondria, has relative

selectivity in low dosage for dopaminergic neurons—
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producing dopaminergic neurodegeneration and features of

PD in rodents (Betarbet et al. 2000) and other animal

species (Cannon and Greenamyre 2010), protein misfold-

ing and aggregation (e.g., a-synuclein inclusions), and iron

accumulation in the substantia nigra (Mastroberardino et al.

2009). Direct bilateral intranigral injection of rotenone in

rats reduces tyrosine hydroxylase immunoreactivity (TH-

ir) and striatal DA/DOPAC (L-3,4-dihydroxyphenylacetic

acid)/homovanillic acid (HVA) by * 60 % and increases

striatal serotonin (5-hydroxytryptamine, 5-HT) at one

month, and these effects are associated with impaired

learning and memory, but with little if any effect on motor

behavior except at one day (Moreira et al. 2012). Unilateral

intranigral rotenone at 13 weeks after adeno-associated

virus delivery of a-synuclein into substantia nigra—to

more closely mimic a PD model—increases both nigral

damage and motor dysfunction vs rotenone alone or a-

synuclein alone. This modeling is considered to better

replicate PD deficits (Mulcahy et al. 2012).

When administered to SH-SY5Y cells, rotenone toxic-

ity, relating to complex I inhibition and mitochondrial

dysfunction, is enhanced by oxidative stress from applied

DA, and enhanced by Z-Ile–Glu(OBut)–Ala–Leu–al (PSI)-

induced proteosomal dysfunction (Yong-Kee et al. 2012a).

In the rotenone model, ROS damages proteins, lipids, and

nucleic acids in brain and peripheral tissues (Sanders and

Greenamyre 2013). These findings implicate additive or

synergistic effects from simultaneous impairment of dif-

ferent vital pathways in neurons. Generation of mito-

chondrial ROS promotes a change in the shape of

mitochondria, progressing from tubular to donut shape

(reversible) and from donut shape to a blob form (irre-

versible) which presumably is the major source of mito-

chondrial ROS. Changes in mitochondria shape appear to

be related to Ca2? influx, and are attenuated by antioxi-

dants, also by inhibition of the mitochondrial Ca2? uni-

porter and by up-regulation of mitochondrial complex I

activity (Ahmad et al. 2013; Karuppagounder et al. 2013).

Non-specific adverse effects also attend rotenone treat-

ment, including vascular damage and consequent ischemic

neurodegenerative effects (e.g., thalamus, cerebellum,

dentate nucleus). Tissue damage to heart and testicles, plus

interstitial hemorrhages in lungs and kidneys, is also

observed (Radad et al. 2013).

As a consequence of its effect in mitochondria, rotenone

produces a loss of the Dwm, a host of ROS—partly med-

iated by induction of NOS and NADPH-diaphorase

(Madathil et al. 2013), but primarily driven by complex II

centers (Moreno-Sánchez et al. 2013)—that results in

oxidative stress and ATP depletion, leading to AIF nuclear

translocation and cell death via a number of signaling

pathways (see Przedborski and Vila 2001). Mitochondrial

dysfunction is considered to be the initial step in rotenone

toxicity (Yong-Kee et al. 2012a). Using primary DA neu-

rons, Hwang et al. (2014) determined that human uncou-

pling protein 2 (hUCP2) increased mitochondrial fusion

and conferred protection for rotenone toxicity. This effect

was linked with the effector cyclic-adenosine monophos-

phate (cAMP)-dependent protein kinase (PKA) (i.e.,

hUCP2-PKA axis), as PKA inhibitors block hUCP2 effects.

In vitro, water-soluble coenzyme Q10 (Li et al. 2014a,

b), and also nicotinamide adenine dinucleotide (NAD?)

(Hong et al. 2014), curcumin (Qualls et al. 2014), and Rac1

inhibition (Pal et al. 2014), block activation of NADPH

oxidase and prevent many of the adverse cellular effects of

rotenone, processes effecting attenuated rotenone-induced

cell death. Antioxidants likewise afford neuroprotection, as

evidenced by effects of the flavonoid hesperidin in rote-

none-treated SK-N-SH cells (Tamilselvam et al. 2013) and

zonisamide in differentiated SH-SY5Y cells (Condello

et al. 2013).

Multiple pathways are involved in the process associ-

ated with rotenone-induced neurotoxicity. In the neuron per

se, oxidative stress is associated with AMPK and inacti-

vation of Akt, which lead to dysregulation of mTOR and

eventual neural cell death via S6K1 and 4E-BP1 pathways

(Xu et al. 2014a, b). The guanine nucleoside guanosine

confers neuroprotection by activating adenosine A1 or A2

receptors, which activate the PI3 K/Akt pathway and

induced heme oxygenase-1 (HO-1) (Dal-Cim et al. 2012);

resveratrol similarly, via it induced expression of HO-1,

also is neuroprotective (Lin et al. 2014).

Rotenone, through activation of GSK-3b, increases

phosphorylated tau and reduced tau binding in microtu-

bules—effects attending microtubule destabilization

(Hongo et al. 2012). Chronic inhibition of GSK-3b is

associated with BDNF secretion and increased transloca-

tion of hexokinase II to mitochondria (Giménez-Cassina

et al. 2012).

In a mutant a-synuclein Drosophila transgenic model of

familial PD, rotenone neurodegenerative effects are pre-

vented by the histone deacetylase (HDAC) inhibitor

sodium butyrate. In concert with this finding, flies with a

knockdown of HDAC are similarly resistant to rotenone

neurotoxicity (St Laurent et al. 2013).

Rotenone also induces p38 (MAPK)/p53-mediated Bax

formation (Wu et al. 2013a, b); up-regulates and promotes

translocation of p–c–Jun, pJNK, and pp38 into mitochon-

dria (Kamalden et al. 2012); and increases caspase 3 and

caspase 9 activation, but reduces cytoprotective parkin, DJ-

1 (Park 7 gene), and heat shock protein 70 (Hsp70) (Sonia

Angeline et al. 2012). Sesamol (3,4-methylenedioxyphe-

nol) and the flavonone naringenin (5,7-dihydroxy-2-(4-

hydroxyphenyl)-chroman-4-one attenuate rotenone-

induced protein effects and neurotoxicity (Sonia Angeline

et al. 2013). In rats co-treated with rotenone and the HSP
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inducer carbenoxolone, heat shock factor-1 activation as

well as HSP27-, HSP40-, and HSP70-up-regulation are

observed in midbrain and accompanied by improved motor

performance, when contrasted with the rotenone-only

group. HSPs thus represent neuroprotective cellular ele-

ments and targets for PD treatment (Thakur and Nehru

2014b).

In chronic rotenone-treated rats, enhanced oxidative and

nitrative stress ultimately lead to translocation of Bim and

Bax from cytosol to mitochondria, also an increase in cell

division cycle protein 2 along with G2/M arrest, with

caspase 3 and caspase 9 activation inducing striatal apop-

totic cell death (Lin et al. 2012; Wang et al. 2014a, b, c).

Rotenone toxicity in differentiated and undifferentiated

SH-SY5Y cells is attenuated by agents (calcitrol, celastrol,

kaempferol, rapamycin) that induce autophagy, as evi-

denced by their inhibition of apoptosis, increased cell

survival, reduced a-synuclein accumulation, preservation

of the Dwm, reduced cytochrome c in cytosol, and reduced

ROS (Filomeni et al. 2012; Deng et al. 2013; Giordano

et al. 2014; Jiang et al. 2014). In PC12 cells exposed to

rotenone, 14-3-3epsilon siRNA transfection increases

autophagosome formation and cell survival (Sai et al.

2013a, b). The process of autophagy may be relatively

specific toward mitochondrial-related toxicities, since

effects of 6-OHDA are not abrogated (Filomeni et al.

2012). Cultured MN9D dopaminergic neurons over-

expressing DJ-1 are resistant to rotenone neurotoxicity, as

are rats treated with a DJ-1 expression vector. DJ-1 is

notably associated with an increase in autophagic markers

beclin-1 and LC3ll, and with autophagy per se (Gao et al.

2012).

An N2a cell line differentiated to a neuronal-like cell

expressing TH is resistant to rotenone toxicity by virtue of

G protein-coupled receptor 37 trafficking to the plasma

membrane (Lundius et al. 2013).

Rotenone and the Endoplasmic Reticulum

In mixed retinal neuronal-glial cell cultures, rotenone

produces ER stress, as evidenced by increased expression

of ER-associated immunoglobulin heavy-chain binding

protein, ATF4, pancreatic ER kinase, and CHOP (Han

et al. 2014). The selective, high-affinity angiotensin II

receptor antagonist candesartan cilexetil blocked rotenone

up-regulation of ATF4, CHOP and effectively attenuated

rotenone-induced behavioral impairments and dopaminer-

gic neuronal apoptosis in rats (Wu et al. 2013a, b). In SH-

SY5Y cells, by contrast, the ER stress inhibitor salubrinal

increased ATF4 up-regulation and was neuroprotective.

Also, ATF4 siRNA increased rotenone toxicity and partly

negated salubrinal neuroprotection (Wu et al. 2014). In

PC12 cells, rifampin neuroprotection was associated with

up-regulation of GRP78 and ATF4 activation (Jing et al.

2014).

Rotenone and Glia

While major considerations of the overt toxicity of rote-

none relate most definitely to neurons, the impact of rote-

none on glial cells also impact on neural outcomes.

In astrocyte-like C6 cells, derived from rat glioma cells,

rotenone produces effects akin to those in neurons

[increased ROS, DNA damage, caspase 3 activation, and

apoptosis], but with added induction of glial fibrillary

acidic protein (GFAP) (Swarnkar et al. 2012b). GFAP and

other astrocyte-neuron interactions are generally of a neu-

roprotective nature. This relates to the expression of the

multifunctional protein DJ-1 in reactive astrocytes, wherein

deletions in its gene (PARK7) are associated with PD

(Bonifati et al. 2003a): overexpression of DJ-1 in astro-

cytes, in vitro, confers more neuroprotection; DJ-1-

knockout astrocytes lose neuroprotective capacity (Mullett

et al. 2013).

Microglial cells, relating to their promotion of pro- or

anti-inflammatory processes that affect neuronal survival,

are likewise affected by rotenone. In general, rotenone

activates microglia and promotes release of superoxide by

stimulating microglial phagocyte NADPH oxidase and

myeloperoxidase, which promote neuronal loss/death

(Zhou et al. 2012; Chang et al. 2013). In primary neuronal/

glial cultures from rat cerebella, rotenone increases mi-

croglial proliferation and phagocytic activity which leads

to neuronal loss/death (Emmrich et al. 2013). In mouse

primary and immortalized microglia, rotenone increases

the levels of M1 phenotypic genes (TNF-a, iNOS, COX-2,

PGE2) and suppresses production of cystathionine-b-syn-

thase and hydrogen sulfide—effects attending a pro-

inflammatory stance. The ROS scavenger N-acetyl-L-cys-

teine reverses the down-regulation of CBS and hydrogen

sulfide, and thereby promotes an anti-inflammatory phe-

notype (Du et al. 2014). Small ubiquitin-related modifier-1

(SUMO-1) co-localizes in lysosomes displaying a-synuc-

lein aggregates in rotenone-lesioned rats, mice, and in

rotenone-treated cultured glial cells (Weetman et al. 2013;

Wong et al. 2013). Anti-inflammatory agents such as

salicylate and carbenoxolone attenuate the neurotoxicity of

long-term rotenone in rats by reducing hydroxyl radical

levels (Madathil et al. 2013) and pro-inflammatory medi-

ators (ROS, NFjB, iNOS, COX-2, IL-6, IL-1b, TNF-a)

(Thakur and Nehru 2013, 2014a) and increasing the

expression of heat shock factor-1, HSP-40, and HSP-27

(Thakur and Nehru 2014b). The COX-1/COX-2 inhibitor

and anti-inflammatory agent ibuprofen acts similarly in

rotenone-treated rats, and partly negates rotenone-associ-

ated locomotor impairments (Zaminelli et al. 2014).
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A notable finding relating to in vitro studies is that the

stage of cell differentiation (e.g., undifferentiated SH-

SY5Y cells vs. retinoic acid-differentiated cells) is

important in rotenone’s neurotoxicity potential; also, cell

culture conditions have a major influence in susceptibility

to rotenone toxicity (Jantas et al. 2013).

Rotenone Dependence on Ca2?, K?, and Metals

Rotenone elevates intraneuronal (PC12 cells; Neuro-2a)

levels of Ca2? (L-type Ca2? channel), an effect associated

with a suppression of DA exocytosis and induction of

neurotoxicity (Sai et al. 2013a, b; Swarnkar et al. 2012a).

The latter phenomenon is associated with G1/G0 cell cycle

arrest and decreased expression of cyclin-dependent kinase

2, cyclin D1 and Akt—signaling proteins involved in cell

survival (Yu et al. 2013); and repression of the ubiquitin-

protease system (Yap et al. 2013). Neurotoxicity is unable

to be counteracted by antioxidants that attenuate rotenone-

induced elevations in ROS and RNS (Swarnkar et al.

2012b). In SH-SY5Y cells differentiated into a dopami-

nergic phenotype, rotenone induces increases in cytosolic

Ca2?, active calpain, and ROS; and cell death. When

pretreated with the cell-permeable calpain inhibitor SNJ-

1945 ((1S)-1-((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-

oxopropyl)amino)carbonyl)-3-methylbutyl) carbamic acid

5-methoxy-3-oxapentyl ester), the effects of rotenone are

negated. Similar neuroprotective effects of SNJ-1945 are

observed in SH-SY5Y cells differentiated into a choliner-

gic phenotype (Knaryan et al. 2014).

Rotenone neurotoxic events in striatum and myenteric

plexus are accentuated in metallothionein-1 and metallo-

thionein-2 C57BL knockout mice, with there being less-

ened astroglial activation, an event normally associated

with MT release. Similarly, accentuated rotenone neuro-

toxicity is observed in primary cultured mesencephalic

neurons from MT knockout mice. MT, accordingly, pro-

vides a neuroprotective action from rotenone (Murakami

et al. 2014).

MPTP, MPP1

MPTP, MPP? Introduction

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is a

meperidine analog that was inadvertently formed as a

contaminant during ‘‘kitchen chemistry’’ for intended

synthesis of an opioid known as China White a street drug

for illicit use by substance abusers. MPTP resulted in the

production of life-long parkinsonism in a number of

abusers and pre-parkinson status in multiple others. The

identification of MPTP as the neurotoxic culprit was made

by JW Langston and colleagues (Langston and Ballard

1984; Ballard et al. 1985). MPTP, able to cross the blood–

brain barrier (Riachi et al. 1988), is actually a pro-toxin

converted by monoamine oxidase-B in astrocytes to the

overtly neurotoxic species 1-methy-4-phenyl-1,2,3,6-tetra-

hydropyridinium ion (MPP?) (Chiba et al. 1984; Westlund

et al. 1985; Di Monte et al. 1991) which has high affinity

for the DA transporter (DAT). MPP? thus preferentially

enters dopaminergic neurons (Chiba et al. 1985; Javitch

and Snyder 1984; Javitch et al. 1985), and then is accu-

mulated in mitochondria (Wu et al. 1990) to effect direct

inhibition of complex I and indirect inhibition of complex

II (Mizuno et al. 1987) in the respiratory transport chain,

resulting in impaired ATP production and dopaminergic

neurotoxicity (Di Monte et al. 1986; Denton and Howard

1987). Detailed actions and effects on MPTP have been

described recently by Pasquali and Caldarazzo-Ienco

(2014).

The destructive potency of MPTP for dopaminergic

nerves is dependent in part on the genetic make-up, as

demonstrated by a range of neurotoxicities in ten different

recombinant inbred strains of the BXD family of mice

(Jones et al. 2013); and the differences in strain effects

were not attributable to differences in amounts of MPP?

derived from MPTP metabolism among the groups (Jones

et al. 2014).

Because the risk for PD is generally considered to be

related to both genetic and environmental factors, the

weight of evidence supporting the environmental link is

strengthened by the finding that intranasal MPTP replicates

the behavioral and neurochemical deficits observed after

intraperitoneal MPTP administration in C57/BL mice

(Dluzen and Kefalas 1996; see Prediger et al. 2012).

Indeed, initial intranasal MPP? is distributed to all brain

areas, while second intranasal MPP? is concentrated in

olfactory bulb, basal ganglia, ventral mesencephalon, and

locus coeruleus (Kadar et al. 2014). While loss-of-function

mutations in the human parkin gene lead to early onset of

PD, deletion of the parkin gene in C57BL/6 mice did not

produce locomotor deficits nor increased vulnerability to

the neurotoxicity of MPTP (Aguiar et al. 2013). Hybrid

129 Sv-C57BL/6 parkin-deficient mice did not display a

loss of pars compacta dopaminergic neurons, although

there was a deficit in DAT and VMAT2 (Itier et al. 2003).

However, viral delivery of parkin or DJ-1 protected mice

from MPTP effects (Haque et al. 2012). In contrast,

transgenic mice with DJ-1 deficiency were more suscepti-

ble to MPTP neurotoxicity (Muthukumaran et al. 2014).

MPP? was shown to promote a fall in parkin protein levels

in neuronal PC12 cells, and this effect along with neuro-

toxicity was enhanced by silencing of ATF4. In contrast,

ATF4 overexpression maintained parkin levels and pro-

moted cell survival. ATF4 neuroprotection is accordingly
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related to its interaction with parkin (Sun et al. 2013).

Curiously, tuberoinfindibular dopaminergic neurons are

resistant to MPTP, an effect apparently attributable to

expression of high levels of parkin and ubiquitin carboxy-

terminal hydrolase L-1 (UCHL-1) (Benskey et al. 2013).

The mitochondrial Pink1 gene confers neuroprotection

of mice from MPTP, while viral delivery of shRNA-med-

iated knockdown of Pink1 and mutational Pink1 deficiency

increase susceptibility to MPTP neurotoxicity (Haque et al.

2012).

The neurotoxic potency of intranasal MPTP treatment

has been found to be related to astrogliosis and neuroin-

flammation (Tristão et al. 2014). The angiotensin type 1

receptor antagonist telmisartan affords partial protection

from MPTP in C57BL/6 mice by down-regulating

expression of a-synuclein and GFAP in brain and up-reg-

ulating expression of DAT, TH, VMAT2, BDNF, and

GDNF (Sathiya et al. 2013).

It had long been considered that MPTP action was

confined to mature neurons, as a single MPTP treatment of

pregnant mice on the 17th day of pregnancy had no notable

effect on brain DA concentration in offspring one day

after MPTP, or at 1, 14, or 28 days post-birth (Melamed

et al. 1990). However, subsequent chronic MPTP admin-

istration from GD6-GD15 produced marked loss in striatal

DA, HVA, and TH-immunoreactivity as well as loss of

TH-positive cells in SNpc and subventricular zone

(Wolfgang and Beat 1991). More recently, single MPTP

treatment of pregnant or newborn C57/BL/6 J mice was

shown to produce loss of TH-positive perikary and TH-ir

fibers 12-h post-treatment and in newborn mice (Sai et al.

2013a, b).

Isoquinoline analogs, resembling MPTP, are synthesized

in brain and are inherently neuroprotective. Administered

exogenously, TIQ (1,2,3,4-tetrahydroisoquinoline) and

1MeTIQ (1-methyl-1,2,3,4-tetrahydroisoquinoline) coun-

teract MPTP and rotenone neurotoxicity. 1MeTIQ in par-

ticular is antiaddictive, exerting an anti-craving effect in

drug-seeking experimental animal models (Antkiewicz-

Michaluk et al. 2014). Also, 3-methyl-N-propargyl-TIQ (3-

Me-N-proTIQ) but not 3-Me-TIQ attenuates MPTP-

induced DA neurotoxicity (SN TH-ir neurons; striatal DA/

DOPAC) (Saitoh et al. 2013).

MPTP, MPP?, and ROS

ROS formation is inherently involved in the neurodegen-

erative effects of MPTP and MPP?. A number of antiox-

idants have been shown to exert neuroprotective action.

These include agents such as

a. the polyphenol fisetin (3,30, 40,7-tetrahydroxy flavone)

(Patel et al. 2012), a-lipoic acid (Li et al. 2013a, b)

(effect in PC12 cells), clavulanic acid (Kost et al.

2012), and theaflavin (effect in mice) (Anandhan et al.

2012);

b. the carotenoids lycopene (effect in SH-SY5Y cells) (Yi

et al. 2013) and magnolol (5,50-diallyl-2,20-dihydroxy-

biphenyl), a polyphenolic binaphthalene extract from

the stem bark of Magnolia (effect in SH-SY5Y cells

and in C57BL/6 N mice); astaxathin (effect in PC12

cells) via suppression of NOX2, the cytochrome

subunit of NOS effecting electron transport across

the plasma membrane; also via increased HO-1

expression (Ye et al. 2012a); and via activated

transcription factor 1 and NMDA-R subunit 1- Sp1/

NR1 signaling (Muroyama et al. 2012; Ye et al. 2013);

c. the bioflavonoid quercetin (effect in in mice) (Lv et al.

2012);

d. the Chinese medicine San-Huang-Xie-Xin-Tang

(effect in rat primary mesencephalic neurons and in

mice) (Lo et al. 2012);

e. the bioflavonoid pycnogenol, an extract of Pinus

maritime bark (effect in mice) (Khan et al. 2013);

f. the phenylpropanoid glycoside salidroside (p-hydroxy-

phenethyl-b-d-glucoside) (effect in mice) (Wang et al.

2014a, b, c);

g. metformin (effect in mice) (Patil et al. 2014b);

h. the b-lactam antibiotic ceftriaxone (effect in rats)

(Bisht et al. 2014);

i. coenzyme Q10 (effect in mice) (Sikorska et al. 2014);

j. epigallocatechin-3 (EGCG) (effect in differentiated

PC12 cells) activation of the SIRT1/PGC-1-a signaling

pathway (Ye et al. 2012b);

k. losartan suppression of superoxide production in

mouse SNpc cells (Zawada et al. 2011);

l. simvastatin (effect in PC12 cells) (Xu et al. 2013a, b,

c);

m. the neuroprotective effect of 8-nitro-cGMP from

MPP? neurotoxicity in dopaminergic neurons was

prevented by zinc protoporphyrin IX, an inhibitor of

HO-1 (Kurauchi et al. 2013);

n. also, the neuroprotective effect of the vascular endo-

thelial growth factor receptor-2 (VEGFR-2) inhibitor

SU5416 apparently is attributable to its direct inhibi-

tion of neuronal NOS activity and reduction of nNOS

protein expression (Cui et al. 2012; 2013); similarly,

activation of endothelial protein C is neuroprotective

in MPTP-treated mice (Chen et al. 2015).

o. N-acetyl-L-cysteine inhibition of MPP?-induced p-

JNK and p-ERK1/2 up-regulation in PC12 cells—

effects replicated by the JNK and ERK1/2 inhibitors

SP600125 and PD98059 (Zhu et al. 2012a, b, c);

p. Secalonic acid A attenuation of MPP? neurotoxicity in

primary dopaminergic cells derived from G14-G16 rat

embryos and/or in SH-SY5Y cells and in MPTP-
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treated mice—with secalonic acid A effects mediated

by inhibition of p38 MAPK and JNK phosphorylation

(Castro-Caldas et al. 2012; Zhai et al. 2013);

q. Tyrosol [2-(4-hydroxyphenyl)ethanol] restoration of

ATP, the Dwm, and TH activity in MPP?-treated

CATH.a cells (Dewapriya et al. 2013);

r. the omega-3 fatty acid eicosapentaenoic acid attenu-

ation of an MPP?-induced increase in tyrosine-related

kinase B receptors, and prevention of MPP? neuro-

toxicity in SH-SY5Y cells—these effects being asso-

ciated with down-regulation of ROS, inhibition of

NADPH oxidase and COX-2, and attenuation of the

MPP?-induced increase in cytosolic phospholipase A2

(Luchtman et al. 2013). The NADPH oxidase antag-

onist apocynin improved behavioral outcome in

MPTP-treated marmosets and showed a tendency

toward protection of SN TH-containing neurons (Phil-

ippens et al. 2013). The polyunsaturated fatty acid

docosahexaenoic acid likewise attenuated MPTP

neurotoxicity in mice (Hacioglu et al. 2012).

s. PPAR-a and PPAR-c receptor agonists, fenofibrate

and pioglitazone, respectively, attenuating intranigral

MPP? neurotoxicity in rats (Barbiero et al. 2014a);

similarly, fenofibrate conferring neuroprotection from

intranigral MPTP in rats (Barbiero et al. 2014b); also,

PPAR-c attenuation of MPP? neurotoxicity in SH-

SY5Y cells, but no block of effect by the PPAR-c
antagonist GW9662—indicating that antioxidant

(;ROS, :GSH), not PPAR regulation is involved

(Martin et al. 2012);

t. Inhibition of MPP?, induced by elevation of Krüppel-

like factor 4 and oxidative stress in human dopaminergic

neuroblastoma M17 cells (Chen et al. 2013a, b, c).

u. Arctigenin attenuation of MPTP and MPP? in mouse

and SH-SY5Y cells, respectively, by inhibiting ROS

and preserving the Dwm (Li et al. 2014a, b).

These antioxidants as a group act to preserve surviv-

ability of dopaminergic/TH-positive perikarya in SNpc,

prevent loss of dopaminergic innervation and DA content

of striatum, and preserve motor behavioral performance.

The neuroprotective effects are related to antioxidant

actions per se (plus increased glutathione peroxidase,

superoxide dismutase (SOD), Na?/K?-ATPase), preserva-

tion of the Dwm, as well as anti-inflammatory action

(reduced lipid peroxidation, reduced TNF-a, reduced IL-

b), anti-apoptotic effect (reduced cytochrome c, reduced

caspase-3/-6/-9, increased Bcl-2, Bcl-xl, Bcl-xl/Bax ratio);

elevated GFAP and BDNF.

MPP? down-regulation of sphingosine kinase 1 in SH-

SY5Y cells is reversed by sphingosine-1 phosphate (S1P)

which abates ROS while activating sphingosine kinase 1

and S1P1 receptor gene expression. In turn, S1P, through

action at S1P1 receptors, down-regulates both Bax and

death protein 5 expression to promote cell viability (Pyszko

and Strosznajder 2014).

The protein transduction domain PEP-1, when fused

with HO-1, imparts permeability across SH-SY5Y cell

membranes and across the blood–brain barrier of mice. As

such, transduced PEP-1-HO-1 negates MPP? toxicity by

inhibiting ROS formation in SH-SY5Y cells and protects

from MPTP neurotoxicity in mice (Youn et al. 2014).

Mitochondrial complex I (NADH:ubiquinone oxidore-

ductase) is intricately linked to the actions of MPTP/MPP?

and rotenone, which target the complex I site. Yet, in mice

with a knockout of the complex I subunit iron–sulfur

protein 4 (Ndufs4), there is only mild complex I deficiency

with no overt destruction of dopaminergic neurons. Nev-

ertheless, such mice are more susceptible to MPTP

neurotoxicity, thereby affirming the importance of complex

I in dopaminergic neuronal survival (Sterky et al. 2012).

The selective inhibitor of VEGFR-2, SU5416, was

likewise shown to exert antioxidant effects and to reduce

nNOS activity and protect from MPP? independently of

VEGFR-2 effects in cerebellar granule neurons in vitro

(Cui et al. 2012). The effect was replicated by SU4312, a

non-competitive inhibitor of nNOS, but not by the VEG-

FR-2 inhibitor PTK737/ZK222584—establishing an anti-

oxidant mechanism (Cui et al. 2013). The association

between increased nNOS activity and MPTP neurotoxicity

is confirmed by magnetic resonance imaging in rats (Siow

et al. 2013).

MPTP/MPP? and Neurons

MPTP/MPP? produces neuronal destruction by a myriad of

cell death processes including

a. Necrosis (Choi et al. 1999). Numerous studies have

demonstrated MPP?-induced necrosis in dopaminergic

neurons, including recent studies detailed in other parts

of this review (see Kim et al. 2012a, b; Spittau et al.

2012).

b. Necroptosis. A recent paper, detailed later in this

review, demonstrates necroptosis as one of the cell

death processes produced by MPP? (Jantas et al.

2014).

c. apoptosis (Dipasquale et al. 1991; Mochizuki et al.

1994). Recently, p53 and PUMA (p53 up-regulated

mediator of apoptosis) and subsequent up-regulation of

Bax were shown to be essential in MPP?-induced

apoptosis, independent of ATF3 (Bernstein and

O’Malley 2013).

d. Autophagy (Nopparat et al. 2014). MPP?, by increas-

ing expression of the autophagosome membrane

marker LC3-II (microtubule-associated protein light
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chain 3) along with Beclin 1 and mTOR signaling,

while reducing Bcl-2 levels (i.e., reduction in the

binding ratio of Bcl-2 to Beclin 1) promotes autophagy

in SK-N-SH dopaminergic cells (Nopparat et al. 2014).

As is evident with other neurotoxins such as rotenone,

the neurodestructive effect of MPTP/MPP? involves gen-

eration of ROS, resulting in cellular oxidative stress, ATP

depletion and AIF nuclear translocation, and down-regu-

lation of pAkt (Durgadoss et al. 2012). These effects are

attenuated at least in part by agents that activate the PI3 K/

Akt pathway:

a. hydrogen sulfide neuroprotection in PC12 cells, with

this action blocked by the specific PI3 K-AKT path-

way inhibitor LY294002 (Tang et al. 2012); hydrogen

sulfide neuroprotection in MPTP-treated mice, with

effects related to mitochondrial uncoupling protein 2,

which reduces ROS (Lu et al. 2012); also neuropro-

tection of PC12 cells by the antioxidant salidroside,

with LY294002 nullification of the effect (Zhang et al.

2012);

b. the non-steroidal anti-nflammatory agents meloxicam,

tenoxicam, and piroxicam which preserve activation of

the Parkinson’S DiseasePI3 K/Akt pathway in MPP?-

treated dopaminergic SH-SY5Y neuroblastoma cells

(Tasaki et al. 2012);

c. Chrysotoxine in MPP?-treated SH-SY5Y cells (Song

et al. 2012) as well as the antioxidant puerarin in these

cells—block by LY294002 (Zhu et al. 2012a, b, c);

d. Raloxifene, acting via G protein-coupled estrogen

receptor 1 (GPER1), activates striatal Akt signaling

to neuroprotect dopaminergic neurons in MPTP-

treated mice. This effect is attenuated specifically by

the GPER1 receptor antagonist G15 (Bourque et al.

2014).

The Wnt signaling pathway mediates at least some of

the MPP? neurotoxin spectrum. The number of MPP?-

induced apoptotic PC12 cells is correlated with levels of

glycoprotein dickkopf-1, and the MPP? neurotoxicity is

abated by Dkk1-siRNA (Dun et al. 2013). Also, in MPTP-

treated mice with knockout of low-density lipoprotein

receptor-related protein 5 and 6 (LRP5/6) or b-catenin

components in dopaminergic neurons, the associated dis-

ruption of Wnt signaling exerts a neuroprotective effect

(Dai et al. 2014).

A plethora of substances has been tested as neuropro-

tectants against MPTP/MPP?. The 18-mer peptide derived

from the neurotrophin prosaposin attenuates MPTP effects

in mice, as well as MPP? effects in SH-SY5Y cells, via

suppression of the N-terminal kinase/c-Jun pathway, up-

regulation of Bcl-2, down-regulation of BAX and inhibi-

tion of caspase 3 (Gao et al. 2013).

The DA D2R agonists quinpirole and bromocriptine

afford neuroprotection from MPP? in primary neuronal

cultures from Drosophila, with the effect being negated in

a DD2R deficiency line and in pan-neuronal cells or spe-

cifically in DA cells expressing DD2R RNAi (Wiemerslage

et al. 2013). Another D2 agonist, ropinrole, attenuates

MPTP neurotoxicity (DA cells in SN; DA innervation of

striatum) and preserves behavioral activity (pole test, ro-

tarod test), subsequent to cellular actions that increase the

Bcl-2/Bax ratio and transcription factor A while inhibiting

cytochrome c release and caspase-3 activity (Park et al.

2013a, b). In a similar study, the DA D2/D3 agonist D-512

attenuates MPTP neurodestructive actions to dopaminergic

neurons (SNpc cell number, striatal DA content) in C57BL/

6 mice (Shah et al. 2014). In DA D3 deficient mice, D3-/-,

the neurotoxic action of MPTP is greatly reduced, as

indicated by lesser reduction in SN cell number and lesser

effect on locomotor activity (Chen et al. 2013a, b, c).

Similarly, the D3 agonist 7-OH-DPAT [7-hydroxy-2-(di-n-

propylamino)tetralin] and preferential D3 agonist ropinrole,

intranasal or s.c., abate MPTP effects on mouse TH-ir

neurons in SN and striatum, and MPTP locomotor actions

(Lao et al. 2013). D-512 and D3-selective agonist D-440

together dose-dependently rescued MN9D dopaminergic

cells. Because the D2 agonist ropinrole was unable to

confer neuroprotection, the implication is that D-512 and

D440 actions are related to intracellular signaling (ERK,

Akt) or antioxidant effects as opposed to specific D2R

action (Santra et al. 2013).

Multiple glutamate receptor agonists afford neuroprotec-

tion of undifferentiated SH-SY5Y cells: mGluR2–LY354740,

mGluR3–ACPT-1, mGluR4 PAM–VU0361737, mGluR8–

(S)-3,4-DCPG, mGluR7 allosteric agonist AMN082, and

mGluR8 PAM–AZ12216052. mGluR2 and mGluR3 agonist

effects are unassociated with changes in caspase-3 activity,

while mGluR3 neuroprotection is negated by necrostatin-1,

indicative of cell death by a necroptotic process. In retinoic

acid-differentiated SH-SY5Y cells, only mGluR8 agonists are

neuroprotective (Jantas et al. 2014). Riluzole, an inhibitor of

glutamate neurotransmission that additionally blocks NMDA-

R and kainate-R, attenuates MPTP neurotoxicity in SN DA

neurons in marmosets (Verhave et al. 2012).

MPTP, MPP?, and Endoplasmic Reticulum (ER)

As with rotenone, MPTP/MPP? neurotoxicity involves

production of ER stress. Several agents acting on the ER

afford neuroprotection from MPTP/MPP?:

a. Glycyrrhizic acid increases phosphorylated ERK (p-

ERK) and its transposition from cytoplasm and

nucleus, protecting from MPP? in differentiated

PC12 cells and in primary cortical neurons. The effect
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is blocked by the MAPK inhibitor, PD98059 (Teng

et al. 2014);

b. Transcriptional expression of regulated endocrine-

specific protein (RESP18), a resident ER protein, is

elevated in MPP?-treated MN9D cells. Similarly,

levels of the ER chaperone HSP 90 kDa b member1/

glucose-regulated protein 94 and BiP are up-regulated

by MPP?. These effects are attenuated in MPP?-

treated cells by the ER stress inhibitor salubrinal and

by silencing RESP18 expression (Huang et al. 2013).

c. NAC reduces MPP? neurotoxicity in PC12 cells by

reducing p-ERK1/2 up-regulation (Zhu et al. 2012a, b, c);

d. Ginsenoside Rb1 inhibition of MPP? neurotoxicity in

PC12 cells is associated with increased p-ERK1/2 and

an increase in Akt via an action on estrogen recep-

tors—as evidenced by nullification of the Rb1 effect in

cells transfected with estrogen receptor siRNA (Ha-

shimoto et al. 2012);

e. In retinoic acid-differentiated SH-SY5Y cells, the

effect of 2-week exposure to a low concentration of

MPP? on mitochondria (morphology, complex 1

subunits, protein expression, and function) is reversed

by ERK1/2 inhibition (Zhu et al. 2012a, b, c).

MPTP, MPP?, and Glia

MPTP damage to dopaminergic neurons leads to a general

inflammatory process initiated by glia. A number of anti-

inflammatory agents have been tested experimentally to

reduce the overall ultimate damage to dopaminergic neu-

rons by MPTP. Some of the recently tested anti-inflam-

matory agents used to offset MPTP include

a. 3,4-Dihydroxybenzoate, a prolyl 4-hydroxylase inhib-

itor that suppresses MPTP transformation of resting

ramified microglia to activated ameboid-like microglia

in SN of MPTP-treated C57BL/6 mice (Chinta et al.

2012);

b. Curcuminoids, polyphenols that suppress GFAP

expression and promote iNOS expression in striatum

of C57BL/6 mice (Ojha et al. 2012);

c. Acacetin (5,7-dihydroxy-40-methoxyflavone) which

protects primary mesencephalic cultures and C57BL/

6 mice from MPTP neurotoxicity (Kim et al. 2012a, b);

d. HE3286 (17-a-ethynyl-androst-5-ene-3b, 7-b, 17-b-

triol, a synthetic androstenetriol, an anti-inflammatory

agent that affords neuroprotection from MPTP in

C57BL/6 mice (Nicoletti et al. 2012);

e. The guanylhydrazone, p38 MAP kinase inhibitor CNI-

1493, another anti-inflammatory agent that protects

C57BL/6 mice from MPTP (Noelker et al. 2013);

f. The rho kinase inhibitor Y-27632, which attenuates

MPP? effects in primary (neuron–glia) mesencephalic

cultures, also in the MES 23.5 dopaminergic neuronal

cell line (Barbiero et al. 2014a, b) and in mice (Villar-

Cheda et al. 2012);

g. Quercetin and sesamin suppress pro-inflammatory

cytokines IL-6, IL-1b, and TNF-a induced by MPP?

in a microglial (N9)-neuronal (PC12) co-culture sys-

tem, to increase survivability of neuronal cells (Bour-

nival et al. 2012); the toll-like receptor TLR4 is up-

regulated by MPTP to mediate activation of inflam-

matory microglial cells; TLR4-deficient mice are less

susceptible to MPTP (Noelker et al. 2013);

h. The PPAR-c agonist rosiglitazone protects SN cells

from MPTP/probenecid in C57BL/6 mice by attenu-

ating increases in TNF-a and IL-1b (Pisanu et al.

2014); other PPAR-c agonists (pioglitazone, telmisar-

tan, and LSN862) are likewise neuroprotective against

MPTP, reducing oxidative stress, and neuroinflamma-

tion (Laloux et al. 2012; Garrido-Gil et al. 2012;

Swanson et al. 2013).

i. PPAR-d per se is elevated in striatum of MPTP-treated

mice, while the PPAR-d agonist GW0742 attenuates

MPTP toxicity (Martin et al. 2013).

j. Resveratrol protects from MPP? toxicity by down-

regulating myeloperoxidase in microglia (Chang et al.

2013) and protects from MPTP in mice by up-regulating

expression of the suppressor of cytokine signaling-1 and

abating microglial activation and the associated inflam-

matory response (Lofrumento et al. 2014).

k. Nicotine action at a7 nicotinic receptors, by suppressing

MPP?-induced mouse astrocyte activation (i.e., sup-

pression of TNF-a, Erk1/2, and p38 activation), atten-

uates MPP? neurotoxicity; similar effects are noted for

nicotine in MPTP-treated mice (Liu et al. 2012a, b).

l. The Ca2? binding protein S100B, a peptide secreted by

astrocytes and associated with neuroinflammation and

degeneration, is elevated in postmortem SN of PD

patients and likewise elevated in the SN of MPTP-

treated mice. Ablation of S100B results in reduced

TNF-a, reduced microgliosis, and neuroprotection

(Sathe et al. 2012).

Notably, cytokines released from glia by MPP? can

confer neuroprotection, as evidenced for IL-6, released

from MN9D cells and midbrain dopaminergic neurons in

culture. MPP? neurotoxicity was increased by neutraliza-

tion of IL-6, while recombinant IL-6 rescued both cell

types from MPP? (Spittau et al. 2012).

Glia can also impact on MPTP/MPP? neurotoxicity and

affect astroglial neuroprotection via release of cytokines

and other proteins.

a. Induction of GDNF by the purified product harpago-

side [1S,4aS,5R,7S,7aS)-4a,5-dihydroxy-7-methyl-1-

((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-
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(hydroxymethyl)oxan-2-yl)oxy-1,5,6,7a-tetrahydrocy-

clopenta[c]pyran-7-yl](E)-3-phenylprop-2-enoate] pro-

tected and rescued dopaminergic neurons in cultured

mesencephalic neurons and in MPTP-treated mice—

the neuroprotective effect being negated by anti-GDNF

antibodies (Sun et al. 2012). Similarly, induction of

GDNF by the flavonoid naringin affords protection of

dopaminergic neurons from MPP? injected into the

medial forebrain bundle of rats. This effect was

associated with activation of the mTOR complex 1

and reduction of inflammation (Leem et al. 2012).

Direct iv injection of rapamycin in MPTP-treated mice

effectively attenuates loss of SN TH-ir neurons,

possibly attributable to activation of autophagy (Liu

et al. 2013).

b. Neuroprotection of TH neurons in the SN of MPTP/P-

treated mice by the polyphenols apigenin and luteolin

is associated with elevated BDNF levels (Patil et al.

2014a). Also, in wild-type mice, voluntary exercise

induces BDNF and protects SNpc dopaminergic neu-

rons from MPTP neurotoxicity, while exercised mice

heterozygous for the BDNF gene are unprotected from

MPTP neurotoxicity (Gerecke et al. 2012).

c. The triptolide LLDT-67 protected SNpc dopaminergic

neurons from MPTP via induction of nerve growth

factor in astrocytes and associated TrkA activation

(Wu et al. 2012).

d. MPTP neurotoxicity was abated in primary neuronal/

glial cultures derived from mouse mesencephalon of

glia maturation factor knockout mice versus the full

effect of MPTP in such cultures from wild-type mice.

MPTP-induced ROS and NF-jB-mediated inflamma-

tion are absent in cultures from the GMF-ko mice vs.

cultures from wild-type mice (Khan et al. 2014b). In

primary astrocytes from GMF-ko mice, there was

reduced ROS, TNF-a, IL-1b, IL-17, IL-33, and

chemokine ligand 2 versus MPP? effects in astrocyte

cultures from wild-type mice (Khan et al. 2014a).

e. In co-cultures of dopaminergic neurons and astrocytes/

microglia, the antioxidant/anti-inflammatory agent

salvianolic acid, via its action in astrocytes and glia

to increase expression and nuclear translocation of

nuclear factor (erythroid-derived 2)-like 2, attenuates

MPP? neurotoxicity. Salvianolic neuroprotection

appears to be mediated by suppression of pro-inflam-

matory cytokine production in microglia and enhanced

generation and release of GDNF from astroglia (Zhou

et al. 2014). Intrastriatal administration of short

interfering RNA (siRNA) directed against Kelch-like

ECH associating protein 1—the negative regulator of

Nrf2—partially protects from MPTP toxicity in mice

(Williamson et al. 2012). Also, direct agonist

activation of the Nrf2/antioxidant response element

(ARE) signaling pathway reduces MPTP neurotoxicity

in mice (Kaidery et al. 2013).

f. Extracellular matrix metalloproteinases represent

another element, largely neuronal, associated with

neuroinflammation. MPTP neurotoxicity in wild-type

mice elevates MMP mRNA and protein levels, also

numbers of MMP-9-expressing microglia, and the

extent of inflammation. By contrast, in MMP-9

knockout mice, the MPTP effect is much reduced.

Accordingly, MPP-9 is suspect as a pro-inflammatory

substance that mediates, in part, MPTP neurotoxicity

(Annese et al. 2014). MMP-3 deletion reduces the

MPTP effect in mice (Chung et al. 2013).

g. In apoptosis signal-regulating kinase 1 (ASK1) null

mice, MPTP efficacy is reduced. ASK1 is considered

to be a major transducer for MPTP induction of

astrocyte activation (Lee et al. 2012a, b).

MPTP and MPP? Dependence on Ca2?

As with rotenone toxicity, Ca2? plays a major role in

MPTP/MPP? neurotoxicity. In neuronal PC12 cells,

MPP?-induces increases in intracellular Ca2? and ROS—

effects attenuated by zonisamide, the inhibitor of both

T-type voltage-sensitive Ca2? channels and voltage-gated

Na? channels (Yürekli et al. 2013). Also in PC12 cells,

SKF-96365 [1-(b-[3-(4-methoxy-phenyl) propoxy]-4-

methoxyphenethyl)-1H-imidazole hydrochloride], the non-

specific inhibitor of store-operated Ca2? entry, affords

neuroprotection by attenuating MPP? elevations in intra-

cellular Ca2? and suppressing MPP?-induced expression

of Homer1, to thus reduce homer1-mediated Ca2? release

in ER (Chen T et al. 2013).

Similarly, intrastriatal administration of the L-type Ca2?

channel blocker diltiazem effectively attenuates MPP?

toxicity by suppressing HO• formation (Obata and Mi-

yashita 2013). In human neuroblastoma SH-SY5Y cells,

and as determined by confocal microscopy, MPP? expo-

sure actually reduces Ca2? levels in cytoplasm and ER,

while increasing the Ca2? concentration in mitochondria.

Consequently, MPP? neurotoxicity appears to most closely

relate to mitochondrial effects (Xu et al. 2013a, b, c). In

SH-SY5Y cells differentiated into a dopaminergic pheno-

type, the cell-permeable calpain inhibitor SNJ-1945 [(1S-1-

((((1S)-1-benzyl-3-cyclopropylamino-2,3-di-oxopropyl)

amino) carbonyl)-3-methylbutyl)carbamic acid 5-methoxy-

3-oxapentyl ester] effectively attenuates the 1) MPP?-

induced elevation in intracellular Ca2?, 2) MPP?-associ-

ated intracellular ROS, and 3) MPP?-induced cellular

apoptosis (Knaryan et al. 2014).
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Store-operated Ca2? entry channels—ER-derived Ca2?

activating plasma membrane Ca2? entry channels—are

apparently involved in MPP? neurotoxicity, as antagonists

of SOCE and siRNA prevent ROS formation and prevent

neuronal apoptosis in PC12 cells. Neuroprotection is

mediated by increased expression of Homer1a mRNA and

protein (Li et al. 2013a, 2013b).

Recovery from MPTP-Induced Neurochemical/Motor

Effects

Treadmill exercise (30 min/days, 59/weeks, 4 weeks) in

MPTP/probenecid-treated mice, by suppressing microglial

activation (i.e., reducing CD11b/CD200/CD200R expres-

sion), also reducing p-MAPK signaling (iNOS, p-ERK, p-

JNK, p–p-38), rescued nigrostriatal dopaminergic inner-

vation, and improved motor function (Sung et al. 2012). In

one subsequent study in which MPTP-treated single-

housed mice could voluntarily exercise on running wheels

in individual cages, there was no evident recovery from

MPTP (Aguiar et al. 2014), while in another study with

running wheels in cages, exercise was associated with

recovery of motor and neurochemical parameters in mice.

Moreover, supplementation of exercise with a yeast extract

derived from S. cerevisiae, Milmed, further enhanced

recovery from MPTP (Archer and Fredriksson 2013). With

forced treadmill exercise, recovery of mice from MPTP is

improved, while dendritic spine density of striatal medium

spiny neurons in direct (DA D1R-containing) and indirect

(DA D2R-containing) pathways is increased, as well as the

expression of synaptic proteins PSD-95 and synaptophysin

in the MPTP mice (Toy et al. 2014). Intensive treadmill

exercise (3 9/weeks, 8 weeks) in early-stage human PD

patients likewise improved postural control and DA D2R

binding potential ([18F]fallypride binding) (Fisher et al.

2013).

Dopamine (DA) Oxidation Ortho-Quinones

DA-derived o-quinones, consequent to DA oxidation, are

considered to play a key role in dopaminergic/neuromelanin-

containing neural degeneration (Segura-Aguilar et al. 2014).

This concept is supported by the fact that the degenerative

process of these nigrostriatal neurons is a very slow process,

taking place years before the onset of motor symptoms pre-

senting in PD. The slow disease progression suggests that

those neurotoxins involved in neurodegeneration must be of

endogenous origin. The fact that MPTP induces severe Par-

kinsonism in only 3 days lends credence to this concept

(Williams 1984, 1986). In addition, o-quinones derived from

DA oxidation are generated inside dopaminergic/neurome-

lanin-containing neurons. The formation of o-quinones

during DA oxidation can additionally result in the formation

of neuromelanin, a seemingly normal process and supported

by the age-related increase in neuromelanin in all people

(Zecca et al. 2002). The process of DA oxidation, progress-

ing to neuromelanin formation, proceeds in a sequential

manner where the first o-quinone formed is DA o-quinone,

an extremely unstable intermediate at physiological pH

(Segura-Aguilar and Lind 1989)—cyclizing to leukoamino-

chrome which then autoxidizes to aminochrome at a rate of

0.15 s-1 (Tse et al. 1976). Aminochrome is the most stable o-

quinone at physiological pH, being the only o-quinone

detected by NMR. Aminochrome ultimately rearranges to

5,6-indolequinone at a constant rate of 0.06 min-1 (Napo-

litano et al. 2011; Bisaglia et al. 2007). 5,6-Indolequinone, in

turn, polymerizes to neuromelanin.

Alternatively, o-quinones derived from DA oxidation

can also be toxic. leading to neuronal cell death. Signifi-

cantly, o-quinones (DA-o-quinone, aminochrome and 2,6-

indolequinone) derived from DA oxidation are directly

linked with four of the five mechanisms proposed to be

involved in the degenerative processes in PD. These

include protein degradation and dysfunction, a synuclein

aggregation to neurotoxic oligomers, mitochondria dys-

function, and oxidative stress (for review see Segura-Ag-

uilar and Paris 2014).

DA-o-quinone has a variety of actions, which include

inactivation of parkin, an E3 ubiquitin ligase, thereby

impairing the proteasome system (LaVoie et al. 2005). DA-

o-quinone also forms adducts with mitochondrial proteins

such as complexes I, III, and V which result in mito-

chondria dysfunction (Van Laar et al. 2009); and also,

adducts with UCHL-1, DAT, TH, PARK protein 7 (DJ-1),

and mitochondrial glutathione peroxidase 4 (Van Laar

et al. 2009; Xu et al. 1998; Hauser et al. 2013; Whitehead

et al. 2001). Likewise, chaperone-mediated autophagy is

known to be impaired by DA-o-quinones (Cuervo et al.

2004).

Aminochrome, the most studied and stable of these o-

quinones:

1. induces and stabilizes the formation of neurotoxic

oligomers of a synuclein (Norris et al. 2005; Dibenedetto

et al. 2013; Muñoz et al. 2015);

2. impairs the proteasomal system, resulting in dys-

function of protein degradation (Zafar et al. 2006; Zhou

and Lim 2009; Xiong et al. 2014);

3. produces lysosome dysfunction (Huenchuguala et al.

2014);

4. inhibits the fusion of lysosome with autophagy vac-

uoles, mediated by microtubules (Muñoz et al. 2012b;

Huenchuguala et al. 2014);

5. induces oxidative stress during one-electron reduc-

tion, generating hydroxyl radicals (Arriagada et al. 2004;

Segura-Aguilar et al. 1998); and
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6. inhibits mitochondrial complex I and decreases ATP

formation, events inducing mitochondria dysfunction

(Muñoz et al. 2012c; Aguirre et al. 2012; Arriagada et al.

2004; Paris et al. 2011).

Aminochrome can also be substrate for protective

reactions:

1. Aminochrome is precursor to 5,6-indole quinone which

polymerizes to generate neuromelanin (Napolitano et al.

2011), an intracellular polymer that accumulates with

age in all individuals (Zecca et al. 2002);

2. Aminochrome can be two electron reduced to leukoa-

minochrome, a reaction catalyzed by DT-diaphorase

(Segura-Aguilar and Lind 1989). Leukoaminochrome

can tautomerize to generate 5,6-dihydroxyindole which

oxidizes to 5-6-indolequinone and polymerizes to

neuromelanin. DT-diaphorase is the unique flavoen-

zyme that catalyze the two-electron reduction of

quinones to hydroquinones. DT-diaphorase prevents

mitochondria dysfunction (Fuentes et al. 2007; Paris

et al. 2011; Arriagada et al. 2004; Muñoz et al. 2012c);

prevents formation of a-synuclein oligomers (Cardenas

et al. 2008); inhibits the proteasome system (Zafar et al.

2006; Xiong et al. 2014); inhibits autophagy (Muñoz

et al. 2012b; Huenchuguala et al. 2014); inhibits a- and

b-tubulin aggregation and cell shrinkage (Paris et al.

2010; Lozano et al. 2010); inhibits oxidative stress

(Arriagada et al. 2004); and inhibits cell death induced

by aminochrome (Arriagada et al. 2004; Fuentes et al.

2007; Muñoz et al. 2012c; Lozano et al. 2010; Paris et al.

2010; 2011; Muñoz et al. 2012a);

3. Aminochrome can also be conjugated with GSH by

glutathione transferase M2, thus abating aminochrome-

dependent toxicity, lysosome dysfunction, and autoph-

agy inhibition (Segura-Aguilar et al. 1997; Huen-

chuguala et al. 2014; Cuevas et al. 2014). Interestingly,

glutathione transferase M2 is not expressed in
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Fig. 1 Dopamine oxidation to o-quinones. Dopamine oxidizes to

dopamine o-quinone that at physiological pH spontaneously under-

goes a rapid cyclization (0.15 s-1) to generate aminochrome.

Aminochrome, the most stable o-quinone, finally rearranges (0.06

min-1) to 5,6-indolequinone. These o-quinones participate in neuro-

toxic reaction such as (i) dopamine o-quinone inactivates parkin,

mitochondrial complexes I, III and V inducing proteasome and

mitochondria dysfunction, respectively; (ii) Aminochrome induces

mitochondria dysfunction by inactivating complex I and induces the

formation neurotoxic alpha synuclein oligomers. Aminochrome

induces protein degradation dysfunction by inhibiting autophagy,

inactivating lysosomes and the proteasomal system. Aminochrome

also induces oxidative stress during its one-electron reduction to

leukoaminochrome o-semiquinone radical. (iii) 5,6-Indolequinone

induces the formation of alpha synuclein oligomers. The neurotoxic

reactions induced by o-quinones can be prevented by (i) 5,6-

indolequinone polymerization to generate neuromelanin and (ii) the

two-electron reduction of aminochrome catalyzed DT-diaphorase that

prevent the neurotoxic actions of aminochrome
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dopaminergic neurons but in astrocytes which confer

protection of dopaminergic neurons.

Conclusions

Model neurotoxins, such as 6-OHDA, MPTP, and rotenone,

have been used for decades to produce conventional pre-

clinical models of PD. As such, extensive insight has been

derived in reference to the multitude of neuronal cellular

mechanisms attending neurodegenerative processes in this

neuromuscular disorder. There is now definitive evidence to

implicate mitochondrial dysfunction, protein degradation

dysfunction, alpha synuclein aggregation, oxidative stress,

neuroinflammation, and ER stress. The secondary role of

neuroinflammation and the involvement of glia in modulat-

ing or accelerating neuronal cell death also represent further

events that compound the initial neural damage.

In idiopathic PD in humans, the degenerative process and

the progression of PD is very slow, occurring over many

years before onset of motor symptoms. This is in dramatic

contrast to the acutely extensive and rapid degenerative

process induced by exogenous neurotoxins. Nevertheless, it

is noteworthy that MPTP, for example, may take only 3 days

to induce severe motor symptoms in humans exposed to

MPTP—as exemplified in substance abusers of China White

in the 1980s. This enormous difference between the times

required for the onset of motor symptoms in humans begs the

question as to whether these endogenous neurotoxin-evoked

mechanisms actually mirror neuronal processes responsible

for events leading to the onset and progression of idiopathic

and genetically associated PD in humans.

The increased evidences on the role of endogenous neu-

rotoxins of dopaminergic neurons such as o-quinones gen-

erated during DA oxidation (DA-o-quinone, aminochrome

and 5,6-indolequinone) on mitochondria dysfunction, a-

synuclein aggregation, oxidative stress, and protein degra-

dation dysfunction (Fig. 1) suggest that these neurotoxins

are valid for studying mechanisms involved in the nigro-

striatal neurodegeneration observed in PD. This concept is

supported by the fact that those neurons lost during the

progression of PD contain neuromelanin, and DA oxidation

to o-quinones (DA-o-quinone, aminochrome and 5,6-indol-

equinone) is a requisite in the formation and accumulation of

neuromelanin in pars compacta dopaminergic neurons.
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Lozano J, Muñoz P, Nore BF, Ledoux S, Segura-Aguilar J (2010)

Stable expression of short interfering RNA for DT-diaphorase

induces neurotoxicity. Chem Res Toxicol 23:1492–1496

Lu M, Zhao FF, Tang JJ, Su CJ, Fan Y, Ding JH, Bian JS, Hu G

(2012) The neuroprotection of hydrogen sulfide against MPTP-

induced dopaminergic neuron degeneration involves uncoupling

protein 2 rather than ATP-sensitive potassium channels. Anti-

oxid Redox Signal 17(6):849–859

Lu DY, Chen JH, Tan TW, Huang CY, Yeh WL, Hsu HC (2013)

Resistin protects against 6-hydroxydopamine-induced cell death

in dopaminergic-like MES23.5 cells. J Cell Physiol 228:563–571

Luchtman DW, Meng Q, Wang X, Shao D, Song C (2013) x-3 fatty

acid eicosapentaenoic acid attenuates MPP?-induced neurode-

generation in fully differentiated human SH-SY5Y and primary

mesencephalic cells. J Neurochem 124(6):855–868

Lundius EG, Stroth N, Vukojević V, Terenius L, Svenningsson P
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Yürekli VA, Gürler S, Nazıroğlu M, Uğuz AC, Koyuncuoğlu HR
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