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Non-communicable diseases (NCDs), also known as chronic diseases, are long-lasting conditions that affect
millions of people around the world. Different factors contribute to their genesis and progression; however they
share common features, which are critical for the development of novel therapeutic strategies. A persistently
altered inflammatory response is typically observed in many NCDs together with redox imbalance. Additionally,
dysregulated proteostasis, mainly derived as a consequence of compromised autophagy, is a common feature of
several chronic diseases. In this review, we discuss the crosstalk among inflammation, autophagy and oxidative
stress, and how they participate in the progression of chronic diseases such as cancer, cardiovascular diseases,
obesity and type II diabetes mellitus.

1. Introduction

Although life expectancy has improved by a decade since 1980,
currently people are living longer with illness and disability [1]. The
main causes of disability-adjusted life years (DALYs) has changed from
maternal, neonatal and nutritional deficits to the development of
chronic diseases, which generate a substantial financial burden with
serious repercussions for health care systems worldwide [2,3].

Non-communicable diseases (NCDs), also known as chronic dis-
eases, is a term used to identify a group of illnesses characterized by
being of long duration and very slow progression [4]. Overall, NCDs are
responsible for 40 million of the 56 million deaths per year, being by far
the leading cause of death and disability worldwide [1,4]. Among
NCDs, there are four major groups that account for 80% of the deaths:
cardiovascular diseases (CVD) (17.7 million), cancer (8.8 million),

respiratory chronic diseases (3.9 million) and diabetes mellitus (DM)
(1.6 million) [3]. Moreover, the health care costs due to NCDs asso-
ciated with overweight and obesity, such as type 2 diabetes mellitus
(T2DM), coronary heart disease, hypertension, non-alcoholic fatty liver
disease, steatohepatitis, stroke, and several types of cancer, underscore
the relevance and necessity to identify treatments for these diseases
(Fig. 1).

It is commonly believed that NCDs mainly affect elder people from
high income countries, but recent epidemiological data show that they
affect all age groups and countries. The individuals between 30 and 69
years old represent 15 million of all NCDs associated deaths, and over
80% of these "premature" deaths occur in low- and middle-income
countries, with an equal frequency among men and women [1].

The development and progression of NCDs have been extensively
investigated and key factors have been identified among these different
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Fig. 1. Statistics of non-communicable diseases worldwide. (A) Non communicable diseases (NCDs) account for approximately 40 million of the 56 million deaths
worldwide. (B) Of the total deaths as a result of NCDs, most of them are caused by cardiovascular diseases (CVD) (32%), followed by cancer (Ca) (16%), respiratory
chronic diseases (Resp) (7%) and diabetes mellitus (DM) (3%). (C) According to World Health Organization (WHO) reports total deaths derived from NCDs represent
over 80% in North and South America, the West Pacific and Europe; approximately 60% in Eastern Mediterranean and South-East Asia, and around 34% in Africa. (D)
NCDs-related deaths increase with age (15 million at 30-69 years of age; 22 million persons over 70 years old), with equal contributions among sexes. (E) Most NCDs

associated deaths in higher income groups are due to CVD and cancer.

stages. During aging, excessive production of specific oxidative agents
or an impairment in protective reductive systems occur. Indeed, the
aberrant formation or accumulation of different reactive oxygen or
nitrogen species (ROS or RNS, respectively) involved in specific sig-
naling pathways with organelle-specific functions are severely altered
in older organisms. The aforementioned condition can generate oxi-
dative stress in the cell, and together with the dysregulation of autop-
hagy, a mechanism that maintains cellular proteostasis, represent a
common feature of NCDs, such as cancer, CVD, respiratory chronic
diseases and T2DM [5,6]. It is important to note that many other cel-
lular processes contribute to NCDs progression, like mitochondrial
dysfunction, altered gene expression and impaired proteosomal ac-
tivity. However, this article will focus in autophagy modulation, as an
altered cellular process during NCDs. Interestingly, oxidative stress and
autophagy are connected by several crosstalk pathways, whereby
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disruption of one results in alterations of the other [7]. Additionally,
inflammation is also altered in NCDs [8]. The level of inflammation in
the organism is highly dependent on the cellular redox and autophagic
state [9,10].

In the present review, our aims are: a) To describe the role of in-
flammatory cytokines and immune cells in NCDs. b) To discuss the
apparent dual role of autophagy, which can both promote or inhibit
NCDs progression. c¢) To explain how oxidative imbalance results in
oxidative stress, thereby inducing NCDs. d) To analyze how cross-talk
between autophagy and oxidative stress modifies the inflammatory
context of tissues, ultimately leading to NCDs development. There are
other chronic conditions such as mental health problems and oral dis-
eases that are associated with a significant degree of morbidity
worldwide, affecting the quality of life of large segments of the popu-
lation, and increasing the complexity of global and national responses
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Fig. 2. Inflammation and non-communicable diseases. Type 2 diabetes mellitus (T2DM), cardiovascular diseases (CVD), cancer and obesity begin with persistent
damage (i.e. lipid/glucose overload, hypoxia or mechanical stress, among others) that stress cells and provoke the release of molecular markers. The markers released
include several cytokines, interleukins and adhesion molecules, thereby determining a new inflammatory set point that is both systemic and tissue specific.
Importantly, inflammation is strongly associated with altered tissue/organ function, like diminished response to insulin, increased fibrosis, augmented arterial
pressure, reduced lipid storage and increased tumor cell proliferation. All these events ultimately lead to hyperglycemia, lipid spill, hypertension, tumor progression,

atherosclerosis, myocardial infarction and heart failure.

against the epidemic of NCDs. However, their study is beyond the scope
of this review [4].

2. Inflammation and non-communicable diseases
2.1. Inflammation: general aspects

Chronic inflammation refers to a prolonged inflammatory response
or condition in which the production of pro-inflammatory cytokines
persists over time. This process might follow an acute inflammatory
event; however, in most of the cases, in the context of NCDs, it begins as
a low-grade inflammatory response with no presence of an acute re-
action. An increasing body of evidence shows that this sterile, low-
grade inflammatory response, is involved in the development of NCDs
[11]. Indeed, elevated levels of pro-inflammatory cytokines, such as
interleukin (IL)—1f, IL-6 and tumor necrosis factor alpha (TNFa) not
only have been identified in adipose tissue, muscle, brain, liver and
heart in animal models and humans affected by NCDs, but also their
levels positively correlate with the severity of these diseases [12-15].
Thus, studies have shown that T2DM is correlated both with neuronal
inflammation in the central nervous system (CNS) [16] and immune
cell infiltration with subsequent production of pro-inflammatory cyto-
kines in peripheral adipose tissue [17]. These data reveal the im-
portance of inflammation at the level of the CNS and its impact in
NCDs, such as T2DM. Chronic inflammation also plays a critical role in
the development of atherosclerosis, predisposing to CVD [18,19].
Consistently, tumoral initiation, promotion and progression are
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stimulated by systemically increased levels of pro-inflammatory cyto-
kines [20].

2.2. Inflammation and type 2 diabetes mellitus

The obesity epidemic promoted a dramatic increase in the incidence
of T2DM, a pathological condition characterized by insulin resistance
and/or B-cell dysfunction. As previously mentioned, various studies
consistently reported increased levels of pro-inflammatory cytokines
and acute-phase proteins in patients with T2DM [21-23]. Thus, ex-
cessive consumption of nutrients rich in sugars and fatty acids activates
cellular stress responses, promoting local production of pro-in-
flammatory markers together with the accumulation of IL-1f, IL-6 and
C-reactive protein (CRP) in plasma and tissues, which in turn correlates
with T2DM onset [24-27]. Indeed, fatty acids can activate Toll-like
receptors (TLR), such as TLR4 and TLR2, which stimulate the myeloid
differentiation primary-response protein 88 (MYD88) [28] and thus the
nuclear factor-kappa B (NFxB) signaling pathway, leading to pro-in-
flammatory cytokine production [29]. In addition, studies have shown
that high glucose concentrations can activate the inflammasome, and
therefore stimulate the production of IL-13, in different cell types
[30,31]. Specifically, thioredoxin-interacting protein (TXNIP) can dis-
sociate from its inhibitor, the protein thioredoxin (TXR), when glucose
levels are high, thus activating the NOD-, LRR- and pyrin domain
containing 3 (NLRP3) inflammasome, which activates caspase 1
[32,33] that cleaves pro-IL-1f to generate IL-1B [34]. IL-1p, in turn,
amplifies the pro-inflammatory signal through the production of pro-
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inflammatory cytokines and chemokines [32,33]. Different cytokines
have been linked to insulin resistance. Hotamisligil et al. showed that
increased levels of TNFa reduce insulin sensitivity in the adipose tissue
of obese rodents and humans, while TNFa knockout in mice was shown
to be sufficient to protect from obesity-associated insulin resistance
[35]. Since then, additional studies revealed that inhibition or depletion
of pro-inflammatory cytokines, such as IL-1f3 and IL-6, enhances insulin
sensitivity in different tissues, thus preventing the development of
T2DM [27,36-39]. Altogether, these studies indicate that the admin-
istration of anti-inflammatory drugs represents a potentially beneficial
approach in the treatment of T2DM [40,41].

Hyperglycemia has also been associated with an increased produc-
tion of ROS in the mitochondria in various cell types [42-44]. Im-
portantly, ROS can activate the NFxB signaling pathway [45], pro-
moting inflammation and inhibiting insulin signaling [46]. The
mechanisms by which ROS promote inflammation and therefore lead to
the onset of metabolic diseases will be discussed in the next sections
(Fig. 2).

2.3. Inflammation and cardiovascular diseases

CVD are caused by disorders that affect the blood vessels and/or the
heart, such as, atherosclerosis, heart failure and myocardial infarction,
among others [1]. Hypertension (HT) is a major risk factor for pre-
mature CVD [1,47]. There is evidence that links inflammation and CVD
in both ways: on the one hand, low-grade chronic inflammation plays a
crucial role in HT and CVD development [48,49]; on the other hand,
neurohumoral activation, such as via upregulation of the renin-angio-
tensin-aldosterone system, enhances the synthesis of proteins involved
in inflammation, cell death, and fibroblast proliferation [50]. Also,
clinical studies have suggested that elevated serum CRP and plasmi-
nogen activator inhibitor-1 [49,51] are determining factors for the
development of HT and myocardial pressure overload, which then in-
duces systemic inflammation through IL-33 produced by endothelial
cells [52]. In addition, alterations in the TNFa system are also asso-
ciated with chronic inflammation [53].

Heart failure (HF) is defined as the inability to meet the metabolic
demand of the tissue due to a structural or functional impairment of
ventricular filling or ejection [54]. Disturbances in the inflammation-
related TNFa system have been implicated in the pathogenesis of HF
[53], as well as changes in IL-6 [55], vascular cell adhesion protein
1(VCAM-1) [56] and galectin-3 [57]. Other ILs play a key role in
myocardial ischemia and reperfusion (I/R) injury. In this context, IL-23
may promote myocardial I/R injury by increasing the inflammatory and
oxidative stress response [58]. However, it is worth noting that the
main inflammatory component in myocardial infarction is the acute
post-injury inflammatory response [59] and it is not clear yet whether
there is a systemic inflammatory component prior to the damage.

In summary, numerous studies have consistently shown an asso-
ciation between CVD and systemic inflammatory biomarkers, but the
molecular mechanisms remain to be elucidated.

2.4. Inflammation and cancer

The relevance of inflammation in cancer development has become
increasingly appreciated over the past decade, since approximately
90% of cancers are not caused by inherited mutations, but rather by
environmental factors that increase inflammation, e.g., smoking and
consumption of western-style diets [60,61].

Among the tumor cell populations, several immune cells can be
found, whereby the majority of them are macrophages, T cells and
myeloid precursors, reflecting the existence of an inflammatory mi-
croenvironment [62,63]. This microenvironment is controlled by cy-
tokine release, with important repercussions in the different tumor
stages. The pro-inflammatory cytokines IL-6 and IL-1p are released as a
consequence of genotoxic stress, thereby favoring tumor initiation and
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progression by activation of the NF-kB and signal transducer and acti-
vator of transcription 3 (STAT3) pathways [64,65]. Activation of STAT3
suppresses the expression of major histocompatibility complex class II,
impairing the activation of T CD4 + T cells [66]. Importantly, these
pathways are self-regulated by a feed-forward mechanism. Thus, in
addition to inducing pro-survival and proliferative signaling in pre-
malignant cells, the system becomes self-sustainable over the time [67].
The latter is also valid for TNFa, which, when released as a result of an
increased inflammatory response, exacerbates the ROS-dependent ge-
netic instability due to p53 tumor suppressor protein mutations and
DNA damage [68]. Also, TNFa plays a crucial role in colon cancer
development where it promotes (-catenin translocation to the nucleus
to increase the expression of genes that promote cancer cell growth and
survival [69].

Macrophages and myeloid precursors work together to induce
tumor angiogenesis. The macrophages sense hypoxia and activate the
transcription factor hypoxia-inducible factor 1 alpha (HIF-1a), which
promotes the expression of stromal cell-derived factor 1 (SDF1), also
known as C-X-C motif chemokine 12 (CXCL12), to favor endothelial cell
recruitment, while myeloid precursors produce vascular endothelial
growth factor (VEGF) [70]. Both macrophages and myeloid cells also
participate in metastasis. CCrl + myeloid cells release metalloprotease
(MMP) 2 and MMP-9, which enhance degradation of components of the
basal membrane [71]. CCrl + myeloid cells are recruited by the C-C
motif ligand 9 (CCL9) chemokine released by cancer cells [72]. On the
other hand, macrophages increase the levels of TNFa, which decrease
E-cadherin expression by stabilizing Snail, an E-cadherin transcription
repressor [73].

In conclusion, localized and chronic inflammation promote tumor
initiation and progression, and therefore, complementary anti-cancer
therapies should also focus on the communication between cancer cells
and immune cells.

2.5. Inflammation and obesity

Overweight and obesity are defined as abnormal or excessive adi-
pose tissue accumulation that may impair health. The World Health
Organization (WHO) uses a definition based on the body mass index
(BMI), a calculation of the weight divided by the square of the height
(Kg/mz). Based on this criteria, a person with BMI = 25 is considered
overweight and is obese with BMI = 30. According to the WHO, over
650 million adults were estimated to be obese worldwide in 2016 and
prevalence has almost tripled since 1975. Noteworthy, a high BMI by
itself does not completely determine the pathologic nature of the dis-
ease, and a subgroup of obese individuals has been defined as meta-
bolically healthy [74,75]. Even though this concept is still con-
troversial, there is agreement in that cardiometabolic problems in obese
subjects are closely linked to the inflammatory status in their adipose
tissue.

Adipose tissue used to be considered metabolically inert, with its
only purpose being the storage of triglycerides. This vision is now
considered obsolete and adipose tissue is currently the object of great
interest due to its relevance as a metabolic, endocrine, and homeostasis-
regulating organ, able to secrete a vast number of active factors (adi-
pokines and cytokines) with pro-inflammatory, anti-inflammatory and
immunomodulating properties [76-78]. The link between increased
adipose tissue mass and the development of obesity-related disorders is
largely determined by the pro-inflammatory status of the tissue. The
resulting local inflammation and ensuing adipose tissue dysfunction has
a substantial systemic impact, by inducing insulin resistance, hy-
perglycemia, hyperlipidemia, and damaging fat infiltration in key me-
tabolic organs (such as liver and pancreas), a consequence known as
lipotoxicity [79,80].

The accepted pathophysiological model of dysfunctional adipose
tissue in obesity suggests that excess energy intake and the ensuing
metabolic challenge lead to an evolutionarily-conserved adaptive
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Fig. 3. Autophagy and non-communicable diseases. (A) Autophagy is divided into five stages. First, stimuli like stress and metabolic deficiency transduce signals to
activate AMPK and inactivate mTORC1, which in turn activates the ULK1 complex (“Initiation”). Activated ULK1 translocates to pre-autophagosomal sites and
phosphorylates Beclin 1 to induce formation of the PI3K-III complex. This results in the production of PI3P, a lipid molecule that recruits ATG proteins implicated in
the autophagome formation (“Nucleation”). LC3 protein is cleaved proteolytically, conjugated with the lipid phosphatidyethanolamine and incorporated into the
autophagosome. LC3 assists with the autophagosome extension (“Elongation”) and targeting of cargoes by associating with p62/polyubiquitinated proteins. Finally,
the autophagosome fuses with a lysosome (“Fusion”), allowing the recycling of the cargoes by lysosomal enzymes (“Degradation”). (B) The hypoxic and low-nutrient
environment of cancer stem cells increases autophagy to promote proliferation, differentiation, survival and resistance to chemotherapy. (C) Autophagy plays a dual
role of cardiac tissue: after ischemia, autophagy protects the cardiomyocyte; however, after ischemia/reperfusion (I/R), autophagy is detrimental, leading to hy-
pertrophy and cell death. (D) Under conditions of cholesterol overload, vascular smooth muscle cells (VSMC) augment autophagy provoking their dedifferentiation
and proliferation, which ultimately aids in the formation of the atherosclerotic plaque. (E) Chronic gluco/lipotoxicity of pancreatic B-cells alters insulin processing
and induces autophagy-dependent cell death. (F) Autophagy is induced by excess nutrition in adipocytes produces hypertrophy and liberation of cytokines. (G) High
fat diet reduces autophagy-dependent degradation of lipids in hepatocytes, thereby leading to accumulation of fatty acids inside the cell and insulin receptor damage.
(H) Augmented inflammation in macrophages reduces autophagy, one of the major degradation pathways for non-self molecules in immune cells.

response, which, under the current environmental conditions, results in positive feedback loop that involves pro-inflammatory macrophage
deleterious inflammation and insulin resistance [81-83]. The energy infiltration and worsening of the inflammatory profile, together with
surplus is dealt with either by inducing adipocyte formation through local insulin resistance, impaired extracellular matrix remodeling, fi-
adipogenesis (hyperplasia) or by enlarging existing adipocytes by in- brosis and impaired lipid handling capacity. These events in turn result
creasing triglyceride storage (hypertrophy). While hyperplasia is con- in elevated circulating free fatty acids and ectopic fat accumulation that
sidered a healthy process, excess adipocyte hypertrophy is associated will trigger insulin resistance in other organs. Chronic over-nutrition
with insulin resistance and endocrine dysregulation [78,84,85]. Upon thus results in the classic low grade inflammatory state associated with
chronically exacerbated energy intake, these alterations generate a obesity, accompanied by impaired lipid metabolism and both local and
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systemic insulin resistance [78,84,85].
3. Autophagy and non-communicable diseases
3.1. General mechanism of autophagy

Macroautophagy, hereafter refereed as autophagy, involves the
formation of double membrane vesicles, called “autophagosomes”,
which sequester intra-cellular components such as old organelles, pro-
tein aggregates, and misfolded proteins, among others. Then, autop-
hagosomes fuse with lysosomes and the luminal content is degraded by
hydrolytic lysosomal enzymes [86]. This process is highly conserved
from yeast to mammals, and it is required to maintain cellular home-
ostasis.

The autophagy-related proteins (ATG) are implicated in the dif-
ferent steps of the autophagic process [87], which can be divided into
initiation, nucleation, elongation, fusion and degradation. The stage of
“initiation” describes the on- and off-switch of autophagic signaling
pathways. Thus, the canonical ways that control autophagy initiation
are the mechanistic target of rapamycin complex 1 (mTORC1) and the
AMP-activated protein kinase (AMPK), both stress sensors. While
mTORC1 is an autophagy inhibitor activated by serum, nutrients,
growth factors, etc. AMPK is an autophagy inducer activated by low
energy conditions. Both mTORC1 and AMPK phosphorylate Unc-51 like
autophagy activating kinase ULK1 (ATG1), and while mTORC1 inhibits
ULK1 by phosphorylation at S737, AMPK activates ULK1 by phos-
phorylation at S317 and S777 [88]. The active ULK1 complex relocates
to the endoplasmic reticulum to phosphorylate Beclin 1 at S14 [89]. At
this point the process referred to as “nucleation” starts: phosphorylated
Beclin 1 recruits VPS34 and several co-activators, forming a new
complex with a PtdsIns3-kinase activity. The lipid phosphatidylinositol
3-phosphate (the product of the active VPS34/Beclin 1 complex) serves
as “re-localization flags” for PX- and FYVE- domain containing ATGs
[90]. The “elongation stage” refers to the extension of the autophago-
some membrane, a process mainly directed by the microtubule-asso-
ciated protein light chain 3 (MAP1LC3, also known as LC3), a protein
that undergoes post-translational proteolysis by ATG4 to form LC3-I
and then incorporation of phosphatidylethanolamine to generate LC3-
11, which permits association with the autophagosome membrane [91].
The LC3-I to LC3-II conversion is catalyzed by the ATG5/ATG12-
ATG16L complex, which functions as an E3-enzyme [92]. Since LC3-
IT localizes to the autophagosome membranes, it is widely used as an
autophagy marker [93]. The two final stages of the autophagy process
are the “fusion” of the autophagosome with the lysosome, which then
permits “degradation” of the cargos [94].

Other additional ATGs participate in the selectivity for cargo de-
gradation. In this regard, p62/sequestosome 1 (SQSTM1), a bimodular
protein that recognizes both poly-ubiquitinated proteins and LC3 by a
LC3-interacting domain (LIR), binds poly-ubiquitinated proteins to the
autophagosome for degradation [95]. Since p62/SQSTML is also de-
graded by the lysosome, it is commonly used as an autophagic flux
marker, indicative of the lysosomal capacity to degrade autophagosome
cargos [96]. Thus, chemical compounds, such as chloroquine and ba-
filomycin-Al, block lysosomal degradation and provoke both p62/
SQSTM1 and LC3-II accumulation associated with reduced autophagy
flux [93] (Fig. 3).

3.2. Autophagy in cancer

The role of autophagy in spontaneous tumor initiation has been
reported in studies around the 2000's. Levine's group demonstrated that
overexpression of Beclin 1 in MCF7 breast cancer cells increased au-
tophagy and reduced tumor formation when injected to mice, therefore
suggesting that Beclin 1 acts as a tumor suppressor [97]. To support this
hypothesis, the same group also showed that heterozygous disruption of
Beclin 1 in mice decreased autophagy and increased the frequency of
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spontaneous tumor formation, i.e. liver dysplasia, lung carcinoma and
hepatocellular carcinoma [98]. However, it is worth noting that recent
data propose additional, autophagy-independent roles of Beclin 1 in
breast cancer tumorigenesis by controlling EGF receptor maturation
[99].

Cancer stem cells (CSC) are a specialized subtype of tumor cell with
self-renewal capability that are directly considered responsible for
tumor cell growth. Since they are mainly encountered in nutrient and
oxygen- deficient regions, autophagy modulation is reportedly con-
sidered an important factor for CSC proliferation and differentiation
into daughter tumor cells. In mammospheres, increased Beclin 1 ex-
pression and accelerated autophagy are observed in response to star-
vation [100]. Beclin 1 has also been shown to be required for breast
CSC maintenance, because Beclin 1 knockdown decreases mammo-
sphere formation and ultimately, reduces tumor volume in vivo [100].
Similar results are observed with the potassium ionophore salinomycin,
which has been reported to decrease autophagy flux in breast CSC
[101]. Accordingly, autophagy is required to maintain the CD44%/
CD24'°" phenotype in breast CSCs and is blocked by LC3/ATG12
knockdown or chloroquine treatment [102]. Hypoxia-dependent au-
tophagy is also necessary for transforming pancreatic cancer cells into
CSC-like (CD133™) cells, a mechanism that relies on HIF-1a activation
[103]. Furthermore, abrogation of autophagy with 3-methyladenine (3-
MA) increases apoptosis under hypoxia in pancreatic CSC [104]. Si-
milarly, liver CSC CD133* sub-populations have increased expression
of Beclin 1, ATG5, ATG7 and LC3, as well as augmented resistance to
apoptosis under hypoxia, when compared with CD133" cells. This
phenomenon is reversed when CD1337" liver cells are treated with
chloroquine [105]. All together, these studies suggest that autophagy is
not only required to acquire CSC markers, but also to improve CSC
survival under unfavorable conditions.

Interestingly, cancer cells use autophagy as a resistance mechanism
against chemotherapy. In cancer cell lines, such as LoVo and HelLa,
treatment with doxorubicin, a non-selective class 1 anthracycline that
induces cell death by inhibiting topoisomerases I and II and by inducing
ROS generation [106], increases in LC3-II levels, which are exacerbated
by bafilomycin A1, showing elevated autophagic flux. These changes
correlate with reduced activation of mTORC1 and increased nuclear
translocation of the transcription factor EB (TFEB) [107]. Notably, in-
creased autophagy seems to be a defensive mechanism against the
treatment with doxorubicin, since downregulation of TFEB or ATG5
with specific siRNAs reduces viability of doxorubicin-treated cells
[107]. Also, the adipokine resistin induces autophagy via AMPK and
mTORC1 in the breast cancer cell lines MCF-7 and MDA-MB-231,
thereby decreasing the antineoplastic effects of doxorubicin. Con-
versely, the osteosarcoma cells U20S, MG-63 and SAOS-2 have been
shown to be more prone to doxorubicin-induced cell death when au-
tophagy is reduced upon treatment with the long non-coding RNA CTA
by a mechanism implicating mTORC1 activation [108]. A well-known
secondary effect of chemotherapy with doxorubicin is the cardiotoxi-
city. In fact, cardiomyocytes exposed to doxorubicin are sensitized to
cell death when autophagy is impaired with 3-MA or by down regula-
tion of UV radiation resistance-associated gene protein (UVRAG)
[109,110].

Similar effects have been observed with other chemotherapy agents,
such as cisplatin and oxaliplatin, which promote DNA instability and
high ROS production, leading to tumor cell death [106]. Cisplatin in-
duces LC3 II accumulation and p62/SQSTM1 reduction in HOS and OS-
R osteosarcoma cells, both indicative of increased autophagy flux. In
the same study, induction of autophagy and JNK signaling were shown
to activate a pro survival response in tumor cells treated with cisplatin
[111]. In this regard, SP600125, a chemical inhibitor of JNK, reduces
autophagy and increases oxaliplatin-induced apoptosis in colorectal
cancer cell lines [112], indicating that tumor cells able to undergo
autophagy are more resistant to chemotherapeutic agents. Indeed, re-
ducing autophagy using the long non-coding RNA MEG3 or by down
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regulation of the co-chaperone BAG3 increased the sensitivity of human
glioblastoma cells U87 to cisplatin-induced cell death [113,114].
However, in contrast to the effects seen with doxorubicin, inhibition of
the mTORC1 pathway increases cisplatin-dependent cell death of lung
adenocarcinoma and atypical teratoid rhabdoid tumors [115,116]. This
is in line with the observation that oxaliplatin induces mTORC1 acti-
vation in different colorectal cancer cell lines such as HCT15, HCT116
and HT29 in vitro and in xenograft models, therefore suggesting that
co-treatment with oxaliplatin and everolimus, a chemical inhibitor of
mTORC1, could effectively improve the survival of colorectal cancer
patients [117]. Indeed, mTORC1 inhibitors everolimus and sirolimus
are currently being tested in multiple clinical trials for treatment of
cancers, such as colorectal cancer, pancreatic cancer, melanoma, glio-
blastoma, small cell lung cancer, among others [118]. Interestingly,
responses of these types of cancer to treatments with AMPK activators,
like metformin and resveratrol, have also been evaluated [118].

3.3. Autophagy in diabetes

Obesity-related hyperglycemia leads to T2DM. Under this condition,
autophagy has been proposed as an anti-apoptotic process, counter-
acting glucotoxicity. For instance, when the rat pancreatic beta cell line
INS-1 is cultured in high glucose conditions, increased caspase 3 acti-
vation and reduced viability were observed in cells treated with ca-
thepsin inhibitors, which disrupt autophagic/lysosomal degradation
[119]. Nevertheless, studies have shown that autophagy plays a dual
role in the survival of beta cells, which may depend of the levels of
glucose that the cells are exposed to. Down regulation of the regulatory-
associated protein of mTOR (RAPTOR), a protein required for mTORC1
activity, increases TUNEL labeling of B-cells as a consequence of in-
creased autophagy [120]. In addition, augmented autophagy by in-
hibition of pancreatic mMTORC1 produces alterations in insulin proces-
sing, leading to decreased insulin serum levels in mice [120]. However,
pancreatic beta cells from ATG7/ATG5 knockout mice show a higher
proinsulin/insulin ratio, which has been attributed to autophagic de-
gradation of pro-insulin [121]. Therefore, under normoglycemic con-
ditions, mTORCI is required to maintain the homeostasis of B-cells in
an autophagy-independent manner. Notwithstanding, under hypergly-
cemia conditions, activation of autophagy has been attributed a pro-
tective role.

Similarly to glucotoxicity, autophagy is also implicated in condi-
tions of lipotoxicity. Pancreatic (-cells treated with cholesterol show
increased LC3-I to LC3-II conversion, along with a higher accumulation
of autophagosomes when cells are treated with E64d/pepstatin A
[122]. Other studies have shown that autophagy is induced by the ER-
stress pathway, but not the mTORC1 pathway [123], as a rapid and
sustained response mechanism that favors (-cell survival [122]. Fol-
lowing ER stress, glucolipotoxicity, induced by a combination of glu-
cose and palmitate, induces autophagy via TFEB in primary B-cells
[124]. Since obesity-derived glucolipotoxicity causes death of pan-
creatic in f3-cells, autophagy impairment may be a crucial factor to
promote T2DM to type-I diabetes (TIDM) conversion, which is char-
acterized by hyperglycemia as a result of serum insulin deficiency. In-
deed, an example of this is the development of diabetic nephropathy,
which is associated with decreased levels of autophagy via arrestin-
dependent inhibition of ATG7 [125].

A mutation that activates the Kir6.2 channel generates a T1DM
mouse model unable to secrete insulin. This model is characterized by
marked hyperglycemia and diminished autophagy, as reflected in ac-
cumulation both of LC3-II and p62/SQSTM1 and reduction of Beclin 1.
Interestingly, the number of autophagic vacuoles is restored when
BV59M mice are treated with sulphonylurea, which blocks the Kir6.2
channel and normalizes glycemia [126], thereby suggesting that de-
creased levels of autophagy are a direct result of hyperglycemia in
T1DM. Furthermore, studies have shown that vitamin D-induced au-
tophagy increases Beclin 1 levels and prevents the decrease in insulin
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secretion in a mouse model of streptozotocin-induced T1DM [127],
showing that insulin secretion is an autophagy-dependent process
[127].

3.4. Autophagy in cardiovascular diseases

Different studies have shown that autophagy is involved in the de-
velopment and progression of different CVD, such as atrial fibrillation,
I/R, cardiac hypertrophy, HF and atherosclerosis, among others
[54,128-133]. Indeed, several studies show that autophagy might have
beneficial or detrimental roles depending on the stage and type of
cardiovascular disease considered [8,131,132].

A beneficial function of autophagy has been observed in I/R, cardiac
hypertrophy and atrial fibrillation. In conditions of in vitro hypoxia
(simulated ischemia), autophagy can be activated as an adaptive me-
chanism providing essential nutrients and removing damaged mi-
tochondria [134]. In fact, inhibition of Beclin 1 by the cardiac peptide
urocortin, increases cardiomyocyte death upon ischemia, suggesting a
pro-survival role of autophagy [135]. In chronic ischemia, cardiac
myocytes express increased levels of lysosomal enzymes, like cathepsins
B and D, along with autophagosome vesicles, reflecting a higher au-
tophagic state. Augmented autophagy in chronic ischemia is required to
sustain cell viability by increasing damaged mitochondrial recycling,
thereby diminishing apoptosis and tissue damage [136]. Induction of
autophagy has also been observed during ischemic preconditioning.
Moreover, when autophagy is inhibited with an ATG5 dominant ne-
gative (ATG5 K130R), the protective effects of preconditioning are
blunted [136,137]. In cardiac hypertrophy induced by transverse aortic
constriction (TAC), a reduction in the number of autophagic vacuoles
can be observed, suggesting that basal autophagy is required to main-
tain cardiac homeostasis in rats [138]. On the other hand, cardiac-
specific deficiency of ATG5 promotes cardiac hypertrophy, left ven-
tricular dilatation and contractile dysfunction in mice [139]. Moreover,
Beclin 1 haploinsufficient mice, submitted to TAC-induced overload
stress, show decreased cardiac pathological remodeling compared to
control animals. Thus, this study suggests that autophagy is required for
cardiac hypertrophy [140]. Post-operatory atrial fibrillation (POAF)
occurs in 20-30% of patients undergoing coronary artery bypass sur-
gery [141]. It has been reported that autophagy is activated in human
right atrial appendages collected during cardiac surgery [142]. How-
ever, impairment of the autophagic flux was associated with increased
occurrence of POAF [143]. All together, these studies suggest that au-
tophagic flux has a protective role in POAF patients.

On the other hand, detrimental actions of autophagy have been
described during reperfusion after ischemia. In cultured neonatal car-
diomyocytes exposed to simulated I/R, inhibition of autophagy with 3-
MA enhances cell viability [135]. Moreover, Beclin 1 knockdown im-
paired autophagosome formation and increased cell death in a mouse
model of I/R [144]. In a model of pressure overload, the level of au-
tophagic activity correlated with the magnitude of hypertrophy and the
rate of transition to HF [140]. Indeed, cardiomyocyte-specific over-
expression of Beclin 1 amplified the pathological remodeling response
[140,145]. Conversely, Beclin 1 haploinsufficiency partially protected
against HF [140]. These studies suggest that autophagy can be a ma-
ladaptive response in conditions of severe pressure overload. Analysis
of human cardiac tissue confirmed that autophagic cell death con-
tributes to the pathogenesis of HF [146,147]. Patients with dilated
cardiomyopathy show proteasomal dysfunction, which redirects au-
tophagy to degrade preferentially the sarcomere structure, leading to
autophagic cardiomyocyte death [146]. Autophagy activation also en-
hances the development of atherosclerotic plaques by promoting sur-
vival and dedifferentiation of vascular smooth muscle cells (VSMC)
[148-151]. Moreover, excessive autophagic activity can provoke
plaque destabilization, thrombosis and acute clinical events [152].
These data suggest that autophagy contributes to the development of
atherosclerosis.



D. Pefia-Oyarzun et al.

So far, there are no clinical trials showing intervention of autophagy
to prevent CVD or decrease the injury associated with CVD. However,
in a double blind randomized study, hydroxychloroquine (a well-known
autophagy inhibitor) potentiated atorvastatin effects on dyslipidemia
[153]. In another study hydroxychloroquine also showed antiplatelet
properties [154]. However, the role of autophagy was not assessed in
those studies. Further research is required to investigate the role of
autophagy as a potential target to treat CVD.

3.5. Autophagy in obesity

The role of autophagy in obesity is currently controversial and ap-
pears to be tissue and cell-specific. Consistent with its role in the
clearance of dysfunctional mitochondria and protein aggregates, the
most frequently reported association between autophagy and disease
(including obesity) implies an impairment or deficiency in the process
[155]. However, in adipose tissue from obese subjects upregulation of
autophagy genes is observed, and it has been proposed that adipose
tissue dysfunction is associated with activated autophagy [156]. In
support of this view, mice with adipocyte-specific autophagy inhibition
are protected from high fat diet-induced metabolic impairment [157].
In addition, several studies have determined that elevated autophagy is
associated with adipose tissue features involved in enhanced obesity-
related morbidity, such as visceral distribution, adipocyte hypertrophy,
inflammation and presence of T2DM [158-160]. However, as men-
tioned above, not all studies agree, and autophagy downregulation has
been observed in the adipose tissue of mice on high fat diet, with au-
tophagy suppression being linked to elevated inflammatory gene ex-
pression and ER stress [161]. The controversy may be related to the
heterogeneous cell composition of adipose tissue and the type of cell
that undergoes the autophagy changes. As described in previous sec-
tions, a relevant causal factor in the development of adipose tissue
dysfunction is the infiltration of proinflammatory macrophages. Con-
trary to what is described for adipocytes, the work by Kang et al. ob-
served that inflammatory stimuli downregulate autophagy in macro-
phages and autophagy inhibition elevates oxidative stress in these cells
[162]. This study also shows that, in contrast to the effect of adipocyte
autophagy inhibition mentioned above, macrophage-specific autop-
hagy gene knockout exacerbates high fat diet-induced insulin resistance
and metabolic derangements.

Autophagy plays a distinct role in other organs that are relevant to
the cardiometabolic consequences of obesity. For HepG2 cells treated
with saturated fatty acids, an in vitro model of obesity-induced liver
damage, a decrease in autophagy flux is observed, which is confirmed
in high fat-diet and genetically obese mice [163,164]. Autophagy re-
storation in livers of obese mice improves obesity-induced impairment
in insulin signaling and sensitivity and reduces obesity-induced ele-
vated liver ER stress, liver fatty acid infiltration and fat content, as well
as serum insulin levels and glucose tolerance [163]. Autophagic flux is
also inhibited in pancreatic B-cells exposed to fatty acids, thus sup-
pressing insulin secretion [165,166]; however, an in vivo study in high
fat-diet mice revealed elevated autophagic flux in these cells [167].
Altogether these studies indicate that further research is needed to
better understand the role of autophagy in obesity in the different tis-
sues.

The impact of obesity on autophagy, or the effects of autophagy
modulation on obesity-related diseases is organ- and context- depen-
dent. Therefore, formulating a direct autophagy-based therapy in obe-
sity or obesity-induced disorders is highly complex. Interestingly, a
number of pharmacological agents already available on the market
have been shown to modulate autophagy or its associated signaling
pathways [118]. One such case related to obesity-associated disorders is
the indirect AMPK activator metformin, a widely used drug in diabetes
[168]. Moreover, the carbohydrate trehalose, used in the pharmaceu-
tical and food industries, has been shown to increase autophagy [169]
and its administration to systemically autophagy haploinsufficient mice
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with impaired metabolic indicators (due to their crossing with geneti-
cally obese mice) enhances their autophagic flux and improves their
metabolic profile [170]. Other commonly-used supplements in obesity
and related disorders include caffeine, that inhibits mTOR signaling
[171,172] and resveratrol, a polyphenolic compound that activates
sirtuin 1 [173,174]. Notably, the two main strategies in obesity man-
agement, namely caloric restriction and exercise, have also been shown
to induce autophagy [175,176]. Martinez-Lopez et al. recently reported
a number of beneficial metabolic and body composition effects in a
mouse model of fasting between meals, that were associated with in-
creased autophagy [177]. Overall, more research is needed to de-
termine if the effects of these compounds or approaches involve au-
tophagy modulation and thus whether we should focus on more direct
modulation of autophagy pathways specifically oriented to wards
obesity-related diseases. In general terms, autophagy is expected to be
an adaptative mechanism for cells to dispose of damaged structures
arising from obesity-related stress, mainly lipotoxicity. Autophagy may
be induced with this purpose; however, the continuous presence of the
stress situation may surpass the beneficial effect and induce cell death,
given the extensive crosstalk between autophagy and the numerous cell
damage and death pathways [178].

4. Oxidative stress and non-communicable diseases
4.1. Intracellular production of oxidant molecules

ROS are formed upon incomplete reduction of molecular oxygen
and they are characterized by their elevated chemical reactivity [179].
They include free radical (i.e. O,") and non-radical species (i.eeH>0,)
[180]. In addition to ROS, further important reactive species are in-
volved in the reduction-oxidation (redox) homeostasis including RNS,
such as nitric oxide (‘(NO) and peroxynitrite (ONOO-) [179]. Accumu-
lation of oxidative species is controlled by antioxidant systems, en-
zymes and substances, such as catalase, glutathione, vitamin A, vitamin
C and vitamin E, that chemically react with ROS/RNS to quench and
inactivate these radical species [179].

Mitochondria have been proposed to represent the largest source of
intracellular oxidant species [181]. Mitochondrial ROS (mtROS) are
generated by the partial reduction of molecular oxygen to O, and these
events occur mainly within complex I and III of the electron transport
chain, which is located in the inner mitochondrial membrane [182].
Under physiological conditions, mitochondria produce very low levels
of ROS. However, alterations in the electron transport chain integrity or
activity results in a robust increases in mtROS generation, leading to
different diseases, such as cancer and T2DM [183]. Another source of
ROS is generated by the NADPH oxidase, NOX, family. NOXs catalyze
the transfer of electrons from NADPH to molecular oxygen, generating
0,7, primarily used by phagocytic cells as a defense mechanism against
pathogens [184]. The NOX family contributes to several physiological
processes, including skeletal muscle adaptation to physical exercise
[185,186], learning, memory [187] and vascular regeneration [188],
among others. Additionally, xanthine oxidase (XO), which has been
linked to western diet-induced aortic stiffness [189] and a pro-
thrombotic state in mice [190], catalyzes the conversion of hypox-
anthine to uric acid, generating O, as a byproduct [191]. Nitric oxide
synthase (NOS) enzymes catalyze the oxidation of r-arginine to L-ci-
trulline and release nitric oxide (NO) [192], which is important in
several biological functions, such as cardiac contractility and vasodi-
latation [193]. However, O,- can rapidly react with NO to form
ONOO —, a very powerful oxidant and nitrating agent that can damage
DNA, proteins and other cellular structures and in doing so is im-
plicated in inflammation, arteriosclerosis and CVD [194] (Fig. 4).

4.2. Oxidative stress: breaking the ROS/RNS balance

Oxidative stress arises as the consequence of a perturbation in the
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Fig. 4. Oxidative stress and non-communicable diseases. (A) Intracellular sources of oxidant molecules involve both enzymatic and non-enzymatic processes. Nitric
oxide synthase (NOS) uses O, for the oxidation of arginine to citrulline, releasing the gas nitric oxide (NO). NADPH oxidase (NOX) and xanthine oxidase (XO)
catalyze the formation of superoxide (Oy-) from O,, while the mitochondria release O2:- as a byproduct of the electron transport chain. Oy can react non-
enzymatically with NO to form peroxynitrite (ONOO"), which in turn dissociates into the radicals NO, and OH". However, O~ can also be enzymatically dismutated
by the superoxide dismutase (SOD) to generate H,0,-H,0, may either be converted into the radical OH by the Fenton reaction involving the oxidation of Fe?™ to
Fe®*, or be reduced into H,0 by the catalase and the glutathione systems. (B) High oxidant levels disrupt redox homeostasis, which generates genotoxicity (nu-
cleotide modifications, DNA single and double strand breaks), and inhibition of DNA repair by inactivation of the FAPY glycosylase, proteotoxicity and lipotoxicity.
Also, lipid peroxidation generates a chain reaction by which the oxidized unsaturated phospholipids generate a second lipid peroxyl radical. (C) Oxidative stress
participates in tumor growth by altering the genome and increasing proliferation via enhanced MAPK signaling in cancer stem cells. (D) Cardiomyocytes with
oxidized ryanodine receptors (RyR) constantly release Ca?>* leading to uncontrolled contractions and arrhythmia. (E) Oxidation in pancreatic B cells alters insulin
release and renders the cells more susceptible to death. (F) Oxidative stress induces hypertrophy of adipocytes that reduce GLUT4 translocation and increase release
of adipokines. (G) Excessive oxidation leads to proliferation and differentiation in preadipocytes, increasing fat mass. (H) High oxidant levels in skeletal myocytes
produce insulin resistance by inactivation of the Akt pathway.
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pro-oxidant/anti-oxidant equilibrium that tilts the balance to favor the
accumulation of the pro-oxidant species and promote oxidative damage
to different biomolecules [179]. Oxidative stress directly induces DNA
damage by several mechanisms, including nucleotide base modifica-
tion, single strand break, double strand break, and indirectly by in-
hibiting DNA-formamidopyrimidine (FAPY) glycosylase [195]. Fur-
thermore, oxidative stress alters the mRNA translational process and
impairs protein synthesis, altering cellular proteostasis [196]. In addi-
tion, oxidative stress can impair protein folding, causing fragmentation
and loss of protein function [7]. These oxidized proteins are recognized
and degraded by the cell; however, when exacerbated protein oxidation
occurs, the toxic products can accumulate leading to cellular dysfunc-
tion [7]. Finally, lipid oxidation by ROS leads to the formation of lipid
hydroperoxides and aldehydes, which contribute to cellular toxicity
[197]. Lipid oxidation of plasma and organelle membranes alters
membrane permeability and fluidity [197]. The intracellular accumu-
lation of these oxidized biomolecules has been implicated in the onset
of different NCDs, including cancer, diabetes and CVD [6].

4.3. Oxidative stress in cancer

Oxidative species have been related to the initiation, development
and maintenance of cancer [198]. Exacerbated ROS/RNS production
modifies nucleotides and chromatin-bound proteins, inducing mutation
in DNA and genomic instability, which ultimately leads to cancer in-
itiation [199]. It has been suggested that oxidative species contribute to
cancer by either acting as a second messenger or by promoting muta-
tion of genomic DNA [199]. Under oxidative stress, the mitogen acti-
vated protein kinase (MAPK) is activated, thereby promoting tumor
growth [200]. While reactive species have been associated with cancer,
an exacerbated antioxidant system might also favor cancer develop-
ment [201]. Indeed, inhibition of glutathione and thioredoxin anti-
oxidant pathways leads to cancer cell death, suggesting an important
role of these antioxidant systems in tumor progression [202]. However,
the molecular mechanisms involved in this process are still poorly un-
derstood.

Administration of the antioxidant vitamin C, in combination with
cisplatin chemotherapy, in non-small cell lung cancer patients, shows a
slightly improved response to chemotherapy that, however, is not sta-
tistically significant [203]. Same experiments performed with P-car-
otenoids and vitamin E showed similar results [204]. Better results
were obtained with vitamin A co-treatment in breast cancer, resulting
in nearly two-fold improved responses response to chemotherapy
[205]. Despite that the role of antioxidants in slowing tumor growth is
still controversial, the major contribution of antioxidants seems to be
the protection of non-cancer cells against chemotherapy side effects
[206,207].

4.4. Oxidative stress in obesity and diabetes

Overweight and obesity are the main causes of insulin resistance,
T2DM and metabolic syndrome [208]. Oxidative stress plays a causal
role in obesity development [209]. Indeed, oxidative stress increases
the mass of adipose tissue by inducing proliferation, differentiation and
hypertrophy of pre-adipocytes [210-212]. Studies have shown that
local oxidative stress can induce insulin resistance. Oxidative stress
triggered by H,O, treatment generates insulin resistance in skeletal
muscle cells isolated from lean Zucker rats [213], while oxidative stress
induces cell dysfunction and death in pancreatic B-cells [214,215]. Both
insulin-resistance and f-cell dysfunction lead to T2DM [208]. More-
over, insulin-resistant mice exhibit higher levels of NOX2 and a de-
crease in the reduced/oxidized glutathione ratio (GSH/GSSG) [216].
Intriguingly, the treatment with apocynin, an inhibitor of NOX2, pre-
vents insulin-resistance induced by diet [216]. On the other hand,
skeletal muscle from mice exposed to high fat diet exhibit insulin re-
sistance and increased generation of H,O, in the mitochondrial inner
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membrane. The attenuation of mitochondrial H,O, by overexpression
of catalase in the mitochondria completely preserved insulin sensitivity
[217]. These studies suggest that exacerbated levels of ROS/RNS are
involved in the onset of obesity and T2DM.

Given the evidence of an association between oxidative stress and
the development of obesity-related diseases, many have proposed the
use of antioxidant therapies. The study of this alternative is highly
complex given the wide diversity of candidate antioxidant agents, dif-
ferent antioxidant mechanisms (that in many cases involve not only
antioxidant but also anti-inflammatory and other effects), and different
possible outcomes. In support of such therapies, a recent study by
Okuno et al. [218] evaluated the metabolic features of obese mice in
which ROS production was either eliminated or exacerbated locally in
white adipose tissue. The results revealed that inhibition of oxidative
stress was associated with a favorable metabolic profile and healthy
adipose expansion, whereas fat ROS-augmented mice exhibited the
opposite phenotype, with insulin resistance and lipid accumulation in
the liver. However, other studies have reported controversial results.
Alcala et al. [219] studied the effect of antioxidant (vitamin E) sup-
plementation during mild weight gain in mice, and observed that the
intervention induced a number of undesired effects. The authors argued
that inhibiting ROS impaired physiological signaling events normally
triggered in response to weight gain, rendering the animals insulin re-
sistant and with deleterious ectopic lipid accumulation. Based on these
and other negative results [220], the authors caution against anti-
oxidants as a preventive therapy (before the actual oxidative insult is
established) due to the relevance of the oxidative balance for main-
taining homeostasis. Clinical trials using antioxidant therapies have
failed to improve insulin resistance and other obesity-related disorders,
and even induce adverse outcomes [220]. Together with the con-
troversial observations in animal studies, these results suggest that
there is still no evidence to support the use of antioxidant therapy for
the treatment of insulin resistance and other obesity-related metabolic
disorders in individuals without nutrient deficiencies [221,222].

4.5. Oxidative stress in cardiovascular diseases

Relevant studies have proposed that ROS/RNS induce permanent
oxidation of different intracellular proteins, such as ion channels and
transporters including the L-type channel, Na*/K* exchanger and
ryanodine receptor, all of which play crucial roles in pathological car-
diac remodeling [223]. For example, redox modification of the ryano-
dine receptor type 2 (RyR2) Ca®* channel contributes to chronic sar-
coplasmic reticulum Ca®* leakage, arrhythmia and systolic force
reduction [224]. Also, the interplay between ROS and Ca%™ signals
contribute to angiotensin II-induced hypertrophy in adult rat cardio-
myocytes [225]. Furthermore, recent studies have shown that over-
expression of specific antioxidants in cardiac mitochondria decreases
diabetic cardiomyopathy [226] and prevents ventricular remodeling
after myocardial infarction [227]. Indeed, NOX2 contributes to the
development of myocardial contractile dysfunction and interstitial fi-
brosis during pressure overload in mice [228]. Other studies have
shown that down-regulation of NOX4 ameliorates cardiac dysfunction
induced by lipopolysaccharides [229] and prevents angiotensin-II-in-
duced cardiac fibroblast proliferation and migration in adult mice,
suggesting a critical role of NOX4 in the maintenance of heart home-
ostasis [230]. The pathophysiological roles of the NOX family and
mtROS might overlap given that different ROS sources contribute to
cardiac dysfunction and crosstalk between the different NOX family
members and mtROS might occur in pathological conditions. Interest-
ingly, crosstalk between NOX family and mitochondria has been pro-
posed in others cell types [231]. Altogether these studies suggest that
oxidative stress is implicated in functional and structural cardiac
changes, which culminate in cardiac pathological remodeling, fibrosis
and contractile dysfunction.

The Prevencion-con-Dieta-Mediterranea

(PREDIMED)  study
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[232,233] as well as other clinical trials [234-236] showed that Med-
iterranean-style diets can cause a significant decline in CVD. The ben-
eficial effects of Mediterranean-style diets may be because of the in-
creased intake of polyphenolic flavonoids, carotenoids, omega-3 fatty
acids, antioxidants, vitamins and minerals as well as essential and non-
essential amino acids [237,238]. In small clinical trials, administration
of antioxidants showed beneficial cardiovascular effects. Administra-
tion of vitamin E improves peripheral vascular function in patients with
diabetes mellitus and Haptoglobin 2-2 genotype [239], resveratrol de-
creases arterial stiffness in patients with T2DM [240], and N-acet-
ylcysteine (NAC) with nitrate therapy reduces myocardial infarct in
patients undergoing primary percutaneous coronary intervention
[241]. However, when large clinical trials or meta-analysis was per-
formed, a lack of positive clinical evidence in the prevention of CVD
was found. A meta-analysis study of 13 randomized controlled trials
evaluated the effect of vitamin E in the prevention of stroke. The study
concluded that the administration of vitamin E showed was benefitial in
preventing stroke of any type, including ischemic stroke, hemorrhagic
stroke, fatal stroke and non-fatal stroke [242]. Moreover, other meta-
analysis studies showed that vitamin E and beta carotene have no effect
on the cardiovascular mortality and morbidity [243,244]. In two ran-
domized controlled trials, Vitamin E, vitamin C or grape-seed poly-
phenols did not significantly alter the rate of blood pressure variation
[245]. Therefore, the available evidence suggests that the positive ef-
fects of antioxidants in the prevention of CVD was associated with the
consumption of antioxidant rich foods rather the supplementation of
antioxidants.

5. Crosstalk between inflammation, oxidative stress and
autophagy

5.1. Autophagy and oxidative stress

Studies have suggested that ROS could modulate the classic AMPK-
mTOR autophagy signaling axis. It was shown that p53 promotes the
expression of antioxidant proteins, such as sestrins, to alleviate oxida-
tive stress [246]. ROS interact with AMPK, which phosphorylates and
activates the TSC1/TSC2 complex to inhibit mTORC1 and thereby in-
duce autophagy [247]. AMPK activity can be reduced by the treatment
with NAC, a ROS scavenger [248]. Furthermore, the ser/thr-kinase
ataxia telangiectasia mutated protein (ATM) is also involved in the
activation of AMPK and inhibition of mTORC1, thus stimulating au-
tophagy in response to NO [249]. ROS also activate Beclin 1 dependent
autophagy, as BNIP3, a protein that is upregulated by HIF-1a, prevents
Bcl-2-mediated inhibition of Beclin 1 [250].

In addition, the autophagic substrate p62/SQSTMI1 is over-ex-
pressed (by increased synthesis, not decreased degradation) in response
to NRF2 activation, an anti-oxidant transcription factor. p62/SQSTM1
promotes the autophagy-dependent degradation of the Kelch-like ECH-
associated protein 1 (KEAP1) [251], an adaptor protein required for the
proteasome-dependent degradation of NRF2 [252]. Therefore, p62/
SQSTM1 is proposed to participate in a positive-feedback loop to
maintain the NRF2 anti-oxidant effect by increasing autophagy [251]. It
is important to consider that mitochondria (and particularly dysfunc-
tional mitochondria) are the main source of ROS in the cell [253]. Thus,
this p62/SQSTM1 positive-feedback loop may help protect against
oxidative stress-dependent cell death by increasing mitophagy.

ROS could also induce mitophagy in a direct manner by provoking
mitochondrial oxidative damage [254]. Furthermore, H,O, levels in-
crease after starvation-induced autophagy, allowing direct oxidation of
ATG4 at Cys-81 [255]. This modification on ATG4 decreases its activity
and leads to accumulation of LC3-II, due to diminished removal of PE
[255].
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5.2. Autophagy and oxidative stress-dependent cross-talk with
inflammation in cancer

Recent studies show that tumor cells promote microenvironmental
changes that favor autophagy and are required for sustained tumor
growth. Ras-depletion in Drosophila promotes generation of LC3 posi-
tive dots not only in tumor surrounding tissues, but also in distant tis-
sues like muscle, gut and adipose tissue, indicative of non-cell-auton-
omous autophagy induction [256]. Autophagy sustains tumor growth,
since the volume of the tumor is effectively reduced when treated with
the autophagic flux inhibitor chloroquine [256]. The pro-survival role
of autophagy may involve the simultaneous activation of NRF2 (oxi-
dative stress pathway) and NF-kB (Inflammatory pathway), which in-
crease p62/SQSTM1 levels, thereby promoting the autophagic response
[257]. Again, transcriptional increases in p62/SQSTM1 are indicative
of a higher autophagic state, and should not to be confused with p62/
SQSTM1 accumulation by lysosomal dysfunction [93]. High-mobility
group box 1 (HMGB1) is also upregulated under oxidative stress, as the
result of activation of the NF-xB inflammatory pathway to prevent cell
death [258,259]. HMGBI1 stimulates autophagy by competing with Bcl-
2 for interaction with Beclin 1, thereby increasing resistance of leu-
kemia cells to chemotherapy [260,261]. Cancer cells further amplify
this autophagy mediated-survival state by releasing a substantial
amount of superoxide (O5-) to the local surroundings [256]. However,
it should be noted that oxidative stress is tolerated to a certain
threshold level, above which autophagy functions in the opposite sense
to favor cancer cell death. For instance, excessive ROS production by
H>0, or 2-methoxyestradiol drives ATG5/ATG7/Beclin 1 dependent
death of transformed cells [262].

Additional studies regarding the crosstalk between autophagy and
ROS in the context of cancer involve immunogenic cell death (ICD). ICD
refers to the capability of dying cells to attract immune cells to promote
their degradation. This process is characterized by surface exposure of
calreticulin, ATP release and late apoptotic protein liberation
[263,264]. Over the past few years, Kroemer's group published a series
of articles that suggest a crucial role for autophagy in cancer cells by
modulating these processes. Syngeneic transplantable tumors treated
with mitoxantrone, an anthracycline used as chemotherapeutic agent,
release ATP as a “death signal” to recruit dendritic cells and cytotoxic T-
cells, ultimately leading to tumor cell death [265]. However, autophagy
impairment by silencing ATG5 and ATG7 abrogates ATP release, in-
creasing the survival of tumor cells in the presence of mitoxantrone
[265]. These results have been replicated also in a spontaneous mela-
noma model (not transplantable tumor) since the activation of the
oncogene braf in WT mice provokes a strong ICD response when treated
with mitoxantrone, a response that is abolished in Atg7-deficient mice
[266]. However, other studies show that oxidative stress-dependent
autophagy caused by treatment with hypericin, inhibits dendritic cell
maturation in contact with melanoma cancer cells, as reflected in de-
creased IL-6 release [267]. These apparently contradictory conclusions
may be due to differences between photodynamic therapy and che-
motherapy on ICD.

Altogether, the proposed pro-survival role of ROS-induced autop-
hagy acts in two coordinated manners: inside the cancer cell, autophagy
increases recycling of damaged molecules; while, outside the cancer
cell, autophagy modulates the immune response with the objective of
eliminating malignant cells.

5.3. Autophagy and oxidative stress-dependent cross-talk with
inflammation in cardiovascular diseases

Oxidative stress is involved in cardiac tissue damage during I/R and
ethanol exposition. In mice, oxidative stress in ischemic conditions
leads to a “protective” autophagy [268]. However under I/R injury
conditions, oxidative stress upregulated autophagy exacerbates cell
death [269]. By contrast, when the HL-1 cardiac muscle cell line is
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submitted to I/R conditions, increased rates of autophagosome forma-
tion are observed concomitant with a reduction in apoptosis [270]. On
the other hand, the acute exposition of mice to ethanol, which stimu-
lated autophagy in the heart, has been associated with cardiac apop-
tosis and malfunction [271]. In these conditions, pretreatment with
NAC improves cardiac function by reducing autophagy [271]. Damaged
mitochondria can be removed only by autophagy. As mentioned before,
mitochondria are thought to be the source of > 90% of intracellular
ROS [272]. Thus, any cardiac condition that affects the removal of
damaged mitochondria represents a potential link between ROS and
CVD. Parkin-deficient flies develop cardiomyopathy associated with
dysmorphic mitochondria and elevated levels of ROS [273]. Parkin-
deficient mice do not develop cardiomyopathy at least until 12 months
of age; however, they have a reduced survival and they develop larger
myocardial infarction [274]. In addition, cardiomyocyte-specific dele-
tion of mitofusin 2 (Mfn2) in mice disrupts the degradation of damaged
mitochondria by mitophagy inducing cardiomyopathy [275]. More-
over, the expression of the ROS scavenger catalase, at lower levels,
protects the heart, while expression at high levels exacerbates dilated
cardiomyopathy [276]. An interesting mechanism of crosstalk between
autophagy, ROS and inflammation in CVD has been proposed in a study
showing that DNA from defective mitochondria, which escape from
lysosomal degradation by autophagy leads to a Toll-like receptor 9-
mediated inflammatory response causing heart failure [277]. In addi-
tion, the exposure to LPS in THP-1 human macrophages induced LOX-1
expression, mitochondrial DNA damage, ROS, autophagy and the
NLRP3 inflammasome. Both the use of ROS inhibitors and autophagy
inducers decrease the expression of the NLRP3 inflammasome. By
contrast, autophagy inhibition increases the expression of the NLPR3
inflammasome [278]. Another study, showed that ATG5 haplodefi-
ciency in a model of angiotensin II-induced cardiac injury decreased
mitophagy and increased mitochondrial ROS production associated
with NF-kB activation in macrophages, which increased both the ex-
pression of inflammatory cytokines and macrophage infiltration [279].
Recently, TLR4 activity, which is important in innate immunity and
inflammation, has been associated with the development of cardiac
dysfunction. Thus, TLR4-deficient mice subjected to high fat diet
showed decreased levels of ROS, cell death, intracellular anomalies in
Ca®* signaling and improved cardiac function compared with wild type
animals. This improvement was associated with an increased level of
autophagy in a NF-kB/JNK-dependent manner [280].

5.4. Autophagy and oxidative stress-dependent cross-talk with
inflammation in diabetes and obesity

Inflammation is a common feature in obesity, and is triggered by a
positive energy balance. At first this outcome is thought to be physio-
logical in order to restore a new homeostatic state [82]. However, upon
chronic over nutrition, the inflammatory response becomes maladap-
tive, leading to complications, such as insulin resistance and ultimately
T2DM [81]. Obesity and inflammation are closely associated with the
production of ROS and elevated markers of oxidative stress. As re-
viewed elsewhere [281], oxidative stress further activates inflammatory
mediators, such as NF-kB and JNK, and interferes with insulin signaling
pathways, also generating insulin resistance and T2DM, in addition to
damage in multiple tissues as observed in animal models and humans.
The excessive production of ROS in obesity is thought to be caused by
adipose tissue macrophage infiltration and the ensuing increased re-
lease of pro-inflammatory cytokines, as well as greater expression and
activity of NOX and mitochondrial H,O, production.

One of the main mechanisms through which obesity and T2DM lead
to cardiometabolic derangements is via the increase in circulating free
fatty acids, which leads to fat deposition and lipotoxicity in metaboli-
cally relevant organs. Thus, studies showed that a high exposure to li-
pids elevates the production of ROS and induces NOX2 activity [282].
Importantly, NOX2-derived Oy- may decrease autophagosome
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clearance by impairment of the lysosomal vacuolar ATPase function
through oxidative modifications, which prevent lysosomal acidification
and pH-dependent enzymatic activity [283]. Other studies have sug-
gested that saturated fatty acid exposure, particularly to palmitic acid,
induces autophagy through a mTOR-independent pathway in mouse
embryonic fibroblasts (MEFs), HepG2 and human gastric cancer cells
(MKN45) [284,285]. Fatty acid-induced mtROS production and/or
protein kinase C (PKC) activation may mediate autophagy activation,
which targets dysfunctional mitochondria or other damaged cell
structures as an acute mechanism for cell survival [284,286]. However,
chronically elevated autophagy can exceed the lysosomal capacity,
impairing autophagic flux. The mechanism by which this impairment
occurs has not been elucidated yet.

In obesity-induced inflammation and insulin resistance, elevated
free fatty acid availability and dysregulated adipokine synthesis may
act as an ER stress signal within the adipocyte. ER stress is directly
related to induction of autophagy, as revealed by higher levels of ER
stress markers upon exposure to the saturated fatty acid palmitate in
3T3L1 adipocytes, along with increased levels of autophagic flux [287].
Consistent with this finding, impaired autophagy has been observed in
different cell lines with elevated pro-inflammatory markers, ER stress
[287] and elevated mitochondrial ROS [27]. As a unifying model, it has
been proposed that the induction of autophagy may act in response to
ER stress as a protective mechanism to attenuate the damaging response
in metabolically challenged cells.

Other studies support the hypothesis that autophagy elevation is an
adaptive mechanism in the metabolic deregulation that occurs within
the inflammatory and lipotoxic environment of obesity and T2DM. In
the heart, lipid deposition leads to deleterious effects on myocardial
structure and function. Lipid overload-induced oxidative stress and
decreased autophagic turnover may contribute to cardiac dysfunction
in obesity [288]. In skeletal muscle, excess lipid availability decreases
insulin sensitivity, an effect that has important consequences for whole
body glucose metabolism [289]. The preferential use of fat as an energy
source by skeletal and cardiac muscle tissues generates more H,O» and
a number of free radical-producing lipophilic fatty acid-derived inter-
mediates as compared to the glycolytic pathway [281], which re-
presents a short-term adaptive response to the reduction in insulin
signaling. However, this different “redox signature” generated by fat as
opposed to carbohydrate utilization becomes detrimental if the stimulus
is chronic, as is the case for obesity and T2DM.

Defects in pancreatic autophagic flux and elevated oxidative stress
are observed in diabetic patients [290]. Autophagy is also relevant in
the maintenance of normal pancreatic 3-cell function, and additional
studies indicate that it may prevent the effects of inflammatory med-
iators in obesity and T2DM [291,292]. Increased autophagy, observed
upon exposure to high fat diet-induced insulin resistance and T2DM
represents an adaptive response to reduce ER stress [167,291].

Lipotoxicity in the liver becomes apparent as hepatic steatosis and
non-alcoholic fatty liver disease, both highly relevant pathologies as-
sociated with obesity-induced metabolic disorders and with the devel-
opment of insulin resistance and T2DM [293,294]. The liver is parti-
cularly susceptible to visceral obesity, since the release of free fatty
acids and pro-inflammatory factors drains directly into the portal cir-
culation. Numerous studies have observed that hepatic autophagy flux
is downregulated, while oxidative and ER stress is elevated in models of
obesity and lipotoxicity [295,296]. Mice with liver impaired autophagy
show insulin resistance and elevated ER stress [163].

High fat diet-induced lipotoxicity also results in autophagy im-
pairment in the kidneys, yielding an accumulation of ubiquitin-positive
protein aggregates [297]. These mice are unable to induce autophagy
upon lipid overload, elevating mitochondrial dysfunction and in-
flammasome activation. Autophagy protects kidneys from lipotoxicity
in obesity, since high fat-diet mice with kidney-specific autophagy in-
hibition showed mitochondrial dysfunction, macrophage infiltration,
inflammation and fibrosis not seen in control mice. Interestingly,
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Fig. 5. Interplay between autophagy, oxidative stress and non-communicable diseases. Oxidative stress, as a result of ischemia/reperfusion (I/R), hypoxia or li-
potoxicity triggers an autophagic response to counteract reactive oxygen species (ROS) production, mainly driven by signaling pathways (ATM, NRF2, ATG4).
However, when oxidative stress is excessive, autophagy becomes dysregulated by activation of stress response pathways (sestrins, p53, ER stress). Oxidative stress-
altered autophagy diminishes removal of dysfunctional structures and provokes inflammatory chronic diseases (ICD), thereby leading to inflammation. However,
oxidative stress also induces inflammation in a direct manner. Importantly, inflammation sustains oxidative stress and autophagy over time by activation of TLR and

JNK/NFkB pathways.

lysosomal phospholipid accumulation and autophagy impairment are
also observed clinically in obese as opposed to normal weight nephro-
pathy patients [297].

In summary, the metabolic derangements that occur as a con-
sequence of obesity and adipose tissue dysfunction involve alterations
in the inflammatory and redox states. Changes in autophagy are ob-
served in parallel, which are thought to be initially intended to protect
the cell from further damage. However, given the chronic nature of the
insult that obesity and dysfunctional adipose tissue represent, home-
ostasis mechanisms are overwhelmed, and the development of local and
peripheral insulin resistance leads to diabetes with major cardiometa-
bolic impairment.

The crosstalk between autophagy and oxidative stress, combined
with the resulting chronic inflammation and the development of NCDs
are depicted in Fig. 5.

6. General discussion

NCDs account for approximately 70% of the deaths worldwide and
generate extremely high costs to local governments [1]. Importantly,
many of these NCDs are mainly caused by environmental conditions
(i.e. food intake, tobacco use and lack of exercise, among others) and
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are, therefore, preventable [4]. In order to gain insight into NCDs
progression, this review focused on describing how NCDs are associated
with an oxidative/autophagic dysregulation in the target cells. More-
over, we proposed that inflammation constitutes a key link between
altered cell responses and NCDs progression.

Although autophagy and oxidative stress are generally viewed as
cell autonomous mechanisms, recent evidence suggests the two mod-
ulate intercellular behavior. Tumor cells communicate with each other
by releasing O,- to the environment, thereby increasing autophagy in a
non-cell-autonomous manner [256]. Curiously, inflammatory pathways
are implicated in sustaining this response over time by increasing the
transcription of several autophagy-related proteins [256]. Furthermore,
even though tumor cell autophagy attracts immune cells, it limits their
cytotoxicity, for example by inhibiting dendritic cell maturation [267].
Thus, tumor cells generate a pro-inflammatory microenvironment that
allows them to survive under harsh conditions, like nutrient deprivation
or hypoxia. In this respect, inflammation-induced autophagy not only
favors tumor growth, but also renders them resistant against ROS-re-
lated chemotherapeutic agents [111,112]. This apparently contradicts
observations showing that autophagy is required for immunogenic cell
death (ICD) in melanoma [265]. Since ICD relies on ATP release by
dying cells, differences could be explained by the use of different
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models or stages of cancer, or the induction of different types of oxi-
dative stress in response to chemotherapeutic agents.

Autophagy plays a dual role in cancer. First, based on the classic
studies of Beclin 1 haploinsuficiency [97], reduction in autophagy was
shown to promote the acquisition of malignant features and immune
cell evasion, thereby favoring tumor development. Then, growth of
tumor cells and resistance to hypoxia/nutrient depletion is sustained by
oxidative stress-dependent autophagy, in a positive feedback loop
supported by inflammatory responses.

On the other hand, several studies show that high circulating levels
of fatty acids initially induce autophagy; however, prolonged autop-
hagy activation surpasses the lysosomal degradation capacity, leading
to autophagy inhibition [284]. Without this autophagic defense-me-
chanism, cells become prone to lipotoxicity, which provokes oxidative
stress and elevates the levels of pro-inflammatory molecules. In parti-
cular, skeletal muscle cells reach their limit for beta-oxidation, hepa-
tocytes and adipocytes produce dangerous levels of ER stress, while
pancreatic islets cells show decreased insulin release [295]. All these
events contribute to explain disease progression from obesity to insulin
resistance and T2DM. Furthermore, hyperglycemia, as a result of in-
sulin resistance, leads to a collapse of the mitochondrial electron
transport chain in the heart, followed by excessive O,-, NO and
NOO-production [194]. In cardiomyocytes, oxidative stress damages
the DNA and activates poly ADP-ribose polymerase-1 (PARP-1), which
leads to increased NF-xB activity and the production of pro-in-
flammatory molecules, such as TNFa, ILs and several chemokines
[298], which in conjunction promote the development of diabetic
cardiomyopathy. On the other hand, high ROS/RNS levels in en-
dothelial cells and VSMC result in oxidation of LDL and atherosclerotic
plaque formation [194]. However, depending on the point of view,
autophagy may be either good or bad. From the cellular perspective,
autophagy counteracts mitochondrial dysfunction by increasing mito-
phagy, but, at a more systemic level, autophagy promotes plaque de-
stabilization, increasing atherosclerosis and coronary events [152].
Also, depending on the context, the kind of autophagy elicited by oxi-
dative stress may be either protective for the heart, as is the case during
ischemia, or detrimental, when the cardiac tissue is subject to I/R
[268]).

Therefore, although NCDs have in common the interplay between
autophagy, oxidative stress and inflammation, the contribution of each
of them to disease progression may vary. Thus, the use of NAC or vi-
tamin C/E to reduce oxidative stress, and trehalose or rapamycin for
autophagy modulation may be viewed as treatment options once the
disease is already established. Hence, the applicability of such regimens
needs to be evaluated case by case. However, pre-treatment with an-
tioxidants and autophagy modulators before disease onset may be
beneficial to prevent each NCD.
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