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Abstract

Successful reproduction is the result of a myriad interactions in which the ovary and the ovarian follicular reserve play a fundamental 
role. At present, women who delay maternity until after 30 years of age have a decreased fertility rate due to various causes, 
including damaged follicles and a reduction in the reserve pool of follicles. Therefore, the period just prior to menopause,  
also known as the subfertile period, is important. The possibility of modulating the follicular pool and the health of follicles during 
this period to improve fertility is worth exploring. We have developed an animal model to study the ovarian ageing process during 
this subfertile period to understand the mechanisms responsible for reproductive senescence. In the rat model, we have shown that 
the sympathetic nervous system participates in regulating the follicular development during ovarian ageing. This article reviews the 
existing evidence on the presence and functional role of sympathetic nerve activity in regulating the follicular development during 
ovarian ageing, with a focus on the subfertile period.
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Introduction

In recent times, women frequently decide to postpone 
motherhood until 30  years of age or later, thus 
representing a sociological change compared with 
the previous century (Fuentes et  al. 2010, Mathews 
& Hamilton 2016). Pregnancy after 30 years of age is 
associated with a higher risk of miscarriage, hypertension 
and diabetes mellitus. It is also associated with an 
increased risk of genetic malformation of the foetus due 
to a greater probability of damaged follicles/oocytes 
(Wu et al. 2005, Schmidt et al. 2012, Waldenstrom et al. 
2015). Therefore, it is important to know the sequence 
of events preceding menopause and the mechanisms 
mediating these events. Several conditions are 
associated with the onset of reproductive senescence in 
the female. However, in the human, one of the crucial 
factors is the loss of the pool of primordial follicles to 
the point of depletion (Gougeon 2003, Wilkosz et  al. 
2014). During the phase named the subfertile period 
(between 37.5 and 51 years of age), an accelerated loss 
of the follicular pool is observed. When the follicular 
pool reaches 1000 follicles, the ovary cannot maintain 
the hormonal feedback with the hypothalamus, and 

menopause is reached (close to 51 years of age) (te Velde 
1998). Due to the constraints in using samples from 
human subjects, animal models are used to perform 
studies in this field. Their relatively short lifespan and 
the accessibility to samples from laboratory rats and 
mice make them a good model to study the mechanisms 
involved in reproductive senescence. Some authors 
hypothesised that in rats, the hypothalamus has a more 
important role than the ovary in achieving reproductive 
senescence (Aschheim 1965, Clemens et al. 1969, Peng 
& Huang 1972, Anderson et  al. 2002, Finch 2014) 
because when rats become infertile, a vast number of 
primordial follicles are still in the ovary. However, it was 
demonstrated that ovarian ageing also contributes to 
anovulation, the condition characteristic of senescence 
in rats (Felicio et  al. 1983). As rodents prove to be a 
very useful model to study follicular development and 
ovarian ageing, it is important to know the similarities 
and differences in reproductive senescence between 
them and humans. This would allow us to correctly 
extrapolate data from both mice and rats to humans. 
In Sprague–Dawley rats, the first signs of reproductive 
senescence occur at approximately 8–10 months of age 
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and correspond both to a decrease in the number of 
developing follicles and to changes in oestrous cyclicity 
(Peng & Huang 1972, Acuna et al. 2009). This reduction 
in fertility continues gradually until 12 months of age. 
We characterised this period from 8 to 12 months old 
as the subfertile period in the rat because there is a 
gradual decrease in the number of developing follicles, 
corpora lutea and fertility (Acuna et  al. 2009). From 
12  months old and onward, almost no corpora lutea 
are observed in the ovaries of rats (Acuna et al. 2009), 
which is indicative of a virtual absence of ovulation. This 
coincides with the fact that no ova shed are found in the 
oviducts during oestrous from 12-months and onward 
(Chavez-Genaro et al. 2007). In fact, the percentage of 
successful pregnancies and the number of pups born 
per rat also decrease in the subfertile period (Fig.  1) 
(Jones & Krohn 1961, Acuna et al. 2009). In addition, 
foetal survival also influences fertility in this period. 
Although foetal survival is 92.5% in young 5-month-old 
rats, it gradually decreases as age increases, being only 
33.8% in 11-month-old inbred rats (Mattheij & Swarts 
1991). In this review article, we analyse the follicular 
dynamics in the ovaries of rats throughout the period 
of reproductive senescence and the role of sympathetic 
innervation in its control, with a particular focus on the 
subfertile period. Finally, we discuss a potential role for 
ovarian kisspeptin as a regulator of follicular dynamics 
during ovarian ageing.

Oestrous cycle of ageing rats and mice

The daily examination of vaginal smears is commonly 
used to estimate the stages of the oestrous cycle in 
rats and mice. The differences in the proportion of 
different types of cells observed in the vaginal lavages 
reflect the changes occurring in the vaginal epithelium 
due to hormonal variation during the oestrous cycle 

(Westwood 2008, Cora et al. 2015). In young cyclic rats 
and mice, the oestrous cycle is 4–5 days in duration and 
comprises 4 stages: proestrus, oestrous, metestrus and 
diestrus. Ovulation occurs in the afternoon of proestrus. 
One of the first changes occurring during ageing is a 
lengthening of the oestrous cycle from 4 to 5 days to 
more than 5 days. This lengthening of the cycle is often 
considered irregular cyclicity and typically occurs by 
8–12 months old, or even earlier, in both mice (Nelson 
et al. 1985, Finch 2014) and rats (Nelson et al. 1985, 
Sone et al. 2007). In addition, along with the changes 
in the cycle length, some animals do not display the 
logical sequence of proestrus–oestrus–metestrus–
diestrus regularly; rather, they stay in the same phase 
for 3–5 days between regular cycles (Marcondes et al. 
2002). After exhibiting irregular cycles, both rats and 
mice become acyclic. A representation of this cycling 
behaviour is schematised in Fig.  2. In both rats and 
mice, the end of normal ovarian cycles varies among 
the cohorts of animals and can be reached between 10 
and 16 months old (Aschheim 1974, Merry & Holehan 
1979, Felicio et  al. 1984). In one study, nearly 75% 
(43/59) of the mouse cohort showed persistent 
epithelial cornification in their vaginal smears after 
ceasing to cycle (Felicio et  al. 1984). This period is 
termed constant oestrous (CE). A CE is characterised by 
more than 15 days of continuous cornification cytology 
in the vaginal smear (Felicio et  al. 1984, Westwood 
2008). The CE in rats results in low and constant levels 
of oestradiol, estrone, testosterone, androstenedione 
and progesterone (with minimal levels of 20-α-OH-
progesterone) compared with younger rats in the classic 
oestrous stage during regular cycles. Additionally, the 
oestradiol/progesterone ratio is increased (Huang et al. 
1978, Lu et  al. 1979, Westwood 2008, Fernandois 
et al. 2012). This low steroidogenesis is due to a low 
follicular development and a near absence of corpora 
lutea, reflecting anovulation (Acuna et  al. 2009). 
The CE stage can be found from 10 months old and 
onward and is commonly followed by a period of 
irregular length, known as pseudopregnancy (PP) (by 
19 months and onward). PP is characterised by vaginal 
leukocyte cytology for more than 10 days, but this can 
be interspersed with 1–2 days of cornified cytology or 
oestrous (Felicio et al. 1984). In the PP stage, both rats 
and mice can have a scarce number of corpora lutea, 
indicating that the animals may ovulate. The presence 
of corpora lutea is accompanied by high levels of 
progesterone and 20-α-OH-progesterone, which leads 
to a decreased oestradiol/progesterone ratio (Lu et al. 
1979, Sone et  al. 2007, Westwood 2008). Finally, 
both rats and mice reach an anoestrous state (AS) by 
22–25 months old (Aschheim 1961, Huang & Meites 
1975, Nelson et al. 1985, Sone et al. 2007). In AS, the 
rats have no cyclic activity and only vaginal leukocyte 
cytology accompanied by low levels of steroid 
hormones due to the lack of follicles (Ingram 1959, 

Figure 1 Representation of fertility indexes between 4 and 12 months 
in rats. The figure shows the average number of pups born per rat and 
the percentage of successful pregnancies occurring between 4 and 
12 months. The information was obtained from Jones & Krohn (1961) 
and Acuna and coworkers (2009). The percentage of successful 
pregnancies was assessed as the number of pregnancies over the 
number of times in which females presented positive for sperm in 
vaginal smears. The number of pups per rat was evaluated as the 
number of living pups born per mother in the first 12 h from delivery.
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Aschheim 1961, Huang & Meites 1975, Finch 2014). 
Not all animals change from irregular cycles to CE 
and then PP (Finch et al. 1984, Finch 2014). Instead, 
they show different sequences of events, including 
going directly from irregular cycling to the anoestrous  
stage. In one study, 25% of the mice went directly to 
the AS stage after the cessation of cyclicity (Felicio 
et al. 1984).

Although our focus in this review is analysing the 
ovarian changes during the subfertile period and their 
relationship with the sympathetic control of the ovary, 
it is important to mention that the hypothalamus plays 
a central role in the onset of reproductive senescence 
in mice and rats. The cessation of cyclical activity is 
related to the exhaustion of the follicular pool, whereas 
the transition from regular to irregular cycles that occurs 
during the subfertile period is critically influenced by 
the hypothalamus (Brann & Mahesh 2005). In relation 
to this, GnRH pulses and hence, LH secretion, are 
attenuated in middle-aged rats (8–12-month-old) (Rubin 
2000). In addition, the central response to the steroid-
induced LH peak in middle-aged rats is also attenuated 
in comparison to young rats (Gee et  al. 1984, Wise 
1984, Rubin 2000, Temel et  al. 2002). Interestingly, 
oestrogens cause epigenetic modifications, switching 
the Kiss1 promoter to an active form, resulting in an 
increase in AVPV-specific Kiss1 gene expression 
(Tomikawa et  al. 2012). Thus, the lower oestradiol 
levels and the low sensitivity to oestradiol may be 
the cause of the reduction in kisspeptin expression 
(Kermath et al. 2014) and, consequently, irregular and 
lower GnRH/LH surges in aged rats. This suggestion is 
supported by the fact that kisspeptin infusion directly 
into the medial preoptic area restores the attenuated LH 
surge in middle-aged rats (Neal-Perry et  al. 2009). In 
addition to the failure in the kisspeptin system, other 
mechanisms could explain the alteration in GnRH/LH 
secretion. For further reading on this topic, we suggest 
the following works: (Brann & Mahesh 2005, Yin & 
Gore 2006, Kermath & Gore 2012).

Follicular development during the subfertile period 
in rats

The ovarian reserve of primordial follicles declines with 
increasing age in different mammals, including the rat 
(Mandl & Shelton 1959, Jones & Krohn 1961, Almeida 
et al. 2012, Atkins et al. 2014). In humans, it has been 
estimated, using mathematical models that the rate of 
follicular loss during life occurs as a biphasic exponential 
rate of decay. This loss of follicles accelerates when the 
subfertile period that precedes menopause is reached 
(Richardson et al. 1987, Faddy et al. 1992, Hale et al. 
2014). However, other authors state that the follicular 
decay is constantly accelerating and that the increase 
in follicular loss during the subfertile period may be 
an experimental issue (Hansen et  al. 2008). In mice, 
it has been proposed that the decline in the number of 
primordial follicles occurs in a constant proportion to 
the existing number of follicles (Jones & Krohn 1961). 
In addition to the loss of primordial follicles, a feature 
of ovarian ageing is the change in the expression profile 
of some key genes between aged and young primordial 
follicles. In summary, some altered genes include Brac1, 
Rad51, Ercc2 H2ax, GRP78, FIGNL1, Calreticulin, 
BOK and Peroxiredoxin 2 and 3 (Govindaraj & Rao 
2015, Govindaraj et al. 2015). Altogether, the change 
in the expression of these factors could explain the 
decrease in DNA repair, protein folding and anti-
apoptotic properties of aged primordial follicles. 
Therefore, the fate of aged primordial follicles could 
be altered in comparison with a primordial follicle in 
a younger animal. Then, the function and development 
of the follicle in subsequent stages could be affected. 
Independent of this, the recruitment of primordial 
follicles into the growing pool of follicles does not 
depend on the cyclic activity of gonadotropins. Instead, 
it appears to be regulated by a coordinated machinery 
of paracrine factors, which exert an inhibitory control of 
primordial follicle activation (Adhikari & Liu 2009). In 
the review by McGee and Hsueh (2000), it is suggested 

Figure 2 Schematic representation of the 
changes occurring in the oestrous cycle in rats 
or mice during reproductive ageing. The figure 
shows the stage of the oestrous cycle in the 
Y-axis; proestrus (P), oestrous (E), metestrus 
and diestrus (M/D). The X-axis indicates the 
time course in days. A normal cycle is 
represented by a 4- or 5-day cycle length with 
the sequence P–E–M–D. The prolonged/
irregular cycles are represented by cycles of 
more than 5 days in length or cycles 
interspaced by several days of acyclicity. The 
acyclic stage is represented by the loss of 
cycles and includes constant oestrous (CE), 
pseudopregnancy (PP) and anoestrous. 
Ovarian and hormonal profiles listed above the 
scheme for each stage were obtained from 
Westwood (2008).

Downloaded from Bioscientifica.com at 08/08/2022 01:35:08PM
via free access



G Cruz and othersR62

Reproduction (2017) 153 R59–R68 www.reproduction-online.org

to denominate ‘initial recruitment’ as the transition of a 
primordial follicle into a primary follicle to differentiate 
this process from the cyclic recruitment of antral follicles 
performed by FSH.

If the distribution of developing follicles is analysed, 
the number of small developing follicles (preantral stage)  
are observed to decrease by more than half by 8 months 
of age, and this number of follicles is maintained 
relatively constantly until 14  months of age (Acuna 
et al. 2009). Meanwhile, the number of antral follicles 
also decreases from 8 months old and onward (Lerner 
et al. 1990, Acuna et al. 2009). However, it has been 
demonstrated that the number of antral follicles 
>400 µm and preovulatory follicles remains unchanged 
(Jones & Krohn 1961, Lerner et  al. 1990, Fernandois 
et  al. 2016). This increase in the proportion of larger-
sized follicles indicates that ovaries of aged rats within 
the subfertile period utilise primordial follicles more 
efficiently. They have low initial recruitment and low 
growth of small follicles but have a proportionally higher 
number of follicles reaching the preovulatory stage at 
the proestrus phase (Jones & Krohn 1961, Peluso et al. 
1979). However, this higher proportion of preovulatory 
follicles is not proportionally reflected in more ovulation 
as the number of corpora lutea decreases with age and 
is virtually absent from 12 months of age, despite antral 
follicles continuing to grow (Chavez-Genaro et al. 2007, 
Acuna et al. 2009), indicating that preovulatory follicles 
take a pathway alternative to ovulation. This alternative 
pathway could be the formation of precystic and cystic 
structures (as discussed below). However, together with 
the decrease in healthy preantral and antral follicles, a 
decrease in the atretic follicle count in ageing rats from 
12  months old has been characterised (Peluso et  al. 
1979, Acuna et  al. 2009). In addition, Nishijima and 
coworkers (2013) showed that atretic follicles begin to 
increase from 18 months old and onward in rats. As the 
decrease in healthy follicles in the subfertile period is 
not explained by the process of atresia, an alternative 
explanation is required. A lower recruitment of follicles 
and the deviation of follicles to abnormal structures 
should explain this low follicular development. The 
presence of luteinized follicles has been observed 
in ageing rats, structures that are abnormal in young 
rats (Acuna et  al. 2009). Luteinized follicles are 
characterised by the presence of luteinized granulosa 
cells (they contain a big cytoplasm similar to luteal 
cells), and an antral cavity (although there is no oocyte) 
(Smirnova 1964, Moon et  al. 1993). These alternative 
structures, which appear in the ovary of rats during the 
subfertile period, may produce hormones and paracrine 
factors, which potentially affect the development of 
other follicles.

The lower number of developing follicles is 
probably responsible for the low serum levels of steroid 
hormones observed in middle-aged rats, particularly 
oestradiol (Lu et  al. 1979, Anzalone et  al. 2001,  

Acuna et al. 2009, Fernandois et al. 2012). This could 
account for the prolonged or irregular cycles observed 
during the subfertile period as low numbers of antral 
follicles lead to an extended follicular phase in which 
the levels of oestradiol sufficient to induce LH secretion 
are reached later or not at all. This may manifest in 
additional days in the diestrus or oestrous stage in the 
vaginal smear.

Ovulation and spontaneous follicular cyst  
formation during the subfertile period in rats

It is well known that in the rat, ovulatory capacity and 
fertility are decreased from 8 to 10  months old and 
onward (Jones & Krohn 1961, Mattheij & Swarts 1991, 
Niggeschulze & Kast 1994, Chavez-Genaro et al. 2007, 
Acuna et al. 2009). This can be evaluated by counting 
the number of corpora lutea present in the ovary, the 
number of ovulated oocytes and the number of pups 
born per litter at different ages. This period has been 
characterised by a dramatic decrease in the number of 
corpora lutea with increasing age from 10 to 12 months 
old (Acuna et  al. 2009), even though the number of 
preovulatory follicles is maintained (Peluso et al. 1979). 
We demonstrated that 12-month-old Sprague–Dawley 
rats have a very low number of corpora lutea, along 
with an increase in type III follicles and follicular cysts 
(Acuna et al. 2009). Type III follicles are structures with 
very similar morphology to preovulatory follicles but 
can be found in the oestrous stage, indicating that these 
follicles did not ovulate after the LH preovulatory peak. 
Type III follicles were first described by Brawer and 
coworkers in the rat model of polycystic ovary syndrome 
induced by oestradiol valerate. Histologically, they are 
formed by approximately 5 layers of granulosa cells, an 
invagination of the theca layer, loss or discontinuation 
of the basal membrane and usually a size bigger than 
750 µm in diameter. Regarding the oocyte nucleus, an 
apparently healthy germinal vesicle can be observed 
(Brawer et al. 1989, Lara et al. 2000, Fernandois et al. 
2012). These types of follicles lose their oocytes and 
change into follicular cysts, which do not contain 
oocytes and have only one layer of granulosa cells. 
Although both type III follicles and follicular cysts are 
almost absent in young control rats, they are typically 
observed in rat models of polycystic ovary syndrome 
induced by oestrogens and in aged rats (Brawer et  al. 
1989, Acuna et al. 2009, Fernandois et al. 2012, 2016). 
Comparing the rat model of oestradiol valerate-induced 
polycystic ovaries with ageing rats could give us insights 
into the mechanisms that control ovulation and cystic 
structure generation during ageing. It is possible that 
preovulatory follicles are deviating from ovulation into 
the formation of cysts (Convery et al. 1990, Lara et al. 
2000, Fernandois et al. 2012). In the model of polycystic 
ovaries induced by oestradiol exposure, there is an 
increase in the content and release of norepinephrine 
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(NE) in the ovary (see below). This led us to investigate 
the role of sympathetic activity in ovarian ageing.

Sympathetic innervation and ovarian ageing

The sympathetic innervation of the ovary has been 
described using different techniques in humans, monkeys 
and rodents (mice and rats) (Stefenson et  al. 1981, 
Burden et al. 1983, 1985, Gerendai et al. 1995, 1998, 
2002). Using histofluorescence, nerve fibres, mainly 
noradrenergic, were shown to be present in the ovary 
(Burden et al. 1983, 1985). These were associated with not 
only the vasculature but also the ovarian follicles, which 
were densely marked around the thecal zone (Stefenson 
et al. 1981). The mapping of the nerve projection from 
the sympathetic pathway was studied in rats with 
retrograde viral tracers by Gerendai and coworkers. In 
these experiments, a hypothalamic–spinal medulla–
ganglion–ovary pathway was elucidated (Gerendai et al. 
1995, 1998, 2002). In rats, the sympathetic nerve fibres 
projecting to the ovary come from the coeliac ganglion 
via two different routes: the nerve plexus of the ovary, 
whose nerve fibres project mainly to the ovarian blood 
vessels, and the superior ovarian nerve (SON), whose 
fibres project into the follicles (Baljet & Drukker 1979, 
Lawrence & Burden 1980). It was demonstrated that 
cholinergic ganglionic stimulation during oestrous 
increases the NE in the ovarian compartment compared 
to that in control (Hanada et  al. 2011, Daneri et  al. 
2013). Hanada and coworkers (2011) have shown that 
the nerve fibres associated with blood vessels regulating 
ovarian blood flow are mainly unmyelinated C fibres, 
which are maintained in number, size, conduction 
ability and vasoconstrictor response in aged PP rats 
compared to that in young rats. This means that the 
sympathetic adrenergic vasoconstrictor response in the 
ovary is well preserved in rats aged 28–31 months old. 
In addition to regulating ovarian blood flow, extrinsic 
ovarian innervation directly regulates steroidogenesis 
(Aguado & Ojeda 1984) and follicular development 
(Lara et al. 1993, Moran et al. 2000, Rosa et al. 2003, 
Doganay et  al. 2010, Zhang et  al. 2010). Both α and 
β adrenergic receptors are expressed in the ovarian 
follicles (Aguado et  al. 1982, Barria et  al. 1993, Itoh 
& Ishizuka 2005, Fernandois et  al. 2012), and direct 
effects of NE on follicles could be produced by α1 
and β2 adrenergic receptor stimulation (Laszlovszky & 
Erdo 1983, Itoh & Ishizuka 2005). Interestingly, both 
sympathetic activity and the density of β receptors in 
the ovary change with the oestrous cycle in the rat 
(Lara et  al. 2002). Regarding follicular development, 
the surgical section of the ovarian superior nerve (SON) 
in pigs increases the number of small follicles (<3 mm) 
and decreases the number of large follicles (>7 mm). 
This change in the follicular population is associated 
with a decrease in the content of steroid hormones in 

the follicular fluid (Jana et al. 2007). A similar effect is 
found in rats, where a bilateral denervation of the SON 
decreases the serum level of oestradiol, progesterone 
and the number of developing follicles. In addition, 
when a unilateral denervation of the SON was assessed, 
a decrease in the number of follicles was observed in 
the denervated ovary and a compensation (observed as 
an increase in the number of follicles) was observed in 
the innervated ovary (Moran et al. 2000). In addition, it 
has been demonstrated that the sympathetic innervation 
of follicles influences follicular maturation/growth 
(Mayerhofer et al. 1997, Paredes et al. 2011), steroidal 
secretion (Hernandez et  al. 1988, Barria et  al. 1993) 
and ovulation (Kannisto et al. 1985). In fact, an increase 
in ovarian sympathetic activity is observed in rats with 
an oestradiol-induced polycystic ovary condition. In 
these rats, alterations in follicular growth and ovulation 
are observed (Lara et  al. 1993, 2000, Rosa et  al. 
2003). As reviewed by Lansdown and Rees (2012), 
polycystic ovary syndrome (PCOS) is associated with 
an increased noradrenergic tone directly in the ovary. 
Some PCOS women also display a generalised increase 
in sympathetic tone activity, which offers a possibility 
for intervention by lowering the sympathetic outflow 
using strategies such as drugs, surgery or acupuncture 
(Lansdown & Rees 2012).

The role of sympathetic innervation in ovarian 
ageing has been studied by different groups, including 
us. An early study demonstrated that old Wistar 
rats (24  months old) have a decrease in the ovarian 
concentration of NE compared to young (3  months 
old) rats (Ferrante et  al. 1990). It is possible that the 
very low number of follicles present in the ovaries of 
rats at this age is not enough to maintain an adequate 
production of neurotrophic factors, principally nerve 
growth factor (NGF), which is known to participate in 
the maintenance of noradrenergic fibres (Lara et  al. 
1990b). More recent studies have been focused on the 
transition of young cycling rats through the subfertile 
period. In these rats, we and others demonstrated 
an increase in the ovarian concentration of NE with 
increasing age, without changes in plasma NE levels 
(Lerner et al. 1990, Chavez-Genaro et al. 2007, Acuna 
et  al. 2009). This increase in the content of NE is 
accompanied by an increase in the release of NE into 
the ovary in rats 12 and 14 months old compared to 
that in 6-month-old rats, demonstrating an increased 
adrenergic tone with increasing age (Acuna et  al. 
2009). Additionally, we measured a decreasing 
ovarian density of β adrenergic receptors with age, 
along with an inverse increase in adrenergic tone, in 
rats (Fig.  3). Interestingly, in humans, an increase in 
nerve fibres in the ovary related to ageing has also 
been demonstrated (Heider et al. 2001). More recent 
studies have confirmed that post-menopausal women 
have higher nerve activity, baseline plasma NE levels 
and reduced β-adrenergic receptor responsiveness 
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compared to premenopausal women (Sherwood et al. 
2010, Hogarth et al. 2011).

As the adrenergic tone of the ovary is increased during 
the subfertile period, we believe that NE contributes to 
the changes in follicular development observed in the 
ovary during the transition through 8–12 months old until 
the infertile period. As discussed previously, there is also 
an increase in the adrenergic tone of the ovary in the 
model that uses oestradiol valerate administration (Lara 
et al. 1993). In this model, it is possible to observe the 
same changes in follicular dynamics that are seen in the 
ovaries of ageing rats (Lara et al. 2002, Acuna et al. 2009, 
Cruz et al. 2012). Within these changes, we observe a 
decrease in preantral and antral follicles, a decrease (or 
absence) of corpora lutea and the appearance of type III 
and cystic follicles. In this model of polycystic ovary, the 
denervation of the ovary by sectioning the SON leads 
to a partial recovery of follicular development (Rosa 
et  al. 2003). As around the 8–10-month-old stage the 
ovary still has enough primordial follicles capable of 
developing into preovulatory ones, we believe that the 
development of abnormal structures (i.e., type III follicles 
and cysts) is due to a deviation of antral or preovulatory 
follicles under the influence of increased noradrenergic 
tone. Using this hypothesis, we tried to reverse the 
polycystic condition associated with low follicular 
development and low plasma steroidal hormones by 
administering the β adrenergic blocker propranolol and 
hence, increase fertility within the subfertile period. We 
found that daily administration of propranolol (5 mg/
kg of body weight) for 2 months in 8- and 10-month-
old rats increases the number of healthy antral follicles 
and increases the number of corpora lutea in the ovary. 
Along with this improvement in follicular development 
and ovulation, propranolol decreased the number of 
follicular cysts. These changes in follicular development 
were functionally associated with an increase in serum 

progesterone, androgens and oestradiol. Additionally, 
the β adrenergic blocker improved the pattern of the 
oestrous cycle by increasing the number of 4–5-day 
cycles during the treatment (Fernandois et  al. 2012). 
However, denervation with guanethidine for 7  days 
increased the proportion of healthy antral follicles, 
but not ovulation (number of ova shed) in 12- and 
18-month-old rats (Chavez-Genaro et al. 2007). In this 
study, guanethidine was administered, and the rats 
were immediately killed. However, 7  days (less than 
2 oestrous cycles) was not enough time to permit the 
healthy antral follicles to reach the ovulation stage. This 
explains the differences in the results with those of the 
previously described study.

In young rats, β-adrenergic stimulation of the ovary 
increases follicular development (Mayerhofer et  al. 
1997), whereas pharmacological denervation delays the 
development of follicles (Lara et al. 1990a). This effect 
of adrenergic stimulation on follicular development is, 
in part, produced by NE stimulation on FSHR expression 
(Mayerhofer et  al. 1997). If this also occurs in ageing 
rats, which are under a hyperadrenergic tone, we would 
expect an increase in follicular development. However, 
this does not seem to be the case if we consider the net 
number of growing follicles in rats during the subfertile 
period. Recently, we found that sympathetic nerves 
regulate the paracrine factor kisspeptin (KP) in the 
ovary and that KP modulates the effects of sympathetic 
nerves on ovarian function, which could explain why 
the increase in the sympathetic tone is not reflected in 
higher follicular growth (Fernandois et al. 2016).

Role of ovarian kisspeptin in ovarian ageing and its 
relation to sympathetic innervation of the ovary

The kisspeptins are a family of peptides resulting from 
differential proteolytic processing of a single precursor 
(Pinilla et al. 2012). In humans, four biologically active 
peptides have been described, whereas in rats, only  
two peptides have been detected (UniProt 2015). All these 
peptides share the last 10 amino acids of the C-terminal 
region, the region responsible for binding to the Kisspeptin 
receptor (KISS1R or GPR54) (Kotani et  al. 2001, Muir 
et  al. 2001, Messager et  al. 2005). Hypothalamic KP 
is considered a master regulator of the gonadotropic 
axis and is critical for the onset of puberty in mammals 
(Pinilla et al. 2012). Knockout (KO) mice of the kisspeptin 
receptor (GPR54−/−) (Colledge 2009) and the novel Kiss1 
KO rats (Uenoyama et al. 2015) do not reach puberty 
and are infertile due to the absence of gonadotropin 
secretion. KP and its receptor KISS1R are expressed in 
the ovary of different species including humans, rats 
and mice, and their expression and immunolocalisation 
are in theca cells (TCs) (Castellano et al. 2006, Gaytan 
et al. 2009, Zhou et al. 2014) and granulosa cells (GCs) 
(Ricu et  al. 2012, Laoharatchatathanin et  al. 2015).  

Figure 3 Concentration of ovarian β-adrenergic receptors and NE 
release according to age. Data of β-adrenergic receptors are 
unpublished work, and data of ovarian NE release were obtained 
from Acuna and coworkers (2009). The ovarian β-adrenergic receptor 
content was determined by a radio-ligand binding technique and is 
expressed as fmol dihydroalprenolol bound/mg of membrane protein. 
Ovarian NE release was determined as the percentage of 3H-NE 
released after 1 min of electric stimulation from the total of 3H-NE 
previously incorporated into ovaries (NE dpm ×1000/ovary). The data 
are plotted as the mean ± s.e.m.
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In addition, KP mRNA levels have been demonstrated 
to change throughout the oestrous cycle in the rat ovary, 
being at their highest during proestrus (Castellano et al. 
2006, Laoharatchatathanin et al. 2015).

We recently found that intraovarian KP increases 
as age increases during the subfertile period in the rat 
(Fernandois et  al. 2016). Along the same lines, a very 
recent study confirmed our results demonstrating that 
ovarian mRNA levels of Kiss1 and its receptor Kiss1R 
increase in aged mice compared to that in younger 
mice. Although the authors failed to measure ovarian 
kisspeptin mRNA in women GCs, they found that 
ovarian Kiss1R mRNA levels increase according to 
age (Merhi et al. 2016). Interestingly, ovarian KP has a 
positive correlation with ovarian NE release during the 
subfertile period in the rat (Fernandois et al. 2016). This 
is in agreement with a previous study from our group 
demonstrating that KP expression of the ovary increases 
after β adrenergic stimulation in vitro (Ricu et al. 2012). 
Considering that chronic administration of propranolol 
improves the development of ovarian follicles (Fernandois 
et al. 2012) and that ovarian KP is under the control of 
sympathetic innervation, we thought that KP could be 
decreasing the follicular development during ageing. 
To test this hypothesis, we designed experiments using  
in vivo stimulation with KP or its antagonist P234 directly 
in the ovary in rats during 28 days within the subfertile 
period. The results showed that KP administration 
decreases the number of antral follicles, whereas P234 
increases it (Fernandois et al. 2016). Moreover, both the 
sympathetic denervation of the ovary and propranolol 
administration decreases KP in the ovary and accelerates 
follicular development (D Fernandois, G Cruz, EK Na, 
HE Lara and AH Paredes 2016, manuscript accepted). 
Consistent with these findings, in vitro experiments 
demonstrated that KP prevents the induction of FSHR 
expression by the β adrenergic agonist isoproterenol 
(Fernandois et al. 2016). Therefore, it is understandable 
that Kiss1R haplo-insufficient mice (Kiss1r+/−) present 
an early loss of oocytes, primordial follicles and antral 
follicles by 8  months old, showing that these mice 
present a premature ovarian failure despite maintaining 
circulating gonadotropin levels (Gaytan et  al. 2014). 
Likewise, Kiss1R KO mice with reinsertion of the Kiss1R 
gene in GnRH neurons show premature ovarian ageing, 
even when there is a normally functioning hypothalamic 
kisspeptin system (Leon et al. 2016). This could mean that 
the lack of inhibitory action of KP on FSHR expression 
induced by the sympathetic system leads to an enhanced 
loss of follicles through life and could cause premature 
ovarian senescence. This hypothesis, however, must be 
confirmed.

Conclusion

In the present review, we show evidence attributing a 
role to sympathetic innervation on follicular dynamics 

during the subfertile period in the rat. The mechanisms 
underlying this sympathetic control are complex and 
still should be fully elucidated. In particular, it would be 
interesting to observe which follicular structure present 
in the ovaries of senescent rats expresses adrenergic 
receptors and responds to NE modulation of KP secretion. 
The capacity of a β blocker and a KP antagonist to increase 
follicular growth during the subfertile period in rats offers 
a new possibility to pharmacologically intervene in the 
pool of developing follicles during ageing, with the aim 
of improving fertility and its outcome.
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