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Emerging evidence suggests that the immune and nervous systems are in close

interaction in health and disease conditions. Protein aggregation and proteostasis

dysfunction at the level of the endoplasmic reticulum (ER) are central contributors

to neurodegenerative diseases. The unfolded protein response (UPR) is the main

transduction pathway that maintains protein homeostasis under conditions of protein

misfolding and aggregation. Brain inflammation often coexists with the degenerative

process in different brain diseases. Interestingly, besides its well-described role in

neuronal fitness, the UPR has also emerged as a key regulator of ontogeny and

function of several immune cell types. Nevertheless, the contribution of the UPR to brain

inflammation initiated by immune cells remains largely unexplored. In this review, we

provide a perspective on the potential role of ER stress signaling in brain-associated

immune cells and the possible implications to neuroinflammation and development of

neurodegenerative diseases.

Keywords: UPR, neurodegeneration, immune system, inflammation, protein protein misfolding diseases, ER

stress, immune cells, misfolded proteins

INTRODUCTION

The Unfolded Protein Response (UPR)
Proteostasis encompasses the dynamic interrelation of processes governing generation and
localization of functional proteins (1). Physiological and pathological factors can impair the balance
between protein load and protein processing, resulting into accumulation of improperly folded
proteins (2, 3). Abnormal protein aggregation is a key feature of several neurodegenerative diseases,
including Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS),
Huntington’s disease (HD) and prion-related disorders amongst others, collectively classified as
protein misfolding diseases (PMDs) (4, 5).

Protein misfolding is sensed by dedicated stress-response pathways that include the
cytoplasmic heat shock response (HSR) and the unfolded protein response originated in the
mitochondria and in the endoplasmic reticulum (ER) (3). Activation of these intracellular
mechanisms by the presence of misfolded proteins leads to ameliorating the protein
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folding load and resolving proteotoxic stress (1, 3). In this
context, the ER is a central node of the proteostasis network
controlling folding, processing and trafficking of up to a third of
the protein load in the cell (6). The UPR originated in the ER
(for now referred as “UPR”) is a main intracellular mechanism
responsible to safeguard the fidelity of the cellular proteome and
for this reason, it will be the main focus of the current review
(6, 7). The UPR is an adaptive reaction controlled by three ER-
located signal transducers: inositol requiring enzyme 1 (IRE1)
α and β, protein kinase R-like ER kinase (PERK) and activating
transcription factor 6 (ATF6) alpha and beta (6) (Figure 1). Upon
activation, these signal transducers activate gene expression
programs through specific downstream transcription factors,
restoring proteostasis and increasing ER and Golgi biogenesis
(6, 8). IRE1α cleaves the mRNA encoding for the X-box binding
protein (XBP1), removing a 26 nucleotide intron, which followed
by RTCB (RNA 2′,3′-Cyclic Phosphate and 5′-OH ligase) ligation
changes the coding reading frame, prompting the translation of
a protein with transcription factor activity termed XBP1s (XBP1
spliced) (7). XBP1s controls the expression of genes involved in
ER-associated degradation (ERAD), lipid biosynthesis, folding
and quality control (9, 10). IRE1α RNase also directly degrades
diverse mRNAs and microRNAs through a process termed
“Regulated IRE1-Dependent Decay” (RIDD) (11), originally
proposed to contribute to alleviating the detrimental effects of
ER stress by reducing the protein folding load (12), in addition to
regulating inflammation and apoptosis (13). Activation of PERK
mediates protein translation shutdown via phosphorylation of
eukaryotic initiation factor 2α (P-eIF2α), which also favors
selective translation of certain mRNAs encoding proteins
involved in cell survival, ER homeostasis and anti-oxidant
responses, such as ATF4 and nuclear erythroid related factor 2
(NRF2) (6, 14). ATF6, translocates to the Golgi apparatus where it
is cleaved by site-1 and site-2 proteases, releasing a transcription
factor that directs the expression of genes encoding ERAD
components, ER chaperones and molecules involved in lipid
biogenesis (15, 16). XBP1s and ATF6 can also heterodimerize
to control selective gene expression patterns (9). Moreover, the
activity (signaling amplitude and kinetics) of the three UPR stress
sensors is controlled by several cofactors through the assembling
of distinct platforms termed the UPRosome (17). Binding of
adapter proteins to the IRE1α UPRosome also mediates the
crosstalk with other stress pathways including MAP kinases
and NF-κB (6). Thus, the UPR integrates information regarding
intensity and duration of the stress stimuli toward cell fate control
in cells suffering from ER stress.

UPR in Brain Homeostasis And Protein
Misfolding Diseases
ER stress signaling has a physiological as well as pathological
role in brain function and development (18–20). In
neurodegeneration, the UPR influences several aspects including
cell survival, synaptic plasticity, axonal regeneration, protein
aggregation and control of the secretory pathway (21–23).
By mediating synthesis and secretion of the brain-derived

neurotrophic factor (BDNF), XBP1s regulates neuronal
plasticity at a structural, molecular and behavioral level
(18, 24–27). Moreover, postmortem tissue analyses revealed
that ER stress markers often co-localize with cells containing
protein aggregates in brain of patients affected with PMDs
(4, 5, 22, 28). In AD, the expression of Grp78/BiP, PDI and
HRD1 is increased in the hippocampus and temporal cortex;
and the phosphorylated forms of PERK, IRE1α and eIF2α
are found in AD neurons and substantia nigra of PD patients
(22, 29, 30). Phosphorylated IRE1α levels directly correlate
with the degree of histopathological changes, where most
cells showing neurofibrillary tangles exhibit signs of ER
stress (31). Furthermore, ER stress signs are also observed
in different brain areas in PD patients, a phenomenon also
observed in incidental cases of subjects who died without PD
symptoms but presented α-synuclein inclusions in the brain
(32). Moreover, components of all UPR signaling branches are
overexpressed in spinal cord samples of patients with familial
and sporadic forms of ALS (33), as well as in striatum, parietal
cortex and caudate putamen of HD and Prion disease patients
(22, 34–39).

In support of a dual role of UPR in controlling cell
fate in neurodegenerative diseases, genetic disruption and
pharmacological intervention modulating ER stress signaling
revealed that depending on disease type and the UPR component
targeted, distinct and even opposite effects are observed
[reviewed in (21, 40)]. Conditional deletion of XBP1 in the
central nervous system (CNS) provides protective effects through
upregulation of autophagy levels, improving motor performance
in ALS, PD andHuntington’s disease models (35, 37, 41), whereas
XBP1 deficiency does not affect Prion pathogenesis in vivo (42).
Ablation of IRE1α signaling in neurons decreases astrogliosis and
amyloid β accumulation in an animal model of AD, correlating
with improved neuronal function (31). Conversely, therapeutic
gene delivery of active UPR components or ER chaperones to
specific brain areas has shown outstanding effects in different
animal models of PMDs (43). Different studies have shown that
ectopic delivery of XBP1s into the hippocampus restored synaptic
plasticity in an AD model (27), promoted axonal regeneration
(44), reduced mutant huntingtin aggregation (45) and protected
dopaminergic neurons against PD-inducing neurotoxins (41, 46).

Targeting the PERK pathway also provides contradicting
results. PERK signaling supports oligodendrocyte survival in
animal models of multiple sclerosis (MS) (47) and enhancement
of eIF2α phosphorylation is protective in ALS and other models
(32, 48), whilst ATF4 deficiency has a detrimental effect in spinal
cord injury models, diminishing locomotor recovery following
lesion, also impacting oligodendrocyte survival (49). Conditional
deletion of PERK in the brain however, improved cognition
in an AD model, correlating with decreased amyloidogenesis
and restoration of normal expression of plasticity-related
proteins (50, 51). Similarly, genetic targeting of CHOP has
neuroprotective effects in a PD model, and ATF4 ablation
protects against ALS (52, 53). Consistent with this, sustained
PERK signaling has been shown to enhance neurodegeneration
due to acute repression of synaptic proteins, resulting in
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FIGURE 1 | Signaling pathways of the unfolded protein response. Noxious stimuli in cells may induce endoplasmic reticulum (ER) stress and trigger an adaptive

response known as the unfolded protein response (UPR), which is controlled by three main ER-resident sensors: IRE1α, PERK and ATF6. Upon ER stress, IRE1α

autophosphorylates, leading to the activation of its RNase domain and the processing of the mRNA encoding for XBP1s, a transcriptional factor that upregulates

genes involved in protein folding and quality control, in addition to regulating ER/Golgi biogenesis and ER-mediated degradation (ERAD). Additionally, IRE1α RNase

also degrades a subset of specific RNAs and microRNAs, a process termed Regulated IRE1α-Dependent Decay (RIDD). The second ER sensor, PERK,

phosphorylates the translation of the eukaryotic initiation factor eIF2α, decreasing the synthesis of proteins and the overload of misfolded proteins at the ER. PERK

phosphorylation also leads to the specific translation of ATF4, a transcription factor that promotes the expression of genes related to amino acid metabolism,

anti-oxidant response, autophagy and apoptosis. The third UPR sensor, ATF6, is a type II ER transmembrane protein that encodes a bZIP transcriptional factor in its

cytosolic domain. Following ER stress, ATF6 translocates to the Golgi apparatus where it is processed, releasing a transcription factor which directs the expression of

genes encoding ER chaperones, ERAD components and molecules involved in lipid biogenesis.

abnormal neuronal function, as demonstrated through PERK
inhibitors in Prion disease (54), frontotemporal dementia (48)
and PD models (32). ATF6, on the other hand, protected
dopaminergic neurons in another PD model, by upregulating
ER chaperones and ERAD components (55, 56). Overall, UPR
mediators have a pivotal role in the progression of various PMDs,
nurturing the hypothesis that UPR components could be used as
therapeutic targets in neurodegeneration (21, 22, 43).

UPR in Neuroinflammation
Immune surveillance is an active process in the brain. The
mammalian CNS harbors several subtypes of leukocytes, which
display physiological roles related to tissue homeostasis and
regulation of the inflammatory response (57, 58). However, if
unrestrained, inflammation can have detrimental effects in the
CNS, contributing to the type of tissue malfunction that precedes
pathological processes (59). During neuroinflammation, the
immune response in the CNS is drastically altered, and it
is typified by activation of resident microglia and invasion

of peripheral immune cells into the parenchyma, including
granulocytes, monocytes and, in pathologies like multiple
sclerosis, lymphocytes (60–63). Interestingly, the UPR has
shown to regulate inflammation in peripheral tissues, emerging
as an interesting candidate for targeting CNS-associated
inflammation in a field that remains largely unexplored. Thus,
in addition to the well-described role of the UPR in neuronal
fitness, it is also plausible that UPR activation in CNS-
associated immune cells could contribute to modulating PMD
development.

One hallmark of neuroinflammation is the presence of tumor
necrosis factor (TNF), interleukin (IL)-1β, and IL-6 in brain,
cerebrospinal fluid (CSF) and serum of patients with AD, PD
and HD (63–65). Production of pro-inflammatory cytokines
across tissues depends on activation of innate immune sensors
(known as pattern recognition receptors, PRRs) specialized in
the recognition of microbes and stress signals (63). In the
brain, PRRs can promote pro-inflammatory cytokine production
upon recognition of “neurodegeneration associated molecular
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patterns” (NAMPs) that consists in CNS-specific danger signals
such as extracellular protein aggregates, molecules exposed by
dying neurons, lipid degradation byproducts and myelin debris,
among others (66). The most relevant PRRs associated to the
development of PMDs are TLRs (Toll-like Receptors) and NLR
(Nucleotide-binding domain, leucine-rich repeat containing)
inflammasomes (63). These receptors are broadly expressed
in CNS-myeloid cells including microglia, macrophages and
infiltrating cells such as monocytes and dendritic cells (DCs)
(63, 67). Interestingly, PRR-signaling and the UPR converge
on several levels for amplification of inflammatory responses
via activation of NF-kB, IRF-3, JNK and JAK/STAT modules
(68–71). Signaling via TLR2 and TLR4 induces ER stress
in peripheral macrophages and activates IRE1α and XBP1s,
which in turn is required to increase production of IL-6 and
TNF, thus connecting activation of the IRE1α-XBP1s branch
of the UPR with TLR-dependent pro-inflammatory programs
(68). In the CNS, misfolded α-synuclein and Fibrillar Aβ,
characteristic in patients with PD and AD, can be sensed
by TLR1/2 and TLR4, further promoting inflammation (63)
(Figure 2). Moreover, injection of lipopolysaccharide (LPS), an
agonist of TLR4, into the substantia nigra induces dopaminergic
neuronal death resembling animal PD models (73). LPS-induced
neurotoxicity and LPS-derived inducible nitric oxide synthase
(iNOS) expression was shown to be mediated by the UPR related
chaperone BiP/Grp78 and NF-kB (74, 75). Correspondingly, Tlr4
null mice are protected from PD in a mouse model induced
with neurotoxins (63, 76). Overall, TLR pathways activating
the IRE1α-XBP1s axis are relevant drivers of PMDs, although
the precise contribution of this UPR branch to TLR-induced
neuroinflammation remains to be formally demonstrated.

Another PRR relevant in neurodegenerationmodulated by the
UPR, is the NLRP3 (NLR Family Pyrin Domain-Containing-3)
inflammasome, a multimeric protein complex composed of
the NLRP3 sensor, the adaptor ASC and activated caspase 1,
which mediates the proteolytic activation of IL-1β and IL-18
and promotes a type of inflammatory cell death referred to
as pyroptosis (63). In the brain, the NLRP3 inflammasome is
activated by amyloid β and α-synuclein aggregates (63). The
relevance of this protein complex is underscored by studies with
Nlrp3 deficient mice carrying mutations associated with familiar
AD, which are protected from the disease (77). On a mechanistic
level, the interplay between the UPR and inflammasome
activation has been connected to IRE1α signaling (78), where
the RNase domain of IRE1α increases the expression of TXNIP,
an activator of the NLRP3 inflammasome, through degradation
of the TXNIP-destabilizing microRNA miR-17 (78) (Figure 2).
Considering the relevance of the NLRP3 inflammasome in
AD progression and its dependence on IRE1α endonuclease,
it is tempting to speculate that IRE1α activation in CNS-
resident myeloid cells may contribute to the development of
AD (79–84). Additionally, the B-class scavenger receptor CD36,
upon recognition of amyloid β fibrils, forms a complex with
TLR4/6, which triggers activation of the NLRP3 inflammasome,
promoting cytokine and ROS production (67, 85).

On the other hand, in models of peripheral nerve damage,
XBP1 expression has been shown to enhance nerve regeneration

after injury, involving increased expression of the chemokine
MCP-1 and macrophage infiltration, essential to remove myelin
debris and allow axonal regeneration (44). PERK expression
correlates with astroglial activation and production of IL-6 and
the chemokines CCL2 and CCL20, which promotes microglial
activation (71, 86). In spinal cord injury, ATF4 deficiency reduced
microglial activation, which is associated with altered levels of IL-
6, TNFα, and IL-1β (44–49). Similarly, ATF6 deficiency in the
context of PD induced by neurotoxins leads to suppression of
astroglial activation and decreased production of BDNF and anti-
oxidative genes, such as heme oxygenase-1 (HO-1) and xCT (56).
To sum up, ER stress and inflammation are both prevalent in
many neurodegenerative diseases and NAMPs can alter neuronal
function as well as promote inflammation through the activation
of innate defense mechanisms of immune cells in the CNS, which
can be modulated by UPR activity and vice versa.

Immune Targets of the UPR in the Central
Nervous System
Although it is clear that inflammation contributes to
neurodegeneration (61), there has been limited knowledge
about the homeostasis of immune cells residing in the CNS.
Recent technological advances in single cell analysis have
provided insights into the identification and characterization
of the vast diversity of immune cell lineages present in the
healthy and pathogenic brain (61, 62). The potential role of
the UPR in immune cell lineages in the CNS is illustrated in
Figure 2.

Microglia
Microglia is the CNS-resident macrophage and most prominent
myeloid cell in the brain (87). Microglia fine-tunes the
development of neuronal circuits, neurogenesis and synaptic
plasticity through the production of neurotrophic factors (88,
89). Given that several PRRs that signal via IRE1α and XBP1s
such as TLR1/2 and TLR4, the NLRP3 inflammasome and
nucleic acid sensors are expressed in this cell lineage, it is
plausible that microglial XBP1s activation may contribute to
the initiation of neuroinflammation. The ATF6 branch has also
been associated with microglial activation and production of
inflammatory mediators via NF-kB (90). Furthermore, although
long conceived as a homogeneous cell type that becomes
destructive in neurodegeneration (62), comprehensive single cell
RNA analysis has demonstrated that a subset known as “disease-
associated microglia” plays an important role in several CNS
diseases including AD, ALS, MS and also in aging (62, 91–
93). Thus, it is vital to elucidate whether protective microglial
populations engage the UPR upon innate recognition of NAMPs,
and whether microglial UPR is an intrinsic mechanism of sensing
danger in the CNS.

Border Associated Macrophages
Border associated macrophages (BAMs) are a recently
characterized population distinct from microglia and from
infiltrating monocyte-derived macrophages, which display high
heterogeneity and are classified per phenotype, development
and location in the CNS (62, 94). Single cell analysis, fate
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FIGURE 2 | Activation of the unfolded protein response in CNS-residing immune cells may contribute to neuroinflammation and PMDs development. (A) Protein

aggregates can promote inflammation via triggering of innate receptors and activation of the UPR. Neurodegeneration associated molecular patterns (NAMPS) such

as protein aggregates are recognized by pattern recognition receptors (TLRs and PRRs) present on immune cells and signal through ROS production, which in turn

could activate the IRE1α/XBP1s axis for co-transcriptional activation of IL-6, TNF and IL-1β. On the other hand, through RIDD, IRE1α induces degradation of the

TXNIP-destabilizing microRNA mir-17, allowing activation of the NLRP3 inflammasome and processing of IL-1β into its active form. (B) Most of the immune cell

lineages residing in the healthy and pathogenic brain are known targets of the UPR in peripheral tissues. In steady state, the most abundant immune

(Continued)
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FIGURE 2 | cells in the brain are microglia, which along with border associated macrophages (“BAMs”) and dendritic cells act as sentinels, sampling the environment

and clearing cell debris, maintaining CNS homeostasis. Except for dendritic cells and macrophages, which exhibit IRE1α/XBP1s activation, little is known about UPR

activation in additional myeloid subsets, although microglia, macrophages and monocytes could potentially activate this axis downstream of PRR signaling. While very

rare, B and T cells have been identified in the steady state brain, and activation of IRE1α/XBP1s has been proposed to be critical for their differentiation and activation.

ATF6 axis is also necessary for B cell development and activation whilst absence of PERK contributes to plasma cell differentiation and immunoglobulin synthesis.

Basal activation of UPR in neurons is still a matter of debate in literature as the function of IRE1α and PERK pathways has just begun to be understood in the context

of normal neuronal physiology (72). In aging and neurodegeneration, the number of immune cells within the brain increases, due to higher cell activation as well as

blood brain barrier infiltrates. Extracellular protein aggregation promotes activation of immune cells via PRRs, in addition to inducing ER stress and activation of the

UPR, mainly the IRE1α/XBP1s axis. Microglia and dendritic cells become more activated, with higher production of pro-inflammatory and oxidative mediators and loss

of their protein clearance function. This is further aggravated by antibodies against CNS-derived antigens by B cells accumulated in the CSF, mediated by the

activation of IRE1α and ATF6 signaling. Activation of infiltrating T cells reactive to α-synuclein, amyloid-β and myelin constituents further amplify inflammation, resulting

in more protein aggregation and neuronal loss. In neurons, UPR triggering may elicit both, adaptive or neurodegenerative responses, since all three UPR pathways are

engaged in brain diseases and have been found to be altered during the normal aging process. Different inducers of neuroinflammation, have shown to engage the

UPR in neurons and promote a greater inflammatory response due to immune cell infiltration, mainly B and T cells. The cDC1 subset of dendritic cells could activate

IRE1α for cross presentation of antigens to infiltrating CD8+ T cells, and cDC2 as well as monocyte-derived DCs may set an inflammatory environment through

cytokine secretion and activation of infiltrating CD4+ T cells. Macrophages and microglia also become highly activated and could tune IRE1α/XBP1s upon recognition

of NAMPs. Inflammatory mediators such as cytokines prime axonal destruction and neuronal loss. It remains to be addressed weather UPR triggering in these cells

corresponds to a homeostatic (adaptive) response, or a terminal (neurodegenerative) response due to sustained unresolved ER stress.

mapping and parabiosis experiments revealed that these
cells express distinct surface markers and differentially
populate the pia mater, perivascular space, choroid plexus
and dura mater (62, 94). Most of these subsets sample the
environment, clear apoptotic cells and amyloid β plaques,
and help maintaining CNS homeostasis in steady state. Up
to date, there is no evidence available on the extent of UPR
activation in BAMs. However, it has been described that splenic
F4/80 macrophages display basal levels of IRE1α RNase activity
and upon bacterial infection, peripheral macrophages induce
XBP1s for enhancing cytokine production in a mechanism
mediated by TLRs and reactive oxygen species (68, 95).
However, whether CNS macrophages show a functional
analogy to peripheral macrophages and also engage the IRE1α-
XBP1s branch upon recognition of NAMPs (68) remains
undetermined.

Dendritic Cells
DCs are major APCs in the CNS, acting as sentinels between
brain and periphery (87, 96–99). Steady-state CNS is populated
by most DC subtypes, including plasmacytoid DCs (pDCs),
and conventional DC type 1 (cDC1) and type 2 (cDC2) (62).
These cells locate in the choroid plexus, pia mater and dura
mater, but not in the perivascular space, suggesting that these
compartments may serve as entry sites for MHC-dependent T
cells (62, 96, 97). Importantly, DCs are key targets of the UPR.
XBP1s is constitutively expressed by DCs and high XBP1s is a
hallmark of cDC1s across tissues, although the CNS remains to
be examined (95, 100, 101). Furthermore, cDC1s activate the
IRE1α -XBP1 axis for development, survival in mucosal tissues
and cross-presentation of antigens to CD8+ T cells, which may
be of relevance in infections with neurotropic viruses (2, 102).
In addition, cDC1s are highly sensitive to perturbations in XBP1
signaling and counter activate RIDD upon XBP1 loss (95, 101).
The implication of RIDD and XBP1s signaling in DC subtypes
in the CNS has not been explored so far but relevant aspects
downstream of XBP1s and RIDD may encompass cytokine
production upon recognition of protein aggregates, cell survival
and cross-presentation of antigens to CD8+ T cells.

Lymphocytes
T and B cells survey the steady-state CNS exerting a
neuroprotective role, but can become pathogenic under
unresolved inflammation (57, 103–106). T cell numbers have
been found to be increased in AD, PD, ALS and MS, and to
contribute both to inflammation and neuronal dysfunction
as well as to deferring inflammatory responses leading to
nerodegeneration (107, 108). The immune response elicited
by these cells in the CNS depends on their functional
phenotype, although observations regarding cell number
and T cell subset involved varies between different disease
types and model of study (108–113). UPR activation in T
cells is not completely elucidated, however the IRE1α-XBP1s
branch has shown to regulate cell differentiation and cytokine
production in CD8+ and CD4+ T cells under infection and
chronic ER stress (114–118). During neuroinflammation
and aging, B cells play a pathogenic role by producing
pro-inflammatory cytokines, promoting effector T cells and
activating macrophages via Fc receptors (62, 119–123). B cell
development, activation and differentiation is critically regulated
by IRE1α-XBP1s and ATF6, whilst absence of PERK favors
plasma cell differentiation and immunoglobulin synthesis
(124–128).

Overall, as proposed on Figure 2, activation of UPR
components could occur in CNS-residing and infiltrating
immune cells upon PRR recognition of protein aggregates,
or due to noxious threats. The IRE1α-XBP1s axis has a
key role in immune cell development from hematopoietic
progenitors, cell survival and effector function, and it could
be activated by NAMPs through PRR signaling in microglia,
macrophages or dendritic cells, inducing cell maturation and
activation (66, 68, 88, 97). The PERK pathway in contrast,
is mostly deactivated to allow immune cells to fulfill their
function under different inflammatory settings without going
through apoptosis. In AD or PD however, sustained stimulation
triggered by amyloid β or α-synuclein aggregates could lead
to a dysfunctional activated phenotype associated to defective
clearance and increased production of inflammatory mediators.
This process could, in turn, attract more immune cells that
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exert a neurotoxic effect, promoting the accumulation of more
protein aggregates, axonal destruction and neuronal malfunction
(129, 130). Under this chronic ER stress, UPR signaling would be
expected to be highly activated in CNS-related immune cells, in
line with observations in brain samples of patients. Nevertheless,
it remains to be addressed whether the UPR output in CNS-
associated immune cells proves to be beneficial or detrimental
for the development of PMDs, as is the case of neurons and
astrocytes (131, 132).

CONCLUDING REMARKS

The interplay between the UPR, the immune system and the
CNS in neurodegenerative diseases remains in its early stages.
Intensive research will be required to accurately understand the
role of ER stress in the immune-related aspects of CNS pathology
and to determine whether UPR signaling in immune cells
answers to a homeostatic or a terminal fate. It is also important to
keep in mind the potential differences between human and mice
immune cell types, since most knowledge gained in this matter
emerges from studies in murine models. Through our knowledge
on the UPR role in peripheral immunity and neurodegeneration
models, better access to human samples and the advent of
novel analytic tools for identification of the diversity of cell
lineages, the cell-specific contribution of the UPR to neural
and CNS-associated immune cells will begin to be elucidated,
generating valuable knowledge that may provide therapeutic
opportunities.
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