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The Stochastic Transport Dynamics 
of a Conserved Quantity on a 
Complex Network
Pablo Medina   1,2,3, Jaime Clark1,3, Miguel Kiwi   1,3, Felipe Torres1,3, José Rogan1,3 & 
Juan Alejandro Valdivia   1,3

The stochastic dynamics of conserved quantities is an emergent phenomena observed in many complex 
systems, ranging from social and to biological networks. Using an extension of the Ehrenfest urn model 
on a complex network, over which a conserved quantity is transported in a random fashion, we study 
the dynamics of many elementary packets transported through the network by means of a master 
equation approach and compare with the mean field approximation and stochastic simulations. By use 
of the mean field theory, it is possible to compute an approximation to the ensemble average evolution 
of the number of packets in each node which, in the thermodynamic limit, agrees quite well with the 
results of the master equation. However, the master equation gives a more complete description of 
the stochastic system and provides a probabilistic view of the occupation number at each node. Of 
particular relevance is the standard deviation of the occupation number at each node, which is not 
uniform for a complex network. We analyze and compare different network topologies (small world, 
scale free, Erdos-Renyi, among others). Given the computational complexity of directly evaluating 
the asymptotic, or equilibrium, occupation number probability distribution, we propose a scaling 
relation with the number of packets in the network, that allows to construct the asymptotic probability 
distributions from the network with one packet. The approximation, which relies on the same matrix 
found in the mean field approach, becomes increasingly more accurate for a large number of packets.

One of the most interesting and fundamental problem in physics is related to the understanding of how the 
reversible microphysics gives rise to irreversible thermodynamics. An important model that has contributed to 
this comprehension is the “Ehrenfest urn”1, that was proposed in 1907 and solved exactly2,3 in 1947. In this model, 
we have N marbles, or packets, that move randomly and in a conserved manner between two urns, so that at each 
time step a packet is selected at random and changed from the original to the other urn.

Here we elaborate on a generalization of the Ehrenfest model by Clark et al.4, in which a number of urns are 
interconnected as a complex network, and the marbles or packets can only jump to urns to which the first one has 
a directed connection in a conservative manner.

In this respect, there has been a large amount of published research about complex networks in areas as 
diverse as physics, biology, and social sciences5–8. Originally, the interest was on the topology of the networks, 
such as their characterization in terms of their connectivity distribution P(k). For example, the study of scale-free 
networks, which follow a power law ∼ α−P k k( )  for large values of k, became very popular9–18. Models based on 
preferential attachment seem to explain a diversity of power law exponents5,19–21. Another characterization of 
such networks involves the distribution of the shortest distance between nodes, and a noteworthy example are 
small-world networks22 that have short average distances. More recently, researches have began to study the topo-
logical evolution of these networks7,8, or as dynamical systems over which a certain quantity is transported9,23–37.

The generalization of the “Ehrenfest urn” to a complex network, as proposed by Clark et al.4, is an example of 
the nontrivial transport that can occur on a complex network38–41, and should have similar properties to traffic in 
cities, electric networks, etc.
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In this manuscript we construct the master equation that describes the evolution of the occupation number 
probability at each urn, and then compare the results with a stochastic simulation of the network of urns and the 
mean field approach proposed by4. The mean field theory approximation to the ensemble average evolution of 
the number of packets in each node agrees quite well with the results of the master equation, particularly in the 
thermodynamic limit. However, the master equation gives a more complete description of the stochastic system, 
and provides a probabilistic view of the occupation number on each node. Of particular relevance is the standard 
deviation of the occupation number at each node, which is not uniform for a complex network, and therefore 
provides an intriguing result from a statistical mechanics point of view.

Given the computational complexity of directly evaluating the asymptotic, or equilibrium, occupation number 
probability distribution; we propose a scaling relation with the number of packets in the network that allows to 
construct the asymptotic probability distributions from the network with one packet. Interestingly enough, the 
scaling approach requires the same matrix that is constructed for the mean field approach. We will notice that the 
approximation becomes increasingly more accurate as the number of packets becomes large.

Results
The model.  The “Ehrenfest urn” over a complex network, as generalized by Clark et al.4, describes the trans-
port of N packets between the M nodes of a directed network. At a given time t a random packet, which is at a 
node i, is chosen to move to one of the ki nodes to which node i is connected, i.e., in its outgoing set. Similarly, 
the incoming set of node i corresponds to the nodes that connect to node i. Hence, the dynamics of the packets is 
conserved, so that at a given time we have xi(t) packets at the ith node, with the restriction
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Here Ai,j = 1 if there is a directed connection from node i to node j, and 0 otherwise. The size of the outgoing 
set of the ith node is then = ∑k Ai j i j, . A stochastic simulation of the packet transport for N = 100 is plotted in 
Fig. 1(b), which shows that the system relaxes to an asymptotic state that is not uniform, e.g., the middle node has 
on average twice as many packets than the other 2 nodes. This results may have implications in many fields such 
as traffic in cities, lines in supermarkets, etc. Of course, we also see fluctuations around the mean asymptotic 
solution. This is much clearer in Fig. 1c where we display 10 simulations for the same network. Below, we find a 
way to describe these fluctuations, and in fact the whole probability distribution, with the help of a master 
equation.

Following the mean field approach proposed by Clark et al.4 one assumes that evaluating an ensemble average 
evolution 〈mi(t)〉 of xi(t), in the thermodynamic limit, is equivalent to assume that all the N packets move to a new 
node in a time N, so that the evolution equation for the ensemble average is
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The first term on the right represents the transport of the 〈mi〉 packets to the outgoing set of the ith node. The 
second term represents the packets that get transported to the ith node from all the nodes that have the ith node in 
their outgoing sets. Of course, this is properly normalized by the size of each of the outgoing sets.

For large N we can approximate this expression by a time derivative, so that we can write it in vectorial form as

→ →〈 〉 = 〈 〉
d
dt

t
N

tm m( ) 1 B ( ) , (4)

where 〈→m (t)〉 → {〈m1(t)〉, 〈m2(t)〉, ..., 〈mM(t)〉}, and B is the dynamical matrix whose elements are
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where δi,j is the Kronecker delta. Hence, given an initial condition, we can evaluate 〈→m(t)〉 by integrating the above 
equation, to obtain

t em m( ) (0) (6)t NB /→ →〈 〉 = 〈 〉

which can be obtained by diagonalizing the dynamical matrix B, such that

B V V, (7)1Λ= −

and writing
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→ →〈 〉 = 〈 〉− Λt e tm V V m( ) ( ) , (8)t N1 /

where Λ is the diagonal matrix of the eigenvalues {λ1, λ2, ..., λM} of B, and V is the matrix of column eigenvectors. 
Therefore, the time evolution of the particle number is dominated by the smallest nonzero eigenvalue λ, namely


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where R[ ]λ  is the absolute value of the real part of the λ. The eigenvalues of the matrix B give the timescales of 
the system, as studied in detail in ref.4 for different types of complex networks. Also from the λ = 0 eigenvector 
(t → ∞), we can evaluate the asymptotic ensemble average occupation number. Such eigenstate exists because
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=
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Figure 1.  (a) Three-node network, in which the arrows determine the directed connectivity of the network. 
(b) Time evolution of the number of packets at each node for a stochastic simulation using N = 100. We show 
the evolution for node 1 (red), 2 (blue), and 3 (black). The initial condition is m1(0) = N, m2(0) = m3(0) = 0. (c) 
The time evolution of the number of packets at each node for 10 stochastic simulations (similar to b), showing 
that the system evolves to an asymptotic state that presents fluctuations around a mean value (thick color 
lines) that can be obtained from the λ0 = 0 eigenvector of the B matrix as described in the text. The standard 
deviation around the mean (thin color lines) for each node is constructed analytically from the master equation 
as described in the text. The thick color lines correspond to the maximum and minimum value of the 10 
simulations for each node at each time.
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The eigenvalues for matrix B of the network of Fig. 1(a) are λ1 = −2, λ2 = −1, and λ0 = 0, hence the relaxation 
time of the system is τ = N. The evolution of the dynamics is shown as the continuous lines of Fig. 1(b). The 
asymptotic state can be recovered from the λ0 = 0 eigenvector v  = {1, 2, 1}/5, so that the asymptotic state is 
〈m1〉 = 〈m3〉 = N/4 and 〈m2〉 = N/2. The existence of such nonuniform asymptotic states is an interesting results 
in view of what we know about equilibrium statistical mechanics.

It is interesting to note that the M = 2 solution corresponds to the original “Ehrenfest urn” solution con-
structed by Marc Kac2,3. The mean field approximation improves as we increase N, however we cannot evaluate 
the fluctuations within this approximation, and we need to resort to a master equation for the probability of 
occupation.

Let us notice that the mean field evolution equation can be cast into a rate equation for the particle number 
variation, given by

∑〈 〉 = 〈 〉 − 〈 〉( )d
dt
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where pi,j is the transition probability of one packet from the i−th node to the j−th node. Notice that the conser-
vation of the particle number can be obtained directly from Eq. (10); indeed
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Replacing pi,j = Ai,j/(Nki) into the Eq. (10), we obtain
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which is equivalent to the mean field equation, since ∑ =A kj i j i,  in the last term.
Close to the steady state condition, Eq. (12) can be written as
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Therefore, for an undirected network (outgoing set is equal to incoming set of each node), a solution can be 
written as 〈mi〉 = Cki with = ∑C N k/ j j so that we satisfy τ∑ 〈 〉 =m N( )i i . Topologically, the connectivity distri-
bution determines the asymptotic state for the mean occupation number at each node 〈mi(t → ∞)〉. Therefore, for 
a scale free network we obtain a power law distribution for the asymptotic mean occupation number. However, for 
a directed network the analysis is not that trivial, and there seems to be no simple connection to a topological 
property of the network. We plan to analyze this in detail in a future manuscript.

The Master Equation.  We now construct the Master equation, that describes the evolution of the probabil-
ity of occupation at each of the nodes. We start by defining the vector n→ = [n1, n2, ..., nM] that represents a given 
occupation of the nodes of the system, which has probability P( n→, t) to occur at the iteration t. The convention is 
that 0 ≤ ni ≤ N for all i = 1, ..., M, and satisfy the restriction

∑= .
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N n
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We also consider all vectors of the type i j,Ω
→  = [0, 0, ..., ni = 1, .., nj = −1, ...], whose components are equal to 0, 

except for ni = +1 and nj = −1. Using this definition, we can write the evolution of the probabilities as
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It is easy to show that the evolution equations satisfy probability conservation

∑ ∑→ →+ = .
→ →

P t P tn n( , 1) ( , )
(15)n n

Once we know P( n→, t), we can compute the expectation value
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the covariance matrix
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and the occupation probability of a given node
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The steady state asymptotic solution can be defined as Pe(
→n ) = P(→n , t + 1) = P( n→, t) for all →n . The number 

of equations for a given value of N and M is

N
M

N i1
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so that in general the number of equations required to find the asymptotic solution grows very quickly as NM, 
making it increasingly difficult to evolve large systems.

We show in Fig. 2(b) the evolution of the average number of packets at each node 〈ni(t)〉 and their standard 
deviation 〈ni(t)〉 ± σii, as a function of time, calculated at each time step from the evolution of the master equa-
tion. We have considered the network of Fig. 2(a) with N = 50 packets, which corresponds to Neq = 1326 coupled 
equations. We compare the average number of packets at each node 〈ni(t)〉 obtained from the master equation 
and 〈mi(t)〉 obtained from the mean field approach. We observe that the equivalent values obtained from the 
asymptotic solution of the master equation, as we will see below, can also be obtained exactly as the λ0 = 0 eigen-
vector of the dynamical matrix B.

We now study the network of Fig. 3(a), which displays an interesting dynamics. Figure 3(b) shows the evolu-
tion of the average number of packets at each node 〈ni(t)〉 and their standard deviation 〈ni(t)〉 ± σii, as a function 
of time from the evolution of the master equation. We have considered the network of Fig. 3(a) with N = 100 
packets, which corresponds to Neq = 10626 coupled equations. We also compare the average number of packets 
at each node 〈ni(t)〉 obtained from the master equation and 〈mi(t)〉 obtained from the mean field method. Again, 
both methods, the mean field and the master equations, provide very similar results, i.e., 〈ni(t)〉 ≈ 〈mi(t)〉.

We now turn our attention to the dynamics over small-world networks. To construct the small-world networks 
of Watts and Strogatz22 we start with a ring network of M = 8 nodes, as shown in Fig. 4(a). The evolution of the 
average number of packets in the network, along with its standard deviation, is shown in Fig. 4(b), which shows 
an excellent agreement with the mean field approach. As expected the system converges to <ni> → N/M for a 
ring.

Figure 2.  (a) Three-node network, in which the arrows determine the directed connectivity of the network. (b) 
Evaluation of the ensemble average number of packets at each node 〈ni(t)〉 (continuous line) and their standard 
deviation 〈ni(t)〉 ± σii (dotted curves), as a function of time. The horizontal dotted lines are the corresponding 
values obtained from the asymptotic solution. Here we use N = 100 packets, which corresponds to Neq = 1326 
coupled equations. We also observe the evolution of the average number of packets at each node 〈ni(t)〉 obtained 
from the master equation and 〈mi(t)〉 obtained from the mean field approach. There is an excellent agreement 
between the master equation and the mean field approach. Here i = 1 (red), 2 (blue), 3 (black).
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For a small-world networks of Watts and Strogatz22, we start with the ring and then connect M × p distinct 
pairs of nodes, as shown in Fig. 5(a) for p = 1. These networks are called small-world networks because the average 
distance <D>/M between nodes decreases with p. The distance between nodes i and j is defined as the minimum 
number of steps required to reach node j from node i along the network, and considering the directed nature of 
the network. The evolution of the average number of packets in the network, along with its standard deviation, is 
shown in Fig. 5(b), which shows an excellent agreement with the mean field approach.

We have studied the package evolution in two other types of networks, namely the Erdos-Renyi (Fig. 6) net-
work (a complete random network) and the scale-free network (Fig. 7). Figures 6(a) and 7(a) shows the graph 
representation of the networks we used in our simulations. Figures 6(b) and 7(b) shows the evolution of the aver-
age number of packets at each node 〈ni(t)〉 of its respective networks. As before, there is an excellent agreement 
between the results obtained from the mean field approach and the master equation. It is interesting to notice that 
the undirected network of Fig. 5 has a larger number of different asymptotic states that the undirected networks 
of Figs 6 or 7. Although highly dependent on the particular connectivity distribution, it is expected that in general 
the breaking of the undirected symmetry of a network should produce more different asymptotic states.

It is worth noticing the overshoot phenomena that appears in Figs 3–7. We have checked that different initial 
conditions (i.e., varying the position in which all packages are placed at the beginning of the simulation) may 
modify the first part of the dynamics, producing overshoot or damping at different nodes. Hence, the overshoot 
that occurs at a particular node depends on the distance to the initial node, but also on the connectivity of the 
neighboring nodes which control how the packages are taken from each node. Of course, we checked that the 
asymptotic behavior is the same in all cases.

Asymptotic equilibrium state.  The equilibrium state obtained from the asymptotic solution of the master 
equation for the network of Fig. 2(a) is n→  = [12.5, 25, 12.5], which is the same as the one obtained from the 
mean field approach. The asymptotic solution for the average occupation number at each node, compared with 
their dynamics produced by the mean field and master equation approach is shown in Fig. 2(c), showing excellent 
agreements. It is interesting to notice that the corresponding covariance matrix is

σ =








. − . − .
− . . − .
− . − . .









9 37 6 26 3 12
6 25 12 50 6 25
3 12 6 25 9 37

,2

so that the standard deviations σ σ=i ii
2  (diagonal terms) are not all equal in the asymptotic state.

Figure 3.  (a)Five-node network, in which the arrows determine the directed connectivity of the network. (b) 
Evaluation of the ensemble average number of packets at each node 〈ni(t)〉 (continuous line) and their standard 
deviation 〈ni(t)〉 ± σii (dotted curves), as a function of time. The horizontal dotted lines are the corresponding 
values obtained from the asymptotic solution. Here we use N = 20 packets. The evolution of the average number 
of packets at each node 〈ni(t)〉 obtained from the master equation and 〈mi(t)〉 obtained from the mean field 
shows an excellent agreement. Here i = 1 (red), 2 (blue), 3 (black), 4 (orange), 5 (magenta).
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The asymptotic state obtained for the five-node network from the asymptotic solution of the master equation 
is →n  = [2, 6, 4, 6, 2], which is the same as the one obtained from the mean field approach. The agreement 
between the mean field and master equation results is excellent, as displayed in Fig. 3(c). It is interesting to notice 
that the corresponding covariance matrix is

σ =












. − . − . − . − .
− . . − . − . − .
− . − . . − . − .
− . − . − . . − .
− . − . − . − . .












1 8 0 6 0 4 0 6 0 2
0 6 4 2 1 2 1 8 0 6
0 4 1 2 3 2 1 2 0 4
0 6 1 8 1 2 4 2 0 6
0 2 0 6 0 4 0 6 1 8

,2

so that the standard deviation σi (diagonal terms) are not all equal in the asymptotic state.
In Fig. 8(a,b), we show the asymptotic occupation number distribution P(ni) for the (a) three and (b) five node 

networks from Figs 2 and 3. Similarly, in Fig. 9 we show the asymptotic occupation number distribution for the 
(a) small world, (b) Erdos-Renyi, and (c) scale free networks with M = 8 nodes and N = 10 packages. Hence for 
small networks and packages, given the computational restrictions imposed by Eq. 19, it is reasonable to solve the 
master equation directly. Furthermore, for small M we notice that as N increase, the occupation number distribu-
tions at the ith node approaches a normal distribution

P n C n n( ) exp ( )
2

,
(20)

i i
i i

ii

2

2σ
≈





−

− 〈 〉 





Figure 4.  (a) Ring network with M = 8 nodes in which the arrows determine the directed connectivity of the 
network. (b) Evaluation of the ensemble average number of packets at each node 〈ni(t)〉 (continuous line) and 
their standard deviation 〈ni(t)〉 ± σii (dotted curves), as a function of time. Here we use N = 10 packets. We 
observe the evolution of the average number of packets at each node 〈ni(t)〉 obtained from the master equation 
and 〈mi(t)〉 obtained from the mean field approach presents an excellent agreement. Here i = 1 (red), 2 (blue), 3 
(black), 4 (orange), 5 (magenta), 6 (green), 7 (brown), 8 (yellow).
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centered at 〈ni〉 with a standard deviation given by σi. The normalization constant Ci is such that ∑ == P n( ) 1n
N

i0i
. 

The expected form of Eq. (20), for large N, is in agreement with Eq. (31), that is obtained from the continuous 
time scale description of the master equation (see Methods section for a derivation).

As N and M increase, the asymptotic state becomes increasingly more complicated to calculate, specially if we 
are interested in calculating the probability distribution and the standard deviation of ni. However, let us note that 
the average value of 〈ni〉 for the asymptotic state can be computed from the mean field approach. Hence, we can 
extrapolate 〈ni〉(N) as a function of N from the N = 1 case, namely

〈 〉 = 〈 〉 = .n N N n N( ) ( 1) (21)i i

Similarly, in Fig. 10(a,b), we show the standard deviations σi(N) as a function of N for the (a) three and (b) 
five node networks for Figs 2 and 3, respectively. The continuous lines, in each case, corresponds to the scaling

N N N( ) ( 1), (22)i i i i, ,σ σ= =

which clearly gives and excellent approximation, even for relatively small values of N. Notice that this is expected 
from a stochastic system in which

~
n N

1
(23)

ii

i

σ
〈 〉

.

Therefore, we see that we can compute the asymptotic state of the master equation from the N = 1 case 
and then re-scale the distribution to larger values of N using the scaling properties just discussed. In fact, the 

Figure 5.  Small-world network with M = 8 nodes and p = 1, in which the arrows determine the directed 
connectivity of the network. (b) Evaluation of the average number of packets at each node 〈ni(t)〉 (continuous 
line) and their standard deviation 〈ni(t)〉 ± σii (dotted curves), as a function of time. Here we use N = 10 packets. 
We observe the excellent agreement between the evolution of the average number of packets at each node 〈ni(t)〉 
obtained from the master equation and 〈mi(t)〉 obtained from the mean field approach. Here i = 1 (red), 2 
(blue), 3 (black), 4 (orange), 5 (magenta), 6 (green), 7 (brown), 8 (yellow).
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distribution functions displayed in Fig. 8(a,b), are constructed in this manner, showing that it is an excellent 
approximation, specially as N increases (thermodynamic limit).

The same analysis has been done for the ring and small network of Figs 4(c) and 5(c), respectively, which is in 
close agreement with Eq. 20 and the scaling from the N = 1 case.

Hence, if we are interested in estimating the syntactic probability distribution of the occupation number for N 
packets, it becomes of interest to solve the master equation for N = 1 which has M possible states, namely

→ = ... = ... .nn [0, 0, , 0, 1, 0, , 0] (24)i i

The evolution equation for them (using pi(t) = P(→n i, t)) is

p t
A
k

p t( 1) ( ),
(25)

i
j i

M
j i

j
j

,∑+ =
≠

From this equation, it becomes clear that finding the steady state pi(t + 1) = pi(t) = pi for N = 1 is completely 
equivalent to finding the asymptotic mean field λ0 = 0 eigenvector of the matrix B given by Eq. 5, however in this 
case is easier to solve directly the M equations

∑ =
=

B p 0,
i

M

i j j
1

,

with the restriction p 1i
M

i1∑ == , than solving the complete eigensystem.

Figure 6.  (a) Erdos-Renyi network with M = 8 nodes and 10 bidirectional nodes which corresponds to a density 
of 35% of the total possible connections (28 in total). (b) Evaluation of the ensemble average number of packets 
at each node 〈ni(t)〉 (continuous line) and their standard deviation 〈ni(t)〉 ± σii (dotted curves), as a function of 
time. Here we use N = 10 packets. We observe that the evolution of the average number of packets at each node 
〈ni(t)〉 obtained from the master equation and 〈mi(t)〉 obtained from the mean field approach exhibit an excellent 
agreement. Here i = 1 (red), 2 (blue), 3 (black), 4 (orange), 5 (magenta), 6 (green), 7 (brown), 8 (yellow).



www.nature.com/scientificreports/

1 0SCieNTiFiC RePorTS |  (2018) 8:14288  | DOI:10.1038/s41598-018-32677-8

We see that there is a clear connection between the mean field approach and the master equations, which are 
described in the previous text. Once, we find the asymptotic states given by pi, we observe that ni pj → δi,j pj, so that 
the expected occupation value is

n N p( 1) ,i i〈 〉 = =

and the standard deviation can be found from

σ δ= = −N p p p( 1) ,i j i i j i j,
2

,

which explain the negative off-diagonal values obtained above for the three and five node networks. Using these 
expressions, we can scale to any N and find 〈ni〉(N), σ2, and P(ni, N). We have to use these equations to construct 
the analytic approximation to the occupation probability at each node for any network, as was done for the cases 
of Fig. 8.

We can use this strategy, which is much less computational intensive, to re-construct the analytic approxi-
mation to the occupation probability at each node for any network, as was done in Fig. 8 for the 2 and 3 node 
example; and in Fig. 9 for the (a) small world, (b) Erdos-Renyi, and (c) scale free networks. The results show very 
good agreement with the master equation result, which becomes increasingly more accurate as N is incremented 
as can be observed in Fig. 8.

We verified our results in large scale complex networks instances of the I. small-world, II. Erdos-Renyi, and III. 
scale-free scenarios. Figure 11. summarizes these results. Panels I(a), II(a), III(a) present the frequency F of the 

Figure 7.  (a) Scale-free network with M = 8 nodes and 1 bidirectional node added at each step of the free 
scale network algorithm of construction with probability of attachment proportional to the vertex degree. 
(b) Evaluation of the ensemble average number of packets at each node 〈ni(t)〉 (continuous line) and their 
standard deviation 〈ni(t)〉 ± σii (dotted curves), as a function of time. Here we use N = 10 packets. We observe 
the excellent agreement of the evolution of the average number of packets at each node 〈ni(t)〉 obtained from 
the master equation and 〈mi(t)〉 obtained from the mean field approach. Here i = 1 (red), 2 (blue), 3 (black), 4 
(orange), 5 (magenta), 6 (green), 7 (brown), 8 (yellow).
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average number of packets in the asymptotic states for stochastic simulation, and the mean field solution of its 
respective networks (small-world, Erdos-Renyi, and scale-free). Panels (b) show the correlation between the aver-
age occupation of the master equation ni

ME〈 〉 and the standard deviation of the stochastic simulation ni
SS〈 〉 for its 

respective networks. Panels (c) exhibit the correlation between the standard deviation of the master equation i
MEσ  

and the standard deviation of the stochastic simulation i
SSσ , respectively. Each network contains 1000 nodes 

(N = 1000) and 104 packets (M = 104). In the small-world network, it was created considering a re-linking proba-
bility of 0.5; for the scale-free case, the network was built adding 2 bidirectional node at each step of the free scale 
network algorithm of construction with probability of attachment proportional to the vertex degree. The 
Erdos-Renyi network was build using a edge probability equal to 0.5. Sub-figures II and III were obtained studying 
the behaviors of the mean and the standard deviation of the master equation and the stochastic simulation of a 
particular node on the respective network. From figs. I(a), II(a), and III(a), despite small differences, the shape of 
the distributions are quite similar between stochastic simulation cases and mean field approach. Solid lines in 
sub-panels II and III are added to indicate the correlation equal to 1. To sum up, instances presented in Fig. 11 
shows excellent agreement among stochastic simulation, mean field approach and master equation, allowing to 
observe notorious differences among different type of complex networks in large scales. It is worth noticing that 
the Erdos-Renyi case is simulated longer than small-world and scale-free cases: the Erdos-Renyi case was simu-
lated with 105 simulation steps, while the other two cases were simulated with 5 × 104 simulation steps. The relax-
ation time scale τ λ= R N [ ]  of the Erdos-Renyi network, calculated as the inverse value of the smallest nonzero 
eigenvalue of the B matrix, turns out to be twice as large as the time scale of the other two cases, explaining why 
we need to integrate longer for the ensemble averaged number of packets and its deviation to converge to the 
asymptotic value. This difference in time scales has to do with the fact that the degree distribution of Erdos-Renyi 
does not have large tails, so that the connectivity is spanned over a narrow range of values, which in turn leads to 
a continuos distribution of values for the ensemble averaged number of packets and its deviation. In contrast the 
small-world or scale-free networks has a hierarchical structure of the connectivity which is clearly evidenced by 
a discrete distribution for the ensemble averaged number of packets and its deviation.

Figure 8.  The occupation number distribution P(ni) for the (a) three and (b) five node networks for Figs 2 
and 3, respectively. The dots are the values obtained from the master equation, while the continuous lines 
corresponds to Eq. 20 with the extrapolation from the N = 1 case discussed in the text. We also show 〈ni〉 and 
〈ni〉 ± σii as vertical lines.
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Discussion
We have generalized the Ehrenfest urn model to a complex network of urns, in which the packets or marbles 
move from node to node following the network connections. We have constructed the master equation for the 
evolution of the probability of occupation of each of the nodes in the network. The calculated occupation number 
at each node 〈ni〉 compares quite closely with analytic solution for the ensemble average evolution 〈mi〉 of the 
number of packets at each node, obtained from a mean field approach in the thermodynamic limit (namely 
N 1).

Figure 9.  The occupation number distribution P(ni) for the (a) small-world (see Fig. 5), (b) Erdos-Renyi (see 
Fig. 6), and (c) scale-free (see Fig. 7) networks respectively, with eight nodes. The dots are the values obtained 
from the master equation, while the continuous lines corresponds to Eq. 20 with the extrapolation from the 
N = 1 case discussed in the text.
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We clearly observe that mean field theory provides a good approximation for the evolution of the ensemble 
averaged number of packets, as compared to the the evolution of the more complete master equation. However, 
the master equation provides a more complete description, allowing to calculate all the statistical properties of 
the system at any time t.

We also notice that the asymptotic state provided by the master equation is quite useful to find the equilib-
rium distribution of the occupation at each node, providing a complete statistical description at equilibrium. 
Furthermore, we can find scaling laws to approximate the asymptotic solution to the occupation number prob-
ability at each node from the N = 1 case, which involves the matrix B used in the mean field approach. One of 
the main conclusions of the manuscript is that for small networks with a small number of packets, it is necessary 
to find the asymptotic solution, including the correlation matrix, directly from the master equation, which is 
in general computationally expensive. While for large values of N it is possible to estimate the asymptotic state, 
including the correlation matrix, from the λ0 = 0 eigenvector of the matrix B with N = 1, as the whole distribution 
becomes normal as N increases with the distribution parameters satisfying the scaling relations given by Eqs 21 
and 22. This approximation improves as we increase the number of packets, i.e., in the thermodynamic limit. 
Hence, the mean field matrix B can be use to estimate not only the average occupation number, but also the 
occupation probability distribution, and in particular the standard deviation of the average occupation number.

By comparing the mean field evolution of the network of Fig. 2 with the networks of Figs 3, 4 and 5, we observe 
that there is an overshoot phenomena that occurs before the system reaches the asymptotic dynamics. However, 
the initial condition can, and the distance from the node that contains all packets initially, also determine if there 
is overshoot or not. For example, if we take the network of Fig. 3, there are 3 non-equivalent nodes in which we 
can initially place all the packages, namely, nodes 1, 2, and 3. In this sense initially placing all the packages in node 
4 is equivalent to placing them in node 2. Similarly, node 5 is equivalent to node 1. Hence, initially placing all the 
packages in node 1, 2, 4, and 5 produce an overshoot phenomena in nodes 2, 1, 5, and 4, respectively. However, 
initially placing all the packages in node 3 does not produce the overshoot phenomena. The reason for the over-
shoot is the following: for example, when we initially place all packages in node 1, the overshoot phenomenon 

Figure 10.  The standard deviation σii(N) as a function of N for the (a) three and (b) five node networks of Figs 2 
and 3, respectively. The dots corresponds to data obtained directly from the asymptotic state calculated from the 
master equation, and the straight line corresponds to the re-scaling of the distribution function as discussed in 
the text.
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occurs in node 2 as all the packages need to pass through node 2 before they can get distributed to the rest of the 
network. The opposite argument applies for the nonexistence of the overshoot phenomena when initially placing 
all packets in node 3. Hence, the topology of the network and the initial condition control the existence of this 
overshoot phenomenon, however, the asymptotic behavior is robust in all cases.

Finally, it is interesting to mention that the fact that the standard deviation of the occupation number at each 
node is not uniform in the asymptotic states, proves that the equal a priori probabilities proposed by Boltzmann 
does not apply for the transport in these networks, unless there is an underlying symmetry. The complex topology 
of the network provides a way to equilibrate fluctuations that become non-uniform throughout the system. This 
observation may have relevant implications in the understanding of the statistical mechanics of transportation 
networks. For example, as car change lanes in a 3 lane street, we would expect not only that the central lane will be 
more occupied on average than the other two lanes, but also that its fluctuations will also be larger.

Methods
Let us assume that temporal evolution of the probability P(n→, t) given by Eq. (14) can be written in a continuous 
timescale as a transition equation

∑→ = →′ − →
→′

→ →′ →′ →
d
dt

P n t W P n t W P n t( , ) ( ( , ) ( , )),
(26)n

n n n n, ,

where → →′ →′ →W W( )n n n n, ,  is the transition probability of the process →n  → →′n (→′n  → n→). Thus from

Figure 11.  Simulations on large scale networks instances. I(a) (small-world), II(a) (Erdos-Renyi), III(a)(scale-
free) present the probability distributions of the mean of the asymptotic states for stochastic simulation, the 
master equation approach, and the mean field solution. I(b), II(b), and III(b) shows the correlation between the 
average occupation of the master equation 〈 〉ni

ME  and the standard deviation of the stochastic simulation 〈 〉ni
SS  

for its respective networks. I(c), II(c), and III(c) exhibit the correlation between the standard deviation of the 
master equation i

MEσ  and the standard deviation of the stochastic simulation i
SSσ , respectively. Simulations were 

run on networks of 1000 nodes (N = 1000) and 104 packets (M = 104). For the small-world case, the network was 
build with a re-linking probability of 0.5; for the scale-free case, the network was built adding 2 bidirectional 
node at each step of the free scale network algorithm of construction with probability of attachment 
proportional to the vertex degree; and the Erdos-Renyi network was build using a edge probability equal to 0.5. 
Sub-figures II and III were obtained studying the evolution of a particular node in network type. The Erdos-
Renyi case was simulated with 105 simulation steps, while the other two cases were simulated with 5 × 104 
simulation steps.
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∑ ∑→ = →′ − → =
→ → →′

→ →′ →′ →
d
dt

P n t W P n t W P n t( , ) ( ( , ) ( , )) 0,
(27)n n n

n n n n
,

, ,

we see that the total probability is conserved. From Eqs (16) and (26), we can write

∑

∑

〈 〉 =
→

= →′ − → .

→

→ →′

→ →′ →′ →

d
dt

m t n dP n t
dt

n W P n t W P n t

( ) ( , ) ,

( ( , ) ( , ))
(28)

i
n

i

n n
i n n n n

,
, ,

Now let us suppose that close to the steady state the transition probabilities →→ →′W 0n n,  and W( )n n, ω→→′ →  
(according to the ergodic theorem), thus the Eq. (28) takes the form

∑ω ω〈 〉 = − → = − 〈 〉
→′

d
dt

m t n P n t m t( ) ( , ) ( ) ,i
n

i i

so that the solution is 〈mi(t)〉 = e−ωt〈mi(0)〉. Comparing with Eq. (9), we note that the transition probability 
ω λ= N[ ] /R . Furthermore, around the steady state →n , the master equation for the probability can be approxi-

mated as

d
dt

P n t P n t P n t( , ) ( ( , ) ( , )),
(29)

∑ω ρ→ = → + → − →

ρ→

ω ρ ρ

ω ρ

≈




→ ⋅ ∇ → + → ⋅ ∇ → 



= → ⋅ ∇ → .

P n t P n t

P n t

( ) ( , ) 1
2

( ) ( , )

2
( ) ( , )

(30)

2

2

for small ρ→. For the steady state, (ρ→⋅∇)P(n→, t) = 0, since at equilibrium the steady state is the most probable 
configuration. Hence, a direct calculation shows that the solution of the above equation is given by

→ = ω− →−〈→〉P n t P
t

e( , ) ,
(31)

n n t0 ( ) /22

which implies that the expected distribution at the steady state configuration should be a Gaussian in the ther-
modynamic limit.
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