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Úrsula Vilardosa1 • David Aluja1 • Victor M. Parra2 • Daniel Sanchis3 •

David Garcia-Dorado1,4

Received: 2 September 2015 / Accepted: 2 February 2016 / Published online: 16 February 2016

� Springer-Verlag Berlin Heidelberg 2016

Abstract Although it is widely accepted that apoptosis

may contribute to cell death in myocardial infarction,

experimental evidence suggests that adult cardiomyocytes

repress the expression of the caspase-dependent apoptotic

pathway. The aim of this study was to analyze the contri-

bution of caspase-mediated apoptosis to myocardial

ischemia-reperfusion injury. Cardiac-specific caspase-3

deficient/full caspase-7-deficient mice (Casp3/7DKO) and

wild type control mice (WT) were subjected to in situ

ischemia by left anterior coronary artery ligation for

45 min followed by 24 h or 28 days of reperfusion. Heart

function was assessed using M-mode echocardiography.

Deletion of caspases did not modify neither infarct size

determined by triphenyltetrazolium staining after 24 h of

reperfusion (40.0 ± 5.1 % in WT vs. 36.2 ± 3.6 % in

Casp3/7DKO), nor the scar area measured by pricosirius

red staining after 28 days of reperfusion (41.1 ± 5.4 % in

WT vs. 44.6 ± 8.7 % in Casp3/7DKO). Morphometric and

echocardiographic studies performed 28 days after the

ischemic insult revealed left ventricular dilation and severe

cardiac dysfunction without statistically significant differ-

ences between WT and Casp3/7DKO groups. These data

demonstrate that the executioner caspases-3 and -7 do not

significantly contribute to cardiomyocyte death induced by

transient coronary occlusion and provide the first evidence

obtained in an in vivo model that argues against a relevant

role of apoptosis through the canonical caspase pathway in

this context.

Keywords Myocardium � Ischemia � Reperfusion �
Apoptosis � Caspases

Introduction

The extent of myocardial cell death, infarct size, is the

most important predictor of survival and long-term out-

come in patients with an acute myocardial infarction [25].

Although prompt restoration of myocardial perfusion is

imperative to limit infarct size [34], myocardial salvage

achieved by reperfusion is reduced by the occurrence of

cardiomyocyte death during the reperfusion period, a

phenomenon known as reperfusion injury [44].

There is solid evidence suggesting that a large fraction

of cardiomyocyte death occurring during reperfusion takes

place during the first minutes after restoration of blood

flow, and involves sarcolemmal rupture, a major feature of

necrotic cell death [17]. However, it is widely accepted that

apoptosis contributes importantly to final infarct size [24,
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31, 32, 52, 54]. A large number of studies suggests that

activation of the apoptotic signaling during reperfusion

results in the death of cardiomyocytes during both, the

acute [23, 24, 31, 32], and late phase of reperfusion [2, 30,

33, 43], contributing to the loss of viable myocardium and

progression to adverse ventricular remodeling.

Apoptosis is a regulated form of cell death that has been

differentiated into two distinct pathways, the extrinsic

pathway initiated by the activation of a death receptor, and

the intrinsic or mitochondrial pathway induced by a variety

of extra and intracellular stress stimuli. In both cases, the

apoptotic signaling cascade triggers the cleavage and acti-

vation of the effector caspases-3 and -7, cysteinyl aspartate

proteinases considered the executioners of the apoptotic cell

death and extensively used as hallmarks of apoptosis [7, 28].

Moreover, apoptosis and, in particular, activation of cas-

pases has been suggested as potential pharmacological target

for the attenuation of reperfusion injury.

Although it has been suggested that reperfusion acti-

vates the mitochondrial apoptotic pathway [11], experi-

mental data indicate that caspase-dependent signaling is

important during heart morphogenesis [9] but is repressed

in cardiomyocytes during terminal differentiation suggest-

ing that apoptosis through the canonical caspase pathway is

not involved in post-mitotic cardiomyocyte death [4, 9].

Although this evidence strongly argues against an impor-

tant role of cardiomyocyte apoptosis in the reperfused

myocardium, conclusive assessment of the role of caspase-

mediated apoptosis in a clinically relevant experimental

model is needed.

In the present study, we aimed to examine the contri-

bution of the executioner caspases to acute myocardial

reperfusion injury, post-infarct remodeling and heart fail-

ure by using a newly developed cardiac-specific caspase-

3/caspase-7 null mouse model.

Methods

The experimental procedures conformed to the Guide for

the Care and Use of Laboratory Animals published by the

US National Institute of Health, 8th Edition, published in

2011, and were reviewed and approved by the Research

Commission on Ethics of the Hospital Vall d’Hebron and

the Experimental Animal Ethic Committee of the Univer-

sity of Lleida (codes CEEA06-01/10, 07-01/10, 08-01/09

and 09-01/09).

Cardiac-specific caspase-3/caspase-7 double

knockout mice

Full caspase-7-deficient cardiac-specific caspase-3-defi-

cient mouse strain (casp3/7DKO) was generated by

crossing of caspase-7-deficient [28] and caspase-3 floxed

mice [45] with the Nkx2.5::Cre transgenic mouse strain, a

kind gift of Dr. Eric N. Olson (UT Southwestern Medical

Center, Dallas, TX, USA) [36]. Genotypes were analyzed

by polymerase chain reaction (PCR) using tail DNA as a

template (primer sequences can be found in Supplemental

material S1) and the expression of both caspases was

determined by western blot and immunohistochemistry.

The breeding program followed to obtain single and double

mutant mice as well as control wild type (WT) mice is

specified in Cardona et al. (Suppl. Fig. A) [9]. All geno-

types were obtained following Mendelian ratios. In order to

reduce to a minimum the possibility of differential phe-

notype due to changes in genetic background, the control

(wild type) animal group was composed of Cre?/?Casp3?/

?Casp7?/?; Cre-/-Casp3?/?Casp7?/?; Cre-/-Casp3loxP/

?Casp7?/? and Cre-/-Casp3loxP/loxPCasp7?/? mice born

at the same time than double KO mice. Therefore control

mice had virtually the same genetic background than

knockout mice.

In vivo ischemia/reperfusion protocol

All mouse experiments were performed on 24–28 g and

8–12 week old mice of both genders. Mice were anaes-

thetized with isoflurane (5 % induction, 2–3 % mainte-

nance) and mechanically ventilated (Inspira ASV, Harvard

Apparatus). Anesthesia was maintained with 1–2 %

isoflurane. The heart was exposed through the fourth

intercostal space and the left anterior descending coronary

artery (LAD) ligated approximately 1 mm below the edge

of the left atrial appendage with an 8–0 silk suture.

Regional ischemia was confirmed by visual inspection of a

pale color in the occluded distal myocardium and ST-

segment. After occlusion for 45 min, the suture was loos-

ened to start reperfusion. The thorax and the skin incision

were closed with 6–0 silk sutures (Lab Arago, Spain) and

buprenorphine (0.01 mg/kg, Buprex, Merck & Co. Inc)

was given for pain relief. Mice with lack of ST-elevation

during ischemia or lack of ST-recovery at reperfusion were

excluded from further evaluation.

To determine the contribution of caspases-3 and -7 to

the extent of infarct size, hearts (n = 18; nine WT, nine

Casp3/7DKO, four females and five males in each group)

were excised after 24 h of reperfusion, mounted in a

Langendorff apparatus, and perfused with saline for blood

removal. The LAD was re-occluded and 2 % Evans blue

injected into the beating left ventricle (LV) to delineate the

area at risk. Mice with unclear delineation of the area at

risk were excluded from analysis. Hearts were cut into five

transverse sections that were incubated at 37 �C in 1 %

triphenyltetrazolium chloride (Sigma Chemical) for

15 min, and imaged. The area at risk and the area of
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necrosis were measured semi-automatically (Image Pro-

Plus software, Media Cybernetics) in the digitalized ima-

ges. Infarct size was calculated as a percentage of necrosis

at the region at risk. The area of contraction band necrosis

was analyzed in sections stained with Masson’s trichrome

and compared with the infarct area as previously described

by our group (n = 3 per group) [5].

To analyze genotype-based differences in the cardiac

tolerance to ischemia/reperfusion, WT (n = 5) and Casp3/

7DKO (n = 5) male mice were subjected to an ischemic

preconditioning protocol consisting in three cycles of

5 min ischemia and 5 min of reperfusion.

The effect of caspase-3 and -7 deletion on post-infarct

remodeling and heart function was analyzed in mice

reperfused for 28 days (n = 19; eight WT and nine

Casp3/7DKO; four males in the WT group and five males

in the Casp3/7DKO group). After reperfusion hearts were

rapidly excised, weighed, fixed in buffered 4 %

paraformaldehyde and embedded in paraffin for histo-

logical evaluation. Sections at the papillary muscles level

were cut at 5 lm and stained with picrosirius red to

visualize the area of scar and interstitial and peri-vascular

fibrosis. The percentage of the left ventricle stained for

collagen was calculated as the ratio of picrosirius-red

positively stained area over total tissue area using Image

Pro-Plus analysis software.

Echocardiographic and morphometric analysis

Mice underwent transthoracic echocardiography at baseline

(before surgery) and at 28 days after surgery. Echocar-

diography was performed using a Vivid portable ultrasound

system with a i12L-RS 12 MHz transducer (GE Health-

care) as described earlier [21]. The left ventricular end-

systolic (LVESd) and diastolic (LVEDs) internal diameters

were measured in M-mode recordings. Left ventricular

ejection fraction (LVEF) and fractional shortening (FS)

were calculated according to standard formulas.

After completion of functional measurements, the heart

was excised and mean LV wall thickness (LVW) and

intraventricular septum thickness (IVS) were measured in

transverse sections fixed in diastole and stained with

Masson’s trichrome. The largest endocardial circumference

from a single LV section was used as an index for the

extent of LV dilation [15].

Western blot and immunohistochemistry

Protein expression was analyzed in total protein extracts

from tissues by SDS-PAGE as described previously [4].

Primary antibodies: caspase-3 cell signalling (9662),

1/3000; caspase-6 cell signalling (9762), 1/1000; caspase-7

Enzo Life Sciences (ADI-AMM-127) 1/1000; Gapdh

Abcam (ab8245) 1/10,000. Densitometric quantification of

the bands was performed with the ImageJ software from

scanner images of film exposures in which bands were not

saturated. Values were expressed as arbitrary units (AU)

corresponding to the signal numerical value given by

ImageJ.

For immunohistochemistry analysis, P2 pups were killed

by decapitation; the heart was excised, fixed in 4 %

paraformaldehyde for 24 h at 4 �C and included into

paraffin. Slices (3 lm) were deparaffinized, endogenous

peroxydase was chemically inhibited with 3 % H2O2 for

30 min and antigens were unmasked with citrate buffer at

pH 6. Tissue was incubated with the rabbit anti-caspase-3

primary antibody (cell signalling, 1:250 in PBS, 2 % goat

serum, overnight, 4 �C) and after three washes in PBS,

slides were incubated with a biotinylated goat anti-rabbit

antibody (DAKO, 1:200 in PBS, 2 % goat serum, 1 h, RT).

Samples were rinsed and incubated with avidin–biotin-

HRP complex (Cultek, 1:100 in PBS, 1 h, RT), developed

with diaminobenzidine and H2O2, contrasted with Meyer’s

hematoxylin, dehydrated and mounted.

TUNEL assay

TUNEL-positive cardiomyocytes were measured in hearts

obtained from WT, Casp3/7DKO and endonuclease G null

(endoG-/-) mice after 24 h of reperfusion. Generation and

characterization of endoG-/- null mice has been described

by Irvine RA [22], and used by our group to define the role

of endonuclease G in maladaptive cardiac hypertrophy

[35]. The endoG-/- group was included in the study to

demonstrate that the presence of TUNEL? nuclei in a

sample is not a definitive proof of the involvement of

caspases in the cell death process. The TUNEL assay was

performed with the ApoTag Peroxidase kit (S7100, Milli-

pore) in deparaffinized transverse ventricular slices fol-

lowing manufacturer’s instructions. Sections were counter-

stained by hematoxylin-eosin and myocyte nuclei were

identified by position and morphology. The results were

expressed as the ratio of the number of TUNEL-positive

myocytes to the total number of myocytes after examina-

tion of 20 fields per each slice obtained at 4009 magnifi-

cation (n = 3 per group).

Statistics

All data were analyzed by a single observer blinded to

mouse genotypes. Results are expressed as mean ± stan-

dard error. Statistical significance of difference among

groups were evaluated by either an unpaired Student’s t test

or one-way ANOVA followed by Tukey’s multiple-group

comparisons test. Statistical significance was assumed at

P\ 0.05. Survival was compared using the log-rank test.
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Results

Generation of cardiac-specific caspase-3

deficient/full caspase-7 deficient mice

We have designed a conditional knockout mouse in which

caspase-3 gene deletion depends on loxP recombination

driven by Cre recombinase expressed under the control of

the Nkx2.5 basal promoter-cardiac enhancer. Nkx2.5 pro-

moter directs gene expression from the onset of cardiac

commitment [36]. Caspase-7 was deleted ubiquitously

because the lack of phenotype observed previously [28].

Caspase-3 and -7 double mutant mice were obtained by

intercrossing caspase-3lox/lox, caspase-7-/- and

Nkx2.5::Cre mice. Genotyping reaction (Table S1) was

designed to distinguish between caspase-3 floxed (e.g. tail)

and knockout (myocardium) alleles, showing the presence

of both in the heart due to floxed caspase-3 in non-my-

ocytes (Fig. 1a). Western blot confirmed lack of caspase-7

expression in knockout mice and remnant caspase-3

expression in the neonatal heart (Fig. 1b), which was

absent in myocytes as shown by immunohistochemistry

(Fig. 1c). The phenotypic description of casp3/7DKO has

been recently published by our group [9].

Cardiac-specific deletion of caspase-3 and -7 does

not modify infarct size

To determine whether caspase-3 and -7 contribute to

reperfusion-induced cardiomyocyte death, infarct size was

determined in casp3/7DKO and WT mice subjected to

45 min of LAD occlusion followed by 24 h of reperfusion.

Mortality rate during the surgical procedure was 22 % (two

WT and two casp3/7DKO mice). One mouse was excluded

for no clear confirmation of ST-elevation during ischemia

and an additional mouse was excluded for unsuccessful

delimitation of the area at risk. The results showed no

differences between WT and casp3/7DKO mice in the

mass of myocardium at risk as assessed by Evans Blue

staining, nor in the infarct size, expressed as percentage of

area at risk developing necrosis, (40.0 ± 4.2 % in reper-

fused WT group vs. 36.2 ± 3.3 % in casp3/7DKO group;

P = ns, Fig. 2). We calculated the probability of having

obtained by chance (beta error) these results despite a

significant contribution of caspase-dependent apoptosis to

infarct size that is, a reduction of 30 % in the casp3/7DKO

group, assuming variances in each group to be equal to

those observed. This probability was 0.079.

The area of cell death detected by triphenyltetrazolium

was composed of contraction band necrosis in both WT

and casp3/7DKO mice (Fig. 2d shows an area of contrac-

tion band necrosis measured in control and transgenic

mice).

The percentage of TUNEL? myocyte nuclei in WT and

Casp3/7DKO hearts was similar (28.22 ± 2.31 and

24.96 ± 2.68 %, respectively, P = ns) while it was sig-

nificantly reduced in the endoG-/- group (11.05 ± 2.02,

P\ 0.001) (Fig. 3). These results are in agreement with a

previous study from our group demonstrating that primary

cultured cardiomyocytes subjected to experimental

A 

Casp-3 
KO  WT

KO (myocytes)
Flx (non myocytes)

Heart 

B 

Casp-7 

Casp-3 

GAPDH 

WT KOWT KO
P2 WT

P2 KO

Caspase-3 C 
Tail 

Casp-7 

WT   Het KO 

Casp-3 

WT   Het Flx

Fig. 1 Characterization of cardiomyocyte-specific caspase-3 defi-

cient/full caspase-7-deficient mice. a Genotyping by genomic PCR of

tail and heart DNA. Primer set includes three primers for detecting

caspase-3 and four for detecting caspase-7 (see Table S1 for

sequences and fragment lengths). WT wild type allele, Het heterozy-

gous, KO deleted knockout allele (for caspase-7), Flx floxed allele.

Lower panel shows caspase-3 genotyping products from cardiac

DNA. KO deleted knockout allele (cardiomyocytes), Flx floxed (non-

myocytes). b Immunodetection of caspase-3 and caspase-7 in P2

neonatal hearts of wild type (WT) and knockout (KO) mice. Remnant

expression of caspase-3 is detected in KO hearts due to non-

myocytes. Caspase-7 ubiquitous deletion assures total absence in

heart extracts. c Immunohistochemistry of caspase-3 (brown staining)

in WT and KO heart slices confirms deletion in cardiomyocytes. Bar

20 lm
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ischemia undergo TUNEL? DNA damage that cannot be

prevented by pan-caspase inhibitors but is blocked by

endonuclease G or Bnip3 gene silencing [58]. Therefore,

our data suggest that the presence of TUNEL? nuclei in a

sample is not a definitive proof of the involvement of

caspases in the cell death process.

To discard that the lack of differences in infarct size

were consequence of genotype-based differences in the

tolerance to ischemia/reperfusion, infarct size was analyzed

in casp3/7DKO and WT mice subjected to a precondi-

tioning protocol. Ischemic preconditioning reduced infarct

size in WT and casp3/7DKO mice with respect their con-

trol groups (24.3 ± 3.9 and 20.2 ± 2.9 %, respectively).

No significant differences between both groups with

respect the magnitude of protection were observed (39 %

in WT and 44 % in casp3/7DKO mice).

Lack of executioner caspases does not affect post-

infarct remodeling and ventricular function

To test whether deletion of caspases-3 and -7 modifies

post-infarct remodeling and ventricular performance,

casp3/7DKO and WT mice were subjected to a long-term

follow-up ischemia/reperfusion protocol consisting in

45 min of LAD occlusion followed by 4 weeks of

reperfusion.

Mortality was 26 %: two WT mice (one mouse during

surgery and one mouse at 24 h of reperfusion) and three

transgenic mice (two mice during surgery and one mouse

after 3 days of reperfusion). One animal of each group was

excluded for no confirmation of ST-elevation during

ischemia.

To assess postischemic left ventricular remodeling and

function, echocardiographic measurements were obtained

before occlusion and at 4 weeks of reperfusion. M-mode

echocardiographic analysis revealed no differences on LV

dimensions and function between WT and casp3/7DKO

mice at baseline. Myocardial infarction resulted in a sig-

nificant increase in LVEDD and LVESD and a decrease in

FS and LVEF in both groups. However, there were no

significant differences in cardiac dilation and dysfunction

between WT and casp3/7DKO mice (Fig. 4).

Morphometric measurements were made in hearts

obtained after completion of the echocardiographic analy-

sis. No significant differences in mean LV wall thickness

(0.56 ± 0.09 mm in WT mice vs. 0.54 ± 0.13 mm in

casp3/7DKO mice), septum thickness (0.89 ± 0.12 mm in

WT mice vs. 0.84 ± 0.09 mm in casp3/7DKO mice) and

in the LV endocardial circumference (11.64 ± 1.58 mm in

WT mice vs. 12.55 ± 1.85 mm in casp3/7DKO mice)

were observed.

After 28 days of reperfusion, the scar area, measured as

the area of fibrosis in the infarcted heart, was similar in

both groups (41.2 ± 6.0 % in WT mice and 44.7 ± 6.6 %

in casp3/7DKO mice, P = ns, Fig. 5) and not statistically

different than those of infarct size obtained after 24 h of

reperfusion. Like in the case of infarct size at 24 h, the

probability of having obtained this results despite a 30 %

reduction in scar in the casp3/7DKO group due to a beta

error was very low (0.044).

Discussion

In this manuscript we have tested the hypothesis that

apoptosis is an important contributor to cell death in car-

diomyocytes after transient ischemia in a way that it had

never been tested before, and the results are clearly against

the validity of that hypothesis. This study demonstrates, by

using a new developed cardiac-specific caspase double
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Fig. 2 Deletion of caspase-3 and caspase-7 does not modify infarct

size. a Images of representative transverse heart section after Evans

blue and triphenyltetrazolium staining. b Quantification of area at risk

and c infarct size, expressed as percentage of area at risk, in WT and

Casp3/7KO hearts submitted to 45 min of ischemia and 24 h of

reperfusion. d Photomicrographs of infarcted myocardial section

stained with Masson’s trichrome showing the presence of contraction

band necrosis. Values are mean ± SEM. n = 6 animals per group
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knockout mice, that the executioner caspases-3 and -7 do

not significantly contribute neither to the acute effects of

myocardial ischemia/reperfusion injury nor to post-infarct

adverse remodeling. These results obtained support the

concept that cell death occurs mainly during the first hours

of reperfusion and by a necrotic mechanism.

Cardiomyocyte cell death is the most detrimental con-

sequence of myocardial reperfusion injury. The fact that

the release of intracellular proteins accurately predicts the

final infarct size [8, 16], and that reperfused infarcts are

mainly composed of areas of contraction band necrosis

corresponding to myocytes showing sarcolemmal rupture

[5, 38], indicates that necrosis is the main form of cell

death during reperfusion. Furthermore, the time course of

markers of necrosis and the fact that most strategies against

reperfusion injury loss their effectiveness when their

administration is delayed only few minutes after restoration

of flow, indicates that most of cell death occurs during the

initial minutes of reperfusion [17].

WT Casp3/7DKO endoG-/-

28.2±2.3% 25.0±2.7% 11.1±2.0% *

Fig. 3 TUNEL-positive DNA damage in cardiomyocytes depends on

endonuclease G as is independent of caspase-3 and caspase-7.

Representative images of TUNEL stained myocardial section at 24 h

of reperfusion and percentage of TUNEL-positive cardiomyocytes

(brown) in WT, Casp3/7KO and endonuclease knockout (endoG-/-)

mice. Values are mean ± SEM. n = 3 animals per group. *P\ 0.05

vs. WT group
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Fig. 4 Caspase-3 and caspase-7 deletions does not alter postinfarct

echocardiographic parameters. Body weight (BW), heart rate (HR)

and echocardiographic data in WT and Casp3/7KO mice before

ischemia (baseline) and at 28 days of reperfusion. FS fractional

shortening, LVEF left ventricular ejection fraction, LVEDD left

ventricular end-diastolic diameter, LVESD left ventricular end-

systolic diameter. Values are mean ± SEM. n = 6 animals per

group. *P\ 0.05 vs. baseline data
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Fig. 5 Deletion of caspase-3 and caspase-7 does not modify postin-

farct scar area. a Representative images showing pricosirius red

staining of transverse cardiac sections. b Bar graphs shows infarct

area quantification in WT and Casp3/7KO hearts submitted to 45 min

of ischemia and 28 days of reperfusion and expressed as scar area per

LV area. Values are mean ± SEM. n = 6 animals per group
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Despite that, since Gottlieb et al. evaluated the occur-

rence of apoptosis in an animal model of transient ischemia

[18], it has been widely accepted that cardiomyocytes

could also die by apoptosis within the first hours of

reperfusion [26, 40], and in lower magnitude as the process

of remodeling progresses [23, 48]. However, the relative

impact of apoptosis to the extent of cardiac damage still

being debated due to the large differences in its magnitude

reported by different investigators. In this regard it has

been described that apoptosis represents the major form of

acute cell death after 2 h of reperfusion after transient

coronary occlusion in rats (86 vs. 14 % of necrosis) [23],

but also that it is of minor importance after global ischemia

and 6 h of reperfusion in isolated canine hearts [14]. This

strong variability has been explained at least in part as

consequence of the different temporal progression of each

form of cell death. Zhao et al. observed that while the

extent of necrotic cell death was maximal at 24 h of

reperfusion, apoptosis progressively developed during late

reperfusion in dogs subjected to transient coronary occlu-

sion [59]. It is also proposed that necrosis occurs in the

ischemic area exposed to the most severe ATP depletion,

while apoptosis is predominantly found in the adjacent

border areas [49], playing an important role in expanding

the infarct border zone during the post-infarct remodeling

process [13].

Contrary to these observations, experimental evidence

suggests that apoptosis is not relevant for post-mitotic

cardiomyocyte cell death. Apoptosis is mainly executed

by caspases-3 and -7, which are highly regulated by the

activation of signaling cascades in response to a diver-

sity of both extrinsic and intrinsic signals [12].

According to this, the contribution of apoptosis to

myocardial infarct size is based in the assumption that

the caspase-dependent signaling is functional in differ-

entiated cardiomyocytes. However, Bahı́ et al. demon-

strated a global reduction of the whole caspase-

dependent pathway expression in cardiomyocytes during

cell differentiation and that these proteins are not up-

regulated after a hypoxic stimulus in isolated car-

diomyocytes [4]. In addition, more recently, Cardona

et al. showed that while required for heart development,

the executioner caspases-3, -6 and -7 are silenced in the

terminally differentiated myocardium [9].

Therefore, in the present study we applied an in vivo

protocol of ischemia/reperfusion to a newly developed

transgenic mouse model with a simultaneous cardiac-

specific deletion of the executioner caspases -3 and -7. The

results herein reported prove that caspase mediated apop-

tosis is not causally involved in the death of cardiomy-

ocytes during the acute phase of reperfusion. In addition,

the lack of effect of caspase depletion on LV dimensions,

scar formation and LV function after 28 days of

reperfusion is also against a significant contribution of

caspases to the process of postinfarct remodeling and heart

failure.

The phenotypic characterization of casp3/7DKO mice

has been recently published by our group [9]. The fact that

the tolerance to ischemia/reperfusion injury, based on the

cardioprotection obtained in response to an ischemic pre-

conditioning protocol, was similar in control and transgenic

mice rule out the possibility that the results obtained were a

mere consequence of phenotype-based differences.

Although our observations are in agreement with the

described down-regulation of the whole caspase signaling

in differentiated cardiomyocytes [4, 9], the present study

does not rule out the possibility of some residual caspase-6

activity in the infarcted or peri-infarct myocardium. In

addition, since caspase-7 deletion was total and cardiac-

specific deletion of caspase-3 using the NKx2.5 promoter

may induce caspase-3 deletion in cardiac cells other than

cardiomyocytes, we cannot completely discard an indirect

effect of apoptosis on cardiomyocyte survival and heart

function as consequence of the presence of caspase activity

in other cardiac cell types [41, 50]. However, the absence

of any difference in infarct size after 24 h of reperfusion

and in the magnitude of adverse post-infarction remodeling

or functional recovery observed in mice with myocardial

deletion of caspases-3 and -7 suggests that the potential

contribution of apoptosis in non-cardiomyocyte cells to the

death of cardiomyocytes is of minor relevance at best in the

context of acute myocardial infarction and subsequent LV

remodeling. Our study does not exclude other regulated

forms of cell death independent of caspases, such as

necroptosis. This process, which is activated by the stim-

ulation of a death receptor and requires the kinase activity

of RIP1, induces cell death with morphological features of

necrosis [40].

There are several reasons that could explain why

apoptosis of cardiomyocytes during reperfusion is so

extensively documented. Almost all studies on apoptotic

death use neonatal cardiomyocytes, which still expressing

caspases or total heart homogenates, that include cell types

other than cardiomyocytes [1, 13, 19, 39, 55, 57]. In this

regard, Zidar et al. described that active caspase-3 staining

in sections of human hearts after myocardial infarction was

overwhelmingly higher in cells other than cardiomyocytes

[60]. In other studies, the experimental models used retain

the ability to proliferate and have a functional caspase

system as it occurs in cardiomyocytes from zebra fish [29],

or cell lines derived from atrial cardiomyocytes obtained

from mouse AT-1 (HL-1) [51].

Furthermore, different groups have documented car-

dioprotection by using caspase inhibitors [20, 40]. How-

ever, the conclusions obtained from these studies are not

conclusive for two main reasons. First, many studies have

Basic Res Cardiol (2016) 111:18 Page 7 of 10 18

123



failed to observe this beneficial effect [27, 37, 42]; second,

it has been suggested that the mechanisms of the reported

protection could be unrelated to apoptosis (i.e. caspase-

dependent cleavage of contractile proteins) [42, 46, 56], or

explained by inhibition of other proteases involved in

necrosis as a consequence of limited drug selectivity [6].

Condorelli et al. described that forced cardiac-specific

expression of caspase-3 in vivo in transgenic mice

increases infarct size [10]. However, this study is com-

pletely compatible with the fact that in non-transgenic mice

infarct size is independent of caspases-3 and -7.

Finally, many studies have inferred that caspase sig-

naling is functional in differentiated cardiomyocytes from

the experimental evidence showing mitochondrial damage

and release of mitochondrial proteins as cytochrome c and

AIF. These two proteins are to cause caspase activation and

the cleavage of DNA rendering 30-OH ends detectable by

TUNEL assay [53]. However, opening of mitochondrial

permeability transition pore (MPTP) during reperfusion

results in mitochondrial membrane depolarization, uncou-

pling of oxidative phosphorylation and cardiomyocyte

death in a caspase-independent manner [3, 47]. In addition,

the detection of TUNEL-positive cardiomyocyte nuclei in a

sample is not a definitive proof of the involvement of

caspases in the DNA fragmentation. Different studies have

shown that TUNEL-positive cardiomyocytes detected in

heart slices, may also be necrotic [41]. Furthermore, MPTP

favors the release of endonuclease-G which is proposed to

be responsible for the caspase-independent cleavage of

DNA in primary cultured cardiomyocytes subjected to

hypoxia [58]. Our data provide further evidence to this

previous study by demonstrating a reduction of TUNEL-

positive cardiomyocytes in reperfused myocardium from

endonuclease G null mice. Therefore, these data indicate

that the presence of TUNEL? nuclei in cardiomyocytes

depends not only on caspase activation.

Conclusions

Our study provides the first evidence obtained in an

in vivo model that argues against a relevant role of cas-

pase-mediated cardiomyocyte cell death occurring in

reperfused myocardium. These findings are in agreement

with previous studies demonstrating the repression of the

caspase signaling in post-mitotic cardiomyocytes, and

may have important therapeutic implications. Our results

show that activation of effector caspases is not a good

target for prevention of lethal myocardial reperfusion

injury and that therapeutic efforts should be aimed to

prevent necrotic cell death occurring early during the

reperfusion period.
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