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ESTUDIO NUMÉRICO DE EFECTOS DE ESCALA EN LA RESISTENCIA AL 

CORTE DE DIACLASAS BIDIMENSIONALES EN ENSAYOS DE CORTE 

DIRECTO 

 

Barton (1973) caracterizó la resistencia al corte de diaclasas en escala de laboratorio (~100 

mm), desarrollando un criterio de resistencia al corte que considera la influencia de la 

rugosidad de la junta mediante el Joint Roughness Coefficient (JRC). A pesar de que 

inicialmente se desarrolló como un parámetro de ajuste, el JRC de diaclasas in-situ, cuyo 

largo varía en varios ordenes de magnitud, es determinado empíricamente mediante 

comparación visual con un set de perfiles representativos de pequeña escala elaborado por 

Barton & Choubey (1977). El objetivo de este trabajo es estudiar numéricamente el efecto 

de escala y el intervalo de muestreo espacial del perfil en la resistencia al corte de diaclasas 

bidimensionales sometidas a cargas normal constante. Se utilizaron simulaciones 

numéricas de elementos finitos de ensayos de corte directo para perfiles de pequeña y gran 

escala (~100 y ~1000 mm respectivamente), generados mediante el escalamiento de los 

perfiles standard de Barton & Choubey (1977), considerando además distintos intervalos 

de muestreo espacial y rugosidades. La elaboración de la geometría de los modelos y sus 

mallados, la ejecución de las simulaciones y el procesamiento de los resultados fueron 

automatizados para facilitar los cientos de simulaciones requeridas para el estudio. Los 

modelos fueron calibrados mediante análisis de sensibilidad, teniendo en consideración la 

precisión, convergencia y tiempo de cómputo de las simulaciones. Los resultados obtenidos 

muestran una buena relación con los resultados experimentales y confirman que el intervalo 

de muestreo en la caracterización de la rugosidad de las diaclasas afecta sus curvas tensión 

de corte desplazamiento. Las simulaciones de diaclasas de distinta escala, que sólo difieren 

en su largo y altura de asperezas manteniendo el resto de las propiedades constantes (i.e. 

propiedades del material, geometría del perfil, condiciones de borde), no muestran 

diferencias en la resistencia al corte máxima movilizada. 
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NUMERICAL STUDY OF SCALE EFFECTS IN THE SHEAR STRENGTH OF 

FRESH ROCK JOINT PROFILES UNDER 2D DIRECT SHEAR LOADING 

Barton (1973) characterized the small-scale shear strength of joints (~100 mm), developing 

a nonlinear shear strength criterion which considers the influence of roughness on the shear 

strength using the Joint Roughness Coefficient (JRC). Although initially developed as a 

curve fitting parameter, the JRC of in-situ joints, whose length varies in several orders of 

magnitude, is empirically determined through visual comparison with a representative set of 

standard small-scale profiles, elaborated by Barton & Choubey (1977). The objective of this 

work is to study the effects of scale and spatial sampling of the profile in determining the 

shear strength of two-dimensional fresh rock joints under constant normal load. FEM 

numerical simulations of direct shear tests models were used, for profiles of small and large 

scale (~100 and ~1000 mm respectively), generated by enlarging the Barton & Choubey 

(1977) standard profiles, for varying sampling intervals and roughness. The development of 

the model’s geometry and its mesh, the execution of the tests simulations, and the 

processing of the results where automated to facilitate the hundreds of tests required for the 

study. The models were calibrated by sensitivity analyses for key parameters with the 

consideration of the model’s accuracy, convergence, and computing time. The obtained 

results show a good relationship with the experimental results found in literature and confirm 

that the sampling interval in the roughness characterization influence the joint shear stress 

– displacement curve. The simulations of two-dimensional profiles performed under various 

scales, whose only differ on its length and asperity height, with the rest of the properties (i.e. 

material properties, profile geometry, boundary conditions) kept constant, don’t show 

differences in the mobilized peak shear strength. 
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1 Introduction 

1.1 Background 
 
Rock mechanics is an applied science concerning the response of rock and rock 
masses to the force fields exerted on their physical environment (Brady & Brown, 
1971).The discipline of rock mechanics is especially visible in countries where the 
ground surface is predominantly composed of rock, for example, Chile, Finland, 
Scotland and Spain (Hudson & Harrison, 1997). 
 
One of the main characteristics of a rock mass is the presence of discontinuities. 
The word ‘discontinuity’ denotes any separation in the rock continuum having 
effectively zero tensile strength and is used without any genetic connotation (Hudson 
& Harrison, 1997). Rock mass mechanical properties and behavior are hugely 
influenced by the discontinuities properties, which means an effective design of 
underground excavations and rock slopes requires a good understanding of the 
mechanical behavior of rock joints (Bahaaddini et al., 2014). 
 
Rock masses can be treated as a pseudo-continuum, in terms of their mechanical 
properties, by using empirical criteria that apply a reduction factor to the intact rock 
strength, as a simplification of the intact rock plus the joint sets behavior.  This 
method is usually used in tunnel design and underground mining in general, where 
the geomechanical engineering project scale is larger than the rock block, as seen 
in the mine pillar displayed in Figure 1.1  (Brady & Brown, 1971).  
 

 

Figure 1.1. Mine pillar operating as a pseudo-continuum (Brady & Brown, 1971). 

In open-pit mining and roads and highways cuts, rock slope stability is one of the 
main factors considered in the design (Wyllie & Mah, 2004). Rock slope stability is 
controlled by the potential mode of failure, given by joint geometry and orientation 
(Barton, 1973), and the shear resistance of the rock mass, which depends heavily 
on the irregularities of the joints along the failure surface, as noted by Newland and 
Alley (1957) and Withers (1964). Therefore, it is important to characterize the 
discontinuities of the rock mass, as they are essential in the stability assessment. 
 
Several names are used, in literature and practice, to refer to discontinuities. In 
general, the adopted name depends on the length of the analyzed discontinuity, as 
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seen in Figure 1.2. The term joint is defined as “a discontinuity plane of natural origin 
along which there has been no visible displacement (ISRM, 1975)”, which means 
that discontinuities from the seismic origin are not considered, as there is relative 
motion between both joint surfaces. 
 

        

Figure 1.2. Discontinuities classification according to their length (Palmström, 2001). 

With the progressing climate change, seasonal weather is expected to shift to more 
extremes patterns. This change implicates that rock joints are subjected to more 
intense cyclic loads of thermal, hydro-mechanical or freeze-thaw cycles. The cyclic 
loading is associated with a fatiguing factor in the resistance of the joints, as 
indicated by Zangerl (2010), Gischig (2011) and Preisig (2016). Natural rock slopes 
or man-made rock cuts that were once stable, may not be in future, thus a 
reassessment of their stability is required. The failure of many of these slopes and 
rock cuts may result in economic losses and in worse cases, the loss of lives (Wyllie 
& Mah, 2004) 
 
Rock slopes in Chile, located in the Pacific ring of fire, are subjected to high seismic 
loading. The associated seismic loading occurring during an earthquake may act as 
a triggering factor in a joint sliding, in the short term, and as a preparatory factor in 
the long term (induced fatigue due to the shaking), as seen in Figure 1.3. 
 
In the last decades, several methods to quantitatively characterize the roughness of 
a joint or surface have been developed, using newly introduced technology in 
engineering geology, such as laser photogrammetry and interferometry (ISRM, 
1978; Sturzenegger & Stead, 2009). These methods become cheaper and more 
accessible every day, allowing a complete topographic characterization of the 
exposed surface of joints. 
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Figure 1.3. Driving and resistance forces in rock slope stability (Gischig et al., 2016) 

 
The roughness of a joint has been recognized as a key parameter in the 
characterization of its shear strength, as concluded by Patton (1966) and Barton 
(1973). Several authors have developed shear strength criteria using laboratory data 
that considering the roughness of the joints. In section 2.5, the most relevant criteria 
are presented. Although an important number of criterions have been developed, the 
Barton – Bandis criterion (Barton & Bandis, 1990) is still the most widely used 
criterion to model the shear strength of discontinuities (Hoek, 2006), which considers 
the roughness effect on the shear strength with the Joint Roughness Coefficient 
(JRC) parameter. 
 
Scale effects in the shear strength of joints have been observed empirically by 
several authors when comparing big size in-situ shear tests with the results of the 
shear tests of smaller specimens in the laboratory. It is important to note that, there 
is a geometrical scale effect due to the nature of discontinuities geometry and a scale 
affect associated to a reduction in the material resistance, being both phenomena 
important in the scaling of the shear strength (Tatone & Grasselli, 2013). 
 
This effect was first studied by Bandis (1980) who concluded that there is a reduction 
in the shear strength of rock joints with an increment in the joint size. Based on 
Bandis’ results, charts and equations were derived to scale the strength predicted 
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by the Barton – Bandis criterion (Barton & Bandis, 1990). The methodology followed 
by Barton to study the scale effects has been questioned, because of outdated 
measurement systems used on his study and an ignorance of the results scatter due 
to the use of mean measurements (Leal Gomes, 2003; Papaliangas et al., 1994). In 
section 2.6, Bandis and other studies of joints scale effects are detailed. 

1.2 Motivation 
 
Understanding the behavior of rock joints, when subjected to shear stresses, is key 
to characterize a rock mass. A good degree of empiricism still prevails when 
characterizing rock mass roughness used in constitutive models for rock joints. 
There is often uncertainty about scaling experimental results to field conditions. 
Empirical methods, whose effectiveness is proved for specifics sets of conditions, 
are still widely used to scale results from small-scale experiments to large-scale 
properties of the rock mass and fracture systems. There is a need for a deeper 
understanding of rock joint geometry and of more powerful and precise techniques 
for rock joint characterization (Lanaro, 2000).  The qualitative characterization of the 
joints and the use of empirical relationships had been enough to characterize rock 
masses and design safe geo-structures, but as projects get bigger and more 
ambitious, an accurate quantitative characterization of joints should be encouraged. 
 
Although several models of varying complexity successfully characterize rock joints 

mechanical behavior at the laboratory scale (around ~100 mm), it is still not known 
how these models should be adjusted to consider scale effects on the shear strength 
of the joint.   
 
A numerical approach to study the scale effect in rock discontinuities is proposed in 
this study, based on the simulation of shear tests of the joints, making use of the 
advantage of numerical simulations in terms of the possibility of scripting, 
repeatability of the tests and relative easiness of post-processing. Ideally, the 
proposed adjustment should be as simple as possible, considering all the key 
properties, but still being a viable solution for practical problems.  
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1.3 Objectives 

1.3.1 Main Objective  
 
Study the scale effect of fresh rock joints shear strength through numerical 
simulations of direct shear tests under varying loads, profile geometries and lengths, 
using the finite element method for analysis, considering a Mohr-Coulomb plasticity 
model for the intact rock and a Barton – Bandis shear strength criterion for the joint. 
 

1.3.2 Specific Objectives 
 

• With a profile geometry as input, automate the shear box drawing process, 
mesh generation and shear test numerical simulation process through 
computational scripts in Matlab. 
 

• Using numerical simulations of direct shear tests, considering a Mohr-
Coulomb plasticity model and Barton-Bandis shear criterion for the joint, 
Characterize the shear strength effect of the sampling interval of the joint and 
the scale, for profiles of varying lengths and roughness, through a back 
analysis of the JRC Parameter. 
 

• Generate charts that describe the influence of the sampling of the joint length, 
on the roughness in the shear strength of the joints, based on the back-
calculation of the JRC parameter.  
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2 Literature Review 
 
Although the studies of interfaces mechanical behavior are numerous, the literature 
review will focus on the rock mass discontinuities under the following conditions: 

• The joints are free of any filling material and clean. 

• Joints are well mated, free of alteration and weathering on the joint walls. 

• Constant normal load boundary condition may be assumed. 

 
The review has five main points: 

• Give a summary of the direct shear test procedures, under constant normal 
load, and its uses to characterize joints shear strength. 

• Describe Roughness importance in rock joints and its shear strength. 

• Describe the main surface roughness measurement methods. 

• Introduce the models used to characterize rock joint surface roughness 
through empirical, statistical or fractal formulations. 

• Present the most relevant model used to estimate the shear strength of joints 
under constant load boundary condition. 

• Summarize the current complex issues that exist to this day, for the 
characterization of rock joint shear strength, with a focus on scale effects. 

These points follow the order in which they are described above, as a basic 
understanding of the precursor points is required to understand the next one. 
 

2.1 Direct Shear Test 
 
Assessing the shear strength of rock joints is usually performed using direct shear 
apparatuses (Figure 2.1). (Muralha et al., 2014).  
 

 

Figure 2.1.  Shear Test Apparatus (Hencher and Richardson,1982, and Hencher et al, 2015). 
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The guidelines to the correct test execution are given in the ASTM standard 
“Standard Test Method for Performing Laboratory Direct Shear Strength Tests of 
Rock Specimens Under Constant Normal Force (Last modification Dec 1, 2016)”. It 
is important to have in mind that the following guidelines only apply for constant 
normal load (CNL) boundary condition (Figure 2.2a), which may not necessarily 
represent in-situ conditions, as the shearing may be dilatancy controlled, as is the 
case of the Constant Normal Stiffness (CNS) condition (Figure 2.2b). Controlled-
displacement tests are considered for this review. 
. 

 

Figure 2.2. (a) CNL conditions (b) CNS conditions. 

General guidelines of the test are described below, more detailed information may 
be found in the ASTM standard mentioned above. 

2.1.1 Test Objective 
 
While maintaining a constant force normal to the nominal shear plane of the 
specimen, an increasing external shear force is applied along the designated shear 
plane to cause shear displacement. The applied normal and shear forces and the 
corresponding normal and shear displacements are measured and recorded (Astm, 
2008). 
 

2.1.2 Required Equipment 
 

• Testing Machine – Loading device that applies and registers normal and 
shear forces on the specimen. With the testing machine, load monitoring, 
pressure maintaining and displacement measuring devices must be included, 
in the case of the last one, displacement in both normal and tangential 
direction must be included. 

• Specimen Holding Rings – Steel holdings with enough internal space to 
accommodate mounted specimens (Figure 2.3). 

• Encapsulating Compound – Material used to fill the Holding Rings void space, 
to hold the specimen in place (Figure 2.3). 

(a)  (b)  
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• Split Spacer Plates – Plastic plates used for isolating a fresh specimen’s 
shear zone from the encapsulating compound (Figure 2.3). 

• Data Acquisition Equipment – A computer is recommended to be used to 
control the test, acquire data and plot the results. Ideally, acquisition rates 
must be nearly continuous (sampling frequency larger than 1 Hz).  

 

Figure 2.3. Pouring of encapsulating compound around the specimen (Astm, 2008). 

2.1.3 Test Procedure and Results 
 
First, the specimen geometry must be characterized completely, measuring 
dimensions, nominal area and joint roughness in the shear direction. Taking a 
photograph of both surfaces before and after the test is recommended. The next 
step is to encapsulate the specimen, in case a porous rock is tested, a sealer must 
be used as a coating, to prevent absorption of water from the encapsulating 
compound. The encapsulating compound must be allowed to cure without 
disturbance. When this process is finished, the spacer plate is removed, exposing 
the test zone for shear testing.  
 
Once the specimen is ready, it must be mounted on the shear box together with 
displacement measuring devices, making sure that there are enough contact and 
room to measure the displacements and that these are fixed to start at zero 
displacement value; the recording must begin before the application of loads.  
 
Finally, the load must be applied; the test starts with a small seating normal load 
applied (around 450 to 900 N), depending on the specimen size. Once the system 
is stabilized and the loads are measured, normal load is increased at a constant rate 
until the required load is achieved. Once the vertical load has been stabilized the 
shear displacement is applied at rates between (0.1 to 0.2 mm/min), readings must 
continue after the peak shear strength is reached, until a residual strength is 
established. 

Specimen 
Holding 
Rings 

Split 
Spacer 
Plates 

Encapsulating 
Compound 
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The test must be executed under 4 different vertical loads at least, which may be 
using the same specimen, with increasing vertical loads and reallocation of the joint, 
or with 4 different specimens, extracted from the same joint and representative of 
the joint surface. The obtained results must be plotted in 3 different spaces: 

• Shear strength v/s shear displacement (Figure 2.4a). 

• Normal displacement v/s shear displacement (Figure 2.4b). 

• Shear strength v/s nominal normal stress, for peak and residual shear 
strength (Figure 2.5). 
 

 

Figure 2.4. (a) Shear strength v/s shear displacement (b) Normal displacement v/s shear 
displacement (Modified from Muralha et al., 2014). 

 

 

Figure 2.5. Shear strength v/s nominal normal stress, for peak and residual shear strength (Modified 
from Muralha et al., 2014). 

These results are used to estimate the joint shear strength. The Mohr-Coulomb 
failure criterion is recommended in case of a planar joint, and a nonlinear criterion is 
recommended for rough joints, being the Barton – Bandis (Barton & Bandis, 1990) 

(a)  (b)  
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the most common one, as suggested by the ISRM (Muralha et al., 2014). The 
existing shear strength models are described in section 2.5. 
 

2.2 Surface Roughness Definitions 
 
There are several factors that influence friction during sliding contact conditions. The 
surface topography is one of the key factors that affect the coefficient of friction µ 
(Menezes & Kailas, 2016). In the rock mechanics context, surface topography is the 
most important parameter, at low stresses, in the shear strength of clean rock joints 
(Barton, 1973).  
 
Although having a complete topographic measure of joints wall surfaces may be 
desirable in certain cases, such as academic studies of joint shear behavior, in 
practice the time and resources required to do so are out of reach in an engineering 
project. Also, in most cases, joints wall surfaces are not reachable at all. A practical 
alternative is to characterize the surface roughness in a qualitative or quantitative 
way of a representative specimen, associating its roughness value to a certain shear 
strength factor and assuming it may be extrapolated to the rest of the joint.  

2.2.1 Definition of Roughness and Waviness 
 
Surfaces in nature are composed of irregularities of multiple wavelengths (Figure 
2.6), from atomic to the macro scale. Tribology is the science that studies how these 
irregularities behave across scales and their influence in frictional behavior, a big 
field of study in physics, with application in multiple other fields. In Rock mechanics, 
as a simplification, the number of studied irregularities wavelengths has been 
reduced to two, first order large-scale irregularities (waviness or planarity) and 
second order small-scale irregularities (roughness or unevenness). It is appropriate 
to divide the roughness into these two different features (Figure 2.7), as it is often 
easier to characterize them separately in the joint survey (Palmström, 2001). 
 

 

Figure 2.6. Irregularities across multiple scales and wavelengths (Persson et al., 2002) 

In general, waviness affects the initial direction of shear displacement relative to the 
mean discontinuity plane, while unevenness affects the shear strength that would 
normally be sampled in a laboratory or medium scale in situ direct shear test (ISRM, 
1978), but how these features affect depends on the geostructure conditions, joint 
weathering degree or cumulative displacement due to repetitive earthquake induced 
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loading. In these cases, the joints tend to suffer a failure of their smaller asperities, 
If the damage is big enough, the waviness will control dilation and the shear strength 
of the joint. In pit slopes, these phenomena do not affect the joint walls and the 
roughness of the joint has the main influence on the stability of these slopes  (Patton, 
1971). 
 

Waviness 
 
According to Palmström (2001), waviness is defined by the equation: 
 
 U =

amax
Lj

 (2.1) 

 
Where amax [mm] is the maximum amplitude from planarity and Lj [m] is the length 

of the joint. In practice, waviness is easily measured using a straight edge placed on 
the joint surface and a measuring the maximum amplitude amax, as seen in Figure 
2.8a). Waviness wavelength is measured in meters and its amplitude in millimeters 
(Figure 2.7a), this means that it may only be measured in-situ and not in laboratory 
conditions. In practice, waviness is measured by sight by an experienced 
professional. 

 

Figure 2.7. (a) Waviness and  (b) roughness of a rock surface (Palmström, 2001). 

 

(a)  

(b)  
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Figure 2.8. (a) Measurement of waviness U (b) Measurement of roughness with a comb 
(Palmström, 2001). 

 

Roughness 
 
Surface roughness or unevenness is the nature of the asperities in the joint surface 
which can be felt by touch. This is an important parameter contributing to the 
condition of joints. Asperities that occur on the two matching joint surfaces interlock 
if they are clean and closed, and inhibit shear movement along joint surfaces 
(Palmström, 2001). Roughness wavelength is measured in centimeters and its 
amplitude in 1/10 millimeters to millimeters (Figure 2.7b). This means that it may be 
measured both in-situ and in laboratory conditions. 
 
All the methods described in section 2.3 may be used to characterize roughness, 
including the comb (Figure 2.8b), method indicated by Palmström (2001) and the 
ISRM (1978) as the most accurate yet practical. In practice, roughness is measured 
by touch by an experienced professional, who then assign a smoothness factor (Js). 
This methodology is prone to errors and is severely subjective and as such, shouldn’t 
be used when joints mechanical behavior is key to the geostructure stability (slopes 
or tunnels for example). Quantitative methods to characterize roughness as those 
described below should be encouraged as technology gets cheaper and more 
accessible. 
 
 
 
 
 

(a)  (b)  
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2.3 Discontinuity Roughness Measurement 
 
Over the years, several methods had been developed to characterize the roughness 
of discontinuities in situ or in a laboratory setup. These methods can be divided into 
two categories (Tatone, 2009):  

1. Contact Methods: The instrument requires contact with the analyzed surface, 
mainly used to describe two-dimensional profiles. 

2. Non-Contact Methods: Contact with the analyzed surface is not required, 
usually use for full three-dimensional characterization of the surface. 

Even if this work focuses on discontinuity profiles, methods to characterize both 2D 
profile and 3D surface exist, this review will cover both, understanding that profiles 
can be obtained directly from complete surfaces measurements. The most used 
method are included in Appendix A. Although non-contact methods for two-
dimensional profiles exist (Figure 2.9), these methods are usually reserved for 
measurement of the whole surface topography, as a complete characterization 
would be preferred if the equipment is available. 
 

 

Figure 2.9. Available system for joint-roughness measurements (Modified from Grasselli, 2001). 

Higher quality 

measurements 
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2.4 Surface Roughness Characterization Models 

2.4.1 Classical Methods 
 
Since Barton’s work (1973), rock joint roughness has been mostly characterizing by 
the Joint Roughness Coefficient (JRC), a parameter that considers roughness 
influence in the shear strength estimated by the Barton – Bandis model (Barton & 
Bandis, 1990), detailed in section 2.5.3. Originally, the JRC was an empirical 
coefficient, obtained by back analysis of direct shear test under varying vertical loads 
of the tested joints. Due to the difficulties to perform accurate shear tests, 
representative of in-situ condition of the studied rock joints, Barton and Choubey 
(1977) presented an optional method to estimate the JRC, which required to visually  
compare the joint of interest with a set of predefined profiles (Figure 2.10), then the 
JRC value of the most similar profile was assigned to the studied rock joint. 
 

 

Figure 2.10. Set of predefined profiles of increasing roughness (Barton & Choubey, 1977). 
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Although the measure of the profile could be precise, this method still requires a 
subjective comparison to be made by the specialist. While the method is still widely 
used and recommended, it has been recognizing as unreliable due to large 
differences between the estimated JRC by different rock mechanics experts (Maerz, 
1990; Tatone & Grasselli, 2010).A survey was carried by Beer (2002) to measure 
the existant deviation in the estimation of the JRC, by different professionals, of a 
profile. It was found that profiles that don’t display any resemblance to Barton’s 
predefined profiles, as the one shown in Figure 2.11, lack any accuracy in the JRC 
obtained by visual estimation,  With the estimated JRC varying from 6 to 20, in this 
case. 
 

 

Figure 2.11. The frequency of JRC estimation for profile C (Modified from Beer et al., 2002). 

The most relevant statistical and fractal methods used for rock joint roughness 
characterization are described in Appendix B. 
 

2.4.2 Sampling Interval and Scale Effects on Surface Roughness 
Characterization 

 
A sampling window is defined as the geometrical area used to characterize the 
topography of the analyzed joint surface; sampling windows of varying sizes are 
displayed in Figure 2.12. Sampling window dimensions and sampling interval have 
been identified as important sources of result differences in surface topography 
characterization, with sampling interval being the key parameter (Fardin, 2008; 
Kulatilake, 1995). In the study made by Tatone & Grasselli (2013) the estimated 
roughness of joints of tensile failure origin, using the maximum apparent dip angle 
(section 0), varied by up to 88 % over the range of measurement resolutions 
considered (0.44 – 1 mm), with higher roughness obtained for the smaller sampling 
interval, this implies that variation of the sampling interval across various windows 
size would induce an underestimation of the surface roughness for larger sampling 
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intervals (usually associated with bigger sampling window lengths),a common error 
found in literature (Tatone & Grasselli, 2013). Based on these results, it is expected 
that models calibrated using the same profiles and techniques, but different sampling 
intervals will give different calibration results.  
 

 

Figure 2.12. The square window of varying size (Tatone & Grasselli, 2013). 

 
Jang et al. (2014) studied the correlation between different statistical parameters 
used to characterize the roughness of a profile and the JRC. They digitized Barton’s 
profiles and calculated the value of the statistical parameters of interest for each 
profile, using various sampling intervals [0.1 – 0.5 – 1 – 2 mm]. From their results, 

they derived power law relationships (JRC = a ∗ Pb + c) between the JRC and the 

most used parameters to characterize roughness in the literature (Z2, SF,
θmax

C+1
,D) for 

each sampling interval, and compared their results to the JRC back-calculated by 
Barton and Choubey (1977) of the profiles and other relationships derived by several 
authors (Figure 2.13). The most important results of the study are: 

• There is good agreement between the derived relationships and the JRC 
value of the profiles (all fall in the ± 5% error range, except in the case of the 
Barton profile n° 4, JRC 6-8) 

• The Roughness Parameters are not independent of the sampling interval. 
Different sampling intervals give different coefficients for the adopted power 
law relationship used. 

• The relationships between the JRC and Statistical Parameters derived by 
Maerz (1990) and Tse and Cruden (1979) don’t correlate well with the true 
JRC values. Sampling errors are the probable reason. 
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Figure 2.13. (a) Correlation between the JRC and the Z2 parameter, (b) Correlation between the 
JRC and the SF parameter (Jang et al., 2014). 

 

2.5 Rock Joints Shear Strength Models 
 
Failure of discontinuities in the brittle material is usually of shear failure origin, as 
tensile and torsion strength are negligible, and compression is controlled by the rock 
intact properties. All rock masses contain discontinuities such as bedding planes, 
joints, shear zones, and faults. At shallow depth, where stresses are low, failure of 
the intact rock material is minimal and the behavior of the rock mass is controlled by 
sliding on the discontinuities (Hoek, 2006). The main shear strength models used for 
rock joints are described below. 

2.5.1 Mohr-Coulomb model 
 
The Mohr-Coulomb model is based on Coulomb’s fracture failure formulation and 
Mohr’s maximum shear stress model (Figure 2.14), which assumes the limiting shear 
stress in a plane to be a function of the normal stress in the same section at an 
element point. 
 

S.I. = 0.5 [mm] 
S.I. = 1 [mm] 
S.I. = 1.5 [mm] 

S.I. = 2 [mm] 

S.I. = 0.5 [mm] 
S.I. = 1 [mm] 
S.I. = 1.5 [mm] 

S.I. = 2 [mm] 
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Figure 2.14. Mohr-Coulomb shear strength criterion (Sorensen, 2012) 

 
In the case of discontinuities, as indicated in section 2.1, the shear strength of joints 
is estimated using direct shear tests, under constant normal load or normal stiffness 
conditions. If a cemented planar joint (σt ≠ 0) is sheared under normal load and 
controlled displacement conditions as described in section 2.1.3, the shear stress 
will increase until the peak shear strength is achieved, then it will decrease 
asymptotically to the residual shear strength (Figure 2.5) Both values of shear 
strength may be plotted against the applied normal stress. if this process is repeated 
for the same joint under varying normal stress, the peak shear strength as a function 
of normal stress is characterized by the Mohr-Coulomb model, which is defined by 
the equation (Hoek, 2006): 
 
 τp = c + σvtanϕ  (2.2) 

 
Where, τp is the shear strength of the joint, σv the normal stress to the joint, ϕ is the 

angle of friction and c is the cohesive strength of the surface. Is important to note 
that the residual strength characterizes the pure frictional component of the joint 
shear strength, which means that the cohesive component decreases progressively 
until it completely disappears, under high shear displacements. 
 

2.5.2 Patton model 
 
Although the Mohr-Coulomb model was developed for a perfectly smooth plane of 
failure, its use in engineering practices has been extended to rough surfaces, where 
an apparent cohesion c is used to characterize the peak shear strength of the joint. 
While this formulation may be acceptable for joints under high normal stresses, it 
overestimates the strength of the joint for low stresses, as the criterion fails to model 
the purely frictional, surface roughness dependent behavior. 
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Figure 2.15. Sawtooth specimens used by Patton, the inclination angle of 25° (Modified from 
Patton, 1966) 

 

Figure 2.16.  Sawtooth shear test results (Patton,1966). 

 
Patton (1966) studied the joints strength dependence on roughness through lab 
testing of sawtooth-shaped specimens (Figure 2.15.). On his experience, the failure 
envelopes are curved, with a change in the slope of the curve representing a change 
in the mode of failure of the joint, as a function of the joint normal stress. Patton’s 
experimental results could be accurately modeled using a bilinear criterion (Figure 
2.16), defined by equations: 
 
 τp = σv tan(ϕμ + i) (2.3) 

 
 τp = σv tan(ϕr) (2.4) 
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Where i is the angle of inclination of the sawtooth asperities, ϕμ is the angle of 

frictional resistance of an intact smooth wall and ϕr is the angle of friction of residual 
shearing resistance. It is important to note that, while the definition of  ϕμ and ϕr are 

different, ϕr is used for post-peak shear strength measures at high levels of 

deformation, in Patton results in the variation between ϕμ and ϕr was negligible, 

making both terms interchangeable in the equations (2.3) and (2.4). The criterion 
represents the shift of shear behavior from asperity-controlled shear strength, under 
low normal stresses, to purely residual strength, govern by the material friction, due 
to the asperities shearing at higher loads. 
 

2.5.3 Barton – Bandis model 
 
While Patton characterization of joint failure envelopes was important as a first 
approach in describing rock joint shear strength as a pure frictional problem, and not 
as the sum of a cohesive and a frictional component, as the use of a Mohr-Coulomb 
model may suggest, a bigger effort was required, as said by Patton (1966): “For 
some engineering design purposes straight-line failure envelopes are adequate. But 
to facilitate an understanding of the failure mechanisms, curved failure envelopes 
reflecting the multiple modes of shear failure appear to be a necessity”. 
 
The Barton – Bandis model (Barton & Bandis, 1990) is one of the most used shear 
strength criteria in rock mechanics until this day. Its formulation considers the change 
in the mode of failure by assuming that at low stresses, the shear strength of the 
joint is controlled by the asperities in the surface of the discontinuity, but, at higher 
stresses, the asperities are crushed or sheared, due to restraint of the dilation (Astm, 
2008) which implies that the asperities influence in the shear strength decreases. 
The Barton nonlinear criterion is defined as: 
 
 

τp = σv tan (ϕb + JRC ∗ log10 (
JCS

σv
)) (2.5) 

 
Where JRC is the Joint Roughness Coefficient and JCS is the Joint Wall 
Compressive Strength, the first parameter takes into account the roughness of the 
joint and the second one accounts for the compressive strength of the wall of the 
discontinuity, is usually related to the uniaxial compressive strength of the rock mass 
(UCS). This formulation is a straightforward way to consider dilation and its variation 
at higher loads. The effect on the shear strength of both parameters is seen in Figure 
2.17. Clearly, the JRC has a bigger impact on the shear strength. It is important to 
note that Barton (1973) noted that the ratio of the JCS to normal stress must be 
between 1 and 100; for higher values, the friction angle should be fixed at 70° (Woo 
et al., 2010). 
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Figure 2.17. JRC and JCS influence in peak shear strength (Modified from Barton & Choubey, 
1977). 

 
The Barton – Bandis model was developed empirically through statistical fitting of 
the results of joints sheared in laboratory conditions. While observations indicated 
that the JRC was related to the roughness of the joint and the JCS to the intact 
compressive strength of the rock, only the latter could be directly related to the UCS 
of the rock, while the former had to be retro calculated, doing direct shear tests of 
multiple samples taken from the joint of study, in a lab setup (Barton, 1973), using 
the equation: 
 
 

JRC =
(atan (

τp
σv
) − ϕb)

log10 (
JCS
σv
)

 (2.6) 

 
A correct sampling of the joints specimens and laboratory test executions deemed 
to be too hard in practice for rock mass joint characterization, so methods for 
estimation of these parameters (JRC and JCS) in-situ were introduced, which are 
described in appendix B. 

JCS  JCS  

JCS  
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JCS In-situ Estimation 
 
An alternative method to estimate the JCS in-situ is using the Schmidt hammer 
rebound test, considering the correlation between the UCS and Schmidt Hardness 
(Deere & Miller, 1966), the diagram presented in Figure 2.18 may be used to back-
calculate the Uniaxial Compressive Strength of the rock based on the number of 
Schmidt hammer strikes required to fracture it, the hammer orientation used in the 
test and the measured unit weight of the rock 𝛾 [kN/m3]. The diagram is used 
following the dashed line, starting at the bot and ending at the left. 
 

 

Figure 2.18. Correlation between UCS and Schmidt hardness (Modified from Hoek, 2006) 
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It is important to note that the thin layers adjacent to joint walls are weathered more 
severely than the interior of the rock. The joint wall can become weathered gradually 
by chemical and physical weathering processes, which can lead to poor contact 
between joint walls (Woo et al., 2010). If this is the case, the UCS of the intact rock 
is not a good an estimation of the JCS, and then a Schmidt rebound test directly on 
the walls of the joint is suggested. 

JRC In-situ Estimation 
 
For in-situ estimation of the JRC parameter, Barton & Choubey (1977) suggest the 
use of the tilt test (Figure 2.19), in which a representative sample of the joint is cut 
and tested. The test consists of a gradual clockwise rotation of the joint until sliding 
of the top side is achieved, the angle α of failure is measured, and used to estimate 
the joint JRC, using the equation: 
 
 

JRC =
(α − ϕr)

log (
JCS
σn
)

 
(2.7) 

 
The use of tilt test for joints with JRC values greater than about 10 is generally 
impossible and an alternative must be used (Barton & Bandis, 1990). A cheaper 
alternative is the characterization of the joint through profile measurements and 
characterizations, methods detailed in section 2.2. 
 

 

Figure 2.19. Tilt test (Modified from Barton & Choubey, 1977) 

2.5.4 Other Models 
 
With better surface topography characterization methods developed over time, more 
complex models have been created. With the key models being already detailed, 
there is still a vast number of shear strength models to list, developed by several 
authors. While describing all of them is out of this work scope, there are two models 
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that are important to point out, as they represent the advances in the understanding 
of the joint shear phenomenon.  

Kulatilake’s Model 
 
The shear strength of rock joints is strongly anisotropic, which means that the shear 
strength of the joint depends on the shear direction (Huang & Doong, 1990). This 
phenomenon is not captured by a single two-dimensional roughness 
characterization of the joint, nor a shear strength criterion derived from one. 
Kulatilake (1995) developed a shear strength criterion based on the fractal 
characterization of the surface roughness (Appendix B.2.2 – Variogram Method), 
which was defined by the following equation: 
 
 

τp = σv tan (ϕb + a(SRP)
c ∗ (log10 (

σJ

σv
))

d

+ I) (2.8) 

The term a(SRP)c is defined as the stationary roughness parameter may be 
represented by the following expressions 
 

a(SRP)c =

{
 
 

 
 aZ2

′c

aKd
bDc

aKs
bDc 

aKv
bDc

  (2.9) 

 
Where σJ is a joint compressive strength, Z2 is the derivative of the RMS, I represent 

the angle of the large-scale undulations,  Kd, Ks, Kv are the intercept constant of the 
log-log plot used to estimate the fractal dimension D (Appendix B.2), obtained 
through a least squares analysis. a, b, c and d are coefficients calibrated through a 
regression analysis. Kd corresponds to the constant obtained when the divider 

method is used (Appendix B.2.1 – Divider Method), Ks is the constant obtained using 
the power law – spectral method. (references to this method may be found in Brown 
& Scholz, 1985) and Kv is the constant obtained using the variogram method ( 
Appendix B.2.2 – Variogram Method). 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.20. Comparison between measured peak shear strength from tests predicted values by 
Barton’s equation and by Kulatilake shear strength criterion (Modified from Kulatilake, 1995). 
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In  
Figure 2.20, results of shear tests performed on replicas of the profile, measured 
from the same rock joint surface, for 12 different radial directions, are presented in 
a polar form (shear strength increase as the point move away from the origin). It is 
shown that the Kulatilake’s model estimates the shear strength of the rock surface 
more accurately than Barton’s one, which heavily underestimates the shear strength 
of the profiles for both 0.1 and 0.5 MPa normal stresses and doesn’t capture the 
anisotropic behavior of the surface either. 

Grasselli’s Model 
 
While Kulatilake’s work is an improvement in terms of characterizing the rock 
anisotropy, it’s still not able to capture the difference in strength in terms of the shear 
direction. This problem is overcome using the Graselli’s model (Grasselli et al., 
2002), which is based on the Maximum Apparent Dip angle method (0 - Maximum 
Apparent Dip Angle). The model shear strength criterion is defined by the equation: 
 
 

τp = σn tan(ϕr
∗) [1 + e

−
(θmax
∗  σn)
9A0 C σt ] (2.10) 

 
This method considers shear direction because θmax

∗ , A0 and C depends on the 
direction selected, as described in section (0). 

2.6 Scale Effects in Rock Joints Shear Strength 
 
Although the shear strength of rock joints in laboratory conditions is understood, it is 
still not clear how the shear strength measured at the laboratory should be scaled to 
in-situ conditions, where the joints tend to be several times bigger than the scale 
analyzed in a laboratory setup. Originally, it was believed that the shear strength of 
joints had a negative scale effect, which means that at bigger scales a reduction in 
the shear strength of the joints existed, compared to laboratory specimens (Bandis, 
1980; Barton & Choubey, 1977). Later some researchers questioned this idea, 
based on laboratory experiment results and theoretical formulations (Leal Gomes, 
2003; Papaliangas et al., 1994; Ueng et al., 2010).  

2.6.1 Bandis Scale Effects Study 
 
Bandis’ (1980) investigation constitutes the first comprehensive work about scale 
effects on rock joint shear strength and dilation, his methodology has set the 
standard for the following scale effects studies, although the methodology has been 
questioned (Hencher & Richards, 2015; Papaliangas et al., 1994)  and his results 
are used to this day. 
 
Bandis (1980) studied the effect of scale on rock shear strength by doing direct shear 
box tests on various sized portions of replicas of joint surfaces. A rubber hot melt 
molding compound of high resolution was used to take precise impressions of the 
roughness from a variety of natural joint surfaces in various rock types (Figure 2.21).  
Joints lengths used were between 36 and 40 cm, and molds were prepared from 
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both sides of the joint. A multicomponent brittle material was used to cast several 
model replicas of identical interlocking specimens from each pair of molds. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.21. Profiles of the joints surface used (Modified from Bandis, 1980). 

 
A total of eleven natural joint samples were selected by Bandis for the scale effect 
investigation. Surfaces ranged from rough undulating to almost smooth and planar. 
Replicas of varying size were made for each profile: 5-6 cm,10-12 cm,18-20 cm and 
36-40 cm. Using the model theory, each replica had an associated prototype 
dimension of 1.5-1.8 m, 3.0-3.6 m. 5.4-6.0 m and 10.8-12.0 m, respectively.  
 
Bandis analyzed the scale effect on the following properties: 

• Size and distribution of contact areas (as seen in Figure 2.22 a and Figure 
2.23 a) 

• Peak shear strength and ultimate shear strength (as seen in Figure 2.22 b 
and Figure 2.23 b)  

• JRC and JCS. 

The results are summarized in Table 2.1. 
 
 
 
 
 

No. Surface Profile Description of “prototype” joints types 
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Table 2.1. Summary of Bandis (1980) results and conclusions 

Analyzed Property Increased Block Size leads to: 

Effect of scale on peak strength and 
ultimate shear strength 

Gradual Increase in the peak shear 
displacement (Figure 2.22a) 

The transition from brittle to plastic mode of 
failure (Figure 2.22b and Figure 2.23b) 

Insignificant scale effects in the case of 
smooth joint types (Figure 2.23b) 

Effect of scale on size and 
distribution of post-test contact areas 

There is a transition from a high number of 
small contact areas on small samples, to 
individual, larger, contact areas on larger 
samples (Figure 2.22a and Figure 2.23a). 

This effect is more apparent in rougher 
joints, in planar joints the scale effect is 

reduced (Figure 2.22b and Figure 2.23b). 

 
 
 

      
 

Figure 2.22. (a) Effect of scale on size and distribution of contact areas (b) shear stress v/ shear 
displacement, for model 1 (rougher joint) (Modified from Bandis, 1980). 

   

(a)  (b)  
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Figure 2.23. a) Effect of scale on size and distribution of contact areas (b) shear stress v/ shear 
displacement, for model 10 (smoother joint) (Modified from Bandis, 1980). 

 

Figure 2.24. Variation of joint peak shear stress with the joint area (Modified from Bandis, 1980) 
 

Bandis back-calculated the mean JCR-Joint Length relation using the Barton 
empirical equation for peak shear strength equation (2.6) and the average peak 
shear strength for each block size (Figure 2.24).Then, the JRC value as a function 
of the joint length has negative scale effect as seen in Figure 2.25. 

  

(a)  (b)  

Sample n°  
(Figure 2.21) 
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Figure 2.25. Scale effect on the JRC for models of varying roughness (Bandis, 1980). 

Later, Barton & Bandis (1982) derived the following expressions for the JRC/JCS 
variation, using the curve that was the best fit to the results obtained by Bandis:  
 
 

JRCn ≈ JRC0 (
Ln
L0
)
−0.03 JRC0 

 (2.11) 

 
 

JCSn ≈ JCS0 (
Ln
L0
)
−0.03 JRC0 

 (2.12) 

 
Where, Subscripts (0) and (n) refer to lab scale (100 mm) and in situ block sizes, 
respectively.  

 

Figure 2.26. Scale effect in JRC and JCS (Barton & Bandis, 1990). 
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2.6.2 Other Studies 
 
Table 2.2 summarizes some of the scale effects studies made by several authors. 

Table 2.2. Summary of rock joint scale effects studies found on literature 

Author Year Type of 
Study 

Result Description of the Study 

Krsmanovic 
and Popovic 

1966 In-situ and 
Laboratory 

Tests 

Negative Scale 
Effect 

In situ direct shear tests were performed 
on limestones and compared to laboratory 
tests performed on smaller samples. 

Barton & 
Choubey 

1977 Laboratory 
Tests 

Negative Scale 
Effect 

Tilt tests were performed on larger granite 
specimens and smaller ones, obtained by 
dividing the larger samples. 

Leichnitz 
and Natau 

1979 Laboratory 
Tests 

Negative Scale 
Effect 

Shear box tests were performed on large 
plaster replicas of sandstone specimens, 
which were compared with test undertook 
on subdivided specimens. 

Yoshinaka 
et al. 

1991 Laboratory 
Tests 

Negative Scale 
Effect 

Shear box tests were performed on 
specimens of the different surface area, 
obtained from fresh granite. 

Papaliangas 
& Hencher 

1994 Laboratory 
Tests 

No Scale Effect Bandis experiment was repeated using the 
same material, molds and shear box tests, 
but with improved measurement tools. 
According to the authors, Bandis results 
were obtained by a faulty methodology. 

Fardin et al. 2001, 
2004, 
2008 

Laboratory 
Tests 

2001 and 2004, 
Negative Scale 
Effects. 2008 
Positive scale 

effects 

Fardin measured the roughness of rock 
surfaces using laser scanners (2001) and 
LIDAR (2004). The objective was to study 
the differences in the fractal parameters 
obtained by using different window sizes 
and zones of the same joint surface. Also, 
shear tests of the analyzed joints were 
performed (2008). 

Leal & 
Gomes 

2003 Laboratory 
Tests 

Positive Scale 
Effect 

He investigated scale dependency of joint 
roughness on 
replicas of porphyritic granite using the pull 
test, described by Barton & Choubey 
(1977). 

Kveldsvik et 
al. 

2007 Field Tests 
& 

Numerical 
Simulations 

Negative Scale 
Effect 

In-situ measurement of roughness was 
performed on the Åknes rock slope in 
Norway, for 0.25 m and 1 m length sizes, 
JRC was estimated using roughness 
amplitude/ joint length Barton (1981) chart, 
a negative scale effect was found on the 
JRCs obtained. Numerical simulations of 
the rock slide were performed, where 
through a back analysis it was found that 
the JRCs obtained from the 1 m samples 
were closer to the maximal possible JRC 
that allows the failure of the slope. 
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Ueng et al. 2010 Laboratory 
Tests 

No Scale Effect They investigated the effect of scale on the 
peak shear strength of artificial enlarged 
rock joints of standard JRC profiles, a 
natural joint profile of sandstone and saw-
tooth joints using plaster replicas, no 
apparent scale effect was found. 

Oppikofer et 
al. 

2001 Field 
Measureme

nts & 
Numerical 

Simulations 

Positive Scale 
Effect 

Joint surfaces geometry in the Åknes 
rockslide was measured, using laser 
scanning (TLS and ALS), to study the 
slope stability through a digital elevation 
method (DEM). The JRC of the surfaces 
was estimated separating the surfaces in 
sets of 10 profiles, using the asperity 
amplitude method (Barton, 1982). The 
profiles length varied between 1 and 350 
meters. Oppikofer found that the JRC 
values obtained by their analysis were 
considerably higher than those gotten 
from Kveldsvik (2007) measures of smaller 
profiles (0.25 – 1m). 

Tatone & 
Grasselli 

2012 Numerical 
Simulation 

No Scale Effect Combined FEM/DEM simulations of shear 
box tests, considering asperity failure, 
were performed on a profile of known 
roughness and subdivided copies of the 
same profile. 

Bahaaddini 
et al. 

2014 Numerical 
Simulation 

Negative Scale 
Effect 

Numerical Simulations of shear box tests, 
considering asperity failure, were 
performed using PFC (DEM) on a profile of 
known roughness and subdivided copies 
of the same profile. 

Johansson 2016 Laboratory 
Tests 

Scale Effect 
Depends on the 

Degree of 
Matedness 

Shear box tests were performed on rock 
joints of varying scale and horizontal 
displacement, to study the effect of 
matedness on shear strength, for varying 
scales.  
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3 Numerical Simulation of Direct Shear Tests 
 
Although performing laboratory tests for the study would be desirable, numerical 
simulations were selected for the research, because ,provided that the geometry of 
the discontinuities is known, it is possible to perform numerical direct shear tests of 
a large number of discontinuities, at a wide range of scales, in an automated way, 
as an alternative to physical testing, which would be a much more time consuming, 
expensive, and difficult (Tatone & Grasselli, 2012).  
A variety of numerical simulations methods have been used to model rock joints in 
previous works, in mining and civil engineering, where 4 methods stand out:  

• Finite Differences Method (FDM). 

• Finite Elements Method (FEM). 

• Discrete Element Method (DEM). 

• Finite/Discrete Element Method (FEM/DEM) 

In the last years, the rock joint modelling has been mainly made in Discrete Element 
Method and Finite/Discrete Element Method, due to the possibility to model the brittle 
behavior of rocks in an accurate way (Bahaaddini et al., 2014, 2013; Mahabadi et 
al., 2012; Tatone & Grasselli, 2012), but these methods have two big disadvantages, 
the learning curve is quite steep to use them properly and the processing power 
required to do the simulations in a relatively brief time, is not yet available. On the 
contrary, Finite Elements Method has difficulties modeling brittle behavior and 
discontinuities in general (Selvadurai & Yu, 2005), but the computing time is quite 
low in contrast with the discrete based models. Details of the DEM and FEM/DEM 
applications may be found on the works of (Bahaaddini, 2016; Bahaaddini et al., 
2014, 2013; Giacomini et al., 2008; Mahabadi et al., 2012; Tatone & Grasselli, 2012). 
Although less popular, where FEM is used in some studies as a base for the 
simulation of shear tests rock joints (Giacomini et al., 2008; Selvadurai & Yu, 2005) 
 
With the conditions described above, FEM was chosen as the base method for the 
simulation, Abaqus® was used for this work because of the extensive bibliography 
and support available and the possibility to be used in conjunction with other 
software, which is required for the automation of the simulations process. Finite 
elements theory is the base of the method, but it won’t be described here, as the 
formulation is extensive and widely available elsewhere. 

3.1 Model Setup 
 
The direct shear test conditions had been described in section 2.1, which are the 
one that is tried to be replicated. Tatone’s (2012) and Bahaaddini’s (2013) work 
(Figure 3.1a and Figure 3.1b respectively) were chosen as a guideline for the model 
setup, to replicate a direct shear test in a computer simulation. Although, the shear 
of a rough surface is a three-dimensional problem, all of the shear test simulations 
models used in this work will be two dimensional, under a plane strain condition, as 
this facilitates automatization and follows the line of most of the literature found. 
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Figure 3.1. (a) Shear box model developed by Tatone & Grasselli (2012) and (b) Bahaaddini et al. 
(2014). 

For the following sections, Barton profiles are used in the numerical simulations 
calibrations, using the number included in Figure 2.10 to refer them when it is 
necessary. 

3.1.1 System of Units 
 
Abaqus has no units built into it except for rotation and angle measures. Therefore, 
the units chosen must be self-consistent, which means that derived units of the 
chosen system can be expressed in terms of the fundamental units without 
conversion factors (Dassault Systèmes Simulia Corp., 2013a). The selected system 
units correspond to the millimeter version of the international system of units one 
(Column n° 2 in Table 3.1). 

Table 3.1. The available self-consistent system of units 

Quantity SI SI (mm) US UNIT (ft) US UNIT (inch) 

Length m mm ft in 

Force N N lbf lbf 

Mass kg tonne (103 kg) slug lbf s2/in 

Time s s slug s 

Stress Pa (N/m2) MPa (N/mm2) lbf/ft2 psi (lbf/in2) 

Energy J mJ (103 J) ft lbf in lbf 

3.1.2 Mesh element properties 
 
To select the mesh element properties appropriately, the following point must be 
kept in mind: 

• The family of the element and it uses. 

• Number of nodes and order of interpolation. 

• Compatibility with meshing software. 

(a) (b) 
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The solid (or continuum) elements in Abaqus can be used for linear analysis and for 
complex nonlinear analyses involving contact, plasticity, and large deformation 
(Dassault Systèmes Simulia Corp., 2013a). To achieve the objectives of this work, 
an automatic meshing generator software is needed. Triangular elements are easily 
generated by these kinds of software and should be used if they satisfy the model 
needs.  

Second order of interpolation is preferred (6 node elements instead of 3), as it 
provides higher accuracy and avoids classical linear element problems with stress 
analysis problems: over stiff elements and slow convergence with mesh refinement. 
Abaqus offers a modified 6-node element that’s recommended for contact problems 
that involve a hard contact formulation, because they provide uniform contact 
pressures in situations with the default “hard” contact relationship, exhibit minimal 
shear and volumetric locking (details of these phenomena may be found in the 
Abaqus Analysis manual, 2013a), and are robust during finite deformation (Dassault 
Systèmes Simulia Corp., 2013a). Finally, the mesh elements used in this study are 
“plane strain 6-node modified (CPE6M)” elements (Figure 3.2).  

 

Figure 3.2. 6-node modified element (Dassault Systèmes Simulia Corp., 2013a). 

3.1.3 Boundary conditions 
 
 The general boundary conditions for the models, for displacement-controlled and 
load controlled models, are summarized below. 

Displacement-Controlled Model 
 
The model has the following boundary conditions (Figure 3.3): 

1. Rolling support on the base to avoid vertical translation of the base 
2. Pinned support in the sides of the top side box, to avoid lateral translation. 
3. Uniform vertical stress on the top of the box surface 𝜎𝑣. 
4. Uniform lateral velocity imposed in the nodes on the sides of the bottom of 

the box 𝑣𝑥. 
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Figure 3.3. Displacement-controlled model boundary conditions. 

 
The horizontal reaction force and horizontal displacement were measured in the 
external nodes of the bottom of the box, for each increment, the vertical dilation of 
the joint was measured in each node of the lateral faces of the top side of the box 
(Figure 3.3) 
. The shear strength was calculated as: 
 
 

τs =∑
RFi
Lx

n

i=1

 (3.1) 

 
Where τs is the shear strength of the joint in each increment, RFi  is the force in the 
Node i. Lx the length of the profile and n the total number of nodes. Then, the peak 
shear stress τp is calculated as:  

 
 τp = MAX ( τs) (3.2) 

 
The secant dilation angle ds was calculated as:  
 
 

ds = atan (
δv
δh
) (3.3) 

 
Where δv is the vertical displacement of the top side of the box and δh is the 
horizontal displacement. 

𝑁𝑜𝑑𝑒 𝑖 

𝑁𝑜𝑑𝑒 𝑖+1 

𝑁𝑜𝑑𝑒 𝑖-1 

1 

2 2 

4 

 

4 

 



36 
 

As described in section 2.1, to characterize a joint the test simulations were 
performed for a set of at least 4 different normal stresses. 

Load-Controlled Model 
 

 
 

 

Figure 3.4. Load-controlled model boundary conditions. 

 
In the load-controlled tests, boundary conditions 1,2 and 3 of the displacement-
controlled model are keep the same, the only difference is condition n° 4, where the 
uniform lateral velocity applied at both sides is changed for a uniform unilateral stress 
applied on the left side of the model as seen in Figure 3.4. The effective shear stress 
on the joint is calculated using equation: 
 
 τs =

σLat
Lx

∗ h  (3.4) 

 
Where h is the height of the bottom side of the box. Since there is no way stop the 
test once the joint reach its peak shear strength, the measured shear stress 
increases continuously. To determine the peak shear stress of the joint a 
displacement related criterion must be used. Based on literature and the results 
obtained on the displacement-controlled tests simulations, peak shear strength 

usually is completely mobilized at around 2 mm of shear displacement, for a ~100 
mm specimen. Although the results are consistent, it is still only a reference, and 
values will be obtained graphically. 
 
It is important to note that, most direct shear test simulation models (Bahaaddini et 
al., 2014; Tatone & Grasselli, 2012) use a 1-1.5 mm wide gap between the upper 
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and lower joint surfaces, to better represent the direct shear tests performed on a 
laboratory (as described in section 2.1), this gap was included initially on the model, 
but was later discarded due to issues with automatization  of the shear box 
generation process, No difference in the results between models with and without 
the gap were found. 

3.2 Constitutive Law and Material Properties 
 
Hawkesbury Sandstone, properties were used as input for the model, because the 
material is well described and mechanically characterized (Pells, 2004; Roshan et 
al., 2017; Sharrock & Akram, 2009; Standard, 1964) and has been successfully used 
for joint direct shear tests numerical modelling (Bahaaddini et al., 2014, 2013; 
Sharrock & Akram, 2009).  
 
The selected material constitutive model for the simulations is a Mohr-Coulomb 
plasticity model, which requires elastic properties, the Young’s Modulus E and 
Poisson’s ratio ν, and plasticity properties cohesion c, friction angle ϕ and dilation 
angle ψ. Cohesion degradation with plastic strain was not considered as there is not 
experimental data to calibrate the values 
 
A plastic constitutive model will not represent the brittle like the behavior of rock 
under low confining stresses, nor how this impact the joint behavior (asperities 
degradation). Although Abaqus, as a FEM based software, has difficulties with brittle 
behavior modeling, it offers options to consider cracking and fracture of the 
elements, such as: 

• xFEM (Enriched Finite elements model formulation) 

• Deletion of elements that fail under tension and/or shear conditions. 

• Cracking model for concrete. 

All of these methods increase the computation time drastically, require several more 
parameters to calibrate, and have difficulties with the contact interaction used. 
However, a more accurate representation of the reality is not guaranteed using these 
models, as may be seen in the results obtained by Giacomini (2008), where element 
deletion was used to consider the degradation of the asperities. When observing 
Figure 3.5, the result does not reflect the real behavior (the only contact in the joint 
is the pile of remaining elements). 
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Figure 3.5. Shear test simulation of a single asperity using element deletion to consider degradation 
(Giacomini et al., 2008). 

The material properties values used (Table 3.2) correspond to the mean values 
obtained experimentally by Sharrock & Akram (2009). Using Barton-Bandis criterion, 
the input parameters are the JRC, friction angle of a planar joint ϕb and the JCS, 
which is considered as the Uniaxial Compressive Strength (UCS) in a fresh rock. 
Because the UCS is not an input in the M-C plasticity model, a band of the Barton-
Bandis shear strength criterion, given by equation (2.5), predicted results are 
considered, which will be made using the mean ± the standard deviation of the UCS 
value. The dilation angle was assigned after a sensitivity analysis, included in section 
3.6. 

Table 3.2. Material Properties (Sharrock & Akram, 2009) 

Material Properties 

UCS [MPa] 27.4 ± 9.8 

c [MPa] 4.9 

ϕ [°] 50.7 

E [GPa] 4.2 

ν [-] 0.2 

 

3.3 Joint Contact Model 

3.3.1 Contact Definition 
 
Contact is the physical interaction between bodies. In terms of the simulation of rock 
joints shear test, contact can be divided into two parts: 

• Contact pressure, which resists penetration. 

• Frictional stress, which resists sliding. 
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Contact Pressure and Overclosure 
 
 The adopted contact formulation in this work is the “Hard Contact”, which considers 
the transfer of compressive stresses between two surfaces, only when the surfaces 
are in contact, which is modeled as: 
 
 p = 0 for oc < 0 

oc = 0 for p > 0 
(3.5) 

Where p is the pressure at a detection point i in the contact surface and oc is the 
overclosure or clearance of the surface at the same point (interpenetration of the 
surfaces), as seen in Figure 3.6. Theoretically, the contact constraint is enforced with 
a Lagrange multiplier representing the contact pressure in a mixed formulation. The 
virtual work contribution is (Dassault Systèmes Simulia Corp., 2013b): 
 
 δΠ = δpoc + pδoc (3.6) 

 
And the linearized form of the contribution is: 
 
 dδΠ = δpdoc + dpδoc (3.7) 

 

 

Figure 3.6. Overclosure relationship (Dassault Systèmes Simulia Corp., 2013a). 

 
In practice, the contact constraint must be enforced with a mathematical formulation. 
The two basics one in FEM packages are: 

• Penalty Method 

• Augmented Lagrange 

 
The penalty method is a simple method that considers the introduction of a force in 
the contact detection points, where there is a penetration in the surface, given by: 
 
 Fc = kcDp (3.8) 
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Where Fc is the force introduced, Dp is the interpenetration of the surfaces and kc 

the contact normal stiffness. If there is no penetration, the force is null. 

 

For a constant kc, a higher penetration of the surfaces equals a bigger force required 
to bounce it back. The issues with this method are: 

• Neither the penetration nor the force required to bounce the penetrating 
surface back is known beforehand. 

• Arbitrarily big forces can’t be used to avoid excessive penetration, as the 
surface may be sent flying away. 

• A higher assigned kc would result in smaller overall penetration on the 
surfaces but will incur in higher computation times. 

With the first two points in mind, a degree of penetration between the surfaces will 
always exist, generally, the penetration incurred in the models using the penalty 
formulation doesn’t affect the results, only in special cases like the displacement-
controlled test with coarse meshes (Dassault Systèmes Simulia Corp., 2013a). This 
topic will be discussed in more detail in section 3.6. 
 
The Augmented Lagrange method is based on the penalty method but includes an 
internally calculated extra term I in the force estimation, that is used to decrease 
surface penetration. In this method, the force is given by: 
 
 Fc = kcDp + I (3.9) 

 
The iterative process followed in this method is: 

1. Perform step calculation using penalty method. 
2. Compute factor I 
3. Compare the obtained penetration with the accepted penetration range. 
4. If the obtained penetration is within the range of the accepted values, proceed 

to the next step, if not then perform points 2-4 again. 

Although this method ensures that there is going to be less penetration of the 
surfaces, when compared to a model that uses the penalty stiffness method, it 
increases computation time and may induce a lack in convergence. For this work a 
penalty method was deemed enough to perform the simulations, a topic discussed 
further in section 3.6. 
 

Shear Stress 
 
Peak shear stress τpeak on surfaces in contact is estimated using basic Coulomb 

friction relationship for non-cohesive surfaces: 
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 τpeak = σ ∗ μ (3.10) 

 
Where σ is the stress normal to surface and μ its friction coefficient. To compute the 
mobilized stress in the model, a penalty method is used in this work, as in most 
cases (Dassault Systèmes Simulia Corp., 2013a). The frictional stress τ  is given by: 
 
  τ = ks ∗ γ (3.11) 

Where ks is the contact frictional stiffness and γ is the elastic slip of the interacting 
surfaces. It is important to note that there is some slip, as seen in Figure 3.7, before 
the whole shear strength is mobilized, contrary to the idea of Coulomb’s model, 
where perfectly planar surfaces in contact, under a constant normal load, will stick 
together until the friction resistance is overcome. 
 

                      

Figure 3.7. Shear Stress / Slip Relationship. 

 
The penalty friction model is then governed by at least 2 parameters μ and the critical 

elastic slip γcrit or 𝜇 and ks, with the normal load σ as va ariable. Although γcrit or ks 
should only influence the total slip accumulated before the surface slide on the shear 
strength, as noted by Selvadurai et al. (2005), as seen in Figure 3.8.  
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Figure 3.8. Shear stress v/s shear displacement (normalized by max. asperity height) for several 
γcrit (Selvadurai & Yu, 2005). 

In this work, it was found that the γcrit and 𝑘𝑠 may have an incidence on the peak 
shear strength, if their value gets large enough (the peak shear strength is not 
mobilized), this topic will be further discussed in section 3.6. 
 
 

3.3.2 Contact Model 
 
To build a contact model, a contact surface discretization method must be used and 
its corresponding sliding algorithm has to be assigned (King & Richards, 2013). 
Currently, the two most used methods to assign the contact interaction are the node 
to surface and surface to the surface method. In both methods, a master and a slave 
surface must be assigned, with methods differing in how the slave surface behave. 
The node to surface method discretize the slave surface as a conjunct of nodes, with 
each single slave node on one side of a contact interface interacting with a point of 
projection on the “master” surface on the opposite side of the contact (Figure 3.9), 
the interaction of the surfaces occurs in each pair of nodes in contact. The surface 
to surface formulation enforces contact conditions in an average sense over regions 
nearby slave nodes, rather than only at individual slave nodes, thus the interaction 
will occur in each pair of nodes in contact but considering adjacent slaves nodes. 
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Figure 3.9. Node to Surface contact discretization (Dassault Systèmes Simulia Corp., 2013a). 

Since in the case of node to surface, the interaction between surfaces only occurs 
in the slave nodes, penetration of master nodes with no slave nodes nearby is likely 
(Figure 3.10a). Surface to surface was developed as an overall improved method 
over the node to surface one,  as there is less penetration in the interface due to the 
averaging of contact conditions (Figure 3.10b), the deformation of the surfaces is 
more realistic and the convergence of the simulation is more likely (King & Richards, 
2013). 
 

 

Figure 3.10. (a) Node to the surface and (b) Surface to surface discretization methods (King & 
Richards, 2013). 

In this work, only the joint surfaces interact, with the master surface being the one in 
the top side of the model and the slave surface the one in the bottom. 
 
For the sliding formulation, a finite sliding algorithm was assigned for the contact 
formulation, an overall better algorithm in almost every way over the small sliding 
formulation, detail of both formulations may be found on Abaqus Analysis User 
Manual (Dassault Systèmes Simulia Corp., 2013a). For both the overclosure 
constraint and the frictional model, a penalty method was employed, described in 
section 3.3.1. The properties values assigned on the interface will be resumed in 
section 3.8.2. 
 
 

(a) (b) 
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3.3.3 Model Steps 
 
To perform the numerical simulation of the shear test, 2 steps were included in the 
model, in the first, the vertical stress is applied slowly on the top surface of the box 
(Figure 3.11a) until the desired stress is reached. In step 2, for the displacement-
controlled test, a constant velocity is applied on both sides of the bottom half of the 
box (Figure 3.11b). In the load-controlled test, a homogenous lateral stress is applied 
on the left side, which is increase slowly with simulation time until the desired 
amplitude is reached (Figure 3.11c) 

 
 

Figure 3.11. (a) Vertical stress applied on the top half of the box (b) Lateral velocity applied on both 
sides of the bottom half of the box (c) Lateral stress applied on the left side of the bottom half of the 

box. 

3.4 Automatization of the Simulation Process 
 
Due to the need of executing direct shear test simulations of several profiles, under 
different loads, sampling intervals and scales, an automated process of 
preprocessing of the input files used on the simulation and postprocessing of the 
simulation results was required. A diagram of the automatized process is shown in 
Figure 3.12, each step will be described below, including the software and resources 
used in each one. All of the processes is controlled and executed using scripts on 
MATLAB, which are able to call the rest of the used software (GMSH and Abaqus) 
when it is necessary. 

(a) (b) (c) 
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3.4.1 Model Input 
 
To create the shear box model, the following inputs are required: 

• The profile geometry 

• The sampling interval of the joint length 

• The height of the shear box 

• The normal stress 

 
The profile sampling process is shown in Figure 3.13, for Barton’s profile n°8 and a 
sampling interval of 5 mm, the profile length is around 100 mm. The height of the 
shear box h should be large enough as to not disturb the joint contact stresses, a 
box height equal to half the profile length has been deemed as enough. The normal 
stress is defined by the user, in this work low values of normal stress are used (3 
MPa at maximum), as big normal stresses are associated to CNS boundary 
conditions, which escapes the scope of this work. 
 

 

Figure 3.13. Profile sampling process (Barton’s profile n° 8). 

3.4.2 Model Drawing and Mesh Generation 
 
To draw the shear box model and generate the corresponding mesh, the software 
GMSH is used. Although several free access meshing software exists, GMSH has 
the advantage of easiness of use, the possibility of execution by command and 
compatibility with the Abaqus file format (.inp). GMSH input files (.geo) can be made 
with scripts, when the geometry is not complex, as in the case of this work. Figure 
3.14 illustrates the shear box drawing made with a MATLAB script, before and after 
generating the mesh. 
 

Original Profile 

Discretized profile 
used in the simulation 

Applied 
Sampling 
Interval 
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Figure 3.14. GMSH model input, before and after generating the mesh (Barton profile N°6, 
Sampling Interval = 2 mm). 

The Delaunay algorithm was used to create the meshes, details of the algorithm may 
be found in the GMSH Guide (Geuzaine & Remacle, 2017). GMSH allow to export 
the mesh directly to the Abaqus .inp format, the exported file includes the geometry, 
the mesh, and the node sets created. 
  

3.4.3 Abaqus Input File Edition 
 
The input file must be edited to include applied loads, boundary conditions, surface 
assignments, interactions, material properties and steps definitions. All these 
properties were described above in section 3.3. After this step, the simulation is 
ready to be executed and the model should look like in Figure 3.11b. 

3.4.4 Shear Test Simulations and Result Extraction 
 
Once the simulation has finished, the results are extracted into MATLAB, for implicit 
analyses (Abaqus/Standard), the results are obtained from the .dat files created in 
the simulation execution. For explicit analyses (Abaqus/Explicit), results are gotten 
directly from the .odb file (Abaqus simulation database) using a free external 
MATLAB App, Abaqus2Matlab (Papazafeiropoulos et al., 2017) (Figure 3.15). 
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Figure 3.15. Abaqus2Matlab Interface. 

 
For the results analysis, in the displacement-controlled test, the reaction forces in 
the external nodes and the lateral displacement are extracted. In the load-controlled 
test case, the displacements and time of the simulation are extracted. Finally, the 
results are plotted for the subsequent analysis (Figure 3.16). 
 
 

 

     
 
 
 
For the load-controlled analysis, the reaction force is not possible to measure and 
the required stress to overcome the joint resistance isn’t know beforehand, to 
overcome this, the Barton-Bandis predicted shear strength is used as a reference 
load and an amplitude factor is applied, to ensure that the joint slides. The lateral 
applied stress σLat is given by the equation: 
 
 σLat = 𝜏𝐵−𝐵 ∗ 𝐴(𝑡) (3.12) 

 
Where 𝜏𝐵−𝐵 is the predicted Barton-Bandis shear strength for profile nominal JRC, 
A(t) is the amplitude as a function of simulation time t. Since the amplitude is related 

Figure 3.16. Shear Stress v/s Shear Displacement and Shear Stress v/s Normal Stress Results. 

Normal Stress [MPa] 
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to the simulation time (Figure 3.17), the applied lateral stress can be back-calculated 
from the simulation time. Similarly, the shear stress is calculated using equation 
(3.4).  Finally, results are plotted in a similar fashion to displacement-controlled 
models results. Figure 3.18 illustrates how the results of both analyses compare. 
 

 

Figure 3.17. Amplitude relationship with simulation time. 

   

Figure 3.18. Load-Controlled (LCT) and Displacement-Controlled (DCT) tests. 

 
 
 

Normal Stress [MPa] 
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3.5 Implicit and Explicit Analysis 
 
FEM analysis solves non-linear problems by using incremental steps (load or 
displacement). These increments may induce geometry changes (displacements, 
velocities and/or accelerations) or material changes (yield or degradation), these 
changes need to be considered by updating the stiffness matrix. 
 
In an explicit analysis (Abaqus/Explicit) the FEM problem is solved by doing the 
increment in load (or displacement) and then applying the geometry changes and 
updating the stiffness matrix, if necessary. To ensure that the solution is correct, 
small increments must be used, if this is not done, the solution may diverge from the 
correct one. Abaqus ensures that the increment is small enough by estimating the 
required increment based on the mesh size (small element sizes requires smaller 
increments), always being on the safe side. However, for quasi-static analysis (the 
inertial forces must be near 0) the process may be hurried, without incurring a lack 
of accuracy in the solution. Simulation solved by the explicit method will always be 
completed, but the obtained solution must be treated carefully, as a divergence from 
the real solution may occur. Due to the transient nature of the explicit analysis, 
obtained results include high-frequency oscillations added to analysis results, these 
high-frequency oscillations must be removed in post-processing, to get the quasi-
static analysis response, the post-processing process and the parameters used may 
be found in section Appendix C – Results processing in Abaqus/Explicit. 
 
In an implicit analysis (Abaqus/Standard), the model solution is obtained by applying 
the increments of load or displacement and updating the geometry and/or stiffness 
matrix, with the addition that the equilibrium of the external and internal forces of the 
model is check, using the Newton-Raphson algorithm after each increment, which 
means that an implicit analysis is unconditionally stable, However, complex 
problems require a large number of iterations, turning large problems in 
computationally expensive ones, also over constraint or highly non-linear problems 
may require increments smaller than the minimal accepted value, which may cause 
an abortion of the simulation.  
 
In addition, there are differences between the capabilities of both analyses related 
to the Abaqus software development, which is summarized in Table 3.3. 
 
 
 
 
 
 
 
 
 
 



51 
 

Table 3.3. Difference in capabilities between Abaqus/Standard and Abaqus/Explicit ((Dassault 
Systèmes Simulia Corp., 2013a) 

Quantity Abaqus/Standard Abaqus/Explicit 

Element 
library 

Offers an extensive element 
library. 

Offers an extensive library of 
elements well suited for explicit 
analyses. The elements 
available are a subset of those 
available in Abaqus/Standard. 

Analysis 
procedures 

General and linear perturbation 
procedures are available. 

General procedures are 
available. 

Material 
models 

Offers a wide range of material 
models. 

Similar to those available in 
Abaqus/Standard; a notable 
difference is that failure material 
models are allowed. 

Contact 
formulation 

Has a robust capability for 
solving contact problems. 

Has a robust contact 
functionality that readily solves 
even the most complex contact 
simulations. 

Solution 
technique 

Uses a stiffness-based solution 
technique that is 
unconditionally stable. 

Uses an explicit integration 
solution technique that is 
conditionally stable. 

Disk space 
and memory 

Due to the large numbers of 
iterations possible in an 
increment, disk space, and 
memory usage can be large. 

Disk space and memory usage 
are typically much smaller than 
that for Abaqus/Standard. 

 
 

3.5.1 Inertial Forces and Mass Scaling 
 
In the Explicit quasit-static analysis, the main source of error is the appearance of 
non-negligible inertial forces, which induce an acceleration in the system and 
therefore a lack of equilibrium, this occurs when the increments used are bigger than 
the acceptable. Even though using Abaqus suggested increments would certainly 
avoid this issue, the required computation time increases significantly, making this 
type of analysis useless for this work, as several models need to be performed in 
succession. This issue may be avoided applying a mass scaling, a tool used in 
explicit Analysis procedures where the time scale of the problem is not important, as 
it’s the case in the quasi-static analysis. 
 
In explicit solved models, the runtime is not only a function of the model size but also 
the smaller element size, due to the Courant condition, given by: 
 
 

Δt ≤ f ∗ (
𝑑

c
)
𝑚𝑖𝑛

 (3.13) 
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Where Δt is the stable time step, d is the smallest dimension of the model, f is a 
stability factor (usually around 0.9) and c is the wave speed. The condition limits the 
time step so that the stress wave, which transmits the stresses in the model, cannot 
travel more than the smallest dimension in a single step, since mesh size can’t be 
easily altered without affecting the model resolution, the wave velocity is modified to 
increase time step. 
 
 the wave velocity is defined as: 
 
 

c =  √
𝐸

𝜌
 (3.14) 

The principle behind mass scaling is to artificially augment the mass of the model to 
induce an increment in the density of the system (geometry is kept the same), and 
thus reducing the wave velocity. In this work, the mass scaling is applied by selecting 
the desired time step, that balance computation time with model accuracy, which is 
related to the inertial forces generated in the model. As a rule of thumb, the total 
kinetic energy must be less than 10% of the internal energy of the model to assure 
that inertial forces are kept low. 

3.6 Calibration of Model Parameters 
 
To ensure that the models behave well and represent the reality, calibration of some 
key parameters is required. Although some parameters are calibrated because there 
is no information about them (Dilation), most of them are just numerical parameters 
that have no physical meaning and must be calibrated for every model. 
 
In general, most of the analyses were done for one or few Barton’s profiles (Figure 
2.10), whether it was judged as representative for the rest of the profiles, or the most 
critical, in terms of model convergence (usually the roughest and with lower sampling 
intervals had the biggest issues with convergence).  
 
In the following sections, the calibration made for the Abaqus/Standard based 
models is presented. The Abaqus/Explicit calibration work is included in Appendix 
C. Since Abaqus Standard is the most used Abaqus analysis, various analysis 
related parameters are given by default by the software, still, it was checked if the 
default values were appropriated to run the models. 

Material Dilation 
 
The material dilation is a parameter that must be obtained from experimental results. 
Abaqus requires inputting a dilation angle different than 0 to use the Mohr-Coulomb 
plasticity model. Since all of the parameters used for Hawkesbury Sandstone have 
been obtained from bibliography (section 3.2) and there was no information found 
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about the material dilation angle, a sensitivity analysis was performed to study the 
dilation angle influence on the joint shear behavior. 
 
The analysis was made for one constant vertical stress (1 MPa) and sampling 
interval (1 mm). A rough profile was preferred over a perfectly smooth surface, as 
the dilation effect on the shear strength would be meaningful when the material 
suffers plastic strains; Barton profile N° 6 was used (Figure 2.10). Thirteen different 
dilation angles values were used, whose angles in degrees are included in the 
legend of the left plot, with all numbers being in degree units.  
 

 

 

Figure 3.19. Sensitivity analysis for Dilation Angle. 

Since no apparent influence of the dilation angle on the peak shear strength was 
found, the dilation angle ψ was adopted as 0.1 ° and constant for all the executed 
models. 
 
Differences were found in the post-peak behavior of the results with a “second peak” 
found for higher values of dilation angle (30 or more). This may be explained since 
big dilation angles induce an increment in the required override of the joint. This 
dilation effect is more apparent under high plastic strains. 

Critical Displacement 𝛄𝐜𝐫𝐢𝐭  
 
A sensitivity analysis was performed to study the critical displacement effect on the 
shear strength, as noted in section 3.3. In theory, γcrit should only influence the shear 
displacement required to mobilize the shear strength. 
 
The simulations were made for one constant vertical stress (1 MPa) and 4 different 
sampling intervals (0.5, 1, 2 and 5 mm. Again, a rough profile was preferred over a 
perfectly smooth surface, as a smooth surface mobilizes its shear strength with 
almost no displacement; Barton profile N° 6 was used (Figure 2.10).  

Dilation angle ψ 
 [°] 
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Figure 3.20. Sensitivity analysis for critical displacement 𝛾𝑐𝑟𝑖𝑡. 

In Figure 3.20, a reduction in the peak shear strength is shown for the model with 
sampling interval equal to 1 mm, the test wasn’t able to finish for sampling interval 
0.5 mm but it is expected to show the same behavior, on the higher sampling 
intervals only a delay, in terms of displacement, on the shear strength mobilization 

Critical Displacement  γcrit  [mm] 

S.I. = 0.5 mm 

S.I. = 1 mm 

S.I. = 2 mm 

S.I. = 5 mm 
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is observed, but the magnitude stays the same. In general, it was noted that high 
values of 𝛾𝑐𝑟𝑖𝑡 do have an impact on the peak shear strength of the models. The 
differences in the peaks, on shear/displacement curves, are related to the sampling 
interval of each model and not to the γcrit variation. The γcrit do have an impact on 
how much shear displacement takes to degrade the peak shear strength to lower 
values. As a cautious measure, γcrit will be equal to 0.025 mm on all models, to 
avoid any possible peak shear strength reduction. 

Normal Stiffness 
 
Abaqus considers a default Normal Stiffness value, assigned as ten times the value 
of the underlying elements in the interface, which corresponds to the assigned 
Young Modulus of the models, equal to 4.2 GPa (Table 3.2). On the Abaqus manual, 
it is established that the default stiffness included in the software is usually enough 
to avoid issues with the contact, with the exception of displacement-controlled test 
with coarse meshes. To verify that the penetration of surfaces is not excessive, the 
rougher models, Barton’s profiles N° 9 and 10 were analyzed (Figure 2.10), under 
the larger sampling intervals (S.I = 2 and 5 mm) and the higher stresses (3 MPa) 
applied. 

 

Figure 3.21. Sheared profile N°9, Sampling Interval = 2 mm, Vertical Stress = 3 MPa (a) whole 
model (b) Zoomed (vertical dimension exaggerated). 

 

Figure 3.22. Sheared profile N°9, Sampling Interval = 5 mm, Vertical Stress = 3 MPa (a) whole 
model (b) Zoomed (vertical dimension exaggerated). 

(a) (b) 

(a) (b) 
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Figure 3.23. Sheared profile N°10, Sampling Interval = 2 mm, Vertical Stress = 3 MPa (a) whole 
model (b) Zoomed (vertical dimension exaggerated). 

 

 

Figure 3.24. Sheared profile N°10, Sampling Interval = 5 mm, Vertical Stress = 3 MPa (a) whole 
model (b) Zoomed (vertical dimension exaggerated). 

 
Overall, the observed penetrations in Figure 3.21, Figure 3.22, Figure 3.23 and 
Figure 3.24 are acceptable and do not influence the peak shear strength. Moreover, 
the peak shear strength is achieved at around 0.5 mm of shear displacement, while 
the Figures display the models under 2-3 mm of shear displacement, the point at 
which the penetration is negligible. Higher values of normal stiffness were applied, 
and the same degree of penetration and negligible peak shear strength differences 
were found for the models, as seen in Figure 3.25 and Figure 3.26. 
 
 
 
 
 
 
 

(a) 

(a) 

(b) 

(b) 



57 
 

 

 

Figure 3.25. Sensitivity Analysis for Normal Stiffness, Barton profile 9, normal stress = 3 MPa and 
S.I.= 5 mm. 

 
 

 

Figure 3.26. Sensitivity Analysis for Normal Stiffness, Barton profile 10, normal stress = 3 MPa and 
S.I.= 5 mm. 

3.7 Scale effects Related Issues and Solutions 
 
Initially, displacement-controlled simulated tests would be the only ones to be used 
for the study, because they give a stress-displacement curve that has a clear peak 
shear stress and its post-peak behavior, also it is easier to configure and post-
process its results. However, issues with enlarged profiles were found when the 
displacement-controlled methods were used. As may be seen in Figure 3.27, the 
peak shear strength increases considerably when the model has enlarged from 100 

S.I = 5 mm 

Normal Stiffness [GPa/mm] 

Normal Stiffness [GPa/mm] 

S.I = 5 mm 
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mm (Figure 3.27b) to 1000 mm (Figure 3.27a) approximately. This increase may be 
modeled as the sum of the small-scale behavior plus an “apparent cohesion”, which 
was present in every enlarged shear test simulation.  
 

 

 

 

Figure 3.27.(a) Results for large scale profile (~1000 mm) and (b) Results for small scale profile 
(~100 mm). 

To test this apparent cohesion, shear tests of perfectly smooth surfaces were 
performed, with low friction coefficient value (μ = 0.01), three different model of equal 
box height (h = 100 mm) and varying total length (Lx = 100, 500 and 1000 mm), for 
four different normal stress were used.  

(a) 

(b) 
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Figure 3.28. Scale studies results, Shear Stress v/s Normal Stress for joint lengths equal to 100, 
500 and 1000 mm. 

It was found that the apparent cohesion was intrinsically associated to the 
displacement-controlled test and is a function of the size of the model, which can be 
modeled by the equation: 
 
 AC =

Amodel

1[
𝑚

𝑀𝑃𝑎
]
, (3.15) 

  
where AC is the apparent cohesion in MPa and A is the area of the model in meters. 
On the other side, load-controlled tests did not show this behavior with changes in 
scale, as shown in Figure 3.29. The nomenclature used in the legend for these 
analyses is resumed in Table 3.4,  the XX number refers to the applied vertical stress 
in MPa, a set of examples is included in Table 3.5 to show how the nomenclature is 
used.  

Table 3.4. Legend nomenclature for scale analyses 

Boundary Condition Model Scale Legend abbreviation 

Displacement-Controlled Small Scale DCT, XX - SM 

Load-Controlled LCT, XX - SM 

Load-Controlled Large Scale LCT, XX - LM 
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Table 3.5. Nomenclature examples 

Example Boundary Condition Model Scale Normal 
stress [MPa] 

Nomenclature 

Ex 1. Displacement-
Controlled 

Small Scale 0.5 DCT, 0.5 - SM 

Ex 2. Load-Controlled 1 LCT, 1 - SM 

Ex 3. Load-Controlled Large Scale 2 LCT, 1.5 - LM 

 

 

Figure 3.29. Load-controlled tests (LCT), shear stress v/s shear displacement results for small 
models (SM) and large models (LM), Barton profile N° 6 results, nominal JRC = 10.8. 

 
Large-scale L-C tests does not show the same behavior because these were 
executed with the exact expected shear strength applied as max possible stress 
(Figure 3.17), obtained from the small-scale results, the reason for this is because 
large-scale models take more simulation time to stabilize and would not show a clear 
shear strength peak unless plenty of time is given to the model for the stabilization. 
It is important to note that these issues are particular to the version of the software 
used and is not a result that has any relevance besides numerical simulation on this 
set of conditions. 
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3.8 Summary 
Finally, a summary of the methods and properties used for this work, based on the 
analysis made in this chapter, is presented. 

 

3.8.1 Analysis Conditions 
 
Table summarizes which types of analysis will be used in each study. A more 
detailed explanation of the type analysis selection is presented in sections 4 and 5. 

Table 3.6. The method used for each study 

Type of Analysis Used in 
All Studies 

Implicit Analysis 
(Abaqus/Standard) 

Sampling Interval Influence 
on Shear Strength 

Displacement-Controlled 
Tests 

Scale Effects on Shear 
Strength 

Load-Controlled Tests 

3.8.2 Model Properties 
 
Table 3.7 summarizes the model main conditions, material properties are 
summarized in Table 3.2 and Table 3.8 summarizes the joint interaction. The basic 
friction angle used is based on direct shear tests of smooth surfaces performed by 
Bahaaddini (2013), for the Hawkesbury Sandstone. 
 

Table 3.7. Model General Properties 

Constitutive Law 
Mohr-Coulomb 

Plasticity. 

Interaction 
Properties 

Finite Sliding 

Overclosure Relation Abaqus Default Penalty 

 

Table 3.8. Interaction Properties 

Friction Angle [°] 37.8 

Joint Normal 
Stiffness [GPa] 

42 (default) 

Critical Displacement 
[mm] 

0.025 
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4 Results of Sampling Interval and Scale Effects 
 
Barton’s profiles were selected for this work (Figure 2.10) because they were used 
to calibrate the Barton-Bandis Model and their geometry are well documented. Table 
4.1 summarizes the nominal JRC of the profile, back calculated by Barton & 
Choubey (1977) from their laboratory tests and its length (Barton & Choubey, 1977; 
Tatone, 2009). Simulation results of four profiles (from now on selected profiles), 
selected as representative of smooth (N°1 and N°2), moderately rough (N°6) and 
rough profiles (N°9), are presented in this chapter and analyzed in Chapter 5. The 
rest of the results may be found on the Appendix D. 

Table 4.1. Nominal JRC and profile length, the profiles selected are highlighted in bold (N° 1, 2,6 
and 9) 

Profile 
N° 

Nominal 
JRC 

Length 
[mm] 

1 0.4 97.5 

2 2.8 100.5 

3 5.8 100 

4 6.7 99 

5 9.5 98.5 

6 10.8 99 

7 12.8 96 

8 14.5 100.5 

9 16.7 99 

10 18.7 99.5 

 
 
The description of each study and the main results are given below, the analysis of 
the results is included in Chapter 5.  

4.1 Sampling Interval effects on Shear Strength 
 
Sampling interval influence in shear strength was studied performing numerical 
simulations of each Barton’s profile, for a fixed set of constant vertical stresses. The 
sampling intervals and vertical stress used are presented in Table 4.2. The 
parameters used for the back-calculation of the JRC are included in Table 4.3. 

Table 4.2. Sampling intervals and Normal stresses used for the Sampling Interval analysis 

Normal Stresses [MPa] 0.5 0.1 0.5 1 1.5 2 2.5 3 

Sampling Intervals [mm] 0.5 1 2 5   

 
Table 4.3. Parameters used for the JRC back-calculation 

𝛟𝐛 [°] JCS [MPa] 

37.8 27.4 
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4.1.1 Shear Test Simulation Results 
 

Shear Stress 
 
The results in Figure 4.1 show the effect of the sampling interval on the 
stress/displacement curves on the simulations performed for a normal stress of 1 
MPa.  
 

 

Figure 4.1. Sampling interval effect on the shear stress/displacement curve, normal stress = 1 MPa. 
(a) Profile N°1, nominal JRC = 0.8 (b) Profile N°2, nominal JRC = 2.8 (a) Profile N°6, nominal JRC = 

10.8 (a) Profile N°9, nominal JRC = 16.7. 

 
A summary of the effect of the sampling interval on peak shear strength, as a function 
of the normal stress, achieved by each of the selected profiles on the numerical tests 
is presented in Figure 4.2. 
 

(a) (b) 

(c) (d) 
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Figure 4.2. Sampling interval effect on the peak shear strength. (a) Profile N°1, nominal JRC = 0.8 
(b) Profile N°2, nominal JRC = 2.8 (c) Profile N°6, nominal JRC = 10.8 (d) Profile N°9, nominal JRC 

= 16.7. 

 
Figure 4.3 summarizes the shear stress – displacement curves for every test 
performed on the left side, and the peak shear strength of each test as a function of 
the normal stress, with Barton-Bandis predicted shear strength for comparison, on 
the right side, for each tested sampling interval of Barton profile n°6. Because the 
UCS is not an input in the Mohr-Coulomb plasticity model, a scatter band of the 
Barton-Bandis shear strength criterion predicted results is plotted, which is 
elaborated using the mean ± the standard deviation of the UCS value. The results 
of the rest of the profiles are included in Appendix D. 
 
 

(a) (b) 

(c) (d) 
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Figure 4.3. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°6, Profile Length = 99 mm, nominal JRC = 10.8. 

 
 
Figure 4.4 presents the variation of Barton profile n°6 under different sampling 
intervals and summarizes the peak shear stress achieved by each modified profile 
for the applied normal stresses. 
 

S.I = 0.5 mm 

S.I = 1 mm 

S.I = 2 mm 

S.I = 5 mm 

Normal Stress [MPa] 
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Figure 4.4. Barton's profile n°6, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered, nominal JRC = 10.8. 

 
Figure 4.5 summarizes the peak shear strength found for the selected profiles, as a 
function of the used sampling interval, for each normal stress. 
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Figure 4.5. Peak Shear Strength as a function of sampling interval, estimated for each normal stress 
(N.S). (a) Results for profile N° 1 (b) Results for profile N° 2 (c) Results for profile N° 6 (d) Results for 
profile N° 9. 

Dilation  
 
Figure 4.6 shows the vertical displacement of the joint as a function of the shear 
displacement, the secant dilation angle(3.3) and different sampling intervals, for 
each of the selected profiles and a normal stress of 1 MPa. 

(a) (b) 

(c) (d) 
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Figure 4.6. Vertical displacement and secant dilation angle (3.3) as a function of shear displacement, 
for varying sampling intervals (a) Profile N° 1, nominal JRC = 0.4 (b) Profile N° 2, nominal JRC = 2.8 
(c) Profile N° 6, nominal JRC = 10.8 (d) Profile N° 9, nominal JRC = 16.7. 

Figure 4.7 summarizes the vertical displacement – shear displacement curves for 
every test performed at different normal stresses on the left side, separated by 
sampling interval, and the secant dilation angle of each test, for Barton profile n°6. 
The results of the rest of the profiles are included in Appendix D. 
 

(a) 

(b) 

(c) 

(d) 
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Figure 4.7. Vertical displacement - shear displacement curve and secant dilation angle (Equation 
(3.3) as a function of the shear displacement, Barton profile N°6, Profile Length = 99 mm, nominal 

JRC = 10.8. 

Back-calculation of JRC 
 
Figure 4.8 shows the effective JRC obtained from the back analysis of the simulation 
results, using Bandis methodology (Section 2.6.1), each plot presents the back-

S.I = 0.5 mm 

S.I = 1 mm 

S.I = 2 mm 

S.I = 5 mm 

Normal Stress [MPa] 
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calculated JRC, for different normal stresses, and includes the nominal JRC of the 
analyzed profile (Table 4.1) 
 

 

Figure 4.8. Effective JRC as a function of Sampling interval, estimated for each normal stress. 
Results for (a) profile N° 1, (b) profile N° 2, (c) profile N° 6, and (d) profile N° 9. 

 
In Figure 4.9, the mean effective JRC of each Barton’s profile, as a function of the 
sampling interval, is shown, the nominal JRC value of the profiles is included in the 
legend 

(a) (b) 

(c) (d) 
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Figure 4.10 shows the mean JRC normalized by the nominal JRC of each profile 
(Table 4.1), calculated using the same procedure that in Figure 4.8, but averaging 
all the normal stresses values. 
 
 

 

Figure 4.9. Mean effective JRC as a function of the Sampling Interval used on the profile. 

 

Figure 4.10. Mean effective JRC (JRCe) normalized by the nominal JRC of the profile (JRCn) as a 
function of the Sampling Interval. 
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4.2 Results from Abaqus/Explicit and Abaqus/Standard 
 
To compare Abaqus/Explicit results with the results obtained from Abaqus/Standard, 
a sampling interval analysis was made for Barton profile N°6 (nominal JRC = 10.8). 
This analysis was performed with the shear stiffness parameter adjusted to match 
the simulations results with the Barton-Bandis criterion, for a sampling interval of 0.5 
mm and 1 MPa of normal stress. Figure 4.11 summarizes the results for profile N°6. 
 

  

Figure 4.11. Abaqus/Explicit analysis results for Barton profile n°6, Shear stress - displacement 
curve and peak shear strength as a function of the normal stress. 

S.I = 0.5 mm 

S.I = 1 mm 

S.I = 2 mm 

S.I = 5 mm 

Normal Stress [MPa] 
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To compare the results obtained from the Implicit and Explicit Analysis, Figure 4.12 
shows the mean effective JRC back-calculated from the simulation results, in each 
case. 
 

 

Figure 4.12. Comparison of the sampling interval effect on the effective JRC back-calculated from 
an explicit and implicit analysis, Profile n°6, Nominal JRC = 10.8. 

4.3 Scale Effects on Shear Strength 
 
As indicated in section 3.7, load-controlled tests were used to perform the scale 
effects on shear strength study. Small-scale models (~ 100 mm) direct shear test 
simulations were performed; then, the same models were enlarged by ten times the 
size (Figure 4.13), keeping all its material and joint properties intact, and direct shear 
tests were performed. 
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Figure 4.13. Different scales models. 

 
Due to issues with the convergence of models under load-controlled conditions, high 
sampling interval was used (2 mm) for the study, to assure convergence of the 
models. The considered vertical stresses are shown in Table 4.4. 
 

Table 4.4. Sampling intervals and normal stresses used for the Scale Effect Analysis. 

Normal Stresses [MPa] 0.1 0.5 1 1.5 

Sampling Interval [mm] 2 

 

4.3.1 Shear Test Simulation Results 
 
Figure 4.14 shows the results for load-controlled and displacement-controlled tests, 
for small scale models (~100 mm) and varying normal stresses, for Barton profile n° 
6. Figure 4.15, shows load-controlled tests results for both small-scale and big scale 
models. The nomenclature used is explained in Table 3.6. The results for the rest of 
the profiles is found in Appendix E. 
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Figure 4.14. Shear stress v/s shear displacement test results for load-controlled (LCT) and 
displacement controlled (DCT) small-scale models (SM). Profile N°6, SI = 2 mm, nominal JRC = 

10.8. 

 

 

Figure 4.15.Shear stress v/s shear displacement test results for load-controlled (LCT) of small-scale 
(SM) and large-scale (LM) models. Profile N°6, SI = 2 mm, nominal JRC = 10.8. 
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To assess the stiffness of the joints, the results of the shear for both small-scale and 
large-scale models where normalized by their full length, as follows: 
 
 

ϵs =
δs
Lx

 (4.1) 

 
Where ϵs is the shear strain, δs is the shear displacement and Lx is the length of the 
joint. Figure 4.16 shows the shear stress – shear strain curves, for Barton profile 
N°6.  

 

Figure 4.16. Shear stress v/s shear strain test results for load-controlled (LCT) small-scale models 
(SM) tests and large-scale models (LM), Profile N°6, SI = 2 mm, nominal JRC = 10.8. 

 
Table 4.5 summarizes the execution time of the test, for large-scale and small-scale 
models, for profile N°6, at a sampling interval of 2 mm. Because the tests are load-
controlled, there is no definite simulation end, so the final shear displacement 
reached for each test is included in the table. 

Table 4.5. Execution time, for load-controlled tests, on small and large-scale model, profile N° 6, 
S.I. = 2 mm 

Test 
normal 
stress 

Small-scale model (99 mm)  Large-scale model (990 mm) 

Execution Time 
[min] 

Final Shear 
Displacement 

[mm] 

Execution Time 
[min] 

Final Shear 
Displacement 

[mm] 

0.1 [MPa] 2 3 6 7.2 

0.5 [MPa] 6 2.4 8 73 

1 [MPa] 10 4.1 16 37.4 

1.5 [MPa] 18 2.4 27 35.5 
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5 Results Analysis and Discussion 
 

5.1 Analysis of Results 
 
The following section presents an analysis for the results shown in Chapter 4. 
 

5.1.1 Sampling Interval Effects 

Peak Shear Strength 
 
Figure 4.1 shows the influence of the sampling interval in the mobilized peak shear 
strength, with the peak shear strength decreasing as the sampling interval increases. 
This behavior is seen in the results of every tested profile although it is less 
noticeable in the low JRC profiles, n°1 and n°2 (Figure 4.1a and Figure 4.1b 
respectively). The reduction in the peak shear strength when larger sampling 
intervals are used, is related to a shift in the mobilized asperities, from small steep 
asperities, to larger - smoother ones, the shift in asperities mobilization induces a 
change from a brittle to a more ductile behavior, requiring a larger shear 
displacement to mobilize the full strength of the joint. Although a peak shear strength 
is reached for lower sampling intervals in every case , only the smoother profiles, 
show a clear “residual” shear strength also, in both Profile n° 6 and n°9 (Figure 4.1c 
and Figure 4.1d respectively), there is no convergence to a residual value in the tests 
results. The predicted peak shear strength by the Barton-Bandis (1982) criterion is 
closer to the results for the test with a sampling interval equal to 5 mm. Lower 
sampling interval tests overestimate the joint shear strength. Finally, issues with the 
convergence of the rougher models, with smaller sampling intervals (0.1 and 0.5 
mm), are detected, which will be discussed later. 
 
The summary of the peak shear strength of each test as a function of the applied 
normal stress and the sampling interval, in Figure 4.2, shows a clear over estimation 
of the shear strength of the joints in the numerical simulation, when compared to the 
Barton-Bandis predicted value, for profiles n°1, 2 and 6 (Figures 4a, 4b, and 4c, 
respectively). The results of the simulations that agree the most with the shear 
strength predicted by the Barton-Bandis criterion are those with a sampling interval 
of 5 mm, in the case of profile n° 9 (Figure 4.2d), there is an underestimation in the 
shear strength of the joint, when a S.I. of 5 mm is used, compared to the Barton-
Bandis predicted shear strength. In all cases, but especially in the rougher profiles, 
the results of the simulation show a more linear behavior, when compared to the 
Barton-Bandis criterion, where the non-linear component is given by the JCS/𝜎𝑛 
ratio. The behavior on the profile n°9 results, for sampling intervals of 1 and 2 mm is 
erratic, with a higher shear strength in the cases of the lower sampling interval, at 
normal stresses higher than 1 MPa, although the peak for the 2 mm case is 
developed at a shear displacement that the 1 mm profile didn’t reach due to 
convergence problems, which highlights the issues with convergences for rougher 
profiles, at lower sampling intervals. 
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The summary of each test performed, under varying loads and sampling intervals, 
for profile N°6 (Figure 4.3), agrees with the points commented above. It must be 
noted that convergence issues increase with higher applied normal stresses, as 
seen in the results for S.I. equal to 5 mm (Figure 4.3). This is related with the non-
linearity of the interaction and will be discussed further in section 5.2. The impact of 
the sampling interval on the profile geometry is seen on Figure 4.4, smaller 
wavelength are not captured with higher sampling intervals, thus reducing the 
roughness of the profile and its impact on the shear strength, it is important to note 
that the “filtering” made by the sampling interval is not clean, not only removing 
smaller asperities but also modifying the geometry of asperities of larger 
wavelengths. 
 
Figure 4.5 shows results presented on Figure 4.2 from another perspective, making 
easier to study the effect of the sampling interval on the peak shear strength, as a 
function of the normal load applied on the joint. In general, the peak shear strength 
mobilized by the joint is reduced for higher sampling intervals, as discussed before. 
It is important to note that there is no change in the sensibility to the sampling interval 
for varying normal stresses, which does not happen in reality, where smaller 
asperities are crushed at higher normal stresses, reducing its contribution to the 
shear strength greatly, as discussed later. 
 

Dilation 
 
The results of the dilation of the joints agree with what was expected, with a reduction 
in the vertical displacement and secant dilation angle of the joints for higher normal 
stresses and larger sampling intervals. 
 
There is a brief initial section with negative dilation, which later increases 
continuously. The length of the section is a function of the applied normal load. No 
correlation between the negative dilation amplitude with the profile roughness or the 
S.I. was found, as seen in the summary of the dilation on tests performed on profile 
N°6, for varying normal stresses and sampling intervals (Figure 4.7). When 
comparing the dilation between the results of profiles of different roughness, under 
the same applied normal stress (1 MPa), it was found that the dilation increases with 
increasing roughness (Figure 4.6). 
 

Back-calculation of JRC 
 
The results of the JRC back calculation (Figure 4.8) for each profile, shows a 
reduction in the effective JRC with higher sampling interval values. A constant 
sensitivity to the sampling interval, for different normal stresses, is observed, an 
expected result given the behavior show by the peak shear strength for varying 
sampling intervals and loads (Figure 4.5). The results of the profiles N°1 and N°2 
(Figure 4.8a and Figure 4.8b respectively), shows an overall significant difference 
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between the back calculated JRC and its nominal value. In the case of rougher 
profiles, n°6 and n° 9, the nominal values agree with low sampling intervals, for the 
cases of low normal stress. 
 
Figure 4.9 and Figure 4.10 summarize the sampling interval effect on the roughness 
of the model, by back-calculation of the mean effective JRC, using the parameters 
included in  
Table 4.3. An overall decrease of the effective JRC with increased sampling interval 
is observed. Profiles n° 4 and n° 5 show a behavior that wasn’t expected, as profile 
N°4 effective JRC surpasses N°5’s at 3 of the 4 tested sampled intervals. In Figure 
4.10 the normalized JRC of the profile n°1 is highlighted due to its large value. This 
is explained due low nominal JRC (0.4), which amplifies the normalized values.  
 

5.1.2 Explicit and Implicit Analysis 
 
Results obtained by the explicit analysis do not show an agreement between the 
peak shear strength and the sampling interval used, as seen in Figure 4.12, where 
the highest shear strength is obtained for the sampling interval equal to 2 mm and 
the lowest for the 0.5 mm, which isn’t expected. On the other hand, implicit analysis 
results do follow the expected trend of reduction of the peak shear strength for larger 
sampling intervals, for the same profile and property conditions (Figure 4.3). 
Although using the explicit scheme analysis allows to complete the tests simulations, 
the implicit scheme analysis was preferred due to the good relationship shown by 
the models in the shear strength variation at different roughness and sampling 
intervals, with the expected results, as discussed earlier. 
 

5.1.3 Scale Effects Analysis 
 
Large-scale and small-scale models mobilize the same shear strength, as seen in 
Figure 4.15. Small-scale models appear more rigid than the large-scale ones, taking 
less shear displacement to mobilize its shear strength; however, when the shear 
displacement is normalized by the profile total length (Figure 4.16), large-scale 
models are more rigid. 
 
When comparing the simulation time between different tests (Table 4.5), for a fixed 
sampling interval (2 mm), it is found that higher normal stresses require more 
computation time since higher normal stresses induce a high nonlinear behavior on 
the interacting joints, requiring smaller simulation time increments to solve the 
problem. The comparison between small-scale and large-scale models is not direct, 
even though the large-scale model takes more time for every normal stress, the 
reached shear displacement varies greatly, still, both model, small and large scale, 
stay on the same order of magnitude 
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5.2 Discussion 
 
Based on the analyses shown on 5.1 the discussion of the results is presented 
below. 
 

5.2.1 General Model Behavior 
 
Although it is not apparent in the figures, due to the high sampling interval used in 
the models presented in this work (2 mm), load-controlled tests tend to non-
convergence more easily than displacement-controlled ones, which does not allow 
the use lower sampling intervals or higher normal stresses. This is explained by two 
reasons; first, there is a rotational component imposed on the loaded side of the box, 
due to the unilateral loading, a phenomenon that is more relevant on rougher 
surfaces. This rotational component could not be completely solved due to conflicts 
with over-constrainment of the model. When no rotation is enforced, the over- 
constrainment induces a non-convergence by itself. Second, contact problems 
naturally have more issues with load-controlled conditions, as a large force 
increment may induce displacement that may not be solved in reasonable step time 
increments. An important result is that, at the same scale, both load-controlled and 
displacement-controlled models reached the same peak shear strength, at the same 
shear displacement before sliding, as seen in Figure 4.14, which validates the load-
controlled method, even with all its issues. 
 
A crucial point to discuss is the model lack of convergence for certain tests, usually 
at low sampling intervals, high nominal JRC and high vertical pressures, as seen for 
profiles n°9, n°10 (Figure D.17 and Figure D.19 respectively, Appendix D). Also, an 
erratic behavior was found for the results of profile n°9 tests, with results that do not 
follow the overall trend of the smoother profiles. An assessment of the model 
reliability for rougher profiles is required, ideally with more tests perform on the rough 
profiles. The implicit analysis is deemed not successful in performing the simulations 
for rougher profiles, a quasi-static, well calibrated and filtered explicit analysis is a 
possible solution for this issue. 
 

5.2.2 Sampling Intervals Effect on Shear Strength 
 

Peak Shear Strength 
 
The shear stress/displacement curves of rougher profiles (Figure 4.1) show a more 
evident post-peak behavior than the smoother ones, this is an expected result in 
experimental tests, as the unevenness that allows a higher peak is sheared, resulting 
in lower resistance at large displacement. This is not an expected behavior for the 
models, as failure of the elements is not possible as a plastic constitutive law was 
considered, instead of a fragile one. A likely reason for this is that overriding small 
steep asperities is enough to decrease the shear strength, even if these asperities 
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are not sheared in the process. Also, at higher stresses, rougher models showed a 
localization of the plastic strains in the interfaces, instead of continuing with the 
overriding. This limits the asperities overriding and may reduce the shear strength of 
the joint.  
 
The overestimation of the shear strength of joint may have several reasons. First, 
the Barton-Bandis shear strength criterion considers the UCS as a representation of 
the material resistance, but this parameter is not a direct input in the model nor is 
used to calibrate it, which means that, even though the c, 𝜙 and the UCS were 
obtained from the same source, the correlation may not be direct, causing a possible 
over estimation of the strength of the rock in the input parameters used in the model. 
Also, an elastoplastic model was used, which means that “failed” elements still resist 
stresses, contrary to what happen to brittle materials, where failed asperities are 
sheared and no longer can resist shear stress. On the other hand, small steep 
asperities that may be easily sheared are not broken in the model and contribute to 
the shear strength of the whole test simulation time. The obtained results corroborate 
Grasselli et al. (2002) results, who found that a larger number of steeper and usually 
smaller asperities getting in contact with the opposing surfaces was positively 
correlated to a higher peak shear strength. 

Dilation 
 
The dilation of the models is a function a roughness, sampling interval and normal 
stress, with the peak vertical displacement decreasing with larger sampling intervals 
and normal stresses. The small initial negative dilation was first thought to be an 
issue with rigid rotation of the of the top of sample since the rotation is not directly 
constraint, which was later discarded as there is no increase in the negative phase 
with normal stress or profile roughness. Bandis (1983) assumed zero dilation at the 
start of the test up to one third of the peak shear displacement, disregarding negative 
dilation. It has been found that published experimental results do have an initial 
negative phase in the dilation (Figure 5.1) and has been already suggested as a 
correction to the Bandis proposition (Figure 5.2) by Assadollahi et al. (2010). 
 

 

Figure 5.1. Normal Displacement v/s Shear displacement por saw-tooth profiles (a) asperities with a 
15° of inclination (b) asperities with a 30° degree of inclination (Huang et al., 2002). 
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Figure 5.2. Suggested dilation model (Assadollahi, 2010) 

When comparing the obtained results to the ISRM guidelines for laboratory 
characterization of rock joints (Muralha et al., 2014), shown on Figure 2.4d, only the 
first section of the test relates to the simulation results, with no decline in the vertical 
displacement in the post-peak behavior. 

JRC Back-calculation 
 
The sensitivity of the effective JRC may be explain by the asperity plastification effect 
on the mobilized shear strength, which may be understood using the concept of 
energy, considering that at every increment of shear loading, there must be 
equilibrium between the external work and the internal energy. In reality, asperity will 
mobilize more internal energy as the loading increases, until the asperity is 
overridden, crushed or sheared. In the case of the last two, the brittle failure of the 
steeper asperities means that its contribution to the total energy becomes 0, 
generating a redistribution of stresses to smoother asperities, which are less likely 
to reach failure, but aren’t capable of mobilizing the same energy (or strength). In 
the performed simulations, once the asperities reach failure, plastification occurs, a 
fully plasticized asperity won’t be able to mobilize more strength, but will not reduce 
its reached contribution either, which means that the contribution of steeper 
asperities will be always present. 
 
The effective JRC curves for the rest of the profiles fall under the expected behavior, 
besides the overall increase in the JRC of the profiles, when compared to the Barton 
and Choubey (1977) experimental results. The correlation is nonlinear and an 
increase in the sampling interval may result in a big drop in the JRC. This is explained 
since large sampling intervals may not capture key asperities in the joint interaction, 
and as such reduce the effective JRC 
 
The JRC v/s sampling interval charts may not be used as a reference, as more 
profiles need to be tested to increase the chart robustness. In particular, it is 
important to assess the behavior of joints of similar nominal JRC but different 
geometry. This will allow to study JRC effectiveness as a roughness characterization 
parameter and not only as adjusting constant, as it was developed initially. Ideally, 
more roughness characterization parameters, such as 𝑍2, structure function (SF) 
and fractal dimension D (Appendix B) should be included in the analysis, to assess 
each method robustness and behavior. 
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Another way to explain the over estimation of the shear strength of the model, is that 
the steeper asperities seen in the profiles with lower sampling interval (Figure 4.4), 
which should increase the shear strength of the joint in the model, may not have an 
incidence in the peak shear strength measured in laboratory tests, as they are rapidly 
sheared on real experiments, before mobilizing a meaningful amount of strength, a 
phenomenon not reproduced by the model used in this work. This effect was already 
noted by the Tatone et al. (2013) for surface roughness measurements, who 
concluded that roughness characterization is heavily dependent on the sampling 
interval and window size, with profiles measured with higher sampling intervals 
always showing a larger roughness value, in all of roughness characterization 
methods used in his study. 
 

5.2.3 Scale Effects on Shear Strength 
 
Results found between small-scale and large-scale models do agree with those 
obtained by Ueng et al. (2010), who tested experimentally synthetic enlarged Barton 
profile models, and did not found that a scale effect (Figure 5.3). 

 

Figure 5.3. Shear strength as a function of scale for enlarged Barton profiles (Ueng et al., 2010) 

 
Observing Figure 4.16, the large-scale model is clearly more rigid, a result that was 
not expected, since when comparing both models, the large scale does not require 
to override the asperities as much as the small-scale one. This should not be 
numerically related since the critical slip displacement was defined as an absolute 
value and not a function of element size. From this result, it may be proposed that 
the inclination angle is the defining parameter in joint peak shear strength, and not 
the degree of overriding of the asperities, but more studies are required to confirm. 
 
An important consideration is that the results should not be extrapolated to real in-
situ conditions, due to differences between the followed methodology and how rock 
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joint properties scale in nature. In this work, it was assumed that the properties of 
the material are constant for all scales, something that has been proved wrong 
empirically for rock masses (Hudson & Harrison, 1997). Also, it was assumed that 
the surface geometry would scale in both roughness and asperity height, 
proportionally to the profile length dimension, which is not right either. In reality, 
roughness is not the same at different sampling windows, with larger joints having 
smoother surfaces when asperities height is compared to its length, as seen in 
Figure 5.4. 
 
 
 

 

Figure 5.4. (a) followed methodology to study scale effects on this work (b) representation of 
geometry scaling in nature. 

 
This work assumes the wrong idea of using the JRC directly to estimate the shear 
strength of joints, as a professional may try to measure the surface geometry of 
large-scale joints and characterize it directly by inspection and comparison or a 
correlation with the JRC. However, as the results found have shown, doing this 
considers that both small and large-scale joints would be able to mobilize shear 
strengths of the same order, which has been recognized as wrong empirically. It 
must be noted that the scale effects on shear strength are a topic that is still widely 
studied and a consensus in its behavior is far from being closed.  
 

5.3 Practical Implications 
 
Until this day, there is not a standard methodology to assign a JRC value to a joint 
in the field several orders magnitude larger than the laboratory scale. Although the 
complete joint surface topography may be measured and digitized (Oppikofer et al., 
2011), using complete joint surfaces as input for numerical stability models would be 
computationally expensive, since potential rockslides are composed by several 
joints with different roughness properties (Oppikofer et al., 2008). Instead, joints are 
usually modeled as straight lines with a Barton-Bandis (1982) failure criterion, with 
the JCS, ϕ′ and JRC as input parameters (García et al., 2018; Kveldsvik et al., 2008; 
Sepúlveda et al., 2012). 
 

(a) 

(b) 

h1 

h2 

h1  >>  h2 
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For clean rock joints, i.e. no gouge found in between the joint surfaces, the following 
approaches to determine the large scale JRC currently exist: 
 

1. Determining the small scale JRC value through visual comparison or 
laboratory tests perform on specimens directly extracted from outcrops or drill 
cores (50 to 100 mm-length specimens). Then, scale the JRC using an 
scaling law, such as the Barton-Bandis scale law (Barton & Bandis, 1982). 

2. Performing in-situ tilt-tests on specimens with a length equal to the block size, 
extracted directly from the joint of interests. According to Barton & Choubey 
(1977) experience, scale effects for lengths larger than the block size are 
negligible. In this case, the specimen length does not exceed a couple of 
meters. 

3. Measuring the complete joint surface topography through contact or non-
contact methods (Appendix A), assigning a JRC value through an analysis of 
the complete surface topography. 

 
As noted on this work, scale effects on the shear strength occur due to differences 
in the geometry of the joint, for different scales, and differences in the rock 
mechanical properties, with both phenomena interacting together in the joint 
shearing process. Rock mechanical properties may be scaled based on literature or 
laboratory tests, although the scatter on the results is high and depends on the rock 
mineralogy (Darlington et al., 2011; Thuro & Plinninger, 2001; Thuro et al., 2001). 
The first method lacks a way to consider geometry scaling unless it is directly 
considered through an extra waviness component added to the shear strength of the 
joint: 
 
 τ = σv ∗ tan (ϕb + sn + i) (5.1) 

Where 𝑠𝑛 corresponds to the small asperity component (roughness) and i to the large 
asperity component (waviness). 
 
Since rock joints profiles and surfaces are better modeled as self-affine rather than 
self-similar fractals (Huang & Doong, 1990b; Kulatilake & Um, 1999; Mandelbrot, 
1982; Odling, 1994; Yang et al., 2001) (Appendix B.2), small specimens need to be 
scaled by different factors in its height and length (Figure 5.4). Considering a self-
affine fractal model, the scaling factor SF would be: 
 
 

SF = {
r for Length

rH for Height
 (5.2) 

 
 
Where r is the scaling factor and H is the Hurst exponent, which is related to the 
fractal dimension D of the profile. Since H depends on the roughness of the profile, 
the sampling interval and the estimation method, it is hard to estimate it correctly, 
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existing differences in the values for the Barton profiles, obtained by different authors 
(Yang et al., 2001). 
 
In the case when the complete surface topography of the joint is obtained, several 
methods may be applied to correlate the surface roughness to a JRC value 
(Appendix B). Although attractive initially, two issues arise from using this 
methodology: 

• It has been found that larger window sizes will give higher roughness 
parameters values (Tatone & Grasselli, 2013). 

• It is not clear how the asperities across different length scales will behave 
under shear loading. 

The asperities of a rock joint profile may be characterized by their wavelength and 
its inclination with asperity size being directly and partially related to the wavelength 
and inclination, respectively. In large rock joints, asperities of large wavelength 
always have an impact on the shear strength; on the other hand, small wavelength 
asperities are not always mobilized. The role of the small asperities in the shear 
strength depends on: 

• Degree of alteration and weathering. 

• Existence of filling material inside the joint. 

• Matedness degree. 

• Ratio between intact wall compressive strength and normal loading (JCS/σn). 

In the case of fresh joints, the first two points do not apply. The impact of the 
matedness has been well documented (Johansson, 2016; Zhao, 1997), and 
depends on the degree of relative displacement between the surfaces (in case the 
rock joint is fresh). The degree of matedness complicates the analysis, since the 
assumption that the steeper asperities are the one mobilized under shear loading 
(Grasselli et al., 2002; Tatone & Grasselli, 2010), does not necessarily applies for 
mismatched surfaces.  
 
Finally, the ratio between JCS/σn measures, in a simplified way, if smaller 
wavelength asperities will be overridden, and thus increasing the mobilized shear 
strength, or be crushed in the shear process, having a negligible impact on the shear 
strength of the whole joint.  
Yang (2001) studied the effect of the order of magnitude of the asperities, generating 
artificial specimens from joint profiles filtered computationally (Figure 5.5b &  Figure 
5.5c) and tested experimentally in direct shear  using joints casted from the filtered 
profiles, using molds (Figure 5.6). Yang found that asperities of higher orders of 
magnitudes have an impact on the shear strength, under high JCS/σn ratios, but its 
influence is negligible under lower ratios JCS/σn. 
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Figure 5.5. filtering of a joint profile (a) Original profile (b) 5th order harmonic profile (c) 40th order 
harmonic profile (Yang et al., 2001). 

 

 

Figure 5.6. (a) 5th order filtered profile (b) 40th order filtered profile (Modified from Yang et al., 
2001). 

 
Finally, if it is not possible to characterize the roughness of the profile to the detail 
(available equipment is limited to a coarse sampling interval or some areas aren’t 
accessible) the small scale asperities may be ignored, using only the large 
wavelength asperities (Waviness), if its favorable to the slip direction (Hencher & 
Richards, 2015). for the same case, the roughness characterization may be 
performed either using the measure of maximum asperity height relative to a mean 
plane method (Barton, 1982), making use of the chart displayed in Figure 5.7, 
measuring the inclination of the controlling asperities or with a visual comparison 
with the Barton profiles. It has to be considered that if a Barton-Bandis criterion is to 
be used, the compressive strength of the joint wall (JCS) should also be scaled.  
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Figure 5.7. Joint roughness coefficient as a function of asperity amplitude and length of the profile 
(Barton, 1982).  

About the asperity amplitude method indicated above, it is important to remember 
that, as various authors have noted (Patton, 1966; Tatone & Grasselli, 2010; Yang 
et al., 2001) and the results obtained in this work corroborates (Figure 4.15), the 
roughness impact on the shear strength is mostly related to the asperity angle, which 
is usually correlated to asperity height, but not necessarily, which means that, it may 
be incorrectly assumed that the measured asperity height is correlated to an 
apparent asperity inclination, which would overestimate the maximum joint asperity 
inclination. 
 
Neglecting the small-scale roughness will always result in an underestimation of the 
shear strength, implying that characterizing the roughness with the methods 
described before, will be always on the safe side for stability assessments. Also, 
large-scale asperities are, on average, smoother than small scale roughness, which 
means that their impact on the shear strength should be less sensible to the JCS/σn 
ratio. 
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6 Conclusions 
 
The automatization of the numerical direct shear tests of bidimensional rock joint 
profiles is deemed successful as a highly independent process. Few input 
parameters are required to draw the shear box geometry, mesh the model, apply 
boundary conditions, execute the simulations, and post-process the results. 
Although three different computer programs are used in the process, it can be 
completely controlled in the Matlab interface, giving a smoother learning curve for 
any user. The compatibility among the software is enough for the analysis and has 
the potential for more complex two-dimensional analysis to be performed. 
  
It was determined that the implicit analysis was the most appropriate scheme to 
perform this study, due to its accuracy, easiness of use, and available material 
properties. Issues were found with the model convergence and reliability of the 
results for rougher profiles (Barton profiles N°9 and N°10), at lower sampling 
intervals and higher normal stresses, which may be related to the issues of implicit 
scheme with non-linear problems (Dassault Systèmes Simulia Corp., 2013a). The 
explicit analysis must not be immediately discarded, as it offers strong contact 
modeling capabilities and the possibility to avoid the convergence issues existent on 
the implicit analyses, and its calibration should be possible with a complete focus on 
its performance. 
 
There is an overestimation by the model in the peak shear strength of the tested 
joints, when compared to the Barton-Bandis predicted peak shear strength, for all 
cases, especially for smoother profiles (Barton profiles n° 1, 2, 3, and 4), and higher 
normal stresses. This phenomenon is observed in the linearity of the shear strength 
– normal stress curves of the test results, not showing the nonlinear component, 

related to the log10 (
𝐽𝐶𝑆

𝜎𝑛
) in the Barton-Bandis model, which represents the 

degradation of the small asperities impact on the shear strength. The behavior of the 
model may be explained by the plastic failure of the mobilized small steeper 
asperities, instead of a brittle failure, which allows the joint to mobilize higher peak 
shear strength, even under higher normal loads, not representing the behavior of 
joints tested experimentally under laboratory conditions. 
 
Results in this study related to the sampling interval are in partial agreement with the 
literature, the sampling interval was found to be a key parameter when surface 
roughness characterization, and/or joint numerical simulations are performed. The 
model was unable to replicate the reduction in sensibility of the sampling interval 
effect on the peak shear strength, at higher normal stresses; the reason being the 
model’s lack of asperity damage, which overestimate the small asperity contribution 
to the mobilized shear strength at higher normal stresses. The sampling may induce 
errors if not accounted in joint roughness measurement and characterization. The 
parameter by itself may be one of the reasons for the contradicting results found in 
literature, for scale effects studies, as concluded by Tatone and Grasselli (2013). 
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The dilation of the model behaves as expected, with a reduction in the peak vertical 
displacement and secant dilation angle as the sampling interval and/or the normal 
stress increases, an increase in both peak vertical displacement and dilation angle 
is observed when profiles get rougher. An initial negative phase in the vertical 
displacement was found, with the width of the phase being a function of the normal 
stress, which agrees with the results of experimental tests found on the literature, 
and the model proposed by Assadollahi et al. (2010), which suggests corrections to 
the initial proposals made by Bandis (1983), who assumed zero negative dilatancy. 
 
The charts of JRC as a function of sampling interval require a larger number of tested 
profiles, to understand how profiles of similar nominal JRC but different geometry 
behave at varying sampling intervals and across different scales. Although more 
work is required to increase the charts robustness, this work is deemed as a good 
introduction for more analyses and tests, with the objective to produce charts that 
may be useful in the engineering practice, and not only in theory, as profiles of larger 
sampling sizes require a significantly less computation time than smaller ones. 
 
As expected, no difference was found between the peak shear strength achieved by 
a small profile and its enlarged counterpart. Although this does not follow the results 
found in the literature, the methodology may be extended to study the scale effects 
by other means, such as those suggested in Section 6.1. Load-controlled tests 
displayed no differences with displacement-controlled tests on small-scale models 
and show no variations in the peak shear strength mobilized by joints of different 
lengths, as opposed to the displacement-controlled tests. Larger samples were 
found to be more rigid than the smaller models, suggesting that the asperity 
inclination is the key geometrical parameter in the asperity overriding impact in the 
peak shear strength, and not the shear displacement or strain, since the same peak 
shear strength is mobilized for different values of displacement or strain. 
 
The JRC should not be extended outside of the initial definition, which just proposes 
a curve fitting parameter developed to consider the roughness influence on peak 
shear strength of direct shear tests of small-scale models. Several authors have 
already determined its limitations for an accurate description of the surface 
roughness. If a precise large-scale representation is desired, one has to be open to 
consider the JRC and joint length/area insufficient to characterize the scale effect on 
the joint shear strength, as the small-scale asperity impact on the shear strength of 

fresh joints depends on the (
𝐽𝐶𝑆

𝜎𝑛
) ratio and the degree of matedness, which don’t 

have a parameter that characterize them reliably yet. For a stability assessment of 
a joint, neglecting the small-scale roughness and only using the characterization of 
the large-scale waviness will always be on the safe side, as waviness with a 
favorable dip angle will always be mobilized. Classic methods used for small scale 
roughness characterization may be used for larger-scale undulations, but a scaled 
JCS must be considered if the Barton-Bandis criterion is to be used.  
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6.1 Recommendations 
 
General model recommendations: 

1. Use a model able to consider the tensile strength of the material, as traction 
failure is a component of the shearing of rock joints, as some authors have 
noted (Bahaaddini, 2016; Johansson & Stille, 2014). 

2. Do a better calibration work for the Abaqus/Explicit quasi-static analysis, to 
make use of its better contact formulation and assured competition of the 
analysis. 

3. Consider a more complex model formulation (DEM, FEM/DEM) to study 
fracture propagation and asperity degradation, allowing a better 
representation of the material behavior under low confining stresses, 
although, to perform this on several tests, much more processing power is 
required.  

4. Perform tests of three-dimensional surfaces, as joint shearing behavior is 
anisotropic ((Huang & Doong, 1990b; Kulatilake & Um, 1999; Tatone & 
Grasselli, 2009a), and as such cannot be simplified to two dimensions if the 
full phenomenon is to be characterized. 

About sampling interval studies recommendations: 

1. Perform direct shear simulations with varying sampling intervals, using a lag 
in the start of the sampling to capture different points. With this methodology, 
the captured roughness will vary, even with the same sampling interval, which 
will allow studying if the roughness value, characterized by the JRC, is robust 
within the profile geometry. 

2. Perform the tests for more profiles, to capture a broader number of profiles, 
this will allow getting a better understanding of the correlation between the 
effective JRC and its degradation with higher sampling intervals. 

3. Perform a characterization of the profile, using more complex roughness 

characterization parameters such as 𝑍2, 𝑅𝑝 or (
𝜃∗

𝐶+1
), and analyze how these 

correlates to the change in the shear strength obtain on the simulation, for 
varying profiles and sampling intervals. 

 
About scale effects studies: 

1. Perform numerical simulations of large-scale sampled profiles from the field, 
so the behavior of natural profiles may be better understood. These 
simulations may be compared to profiles of similar JRC to measure the 
differences in the shear strength. Profiles of the same joint may also be 
numerically sheared independently and be compared to the larger ones. 

2. Synthetic small and large-scale profiles may be generated under conditions 
that assure similar roughness of the profiles, as the methods performed in 
tribology using fractal geometry and random processes (Borri & Paggi, 2015; 
Vallet et al., 2009). The benefit is that theoretically, infinite profiles could be 
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generated and thanks to the random nature of the fractals, profiles generated 
under the same exact conditions would present different geometry, which 
would allow studying the roughness characterization method accuracy, and 
the parameters robustness. 

3. A possible approach would be to perform numerical simulations on complete 
profiles and sections of it of varying length, scaled differently in its length and 
height, considering a power law relation like the one suggested in equation 
(5.1), as Figure 5.4 suggests. This approach would allow to study if a 
relationship between the geometry of a profile and its subsections exist, and 
how it relates to the shear strength. 

To understand the role of the asperity wavelength in the shearing of rock 
joints, as a function of JCS/σn, a future work methodology is proposed, in 
which profiles with roughness with multiple scales are processed, filtering the 
asperities as a function of wavelength (Figure 6.1), these profiles may be 
tested under direct shear conditions numerically and/or characterizing in 
terms of its roughness. It is important that the constitutive model used can 
capture the damage in the asperities, to make the model as realistic as 
possible.  

 

 

Figure 6.1. Barton profile N°6, Nominal JRC = 10.8, filtered for varying wavelength (a) λ = 0.5 mm 

(b) λ = 2 mm (c) λ = 5 mm  (d) λ = 10 mm  (e) λ = 20 mm. 

(a) 

(b) 

(c) 

(d) 

(e) 
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Appendix A Surface Roughness Measurement Methods 

Appendix A.1 Contact Methods 
 
Contact methods were the first procedures used to characterize interfaces 
accurately. Basically, the instrument must be in contact with the joint surface to be 
able to measure it, this means that direct access to the joint is required, something 
that is frequently not allowed in usual field conditions. 
 
Although characterization of the joint geometry through two-dimensional profiles is 
an easier way to describe the discontinuity, the use of profiles requires the shear 
direction to be known beforehand, If this is not possible, then a complete surface 
characterization is recommended (ISRM, 1978). Details of the most relevant contact 
methods are presented below. 

Appendix A.1.1 Linear Profiling 
 
Linear profiling is the process of measuring the perpendicular distances from a 
straight reference line to the discontinuity surface at regular intervals. The resulting 
(x, y) coordinates, connected by straight line segments, are referred to as a 2D 
roughness profile (Tatone, 2009). This can be achieved used different 
methodologies and instruments such as: 

• Mechanical profilometry through combs  (Barton & Choubey, 1977; 
Stimpson, 1982)  

• Stylus profilometry (Brown & Scholz, 1985) 

• Shadow profilometry (Maerz, 1990). 

Mechanical profilometry consists in the use of a comb to capture the profile 
roughness. The comb must be pressed perpendicular to the analyzed surface, then 
the profile is plotted on a piece of paper, using the geometry captured by the comb 
as a reference, as seen in Figure A.1. The comb may be used to characterize both 
first and second order asperities (unevenness and waviness respectively), although 
it is recommended to be used mainly for unevenness, due to the limited length of the 
instrument. 
 

 

Figure A.1 (a) Barton comb used in situ (b) Obtained profiles (Kim et al., 2013) 
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the precision of combs is limited, the sampling interval depends on the number of 
pins included in the comb (Tatone, 2009), it is light enough to carry around, 0.5 kg 
for a 150 mm and 1 kg for a 300 mm  one (Controls Group, 2017), and of easy and 
quick use. These characteristics make it one of the preferred methods to 
characterize rock joints surface roughness, and the one suggested by the ISRM 
(ISRM, 1978). Over the years, more advanced version of the Barton Comb have 
been developed, such as the Du’s prophilograph (Du et al., 2009), but the basic 
principle of the instrument has remained the same. 
 
An option for more accurate results is the profilometer, which describes the studied 
surface using a stylus, a semi-spherical tip, relatively small compared with the 
analyzed profile, that moves horizontally in a parallel plane to profile (Figure A.2). 
Vertical displacements induced in the stylus due to the contact with the profile are 
measured and saved in a computer through an acquisition system.  
 

 

Figure A.2. Surface measurement using a stylus profilometer (D.-H. Lee & Cho, 2012). 

 
In rock joints characterization, profilometers have been mainly used in laboratory 
setups (Kulatilake, 1995; Swan, 1983; Weissbach, 1978), although there are reports 
of their use in the field (Schmittbuhl et al., 1993) with success. 
 

Appendix A.1.2 Shadow Profilometry 
 
In the method of shadow profilometry, a planar intersection is provided by the edge 
of a shadow cast onto the rock surface from a straight edge. The illumination angle 
must be kept at 45° to the surface, to ensure that the height of the shadow is the 
same as the height of the asperity (Maerz, 1990). A video camera is required to 
record the shadow, a ruler and an object of known height must be included in the 
setup for scale, as seen in Figure A.3. 
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Figure A.3. Shadow profilometry setup (Modified from Maerz, 1990) 

Appendix A.2 Non-Contact Methods 
 
Contact methods have some drawbacks, as they are time-consuming for capturing  
measurements and difficult to implement at dangerous and inaccessible locations 
(Feng et al., 2003), in such cases, non-contact methods are preferred, as they are 
able to measure surfaces in detail and from distances, for example, LIDAR (light 
detection and ranging) allows measurements up to distance of several hundreds of 
meters (Sturzenegger & Stead, 2009). Non-contact methods are preferred if the 
complete characterization of the joint surface geometry is required, if the direction of 
shear is unknown or if there is a strong anisotropy in the surfaces roughness 
(Kulatilake, 1995). 
 
The following non-contact methods are the most used in geotechnical applications: 

1. Photogrammetry 
2. Range Cameras – Light Detection and Ranging (LIDAR) 
3. Advanced Topometric Scanner 

 
Although interferometry is a valid method to characterize the surface topography of 
a joint, it is not included in this review as bibliography about its use in measuring rock 
joint surfaces, in a rock mechanics context, was not found, Interferometry has 
several drawbacks, for example, reflective areas on the rough surfaces, like quartz 
crystals, introduce noise in the measurements, the laser-projection set-ups are 
difficult to calibrate, and the data is difficult to interpret (Grasselli, 2001). Details of 
these methods and some of the instrument used in them are presented below. 

Appendix A.2.1 Photogrammetry 
 
Photogrammetry is a method used for determine 3D data from two or more 2D 
images of a scene. It functions under the principle of identifying the same point in 
each image and then projecting a ray into the scene from each point through the 

Joint profile Known height object 
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perspective center of each camera to find the location where they intersect, as seen 
in Figure A.4 (Birch, 2006). 
 

 

Figure A.4. Photogrammetry principle (Birch, 2006) 

Photogrammetry methods date back to middle 19th century, it was suggested as a 
technique to characterize geotechnical systems by several rock mechanics 
academicians in the 70’s, allowing its inclusion in the ISRM guidelines for joints 
quantitative description mapping in 1978 (Tatone, 2009). For several decades, the 
photogrammetry was not used due to several issues, the main one being difficulties 
with film-based cameras. This changed when CCD (charged coupled device) 
cameras were commercially available (digital cameras) making possible to study and 
analyze the images of the surface directly, using a personal computer, without any 
manual procedures (Grasselli et al., 2002). 
 
Modern digital photogrammetry and image processing can be accomplished with 
commercial software that has been designed for geotechnical mapping purposes. 
Generally, the software uses a stereo pair of photos and automatically identifies and 
uses multiple corresponding points in each photograph to determine the camera 
location and orientation, and the 3D coordinates of common points in the photos by 
a complex bundle adjustment algorithm Figure A.5 (Tannant, 2015). 
 

 

Figure A.5. (a) Oblique view of a digital terrain model of a small section of a rock slope (b) Point 
cloud created with photogrammetry (Modified from Tannant, 2015). 

(a) (b) 
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Several authors have use photogrammetry both in laboratory setups and mainly in 
situ, with satisfactory results, such as Baker (2008), Sturzenegger (2009), Tannant 
(2015), among others. 

Appendix A.2.2 Range Cameras – Light Detection and Ranging (LIDAR) 
 
LIDAR systems are based on the principle of light time delay system, the instrument 
sends out laser pulses that get back-scattered by various objects (joint surface 
topography, in this case) and record the returning signal. The time of flight of the 
laser pulse Δt is measured to compute distance d, using equation (A.1): 
 
 

d = 
𝑐Δ𝑡

2
 (A.1) 

 
Where c is the velocity of the pulse of the laser beam. Knowing the line of sight (LOS) 
direction and the attitude, defined as the object orientation with respect to a local 
system coordinate (pitch, roll, and yaw), of the device allows determining the position 
Δx, Δy, Δz of a reflective surface relative to the device (Jaboyedoff et al., 2012). 
 
What makes LIDAR the preferred type of laser scanning system for geomechanical 
characterization purposes is that, compared with other systems that rely on the time 
of flight concept, they are equipped with two mirrors mounted on orthogonal axes 
allowing the system to ‘progressively scan’ a 3D scene by automatically varying the 
azimuth and zenith of the emitted beam (Figure A.6). With the most recent 
equipment, high precision measurements may be achieved, as seen in Figure A.7, 
in the characterization made by Ge (2015). 
 

 

Figure A.6. Measurement principle using LIDAR (Tatone, 2009). 
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Figure A.7. LIDAR surface topography measurement process (Modified from Ge, 2015) 

 

Appendix A.3 Fringe Pattern Methods (Active triangulation) 
 
Fringe pattern methods require a measuring head, a tripod, a controlling-box, two 
cameras, a projector and a PC. During the measurement, various white-light fringe 
patterns are projected onto the object surface and recorded by two digital cameras, 
from two different angles, as seen in Figure A.8 (Grasselli et al., 2002). The 
measurement process is based on the principle of optical triangulation, as the 
photogrammetry method, the idea is that the three-dimensional geometry of the 
surface will produce displacement in the stripe patterns projected on the surface, 
these displacements can be directly converted in 3D coordinates, if the distance of 
the cameras to the surface and the projector is known. 
 

 

Figure A.8. Different fringe pattern projection (Grasselli et al., 2002). 
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The precision and range of the fringe projection method depend on the width of the 
stripes and their optical quality. The optical resolution of fringe projection methods 
depends on the width of the stripes used and their optical quality. An extreme 
reduction of stripe width proves inefficient due to limitations in depth of field, camera 
resolution and display resolution (Chioreanu et al., 2014). 
 
The system is calibrated using a calibration panel with target points, which is placed 
in various positions. It is not necessary to know the positions of the panel and the 
target points distribution a priori. In the case of Advanced Topometric Sensor, the 
accuracy of the point cloud has been computed to be ± 50 µm at least (Grasselli et 

al., 2002), which means that a high data density of points is obtained, while it allows 
characterizing the roughness of a surface precisely. It requires a PC with good 
processing power. 
 
Initially, this method was restricted to laboratory usage due to difficulties with the 
portability of the required equipment. With the development of stereo topometric 
measurement systems, the method has been validated both in the laboratory and in-
situ conditions (Grasselli et al., 2002; Tatone & Grasselli, 2013, 2009a, 2009b). 
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Appendix B Roughness Characterization Methods 

Appendix B.1 Statistical Methods 
 
Mathematical statistical methods have been used by mechanical engineers to 
characterize surface roughness of metallic plates (Tse & Cruden, 1979), these 
methods allow characterizing rock discontinuities in an objective way. Statistical 
methods are available for characterization of both profiles and surfaces roughness. 

Appendix B.1.1 Classic Statistical Parameters 
 
Tse and Cruden (1979) were the pioneers in using statistical methods to characterize 
rock joint profiles. They calculated the values of several statistical parameters of the 
Barton and Choubey’s rock joint standard profiles (Figure 2.10). Then, they 
estimated the relationship between the statistical parameter value of each profile 
and its assigned JRC value. The relationships were assumed to be linear in a semi-
log space. 
 
The statistical parameters used by Tse and Cruden (1979) that showed the best 
correlation to the JRC parameter (R value near 1) were: 

• Root Mean Square (RMS) 

• The derivative of the Root Mean Square (Z2), 

• The 2nd derivative of the Root Mean Square (Z3),  

• The Structure Function (SF). 

Considering a linear profile of length L, the amplitude height of the profile asperities 
defined as y(x), with x starting at 0 and ending at L, as seen in Figure B.1, the 
statistical parameters named above are given by equations: 
 
 

RMS = 
1

M
(∫ y2dx

M

0
)
1/2

 (B.1) 

 
 

Z2 = 
1

M
(∫ (

dy

dx
)
2

dx
M

0
)
1/2

 (B.2) 

 
 

Z3 = 
1

M
(∫ (

d2y

dx2
)
2

dx
M

0
)
1/2

 (B.3) 

 
 SF = 

1

L
∫ (y(x) − y(x + D))

2
dx

L

0
 (B.4) 

 
Where M is the number of discrete measurements of the amplitude height, dx is the 
small constant distance between two adjacent readings, given by the sampling 
interval, and D is a fixed distance lag always smaller than L. 
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Figure B.1. Asperities height y as a function of profile length x. 

From their analysis, Tse and Cruden (1979) concluded that the JRC was strongly 
correlated to the logarithm of the Z2 and SF parameters, as seen in  
 
 
 JRC = 32.2 + 32.47  log10(Z2)   (B.5) 

 
 JRC = 37.28 + 16.58  log10(SF) (B.6) 

 

Figure B.2. Correlation between JRC and the log10 of the Z2 and SF parameters (Tse & Cruden, 
1979) 

Maerz (1990) used the same methodology that Tse and Cruden (1979), but with 
better digitization tools (computer photo analysis instead of manual digitization), to 
study the correlation between statistical parameters and the JRC of Barton’s 
predefined profiles.  
 
 
 
 
 
 
 

 
 
 

Figure B.3. (a) Correlation between the RP and JRC for Barton’s profiles (b) Correlation between 
the RP and JRC for specimens tested (Maerz, 1990) 

x 

y 

y(x) 

L 
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In this case, the best fit was given by the Roughness Profile Index (RP), as seen in 
Figure B.3, defined as the ratio between the true length of a profile Lt and its 
projected nominal length L, given by the equation: 
 
 

RP =
Lt
L

 (B.7) 

 
 
Maerz (1990) also compared the measured RP of specimens tested in direct shear 
test in laboratory settings, performed by personnel of Noranda Mines in core and 
blocks of 50-300mm size, and analyzed the correlation with the JRC estimated by 
back analysis of the test results (Figure B.3b), although the scatter of the points is 
bigger than in Barton’s profile case, the positive trend is still observed. 
 

Appendix B.1.2 The Maximum Apparent Dip Angle 
 
Grasselli (2002) developed the method of estimation of surface roughness, by the 
measure of the effective surface contact area. In his method, both surfaces of the 
joint are reconstructed by triangulation of a point cloud. Based on the of the concept 
of threshold apparent dip angle θ∗, the shearing mechanism may be simplified by 
assuming that only those zones of the surface facing the shear direction, and steeper 
than a threshold apparent inclination (defined as θc

∗), as seen in Figure B.4b, unique 
for each applied normal load, are involved in the shearing. Among these zones, the 
areas of the surface inclined exactly at θc

∗, will be just in contact, whereas the areas 
inclined more than θc

∗, will be deformed, sheared or crushed, depending on the 
redistribution of the normal load applied. In this way, it is possible to discriminate the 
surface that might be damaged during shearing as a function of a threshold value 
θc
∗. The sum of all areas in contact or damage during shearing is termed the total 

potential contact area, A0 (Grasselli, 2002). 
 
To begin analyzing the triangulated surface, a specific analysis direction t must be 
selected. Afterward, the orientation of each individual triangle forming the rough 
surface can be uniquely identified by its dip and azimuth (Figure B.4a). Given the dip 
θ and azimuth α, it is possible to define the apparent inclination of each triangle 
facing the specified analysis direction. This apparent inclination is termed the 
apparent dip angle θ∗ and can be obtained by projecting the true dip vector d onto a 
vertical plane oriented along the analysis direction t. Based on the apparent dip angle 
of each triangle making up the surface, it is possible to distinguish the fraction of the 
surface that is more steeply inclined than progressively greater threshold values of 
apparent dip angle θ∗. This fractional area is referred to as the normalized area, Aθ∗, 
defined by the area of the surface with an apparent dip greater than a selected 
threshold value normalized with respect to the total area of the surface, At. (Tatone 
& Grasselli, 2009). Then Aθ∗ and θ∗ may be related by the following expression: 
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Aθ∗ = A0 (

θmax
∗ − θ∗

θmax∗
)
C

 (B.8) 

 
Where C is a curve fitting parameter, calculated via a nonlinear least-squares 
regression analysis (Figure B.4c). Although C is a curve fitting parameter, studies by 
Grasselli et al. (2002) and Tatone & Grasselli (2009) determined that the relation 

(
θ∗

C+1
) on a joint surface, correlates well with surface shear strength, noting (

θ∗

C+1
) as 

a valid measure of surface roughness. Also, A0 (
θ∗

C+1
) is the expression for the area 

below the curve of Aθ∗(θ
∗) between 0 and θmax

∗  (Figure B.4b). Large areas under the 
curve indicate that the surface contains a larger proportion of steeply dipping 
asperities and, thus, greater relative roughness (Tatone and Graselli, 2009). 
 
 

 
 

Figure B.4. (a) sheared surfaces as a function of shear direction and asperities dip angle (b) 
Effective area as a function of dip angle (c) estimation of coefficient C (Modified from Tatone & 

Grasselli, 2009). 

 
 

(a) (b) 

(c) 
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Appendix B.2 Fractal Methods 
 
Fractal geometry is recurrently found on surfaces of natural origin (Mandelbrot, 
1982), a fractal is an object having the property of self-similarity. Self-similarity is 
defined as a property of certain curves where each part of the curve is 
indistinguishable from the whole, or that the form of the curve is invariant with respect 
to scale (Y. H. Lee et al., 1990). In fractal geometry, two big types of fractals are 
defined, self-similar and self – affine. 
 
A self-similar fractal is a geometric feature that retains its statistical properties 
through various magnifications of viewing. That means self-similar fractals provide 
scale invariant values. A self-affine fractal remains statistically similar only if it is 
scaled differently in different directions (Ge, 2014), as seen in Figure B.5. Rock joints 
are, on most of the cases, self-affine fractals, as pointed out by Kulatilake (2006) 
and Ge (2014), which implies that methods developed to obtain the fractal dimension 
of a self-similar fractal, won’t give meaningful results when used to calculate the 
dimension of a rock joint profile. 
 

 

Figure B.5. Self-similar and self-affine fractal (Ge et al., 2014). 

 
Fractals are troublesome to characterize in classical Euclidean geometry, as its 
topological dimension doesn’t give enough information about the fractal. Mandelbrot 
(1982) developed the concept of Fractal dimension, which is defined as a ratio of the 
change in detail to the change in scale (Mandelbrot, 1982). According to the 
definition given by Mandelbrot (1982), the fractal dimension D of a self-similar figure 
is determined by the equation: 
 
 

D =
Log N

log  (
1
r)

 (B.9) 
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Where N is Number of sides on the straight-line segment when a figure is 
superimposed, and r is the ratio of the figure edge length to the preceding segment 
length. Higher D values imply higher roughness of the profile, which allows it to use 
D as a roughness characterization parameter. In the paragraphs below, two of the 
most used methods to estimate the fractal dimension of rock joints are presented. 
 

Appendix B.2.1 Divider Method 
 
In the Divider Method, a pair of dividers is set to a span, r, and then "walked" along 
the irregular line by starting each new step where the previous step leaves off (Figure 
B.6a). The number of divider steps N(r) needed to walk on the irregular line from one 
end to the other is counted. If the number of steps is multiplied by the divider, the 
approximate length of the line L(r) is obtained (Develi, 1998). A linear least-square 
regression analysis is used to estimate the fractal dimension in a Log-Log scale 
(Figure B.6b), given by the relationship: 
 
 Log(N) = log (a) + (1 − D)  log (r) (B.10) 

 
Where Log(a) is the intercept of the log L – Log r plot (Figure A.1b). 
 

Figure B.6.  (a) Divider's Method (Napolitano et al, 2012) (b) Log N – Log r plot (Y. H. Lee et al., 
1990). 

Appendix B.2.2 Variogram Method 
 
The variogram method has been used for spatial analysis in geo-statistics for a long 
time, being the calculation of the mineral’s grade on a certain site the typical use It 

(a)  (b)  
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has. It can also be used to estimate the fractal dimension of natural surfaces. The 
variogram is defined as the mean squared increment of points: 
 
 

 γ(h) =
1

2n
 ∑[V(xi ) − V(xi+h )] ^2 (B.11)  

 
Where, γ(h) is the Variogram at lag distance h, V(xi) and V(xi + h) are the roughness 
height at distances xi and xi+h respectively, and n is the number of pairs of 
roughness heights of the profile spaced at lag distance h. The dimension of the 
profile may be calculated using the following equation: 
 
 2γ(x, h) = Kvh

2(2−D) (B.12) 

  
Where, Kv is the intercept of the plot and D is the fractal dimension. Kv and D may 
be estimated from a log-log plot of the variogram v/s the lag (Figure B.7) using a 
least square regression analysis. While usually mono fractals tend to be 
characterized only by D, Kulatilake (1995) suggest that both Kv and D should be 
used to describe a rock joint surface topography accurately. 
 

 

Figure B.7. Variogram v/s lag h plot in log-log scale (Murata & Saito, 1999). 

 
 
 
 

2γ(x, h) = Kvh
2(2−D) 

Kv 
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Appendix C Results processing and Calibration Work in    
Abaqus/Explicit 
 

Appendix C.1 Results Processing 
 
For the results processing statistical (moving average) and signal analysis (low-pass 
filter) methods are available, the latter was chosen for the post-processing due to an 
induced perturbation on the quasi-static response with the moving average method. 
 
The Low pass filter (Figure C.1) parameters were determined by inspection, while 
trying to keep the quasi-static response as undisturbed as possible. The filter used 
and its parameters are described in Table B.1. The filter effect may be seen in Figure 
C.2. 

 

Figure C.1. Low Pass Filter. 
Table B.1. Filter Properties. 

Filter Type of Filter Order Frequency Cut-off [hz] Sampling interval [-] 

Butterworth Low-Pass 3 45 250 

 

 

Figure C.2. Filter effect on the Abaqus Explicit results. 
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Appendix C.2 Abaqus/Explicit Calibrations 
 
Calibration for the Abaqus explicit analysis follows the same procedure than the 
Abaqus/Standard case. Keep in mind, that all the results were filtered, which means 
that there will some inherent bias. All of the models were small scale ( ~ 100 mm); 
Barton’s profile n° 6 shear tests, with a sampling interval of 1 mm and vertical stress 
of 1 MPa. 

Appendix C.2.1 Shear Stiffness 
 
In Abaqus/Explicit the friction model is controlled by the friction coefficient 𝜇 and the 
shear stiffness, instead of the 𝛾𝑐𝑟𝑖𝑡. Based on Figure 3.7, for a fixed friction 
coefficient, shear stiffness and 𝛾𝑐𝑟𝑖𝑡 are interdependent variables, which means that 
sensitivity analysis of both variables should have a similar outcome. Results of 
stress-displacement curves and peak shear strength for 18 different values of shear 
stiffness are displayed in Figure C.3. Barton profile n°6 was used, with a sampling 
interval equal to 0.5 [mm] and a normal stress of 1 MPa. 
 
 

 

 Figure C.3. Shear Stiffness sensitivity analysis results. 

The shear stiffness has an influence on the peak shear strength. This may be 
partially explained if the 𝛾𝑐𝑟𝑖𝑡 is a fixed value on Abaqus/Explicit, but at 200 MPa the 
peak shear strength begins to converge asymptotically to a constant value, 2.1 MPa 
on this case, higher that both the predicted shear strength by the Barton-Bandis 
shear strength criterion and the Abaqus Standard results. Although this 
phenomenon allows the use of shear stiffness as a calibration parameter, it also 
makes the model less predictable, as the peak shear strength v/s shear stiffness 
curve may vary for different sampling intervals and scales, as will be seen in section 
4.2. For the study, the shear stiffness was calibrated so Abaqus explicit results and 
the predicted Barton Bandis shear strength were the same. 

Shear Stiffness [MPa/mm] 
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Appendix C.2.2 Mass Scaling 
 
Mass scaling sensitivity analysis was not performed to calibrate the model, but to 
understand how it correlates with the stress/displacement curve behavior and the 
peak shear strength. Results were divided into two figures, to differentiate between 
orders of magnitude of the mass scaling value. A semi-log plot is included to visualize 
the mass scaling effect on the peak shear stress on all of the magnitudes (Figure 
C.4). 
 

 

 
Figure C.4. Mass Scaling Sensitivity Analysis, values from 1 to 250. 

   

 
Figure C.5. Mass Scaling Sensitivity Analysis, values from 400 to 15000. 

Mass Scaling [-] 

Mass Scaling [-] 
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Figure C.6. Mass Scaling Sensitivity Analysis, Semi-log plot for the Shear Stress v/s Mass Scaling. 

 
From Figure C.4, it is noted that variations in mass scaling increase the mid-
frequency oscillations but doesn’t alter the stress-displacement curve or the peak 
shear strength of the joint. On the other side, Figure C.5 shows that mass scaling 
values of higher order of magnitude (10000 and above) indeed increase the peak 
shear strength by inducing a higher amplitude in the mid-frequency oscillations. The 
result pointed out above is important because if the stress-displacement curves are 
not checked, the performed explicit analysis may induce an overestimation of the 
peak shear strength, if the mass scaling is high enough. The overall behavior through 
different magnitudes is seen in Figure C.6, there is a relatively similar shear stress 
peak until a mass scale of ~3*102, for higher values the behavior changes. 
 
 
 
 
 
 
 
 
 
 
 
 

Mass Scaling [-] 
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Appendix D Sampling Interval Analysis 

Appendix D.1 Shear Strength 

Appendix D.1.1 Profile N°1 
 

 

Figure D.1 Stress-strain curve and peak shear strength as a function of the normal stress, Barton 
profile N°1, profile length = 97.5 mm, nominal JRC = 0.4. 
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Normal Stress [MPa] 



118 
 

 

Figure D.2. Barton's profile n°1, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.2  Profile N°2  
 

 

Figure D.3. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°2, profile length = 100.5 mm, nominal JRC = 2.8. 
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Figure D.4. Barton's profile n°2, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.3 Profile N°3 
 

 

Figure D.5. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°3, profile length = 100 mm , nominal JRC = 5.8. 
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Figure D.6. Barton's profile n°3, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.4 Profile N°4 
 

 

Figure D.7. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°4, profile length = 99 mm, nominal JRC = 6.7. 
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Figure D.8. Barton's profile n°4, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.5 Profile N°5 
 

 

Figure D.9. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°5, profile length = 98.5 mm, nominal JRC =9.5. 
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Figure D.10. Barton's profile n°5, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.6 Profile N°6 
 

 

Figure D.11. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°6, profile length = 99 mm, nominal JRC = 10.8. 
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Figure D.12. Barton's profile n°6, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.7 Profile N°7 
 

 

Figure D.13. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°7, profile length = 96 mm, nominal JRC = 12.8. 
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Figure D.14. Barton's profile n°7, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.8 Profile N°8 
 

 

Figure D.15. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°8, profile length = 100.5 mm, nominal JRC = 14.5. 
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Figure D.16. Barton's profile n°8, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.9 Profile N°9 
 

 

Figure D.17. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°9, profile length = 99 mm, nominal JRC =16.7. 
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Figure D.18. Barton's profile n°9, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.1.10 Profile N°10 
 

 

Figure D.19. Stress-displacement curve and peak shear strength as a function of the normal stress, 
Barton profile N°10, profile length = 99.48 mm, nominal JRC =18.7. 
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Figure D.20. Barton's profile n°10, sampled under different interval values and a summary of the 
simulation results for each sampling interval considered. 
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Appendix D.2 Dilation Results 

Appendix D.2.1 Profile N°1 
 
 

 

Figure D.21. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N° 1, nominal JRC = 0.4. 
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Appendix D.2.2 Profile N°2 
 
 

 

Figure D.22. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°2, nominal JRC = 2.8. 
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Appendix D.2.3 Profile N°3 
 
 

 

Figure D.23. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°3, nominal JRC = 5.8. 
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Appendix D.2.4 Profile N°4 
 
 

 

Figure D.24. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N° 4, nominal JRC = 6.7. 
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Appendix D.2.5 Profile N°5 
 
 

 

Figure D.25. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°5, nominal JRC = 9.7. 
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Appendix D.2.6 Profile N°6 
 
 

 

Figure D.26. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°6, nominal JRC = 10.8. 
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Appendix D.2.7 Profile N°7 
 
 

 

Figure D.27. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°7, nominal JRC = 12.8. 
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Appendix D.2.8 Profile N°8 
 
 

 

Figure D.28. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°8, nominal JRC = 14.5. 
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Appendix D.2.9 Profile N°9 
 
 

 

Figure D.29. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°9, nominal JRC = 16.7. 

 

S.I = 0.5 mm 

S.I = 1 mm 

S.I = 2 mm 

S.I = 5 mm 

Normal Stress [MPa] 



146 
 

Appendix D.2.10 Profile N°10 
 
 

 

Figure D.30. Vertical displacement - shear displacement curve and secant dilation angle as a 
function of the shear displacement, Barton profile N°10, nominal JRC = 18.7. 
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Appendix E Scale Effects Study 

Appendix E.1 Profile N°1 
 

 

Figure E.1. Shear stress v/ shear displacement test results for load and displacement controlled 
small-scale tests, Profile N° 1, Nominal JRC = 0.4, SI = 2 mm. 

 

Figure E.2. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°6, nominal JRC = 0.4, SI = 2 mm. 
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Figure E.3. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N° 1, nominal JRC = 0.4, SI = 2 mm. 

 

Appendix E.2 Profile N°2 
 

 

Figure E.4. Shear stress v/ shear displacement test results for load and displacement controlled 
small-scale tests, Profile N°2, Nominal JRC = 2.8, SI = 2 mm. 
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Figure E.5. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°2, nominal JRC = 2.8, SI = 2 mm. 

 

Figure E.6. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N° 2, nominal JRC = 2.8, SI = 2 mm. 
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Appendix E.3 Profile N°3 
 

 

Figure E.7. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 3, nominal JRC = 5.8, SI = 2 mm.

 
Figure E.8. Shear stress v/ shear displacement tests results for load-controlled small-scale and 

large-scale models, Profile N°6, nominal JRC = 5.8, SI = 2 mm. 
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Figure E.9. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 

models, Profile N° 3, nominal JRC = 5.8, SI = 2 mm. 
 

Appendix E.4 Profile N°4 
 

 

Figure E.10. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 4, nominal JRC = 6.7, SI = 2 mm. 
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Figure E.11. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°4, nominal JRC = 6.7, SI = 2 mm. 

 
Figure E.12. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 

models, Profile N° 4, nominal JRC = 6.7, SI = 2 mm. 
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Appendix E.5 Profile N°5 
 

 

Figure E.13. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 5, nominal JRC = 9.5, SI = 2 mm. 

 

Figure E.14. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°5, nominal JRC = 9.5, SI = 2 mm. 
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Figure E.15. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N° 5, nominal JRC = 9.5, SI = 2 mm. 

 
 

Appendix E.6 Profile N°6 
 

 

Figure E.16. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 6, nominal JRC = 10.8, SI = 2 mm. 
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Figure E.17. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°6, nominal JRC = 10.8, SI = 2 mm. 

 

Figure E.18. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N°6, nominal JRC = 10.8, SI = 2 mm. 
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Appendix E.7 Profile N°7 
 

 

Figure E.19. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 7, nominal JRC = 12.8, SI = 2 mm. 

 

Figure E.20. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°7,nominal JRC = 12.8, SI = 2 mm. 
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Figure E.21. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N° 7, nominal JRC = 12.8, SI = 2 mm. 

 
 

Appendix E.8 Profile N°8 
 

 

Figure E.22. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 8, nominal JRC = 14.5, SI = 2 mm. 
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Figure E.23. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°8, nominal JRC = 14.5, SI = 2 mm.

 
Figure E.24. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 

models, Profile N°8, nominal JRC = 14.5, SI = 2 mm. 
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Appendix E.9 Profile N°9 
 

 

Figure E.25. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 9, nominal JRC = 16.7, SI = 2 mm. 

 

Figure E.26. Shear stress v/ shear displacement tests results for load-controlled small-scale and 
large-scale models, Profile N°9, nominal JRC = 16.7, SI = 2 mm. 
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Figure E.27. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N°9, nominal JRC = 16.7, SI = 2 mm. 

Appendix E.10 Profile N°10 
 

 

Figure E.28. Shear stress v/ shear displacement test results for load and displacement-controlled 
small-scale tests, Profile N° 10, nominal JRC = 16.7, SI = 2 mm. 
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Figure E.29. Shear stress v/ shear displacement tests results for load-controlled small-scale and 

large-scale models, Profile N°10, nominal JRC = 18.7, SI = 2 mm. 

 

 

Figure E.30. Shear stress v/s shear strain test results for load-controlled small-scale and large-scale 
models, Profile N°10, nominal JRC = 18.7, SI = 2 mm. 

 


