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Lineage divergence, local 
adaptation across a biogeographic 
break, and artificial transport, 
shape the genetic structure in the 
ascidian Pyura chilensis
Nicolás I. Segovia1,2,3, Cristian Gallardo-Escárate2, Elie Poulin3 & Pilar A. Haye1,2

Marine benthic organisms inhabit a heterogeneous environment in which connectivity between 
populations occurs mainly through dispersive larval stages, while local selective pressures acting on 
early life history stages lead to non-random mortality, shaping adaptive genetic structure. In order 
to test the influence of local adaptation and neutral processes in a marine benthic species with low 
dispersal, in this study we used Genotyping by Sequencing technology to compare the neutral and 
putatively selected signals (neutral and outlier loci, respectively) in SNPs scattered throughout the 
genome in six local populations of the commercially exploited ascidian Pyura chilensis along the 
southeast Pacific coast (24°–42°S). This species is sessile as an adult, has a short-lived larval stage, and 
may also be dispersed by artificial transport as biofouling. We found that the main signal in neutral loci 
was a highly divergent lineage present at 39°S, and a subjacent signal that indicated a separation at 
30°S (north/south), widely reported in the area. North/south separation was the main signal in outlier 
loci, and the linage divergence at 39°S was subjacent. We conclude that the geographic structure of the 
genetic diversity of outlier and neutral loci was established by different strengths of environmental, 
historical and anthropogenic factors.

Marine benthic species that inhabit patchy and heterogeneous substrates such as rock beds or sandy beaches 
are likely to be structured as metapopulations1,2. These species usually have dispersive larval stages that can act 
as propagules for connectivity between local populations. However, the amount of connectivity between their 
populations does not depend only on the presence and duration of dispersive larval stages3,4. Local adaptive pres-
sures may differ drastically between local populations and may act as a settlement and survival sieve for early life 
stages of benthic marine organisms arriving to a local population5. Local adaptation can lead to strong differences 
between larval dispersal potential and realized dispersal5–7, by reducing recruitment and establishment of foreign 
individuals5,8,9 or by reducing the fitness of juveniles that establish and persist in the receiving population10.

The consequences of local adaptation in marine benthic species have been assessed with experimental meth-
ods such as reciprocal transplants and common garden experiments. These studies have shown there is differ-
ential survival between organisms of different origins in different environmental conditions5,11, and that there is 
non-random, genotype-dependent, selective mortality of recruits and post-colonization mortality3,12 that lead to 
high genetic differentiation among adult populations. In spite of the well-recognized effects of local adaptation 
on the geographic distribution of the genetic diversity of marine populations, there are few examples of phyloge-
ographic studies that compare the spatial genetic signatures of natural selection and neutral evolutionary forces 
at a broad scale, allowing the evaluation of gene flow, genetic drift, natural selection and other mechanisms that 
may determine the geographic distribution of the genetic diversity of a species.
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One experimental approach to analyze neutral and putatively adaptive signals is the use of genome scans 
to detect thousands of Single Nucleotide Polymorphism (SNP) loci scattered throughout the genome, some of 
which can be identified as having signals of natural selection by analyzing several individuals from different envi-
ronments13. Spatial analyses of loci putatively affected by natural selection (i.e. outlier loci) provide insights into 
how adaptive variation could affect phylogeographic structure14,15 in contrast to the signal of loci that are neutral 
to natural selection. Studies focused on the assessment of phylogeographic signals of outlier and neutral loci in 
marine systems have been mostly developed for marine mammals and fishes16–18. These studies have generally 
shown that outlier loci possess a stronger signal of the genetic structure, as is expected by definition19,20. However, 
the main signal is mostly congruent between outlier and neutral loci. This kind of study in marine invertebrates 
is scarce; only recently a few studies have compared the phylogeographic signal of neutral and outlier loci using 
genome-wide procedures and have reported a mostly consistent structure between neutral and outlier loci in 
mussels19,21 and oysters22,23.

In this study we analyze neutral and adaptive spatial genetic structure of the benthic ascidian Pyura chilensis 
Molina 1972 along the Humboldt Current System (HCS) located in the southeast Pacific Ocean. The HCS is char-
acterized by high productivity and regions with strong upwelling24. The wide geographic extent of the southeast 
Pacific coast and the cyclic variations of the HCS promote both temporal and spatial changes in population sizes 
and distributions of marine benthic species24. Despite being an almost linear coastline with apparent absence of 
geographic barriers between 18°S and 42°S, within the HCS coastal area there is a well-described marine bioge-
ographic boundary located at 30–32°S. This biogeographic break is the limit of the distribution range of several 
marine species24, and phylogeographic studies of benthic marine taxa have shown that species with low dispersal 
capability have strong genetic discontinuity across the 30°S biogeographic boundary25,26. Life history attributes 
of marine benthic species and the oceanographic conditions seem to be the main factors that contribute to the 
geographic structure of the genetic diversity and differentiation in this geographic area24,26.

Pyura chilensis is a conspicuous inhabitant of the HCS widely distributed in the intertidal and shallow sub-tidal 
from 10°S to 44°S in the southeast Pacific coast27, and has been intensively exploited for human consumption28. 
Settlement occurs mainly on rough substrates and on the tunic of conspecifics29; it lives either as solitary individ-
uals or as massive clumps of individuals (Supplementary Fig. S1). The species is hermaphroditic, with outcross-
ing as the main reproductive strategy28. Pyura chilensis has short-lived (12–24 hr) lecithotrophic tadpole-shaped 
larvae that provides a very low capacity to disperse between geographic areas along the HCS. In contrast to 
what has been reported for other sympatric benthic species of the HCS with low larval dispersal capacity26,  
P. chilensis did not show a genetic discontinuity at 30°S when analyzed with sequences of the mitochondrial 
gene Cytochrome Oxidase I (COI) and the nuclear gene Elongation Factor 1 alpha30. The lack of a genetic dis-
continuity at 30°S in the coast of Chile was novel for a benthic invertebrate with short-lived larvae. In fact, some 
species with planktonic larval durations of more than 2 days display significant genetic divergence across the 30°S 
biogeographic boundary26. By uncovering abundant neutral and adaptive genetic variation in P. chilensis it may 
be possible to detect variation at 30°S, as would be expected in a benthic species with a low dispersal potential.

An alternative means of dispersal for ascidians such as P. chilensis is transport in artificial structures such as 
ship and boat hulls, where the species can grow attached31–33. Although this has not been specifically assessed for 
P. chilensis, the species has often been seen on the hulls of boats of artisanal fisheries, on buoys, ropes and on any 
other marine facility that provides substratum as an important part of the fouling community34–35. This has been 
hypothesized as one of the mechanisms behind the low degree of genetic differentiation of the COI gene along 
a broad geographic area and across the 30°S biogeographic break30; similarly, anthropogenic transport has often 
been suggested as a main dispersal and invasion mechanism for other ascidians30–33.

Another relevant aspect about P. chilensis is the genetic structure of the species based on COI sequences. 
The COI phylogeographic structure of the species was characterized by three mitochondrial haplogroups, two 
of which were sympatric and widespread, and a third that was highly divergent from the other two and geo-
graphically restricted, predominantly found between 39°S and 42°S, being most abundant at 39°S in Los Molinos 
(LM)30. Based on COI sequences, LM was the most differentiated population because it harbored a high propor-
tion of individuals of a unique and divergent haplogroup. Here we evaluate the divergence of the LM population 
of P. chilensis using neutral and putatively adaptive SNP loci, and explore if natural selection follows the same 
signal as neutral sequence divergence, i.e. if LM is also highly differentiated with putatively adaptive loci. Even 
though physical transport of a few individuals per generation between local populations should be enough to 
maintain genetic homogeneity in the whole genome at both individual and population levels3,36, non-neutral 
genetic variation affects fitness, influencing recruitment and survival of individuals in the variable marine envi-
ronment. Thus, lack of spatial genetic differentiation at neutral or nearly neutral loci does not imply that outlier 
loci will provide the same signal36.

Here we evaluate the spatial genetic structure of neutral and outlier SNP loci in six populations of P. chilensis 
covering from 24°S to 42°S, and across the 30°S biogeographic discontinuity in the southeast Pacific. We aim to 
assess the influence of contrasting evolutionary forces, including natural selection (local adaptation), isolation 
and drift (lineage divergence at 39°S), and gene flow (artificial transport), on the spatial genetic structure of the 
benthic ascidian P. chilensis in the HCS.

Results
SNP discovery and outlier detection. Extracted DNA was of high quality, with average 260/280 and 
260/230 ratios of 1.96 ±  0.01 and 2.15 ±  0.03, respectively. Genotyping by Sequencing (GBS) of 90 individuals of 
P. chilensis (15 of each of six local populations; Table 1) gave a total of 202,494,184 reads. Of these, 169,855,853 
produced good quality barcode reads. The FastQC results showed a mean per-base quality score (Phred score) 
of 36 and a mean quality score of 33.12. After applying the trimming and demultiplexing approach, 163,692 tags 
were produced with a mean of 4.38 reads per individual. The UNEAK pipeline detected a total of 81,837 SNP. 
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After filtering with a minor allele frequency (MAF) of 4.4% and a minimum call rate (mnC) of 90%, the resulting 
dataset consisted of 2,332 SNPs.

Using BAYESCAN with a False Discovery Rate (FDR) correction of q-values of 0.05, 81 of the 2,332 
loci uncovered showed FST values greater than expected under a neutral distribution (q-values <  0.05) 
(Supplementary Fig. S2). These 81 loci were analyzed separately; thus, there were two datasets, one with the 81 
outlier SNP loci and one with 2,251 neutral SNP loci.

Population genetic diversity and population structure analyses. Mean expected and observed hete-
rozygosity (HE and HO, respectively) were mostly similar between neutral and outlier loci. HE mean values ranged 
from 0.290 to 0.294 and 0.250 to 0.358 for neutral and outlier loci, respectively. Mean HO values ranged from 
0.169 to 0.304 and 0.143 to 0.345 for neutral and outlier loci, respectively (Table 2). The mean allelic richness (Ar) 
within population ranged from 1.560 to 1.662 for neutral loci and 1.511 to 1.626 for outlier loci. Northern popu-
lations generally showed lower values of Ar in neutral loci and similar values between all sampled populations in 
outlier loci; LH and LM were the sites with the lowest values. The exact test for HWE deviations showed that after 
FDR correction, only the LM site showed significant deviation (Table 2).

Most of the population-pairwise FST values for both neutral and outlier loci were significant, with the excep-
tion of PA and CP in neutral loci (Table 3), indicating that P. chilensis harbors neutral and adaptive population 
differentiation. FST values ranged between 0.003–0.417 and 0.027–0.692 for neutral and outlier loci, respectively 
(Table 3). For neutral loci FST values were generally low (0.003 to 0.049) with the exception of Los Molinos (LM) 
that was highly differentiated with values ranging between 0.393 and 0.417, which are an order of magnitude 
greater than all the rest of the values. In contrast, all FST values calculated with outlier loci were, as expected, 

Location Coordinates Code N

Pan de Azúcar 26°08′ S; 70°39′ W PA 15

Caleta Pajonales 27°44′ S; 71°02′ W CP 15

La Herradura 29°58′ S; 71°21′ W LH 15

Talcahuano 36°38′ S; 71°21′ W TH 15

Los Molinos 39°50′ S; 73°23′ W LM 15

Ancud 41°52′ S; 73°50′ W AC 15

Table 1.  Sampled local populations of Pyura chilensis. Sampling localities, coordinates, code, number of 
successfully analyzed individuals for genome scans for Pyura chilensis in the Southeast Pacific coast.

Site

Proportion of 
polymorphic loci Ar HO HE HWE (Outlier)

Neutral Outlier Neutral Outlier Neutral Outlier Neutral Outlier χ2 df P-value

PA 0.2 0.23 1.560 ±  0.43 1.639 ±  0.46 0.271 ±  0.21 0.306 ±  0.20 0.294 ±  0.16 0.338 ±  0.17 89.8 96 0.66

CP 0.59 0.59 1.579 ±  0.42 1.619 ±  0.46 0.304 ±  0.23 0.318 ±  0.20 0.295 ±  0.16 0.358 ±  0.16 118.17 90 0.02

LH 0.48 0.65 1.581 ±  0.42 1.511 ±  0.47 0.305 ±  0.23 0.319 ±  0.26 0.291 ±  0.16 0.299 ±  0.18 89.46 74 0.11

TH 0.37 0.4 1.605 ±  0.40 1.666 ±  0.45 0.285 ±  0.22 0.334 ±  0.19 0.290 ±  0.16 0.336 ±  0.15 69.14 102 0.99

LM 0.46 0.44 1.662 ±  0.39 1.554 ±  0.46 0.169 ±  0.18 0.143 ±  0.15 0.288 ±  0.15 0.250 ±  0.14 197.41 76 <0.001

AC 0.57 0.61 1.604 ±  0.41 1.626 ±  0.46 0.298 ±  0.23 0.345 ±  0.21 0.289 ±  0.16 0.340 ±  0.17 57.08 92 0.998

Table 2.  Population genetic statistics. Proportion of polymorphic loci and allelic richness (Ar) for neutral/
outlier loci, observed (HO) and expected (HE) heterozygosity and deviations of Hardy-Weinberg Equilibrium 
(HWE) for outlier loci of Pyura chilensis in the Southeast Pacific coast. In bold, significant deviation of HWE 
after correction with a False Discovery Rate.

PA CP LH TH LM AC

PA 0.003 0.012 0.038 0.414 0.045

CP 0.027 0.015 0.038 0.417 0.047

LH 0.183 0.093 0.045 0.413 0.049

TH 0.524 0.548 0.643 0.399 0.011

LM 0.587 0.609 0.692 0.457 0.393

AC 0.564 0.585 0.672 0.142 0.376

Table 3.  Population-pairwise FST values for neutral and outlier SNP loci in Pyura chilensis. Genetic 
differentiation measures of pairwise comparisons calculated using 2251 neutral SNP loci (above the diagonal) 
and 81 outlier SNP loci (below the diagonal) in Pyura chilensis. Significant values after 10,000 permutations 
(P <  0.05) are in bold.
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relatively high; remarkably, in neutral loci LM did not show higher levels of differentiation than the other pop-
ulation pairwise comparisons. In the outlier loci population-pairwise differentiation matrix, the values between 
pairs from the northern (PA, 26°08′ S; CP, 27°44′ S; LH, 29°58′ S) versus southern (TH, 36°38′ S; LM, 39°50′ S; AC, 
41°52′ S), i.e. north/south of 30°S, showed the highest differentiation values (Table 3).

Using AMOVA analysis the separation of populations north and south of 30°S explained 2.91% and 48.73% 
of the variation for neutral and outlier loci, being significant only for outlier loci. The analysis of the separation 
of LM from the rest of the populations explained 39.5% and 8.74% of the genetic variation for neutral and outlier 
loci, respectively, and was only significant only for neutral loci (Table 4).

Mantel tests did not detect a significant relationship between the linearized genetic distance and geographic 
distance for either neutral or outlier markers, with nearly significant p-values (r =  0.034, P =  0.089 and r =  0.75, 
P =  0.068, respectively) (Fig. 1a,b). Excluding LM from the analysis of neutral loci indicated a marginally signif-
icant relationship between genetic and geographic distance (r =  0.85, P =  0.048) (Fig. 1c). In the case of outlier 
loci, this led to virtually the same result as when LM was included in the analysis (r =  0.81, P = 0.064) (Fig. 1d).

In order to detect spatial population genetic structure we used the GENELAND software, which revealed the 
presence of three groups in the neutral loci dataset. One corresponded to the three northern localities PA, CP and 
LH; the second included TH and AC and the third was LM (Fig. 2a). Five groups were detected using outlier loci; 
one group contained PA and CP, and each other local population was assigned to a single genetic group (Fig. 2b).

Cluster analyses confirmed the disparate signals of neutral and outlier loci. In the clustering approach of the 
neutral loci analysis using DAPC (considering the sampling site as a prior), the first principal component axis 
(vertical) separated LM from all the rest of the populations (Fig. 3a). The second axis (horizontal) separated the 
north/south of 30°S, with an overlap in the three populations of the north (PA, CP, LH) and an overlap of TH and 
AC in the south (LM did not show overlap) (Fig. 3a). Thus, the main signal derived from the DAPC analysis of 
neutral loci was the separation of LM from the rest of the populations and there was a weaker signal associated 
with the 30°S biogeographic boundary. In outlier loci, north/south of 30°S were well separated in the horizontal 
axis, with an overlap of PA and CP in the north of TH and LM in the south. The vertical axis separated the PA/CP 
group from LH, and LM from AC and TH (Fig. 3b).

As with GENELAND analyses, DAPC performed without considering the information of the geographic ori-
gin of the samples, and based on the BIC, detected three and five groups as the optimal separation for neutral and 
outlier loci, respectively (Fig. 3c,d). For neutral loci, the three northern populations appeared in the same cluster, 
and in the south, TH and AC appeared in the same cluster but LM was clearly separated, with the exception of 
three individuals that clustered with TH and AC (Fig. 3c). In outlier loci the five groups were mostly consistent 
with the geographic origin with the exception of PA/CP, which formed a single cluster (Fig. 3d). The third group 
was composed mainly of individuals of LH (Fig. 3d).

Dendrograms constructed with Identity-by-Site (IBS) without incorporating geographic information detected 
three and four clusters for neutral and outlier loci, respectively, providing a similar pattern of differentiation as 
previous analyses (GENELAND, DAPC). With neutral loci LM appeared as a distant separate cluster, while the 
two other clusters were closer together. These are the three localities north of 30°S and the southern localities TH 
and AC (Fig. 3e). Again, three individuals of LM appeared together with the individuals sampled in TH and AC. 
For outlier loci, the north/south of 30°S were well separated (Fig. 3f). The analysis detected two groups in the 
northern cluster. The first group was composed mostly of individuals of LH and of individuals of PA and CP in 
lower frequency; the second group was composed exclusively of individuals of PA and CP (Fig. 3f). In the south-
ern cluster, most of the individuals from LM (except three) conformed a well-separated cluster and the rest of the 
southern individuals including those three individuals from LM formed a single cluster (Fig. 3f).

With Evanno’s method, K =  2 was determined as the optimal separation for both data sets in analyses based 
on STRUCTURE (Fig. 4a,b). For neutral loci one cluster included most of the individuals of LM (12 of 15 indi-
viduals), while the second included all other sampling sites plus the three remaining individuals of LM (Fig. 4c). 
A slight north/south of 30°S separation appeared as a subjacent signal when forcing K =  3 and K =  4 (Fig. 4c).

The optimal clustering separation for outlier loci, K =  2, corresponded to a separation between north/south 
of 30°S (Fig. 4d). These results indicate that the optimal K of neutral and outlier loci provide a different spatial 
genetic structure of P. chilensis. Forcing K =  3 for outlier loci divided the northern cluster in two, one group with 
PA and CP with strong influence of a third group located mainly in LH. Only when forcing K =  4 an additional 
cluster appeared in the south corresponding to 12 of the 15 individuals of LM (Fig. 4d). The LM cluster was evi-
dent with optimum K for neutral loci while it appeared with non-optimum K =  3–4 for outlier loci. Exploring 
from K =  5 to K =  7, there was no significant difference in the general pattern compared to K =  4 in both datasets 

Neutral Loci Outlier Loci

Source of variation N/S LM N/S LM

Among groups 2.91 39.51 48.73 8.74

Among populations within 
groups 18.4 1.84 12.51 45.47

Within populations 78.69 58.65 38.77 45.79

Table 4.  Analysis of Molecular Variance (AMOVA). Percentage of variation explained by different 
hierarchical levels for neutral and outlier loci considering two groupings in Pyura chilensis. One separating 
North and South of 30°S (N/S) and the other one separating Los Molinos (LM) from the rest of the populations. 
Significant values in bold. 
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(results not shown). When LM was excluded from the analyses, the optimal separation also corresponded to K =  2 
(Fig. 4a,b). For both data sets, the clusters formed corresponded to the north/south of 30°S separation (Fig. 4e,f).

Discussion
The use of putative selected markers (outlier loci) in marine benthic invertebrates has usually increased the 
strength of detected phylogeographic structure with respect to neutral loci, as is expected, albeit the general 
patterns remain the same19,21–23. In contrast to this generalization, in the present study neutral and outlier loci 
showed contrasting spatial genetic structure patterns in the ascidian Pyura chilensis along 18° degrees of latitude 
in the Southeast Pacific coast. Neutral loci had a main signal associated with the lineage history and genetic dif-
ferentiation of Los Molinos (LM) (39°S), and had a subjacent weaker signal of genetic structure across the 30°S 
biogeographic boundary. Inversely, outlier loci showed a stronger signal across 30°S and a weaker subjacent signal 
of lineage divergence at 39°S (LM). The two sets of loci showed the same two phylogeographic patterns, structure 
across 30°S and 39°S, but their strength was in reverse order. Additionally, the degree of neutral genetic differen-
tiation detected was lower than expected from the short larval duration (2 days) and did not adjust to a pattern 
of isolation by distance (IBD), suggesting that artificial transport also contributes to the neutral genetic structure 
of P. chilensis along the Humboldt Current System (HCS). SNP sampling and detection of putatively adaptive loci 

Figure 1. Relationship between genetic differentiation and geographic distance for neutral and outlier loci 
of Pyura chilensis. Relationship between linearized genetic differentiation (FST) and geographic distance (Km) 
along the Humboldt Current System. (a) Relationship using neutral markers, (b) for outlier markers and (c) and 
(d) show the relationship of neutral and outlier makers, respectively, excluding LM from the analyses. All the 
pairwise comparisons are marked in the graph.
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allowed the evaluation of the contributions of several evolutionary mechanisms in the phylogeographic structure 
of P. chilensis. We detected a strong adaptive signal of differentiation at the 30°S biogeographic break, a strong 
neutral signal associated with the divergent lineage present at 39°S, and the influence of artificial anthropogenic 
transport.

LM had pairwise genetic differentiation values with neutral loci one order of magnitude higher than the rest. 
This is explained by 12 of the 15 individuals from LM that were highly differentiated from all other individuals 
of all other sites, independent of whether the analytical approximation used was frequency or distance-based. 
These differentiated individuals belonged to the divergent mitochondrial DNA haplogroup previously identified 
in LM30 (Supplementary Table S1). The extent of the geographic distribution of the divergent lineage that is pres-
ent in LM needs to be further investigated with an intensive sampling between TH and LM and in the vicinity of 
LM towards the southern AC locality. It is likely that migration to LM from well-differentiated populations may 
account for the detected genetic differentiation. The apparent absence of admixture between individuals of LM 
belonging to the two different clusters as shown by STRUCTURE (Fig. 4e) suggests that these differentiated indi-
viduals found in LM may correspond to a reproductively isolated unit. Although these results clearly identified 
different genetic groups, the existence of a cryptic species in this area should be further investigated, including 
molecular and morphological systematic studies37, before drawing taxonomic conclusions.

As expected, outlier loci showed higher levels of differentiation between all local populations than neutral loci, 
and the genetic signal provided by outlier loci differed from the neutral signal. The main signal in outlier loci was 
a strong differentiation north/south of the 30°S biogeographic break, explaining almost half of the total variation 
in the data. In contrast to the signal detected with neutral markers, outlier loci did not show a main signal associ-
ated with the genetic differentiation of LM. Still, the main signal of differentiation north/south of 30°S in outlier 
loci did not completely expunge the influence of the differentiation of LM; LM appeared as a distinct group when 
forcing a third suboptimum clustering (K =  4) in STRUCTURE (Fig. 4f), and within the southern cluster the IBS 
dendrograms showed that the same 12 individuals from LM were clearly separated from the other individuals 
from south of 30°S (Fig. 4f). Additionally, Hardy-Weinberg Equilibrium (HWE) was prevalent; LM was the only 
population with significant deviations. We explored HWE excluding the 3 individuals of LM that are not highly 
divergent from the rest of the data set, and after the FDR correction, LM did not deviate from HWE, suggesting 
that lack of HWE in LM was likely due to a Wahlund effect, in agreement with presence of two divergent lineages 
in the site30. The fact that the 12 divergent individuals from LM did not appear as a separate and external cluster 
for outlier loci may reflect that natural selection acts globally on these taxa, responding more to environmental 
constraints than lineage evolution. In other words, the coherence between geographic localities and genetic dis-
tribution in outlier loci suggests that selection, independent of the evolutionary history of the lineage, maintains 
the genetic cohesion of the species mainly based on environmental constraints rather than on lineage history. As 
genetic variation in neutral markers may reflect historical and contemporary connectivity among populations38, 
selected markers may reflect adaptive processes associated with differences in environment conditions experi-
enced by the species along the HCS.

IBD including the all data set was nearly significant and it was marginally significant when LM was excluded 
from the analysis. However, STRUCTURE analyses showed that when LM was excluded, most of the genetic 

Figure 2. Spatial genetic structure of Pyura chilensis based on GENELAND analyses. Each map indicates 
the posterior probability of belonging to one of the three groups found in neutral loci, or the five groups found 
in outlier loci. Black dots represent the coordinates of the sample sites, and the x and y-axes correspond to 
geographic coordinates.
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variation was explained by the differentiation to the north and south of 30°S, with optimum K =  2. Therefore, 
Mantel test results may just reflect a main genetic discontinuity between north/south of 30°S instead of a progres-
sive decrease in migration rate among neighboring sites relative to geographic distance.

Phylogeographic patterns of marine invertebrates along the HCS have shown that the biogeographic boundary 
at 30°S is a historical discontinuity and that species with low dispersal potential retain the genetic signal and have 
a concordant phylogeographic break26. However, this structure had not been previously detected in P. chilensis 
using sequence data30. This is not surprising if we consider that neutral loci revealed that the structure at 30°S is 
subjacent to a stronger signal of lineage divergence at 39°S, which was the same signal detected with sequence 
data30. The clear differentiation detected by outlier loci between north/south of 30°S is likely linked to the his-
torical and contemporary existence of a marine biogeographic boundary24. The contemporary influence of this 
discontinuity is likely attributed to the heterogeneous environmental conditions that differ markedly north and 
south of 30°S, mainly, the kinetic energy of the ocean39, differences and seasonality in upwelling-favorable winds40, 
and differences in the influence of freshwater on coastal waters24. The oceanographic differences between north/
south of 30°S could imply that in sessile organisms, such as P. chilensis, the effective connectivity (recruitment and 
survival of juveniles) is restricted, despite the genetic evidence that there is transport of individuals between the 
two areas30. Considering that neutral phylogeographic structure of benthic marine species across 30°S is strongly 
associated with life history26, P. chilensis showed phylogeographic structure across 30°S as expected, although it 
had less differentiation across 30°S than other species with similar dispersal potential based on larval duration.

Figure 3. Genetic Clustering of neutral and outlier SNP loci for Pyura chilensis. (a,b) Discriminant 
Analyses of Principal Components (DAPC) scatterplot showing the first 2 principal components for K =  3 and 
K =  5 (neutral and outliers, respectively). Colors represent the sampling location of each individual.  
(c,d ) Proportion of individuals that belong to each cluster based on the DAPC analysis using a BIC criterion 
with geographic information, (e,f) Identity-by–state (IBS) pairwise relatedness dendrogram for all possible pairs 
of individuals. The dendrogram shows the three clusters found for neutral markers and the four clusters for 
outlier markers.
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Differentiation was greater than had been previously reported for P. chilensis30,41, and also greater than what 
has been reported for other ascidians that have intensive connectivity driven by anthropogenic transport31,32,33,42. 
The influence of anthropogenic transport was evident from the low, albeit significant differentiation detected 
between distant local populations, such as the southernmost site analyzed AC and all the northern sites, and gen-
eral the lack of IBD. The single exception to the significant genetic differentiation detected with neutral loci was 
the population pairwise genetic differentiation between PA and CP, that was low and non-significant. A possible 
explanation is that PA and CP are separated by less geographic distance than any other pair of populations, per-
mitting higher gene flow between them than with the rest of the sites. However, short larval life history alone is 
unlikely to maintain high connectivity between PA and CP, suggesting that artificial transport may be enhancing 
connectivity between these sites, in agreement, shipping trajectories in the area between PA and CP seem to be 
geographically continuous and intense (Supplementary Fig. S3).

Physical transport as biofouling may have allowed the latitudinal expansion of P. chilensis after periods of 
isolation during the Pleistocene30, but the invasive potential is likely less than in other invasive ascidians. In part 
this may be explained by the susceptibility of the species to abiotic disturbances34, the low and strongly seasonal 
recruitment rate43, and, compared to colonial ascidian growth forms (e.g. Diplosoma sp.), a slower growth rate34. 
Higher growth and recruitment rate and rapid reproduction are important life history features in invasive ascid-
ians that allow larvae to colonize open surfaces quickly44. Valdivia et al.34 suggested that P. chilensis is a good 
example of a strong competitor with relatively low colonizing ability.

Shipping routes (Supplementary Fig. S3) may also explain the greater differentiation of LM and of LH. LM is 
the most differentiated population, with a divergent group of individuals, and fittingly, there is very low maritime 
traffic in the area around LM. There is also low traffic inside La Herradura Bay (LH). The lower differentiation of 
LH than LM may be explained by the distance from the open coast, which is much smaller in LH, probably allow-
ing slightly greater connectivity by maritime routes. Additionally, differentiation of LH was enhanced by the high 
proportion of individuals belonging to a distinct mitochondrial haplogroup30 (Supplementary Table S1). Other 
sites had from 0 to 4 individuals of this haplogroup, while LH had 7 of the 15. The relatively high genetic differen-
tiation of LH is likely shaped by the lower maritime traffic present in the area, enhancing genetic differentiation.

Although the results are robust and allow inferring the spatial genetic structure of loci affected by contrasting 
evolutionary forces, it is important to consider alternative explanations associated with the quality of information 
provided by the data. For example, identified outlier SNP loci may be linked to loci that are the direct target of 

Figure 4. Bayesian clustering inferred with STRUCTURE for Pyura chilensis. (a,b) Delta K results for 
neutral and outlier loci including and excluding Los Molinos (LM) to infer optimal separations according to 
Evanno et al.67, (c–f) Bayesian assignment probabilities of individuals of inferred with STRUCTURE with the 
entire dataset and excluding LM from the analyses. Each column represents one individual, with the color 
representing the membership proportion of each of the clusters. The vertical line represents the delimitation of 
each sampled local population. Graphs show the results for K =  2–4. The optimum K was denoted by an asterisk.
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natural selection instead of natural selection directly operating on them45. Additionally, spatial autocorrelation 
can cause random associations between the environment and the genetic structure of a species as a result of dis-
persal following IBD or demographic processes46. Some coding regions may have greater genetic-environmental 
associations than others due to deleterious mutations being selected against in all the study area (purifying 
selection), and not because advantageous mutations are being selected for in a particular environment (local 
adaptation47). Other factors that may cause loci to behave as outliers are recombination, sampling design, and 
locus-specific effects46,48.

Demonstrating that local adaptation has occurred involves not only the detection of variation at outlier loci, 
but also the understanding of the functional differences between alleles of individual candidate genes48. The 
knowledge of the physical linkage of SNPs allows the identification of genomic regions with unequal response to 
natural selection45. Since P. chilensis is a non-model organism, information on candidate genes is not currently 
available. In spite of the possible caveats, 3.5% (81) of the total retained SNPs (2,332) showed low and significant 
q-values and higher levels of FST for 90 individuals, allowing us to distinguish individuals genetically between 
sampling locations at a relatively small geographic scale, and suggesting that significant differences could be due 
to positive selective pressures49 that differ north/south of 30°S. The percentage of outlier loci detected is pro-
portionally consistent with other studies that show high variation between local populations19,22,23,50,51. Further 
studies are needed to evaluate the genes involved in the putatively adaptive genetic structure detected here, and 
determine if putatively selected loci are actually under positive selection due to different environmental condi-
tions north and south of the biogeographic boundary at 30°S in the southeast Pacific. Here we showed that even 
in the presence of a highly divergent lineage, the putatively selected signal could recover a pattern of genetic 
structure that masks the evolutionary history of the species.

In this study, we obtained several SNPs scattered throughout the genome and analyzed and compared the 
genetic structure of neutral and putatively adaptive outlier loci in Pyura chilensis. The comparison allowed us 
to conclude that both outlier and neutral loci were diverse and variable in space, and that both have shaped the 
genetic diversity of P. chilensis. The geographic structure of the genetic diversity of outlier and neutral loci was 
established by different strengths of environmental, historical and anthropogenic factors.

Methods
Sample collection and DNA extraction. Samples of Pyura chilensis were obtained by local fisherman 
from six sites along the Humboldt Current System in the Southeast Pacific Ocean (Table 1). Fisherman sampled 
individuals from natural substrates in areas with abundant P. chilensis. In all sites samples were taken in the shal-
low subtidal. Even though the degree of relatedness of individuals in a clump has not been assessed, in order to 
avoid possible effects of relatedness several clumps were obtained, all separated by at least 2 meters. Once in the 
fishing port, we randomly chose 40–45 clumps or isolated individuals in order to obtain one sample from each, 
and of those 40–45, we randomly picked 15 per site for this study. Mantle tissue (0.2 g) from each individual was 
used to extract DNA using the DNeasy Blood®  & Tissue Kit (QIAGEN® , USA) according to the manufacturer’s 
instructions. Quantity/purity of DNA was measured in Nanodrop 2,000 (Thermo, USA).

Genotyping by Sequencing and SNP discovery. Samples were sequenced in the Biotechnology 
Center of the University of Wisconsin, USA using Genotyping by Sequencing (GBS)52, a method widely used in 
non-model species and that has proven to be a useful tool to distinguish between local populations at the genome 
level in marine benthic invertebrates20. This is a Reduced Representation Sequencing (RRS) method, which is 
based on the use of restriction enzymes that reduce the complexity of the genome, with the additional advantage 
that it can be performed without prior knowledge or reference genomes. This technique allows sequencing a large 
number of short genomic regions in several individuals45, permitting the genotyping of a large number of SNPs 
randomly located throughout the genome. Previous to sequencing, two additional enzymes were tested (PstI, 
PstI/TaqI) and finally ApeKI53 was chosen due to the wide genome distribution of flanking regions described for 
other species and avoiding repetitive zones53.

Libraries were prepared for the DNA of 15 individuals of each population. Following the restriction enzyme 
digestion, DNA fragments were ligated to a unique barcode adaptor for each individual. The library was prepared 
in a 96-well plate with 6 wells as blank, using a Hiseq2000 (Illumina, USA) platform, which sequences reads of 
approximately 100 base pairs (bp). The reads were visualized in FastQC version 0.10.154 for quality checks.

All the data were prepared and analyzed using the pipeline Universal Network-Enabled Analysis Kit 
(UNEAK55) using TASSEL v.356 that is specially designed for species with no reference genome. TASSEL-UNEAK 
is a network based SNP detection algorithm that may be less flexible than other pipelines in aspects like read 
trimming and parameters for de novo locus identification57, reducing the potential number of total SNPs detected 
in the dataset. However, TASSEL-UNEAK has proven to be a useful, reliable and reproducible tool for demulti-
plexing and processing sequence data obtained through GBS for non-model species55. With the UNEAK pipeline, 
the dataset was demultiplexed and the reads were trimmed to 64 bp to remove the barcode sequence and the 
error-prone tail of the sequences. After the network filtering, identical reads were aligned as tags using an error 
tolerance rate of 0.03 in order to minimize the chance that real tags were discarded as sequencing errors and to 
remove potential paralogs before the SNP calling. This filtering is a goodness-of-fit χ 2 (α  =  0.05) based on the null 
hypothesis that the counts of two paired tags of a SNP are equal in all heterozygous individuals55.

Additionally, a minor allele frequency (MAF) of 0.044 was used to filter the number of SNP loci whose vari-
ability was well represented in the 90 analyzed individuals. This value was determined empirically based on the 
probability that at least 8 of the 180 possible allele calls (4.4% of the alleles detected in 90 individuals) correspond 
to the minor allele. Values of minimum call rate (mnC) from 75 to 90% were tested previous to the final SNP call-
ing, finally choosing the most exigent value of mnC (90%) in order to remove all SNPs containing 90% or more 
“N” values, which designate those individuals for which no allele was assigned for the locus or that were covered 
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by no more than one tag and because of the amount of missing data detected, preserving a reduced but robust set 
of SNPs with reliable genotypes without excluding individuals from the analysis. These restrictive filters were per-
formed because all loci were sampled at a mean coverage of ≥ 10x per individual. Under this condition, in theory 
each individual had in average 10 or more copies of a locus.

Outlier detection. To identify the SNPs putatively under diversifying selection we used the FST outlier 
approach, which is based on the estimation of those loci with greater values of FST (outliers) with respect to 
the expected values under a neutral distribution. We used the software BAYESCAN 2.116 for FST outlier detec-
tion, because it has been reported to have lower rates of false positives with respect to other similar software58. 
BAYESCAN uses a Bayesian framework to calculate the posterior probability that any given locus is under selec-
tion16. A total of ten separate runs were performed, from 50,000 to 500,000 iterations with a 10% burn-in period 
to assure the convergence of the MCMC. After the runs, an FDR correction of q-values of 0.05 was applied in 
BAYESCAN to avoid the occurrence of false positives. The data set was then separated into two parts, one with 
the outlier SNPs, which are loci putatively under diversifying selection16, and one with neutral SNPs, which are all 
the rest of the loci that have FST values that match the expected under a neutral distribution.

Population genetic diversity analysis and genetic structure. From here on, all analyses were per-
formed separately for each of the data sets (neutral and outlier loci).

To evaluate the differences in genetic diversity across the study area in each data set, we calculated the expected 
heterozygosity, observed heterozygosity and allelic richness with rarefied allele counts, using the HIERFSTAT 
package version 0.04–2259 in R v 3.2260. Exact tests for Hardy-Weinberg Equilibrium deviations for outlier loci 
were calculated using GENEPOP version 4.661. Multiple comparisons of HWE were corrected using a FDR.

Pairwise FST and their significance were determined using a permutation test (10,000) in ARLEQUIN Version 
3.562. ARLEQUIN was also used to perform an Analysis of Molecular Variance (AMOVA) using the north/south 
of 30°S biogeographic boundary, and the separation of LM as two a priori groupings. Additionally, a Mantel test 
with 10,000 permutations was carried in out in ARLEQUIN 3.5 to test if there is a pattern of isolation by distance, 
using the relationship between the geographic distance (Km) and Slatkin’s linearized genetic distance (FST).

Spatial population genetic structure was assessed using the Bayesian clustering algorithm implemented in 
GENELAND v 3.1.463. This analysis uses spatial coordinates to separate allele frequencies that can be detected 
with departure from Hardy-Weinberg and linkage equilibrium into K clusters. An independent model of allele 
frequencies was carried out for both data sets, with 10 independent runs with 1e6 iterations and a 10% burn-in 
period, varying K from 2 to 6. The optimum K was inferred from the posterior individual membership probability 
of each genetic group. Posterior probabilities of membership were plotted with the shapefiles of the coastline avail-
able in the database of GEOdas (NOAA), filtering in the study area using GEOdas Coastline Extractor v 1.1.3.1 
(https://www.ngdc.noaa.gov/mgg/geodas/geodas.html).

A clustering approach was used with a discriminant analysis of principal components (DAPC) in the package 
adagene64 in R v 3.2260. In DAPC, a principal components analysis of the multilocus genotypes of the individuals 
was calculated and then a discriminant analysis was carried out using the PC scores. These analyses are based 
on the detection of the number of clusters that minimizes between-group variation64 using the k-means and a 
Bayesian Information Criterion (BIC) to identify the optimal number of clusters in the data, not assuming under-
lying structure in population subgroups or panmixia as other similar approaches do. The number of clusters in 
each data set was determined using 10e7 iterations. To avoid unstable assignments in each cluster, 30 PCs were 
retained (Ntotal/3), using all the 6 discriminant functions. We determined the optimal number of PCs using 1,000 
simulations to execute the final DAPC.

To infer SNP-based relatedness structure within populations, an analysis based on pairwise IBS 
(identity-by-state) was used. This approach uses the information of the genotypes to calculate the probability that 
two alleles in the same segment have the same ancestor. A cluster analysis of the matrix generated with the IBS 
pairwise coefficients between all possible pairs of individuals was performed using a permutation score of 10,000 
to determine how many groups were present in each data set. This was performed in the package SNPRelate65 in 
R environment v 3.22 (R Core Development Team 2015).

To determine the number of genetic groups we used STRUCTURE 2.3.466. Clusters (K) varied from one to 
seven, corresponding to the number of analyzed locations plus one. Ten replicate runs, each with 500,000 MCMC 
with a 10% burn-in period, were performed under the admixture and correlated frequency model. The most 
probable K value was inferred based on the delta K method proposed by Evanno et al.67.

Data Accessibility. SNP calls for all data set (2,332 SNPs) are available in a VCF file that has been deposited 
in DataDryad (doi:10.5061/dryad.0s87v).
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