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A FACETED BROWSING INTERFACE FOR DIVERSE LARGE-SCALE
RDF DATASETS

Las bases de conocimiento en RDF contienen información acerca de millones de recursos,
las cuales son consultadas utilizando el lenguaje estándar de consultas para RDF: SPARQL.
Sin embargo, esta información no está accesible fácilmente porque requiere conocer el lenguaje
SPARQL y la estructura de los datos a consultar; requisitos que no cumple un usuario común
de internet.

Se propone una interfaz de navegación por facetas para estos datos de gran tamaño que
no requiere conocimientos previos de la estructura ni de SPARQL. La navegación por facetas
consiste en agregar filtros (conocidos como facetas) para mostrar únicamente los elementos
que cumplen los requisitos. Interfaces de navegación por facetas para RDF existentes no
escalan bien para las bases de conocimientos actuales.

Se propone un nuevo sistema que crea índices para búsquedas fáciles y rápidas sobre
los datos, permitiendo calcular y sugerir facetas al usuario. Para validar la escalabilidad
y eficiencia del sistema, se escogió Wikidata como la base de datos de gran tamaño para
realizar los experimentos de desempeño. Luego, se realizó un estudio de usuarios para evaluar
la usabilidad e interacción del sistema, los resultados obtenidos muestran en qué aspectos
el sistema desempeña bien y cuáles pueden ser mejorados. Un prototipo final junto a un
cuestionario fue enviado a contribuidores de Wikidata para descubrir como este sistema
puede ayudar a la comunidad.
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Abstract

RDF knowledge bases contain information about millions of resources, which can be queried
using the standard querying language for RDF: SPARQL. However, this information is not
easily accessible because it requires knowledge of SPARQL and the structure of the specific
dataset to query; requirements that a common Internet user would not met.

We propose a faceted browsing interface for these large-scale datasets that does not require
prior knowledge of their structure or SPARQL. Faceted browsing consists of adding filters
(known as facets) to display only the elements that meet the restrictions. Existing faceted
browsing interfaces for RDF do not scale well for current knowledge bases.

We propose a new system that creates indexes for fast and easy searches over the dataset,
allowing to compute and suggest facets to the user. To validate the scale and efficiency of
the system, Wikidata was chosen as a large-scale dataset over which to conduct performance
experiments. Then, a user study was performed to evaluate the usability and responsiveness
of the system, obtaining results that shows in which aspects the system performs well and
which ones can be improved. A final prototype and questionnaire was submitted to the
Wikidata contributors to see how this system could help the community.
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Chapter 1

Introduction

In the world of today when someone wants to search for anything, the first place to look up is
the Web. The Web contains a lot of information and every day this information is increasing.
Most of this information is in plain text, but there is a problem: machines usually do not
understand natural language, so to search for something, it has to be by matching keywords.
Overcoming this problem is the idea behind the Semantic Web.

The Semantic Web’s goal is to structure the existing data on the Web in a machine
readable format in order to allow interoperability between websites. With this goal, the
Semantic Web uses the RDF standard, which stores data in triples of the form subject,
predicate and object. Defining best practices about how datasets expressed in RDF should
relate to one another on the Web is known as Linked Data.

There are various large datasets of RDF on the Web, like DBpedia and Wikidata. These
datasets contain hundred of millions of triples; given that these datasets are structured, they
can be used to answer complex queries over information drawn from many sources. However
these datasets cover many different topics and contain data contributed by thousands of
different editors. Because of this, such datasets do not have a clear schema or defined
structure. This causes a first level of complication for users wishing to query these data.

The current standard to make queries over RDF data is the query language SPARQL.
Here is where the problem mentioned earlier takes place: over large-scale data it is difficult
to find a common structure in the data, which complicates querying. Furthermore, in order
to obtain good results, it is necessary to learn how to write queries in the SPARQL language,
as well as having knowledge of the structure of the data one wants to retrieve. Most users on
the Web do not satisfy these requirements and thus cannot query these datasets, reducing
their value since often, it is too difficult for such users to answer interesting questions over
such data.

This work presents an interface to search over such datasets (specifically over Wikidata,
though the methods presented generalize to other datasets) using faceted browsing. Faceted
browsing consists in making a general search over the data and then adding filters known as
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facets (characteristics of the element to find) to refine the results. This kind of interface is
very common on popular websites such as online shops (like Amazon): while searching for a
product you can add facets like brand, price or year to find the one you want.

While faceted queries do not cover SPARQL, they offer an intuitive and flexible query
mechanism. There are currently interfaces that allow faceted browsing over RDF but these
do not support a large dataset like Wikidata with hundreds of millions of triples, where the
number of possible facets is immense, or the data can be in multiple languages. A main goal
of designing such a faceted browsing interface is to unlock the potential value of large-scale
RDF datasets available on the Web (like Wikidata and DBpedia) by helping common users
pose queries against them.

1.1 Objectives

1.1.1 Main objective

The main objective of this thesis work is to create a new interface for faceted browsing
that supports a large dataset (hundreds of millions of triples). The data could be about
different topics with multiple properties, with incomplete or missing information and be in
multiple languages. That way, it would be possible to search and pose (simple) queries over
diverse, large-scale, multilingual RDF datasets with no previous knowledge of its structure
nor SPARQL.

1.1.2 Specific objectives

• Structure and index the data making it possible to query the dataset with facets and
also keywords.

• Allow the possibility for a universal system that supports any kind of RDF dataset.

• Support content in different languages for keyword searches.

• Compute and display the important facets given a group of data or partial results.

• Develop ranking mechanisms to display the most important facets and entities first.

• Make the system available as a Web application with a responsive and intuitive inter-
face.

1.2 Methodology
To accomplish the previous objectives, the work will be done following these steps in order.
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• Experiment and test with existing faceted browsing systems over large datasets like
Wikidata and see how well or badly these systems support such a dataset.

• Select an appropriate indexing scheme to support the necessary user interactions (e.g.
keyword search and auto complete function).

• Create the index with a structure that enables search using facets.

• Develop the core of the system with a basic search interface to compute the facets and
filter the results with a given facet.

• Improve the usability of the system allowing ranking of the results and facets according
to measures of relevance and centrality.

• Do performance tests over the system based on computation time versus complexity of
the query.

• Perform a user study to measure usability: users perform queries with this system
versus other systems and answer some questions.

1.3 Expected Results
The final product of this work is an application for faceted browsing over multi-domain,
diverse, large-scale and incomplete RDF datasets.

This application should be available as an online service, allowing to do faceted browsing
over Wikidata. The service should (i) offer responsive runtimes, (ii) offer suitable rankings of
facets and results, (iii) offer keyword search and autocomplete textual features, (iv) support
various languages, (v) avoid facets generating empty results.

Building such an application for large-scale datasets like Wikidata is challenging and
requires exploring novel techniques to handle billions of triples while maintaining responsive
runtimes. Another expected result of this work is a set of algorithms by which such a system
can be realized. A particularly challenging aspect is to compute exact facets over millions of
results, capturing all (and only) restrictions that will give non-empty results. An important
result of this work will be a novel caching method to achieve these goals.

We will also provide experimental results that validate that the proposed system meets the
above criteria, in particular, the responsiveness of the system (allowing interactive browsing
and search), and the general usability of the system (with a user study).
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1.4 Outline of this Document
Chapter 2 will talk about the Semantic Web, what is RDF and explain the background
of this work to understand the next chapters. Chapter 3 gives an overview of the system.
Chapters 4 and 5 explain the development of the system starting from the data itself until
the final system is complete. Chapter 6 presents the evaluation results obtained with the
system. Chapter 7 concludes this work explaining limitations of the system and discussing
future work.
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Chapter 2

Background

This work covers two major topics in Computer Science: Semantic Web and Information
Retrieval. The Semantic Web aims to add semantics to the content of the Web, while
Information Retrieval is the area in charge of obtaining relevant information from a collection
of information resources (typically, textual documents).

2.1 Semantic Web
Nowadays, the Web is growing rapidly due to a large user base generating more and more
content every day. Due to this large amount of data, it is necessary for machines to process
this content to allow users to find relevant information when needed. Search engines like
Google thus crawl and index large portions of the Web; however, machines usually do not
“understand” the content of the Web itself. Rather the machine processes text strings, that
may be separated into words by a delimiter, and compute statistics about for example, the
frequencies of particular strings in a document. In order to make a machine understand a
message, it needs a defined structure and semantics.

The Semantic Web’s main objective is to allow the content of the Web to be represented
in a machine readable format, defining the structure, data model and semantics for each piece
of information [2]. With this idea in mind, the Semantic Web has defined an architecture
known as the Semantic Web Stack, formed of layers, where each layer depends on the ones
below it (see Figure 2.1).

The bottom layer has identifiers and characters; these allow to assign to each resource
being described a unique ID using the available characters. The character set accepted
in this layer is the Unicode standard because it supports multiple languages and special
symbols. The identifier scheme used is IRI (Internationalized Resource Identifier), a variant
of URI (Uniform Resource Identifier) used widely on the Web, allowing more characters
from Unicode. Right above this layer, there is the Syntax layer: it defines how the identifiers
structure a grammar; here there are the XML and JSON formats, widely used already, but
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it also includes Turtle and N-Triples formats made specially for RDF triples; the core of the
next layer: Data Model, which will be explained in the next section.

The next level has two components: Schema & Ontologies and Querying. Schema &
Ontologies are explained in Section 2.1.1, and Querying in Section 2.1.2. The following
layers, seen in the figure in red boxes, are theoretical layers with no standard defined, but
with a defined proof of concept. Unifying Logic aims to combine ontological reasoning and
querying. The Proof layer aims to provide a proof of the procedure or information used to
the client, and the Trust layer should determine which services have access to which data.
The Cryptography layer is to the side of all others because all parts of the Semantic Web
would require cryptography techniques for verifying identity and access control for sensitive
data.

Figure 2.1: Semantic Web Stack

2.1.1 Data Model
Resource Description Framework (RDF)

The RDF standard [11] is the most important component of the Semantic Web; its mission
is to provide the core data model for structuring the factual content of the Web. With a data
model well defined, it is possible to accomplish interoperability between data published by
different websites. The standard is composed of RDF terms, triples, graphs and vocabulary.

RDF terms are the minimal piece of information on the Semantic Web: a term represents
a resource that can be an IRI, a literal value or a blank node. IRIs, as explained before, are
an identifier for a resource on the internet. Literal values can be a text string with or without
an associated language (for example, the “@en” tag represents that the text is in English)
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or a datatype such as an integer number, a boolean, etc. Blank nodes are used to represent
that something exists but its identifier or value is unknown.

With RDF terms, it is possible to make a sentence that relates terms. This is done
grouping three terms in a specific order forming a triple: as the name suggests an RDF triple
is a 3-tuple of RDF terms. The first term is the subject, which indicates what resource we are
talking about, where this term can be an IRI or a blank node; the second one is the predicate
which has to be an IRI, establishing a relationship between the subject and the third term:
the object, which can be an IRI, blank node or a literal value. A triple is the core of the
Semantic Web data model because a triple is a fact, for example, Santiago is the capital city
of Chile.

Example 2.1. This is a small RDF dataset based on Wikidata triples. Note that IRIs are
not accurate for the sake of understanding since Wikidata uses numbers as identifiers.
ex:Earth ex: highestPoint ex: MountEverest
ex: MountEverest ex: continent ex:Asia
ex:Asia ex:partOf ex:Earth
ex:Asia ex: sharesBorderWith ex:Europe
ex:Europe ex:partOf ex:Earth
ex: MountEverest ex: namedAfter ex: GeorgeEverest
ex: GeorgeEverest ex: countryOfCitizenship ex: UnitedKingdom
ex: UnitedKingdom ex: continent ex:Europe
ex: GeorgeEverest ex: placeOfDeath ex:London
ex: UnitedKingdom ex: capital ex:London

Listing 2.1: Small RDF dataset

Note that ex: is a prefix shortcut indicating an IRI and its respective domain, such that
ex:Earth refers to the IRI http://example.org/Earth.

Grouping multiple triples we have a graph where the subject and the object are the
vertices and where the predicate labels the directed edge that connects them; this way it
is possible to see the connections between all the different resources described on the Web.
Over a graph we can compute interesting statistics and algorithms to process and understand
how the data relates to one another.

Example 2.2. Figure 2.2 shows the RDF graph for the dataset in Listing 2.1.

Lastly, to add some sense of meaning or vocabulary to all of this, the RDF standard defines
a group of IRIs with special meaning. The most important are rdf:type and rdf:Property.
The first is to indicate the type of the subject, for example, Chile is a country, therefore its
type is country; this allows to group the resources into classes such as the class of all countries
or all people. The second term (rdf:Property) is the class of all the elements that go in
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continent

Figure 2.2: RDF graph

the predicate position of a triple, so they shall be known as properties; in other words, a
triple contains a subject, property and value of that property. The other terms in the RDF
vocabulary will be omitted as they are not relevant for this document.

RDF Schema and Web Ontology Language (OWL)

The RDF standard is a powerful tool to start structuring data on the web, where the RDF
vocabulary gives a meaning to each element and an organization to these data. However,
these definitions are not enough to define richer semantics and made necessary new standards
that expand on the vocabulary already defined.

RDF Schema [3] was the first such standard and adds relations between classes and
properties with, for example, rdfs:subClassOf and rdfs:subPropertyOf. This allows for
inferring information that was previously unknown; for example: if we know that Santiago
de Chile is a City and City is a sub class of Settlement, the machine can deduce that Santiago
de Chile is a Settlement too, even if that triple is not in its data.

The Web Ontology Language (OWL) [9] expands this idea even more adding new vocab-
ulary including owl:equivalentClass, owl:equivalentProperty and owl:sameAs, thus
making it possible to integrate data from different resources, like that two resources have
their own IRI for people, one is named Person and the other is Human so both are equiv-
alent classes. OWL adds other expressions such as owl:inverseOf (like parent and child),
owl:SymmetricProperty (like sibling) and more, all this to provide integration and comple-
tion of data, through reasoning.

Note that in the present work, we do not consider reasoning but focus on faceted browsing
over explicit data. Hence we do not discuss RDFS and OWL in further detail.
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2.1.2 Queries on RDF

The current standard to query over RDF data is SPARQL [5], which is similar to SQL
(Structured Query Language) but applied to RDF triples. SPARQL uses only explicit triples:
it cannot typically infer or deduce new information as discussed in the previous section.
SPARQL syntax is based on the Turtle syntax of RDF (a common format to write RDF
triples in subject-predicate-object order) and SPARQL keywords.

The most relevant part of a SPARQL query is the query clause, which is where the
patterns of the triples are specified. The triples may contain variables and ask the query to
return results where variables match terms in the data, preserving the structure of the query
and the data.

Example 2.3. Using the dataset in Listing 2.1, a query to answer what is the highest point
in the planet and in what continent is located, is constructed as follows: variables start with
a question mark; the query will return the variables specified in the SELECT clause with all
IRIs that match in the WHERE clause. This query will return the pair ex:MountEverest,
ex:Asia because ?s1 matches in the WHERE clause with ex:MountEverest in the dataset
and the same with ?s2 matching ex:Asia.
SELECT ?s1 ?s2
WHERE {

ex:Earth ex: highestPoint ?s1 .
?s1 ex: continent ?s2

}

Listing 2.2: SPARQL query

In conclusion, in order to succesfully construct SPARQL queries it is necessary to know
the RDF graph we are querying and the main structure of the data, like what IRIs are used
for which classes or properties. This, however is a major problem when a user, who knows
nothing about the dataset or even RDF at all, wants to query the data. In the last section of
this chapter are examples of multiple interfaces to query over RDF that do not assume user
expertise in SPARQL nor the structure of the dataset.

2.1.3 Linked Data

We have covered the main components of the Semantic Web, but where on the Web is all
this RDF data? The most obvious connection between the two are the IRIs that look and
sound similar to the URLs we type in web browsers. Linked Data is then the (best) way to
deploy all these Web Semantic standards on the Web we all know. There are four principles
for Linked Data [6].
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1. Use IRIs to identify things.

2. Use HTTP IRIs to reference these things.

3. Return useful data when looking up about these IRIs, ideally in RDF. With the first
three principles we can now get more structured information about something when
looking up its IRI.

4. Include links to reference other documents by using its IRI, thus making the data linked.

With these guidelines, the community started developing sets of new Linked Data guide-
lines and publishing their data in this format. The most popular RDF datasets on the
Web currently are DBpedia [8], Wikidata [14] and YAGO [13]; these describe resources (also
known as entities) based on Wikipedia articles, thus giving a lot of data about millions of
different subjects. With that many entries with diverse types, properties and domains, a
major problem is how to enable non-experts users to effectively make queries that return the
expected result and not require knowledge of SPARQL.

In the following, we describe the Wikidata dataset, published on the Web as Linked Data,
which will be used later in this thesis.

2.1.4 Wikidata

Wikidata is a free, multilingual and open database collecting structured data that can be read
and edited by humans and machines. Wikidata currently has over 40 million resources and
over 350 million statements, with around 14 millions edits per month by over 30 thousand
active editors.

Wikidata follows a specific rule to assign IRIs to resources. Wikidata’s IRIs consist of
a letter and a number; all properties start with the letter P and the other resources with
the letter Q. Although it is not possible to know what the resource is by looking at its IRI,
resources with the same name will not be confused; for example, the IRI for the planet Earth
is http://www.wikidata.org/entity/Q2, abbreviated as wd:Q2, and for the element earth
is wd:Q2488752.

To name the resource, a triple with the property rdfs:label is required where the value
needs a language tag. From the previous example, the triple to give a name to wd:Q2
is wd:Q2 rdfs:label "Earth"@en; it is possible to add more triples to add the label for
different languages by changing the language tag.

Wikidata also uses two other properties to better describe the resource other than the
label. These two properties are skos:altLabel to indicate other names the resource is known
for (wd:Q2 skos:altLabel "Planet Earth"@en) and schema:description to describe it in
words (wd:Q2 schema:description "third planet from the Sun in the Solar
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Figure 2.3: Data model in Wikidata (Image from Wikidata)

System"@en). These three properties will be used (if available) in the faceted browsing
interface to help identify the resource to the users.

Wikidata’s statements describe detailed characteristics of a resource and consist of a
property and one or more values; it can also be expanded with qualifiers, references and
ranks. Properties and values in Wikidata work the same way as in an RDF triple, where a
value is another Wikidata resource, literal value or blank node. Qualifiers refine or further
describe the value given to a property in a statement, for example, Donald Trump is the
U.S. president but that statement has a start time qualifier of 20 January 2017. References
allow to back up the data provided in the statement and ranks in statements establish the
preferred value when a property has multiple values; for example, Barack Obama was the
U.S. president but also a senator, however, the president value is preferred. This work does
not use qualifiers, references or ranking of the statements, as their function is to expand
on the statement but they are not an important part of it for initially querying entities;
however, it would be interesting to extend this work in the future to consider such additional
information.
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2.1.5 Query Interfaces

There are multiple proposals to query RDF data (other than to write a SPARQL query)
that aim to help users with limited knowledge of RDF and the Semantic Web. These include
visualization of RDF graphs, Question Answering and Faceted Browsing. In these methods,
the user does not require experience of anything about the Semantic Web (though it may
be beneficial). Visualization over RDF is easy to understand because all RDF datasets
are a graph. However, more specific visualizations are tied to certain types of entity like
geographical data using a map and it is not easy to offer visualizations over larger datasets.

Question Answering consists in giving the correct answer to a question written in nat-
ural language; this is accomplished by translating the question to a structured query (e.g.
SPARQL) to give an answer. The program needs to know what dataset is being queried
and the existing properties and overall structure of that dataset, so approaches often re-
quire a training dataset where both questions and answers are given. This method is heavily
dependant on the dataset used and the question types that it supports (certain languages,
complexity of the question); also, systems may only answer questions similar to its training
set. Examples of question answering interfaces are: QAKis1 and AskWikidata2.

Example 2.4. A question answering interface trained with the dataset in Listing 2.1 should
be able to answer the question “In which continent is the highest point on Earth located?”
The user directly types the question and the interface returns the correct answer: Asia.

Faceted Browsing consists in adding facets to an initial query (usually a type query, like
all countries or all persons). Each facet is a property to filter the previous results. For
example, a user may first select all countries and then filter the results with the facet of
member of the United Nations. Then, by adding multiple facets, the user can find all results
that match the specified criteria. This structure of searching content is mainly used in online
shops (like Amazon) to filter its products by price, brand and other properties. This method
requires minimal knowledge of the structure of the dataset being used and it can only return
results based on direct properties: it is not possible to specify properties of a given facet; for
example: it is not possible to find all presidents of countries that are members of the UN,
since the search is for presidents but the facet member of the UN applies to the country,
not to the president. For this reason, faceted browsing interfaces cannot be used to express
complex queries like SPARQL. However, they are familiar to many users through interfaces
like Amazon. Given that they are considered user friendly, a number of such interfaces have
already been defined for RDF datasets; such interfaces include gFacet [7], Facete [12] and
SemFacet [1]. However, these systems do not support large and diverse dataset about different

1http://qakis.org/
2http://tools.wmflabs.org/bene/ask/
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topics with hundreds of possible facets such as the Wikidata dataset. We now discuss these
systems in more detail.

gFacet is a combination of faceted browsing and graph-based visualization, where the user
selects a category of the data based on a keyword search and then, the system displays a
node with the list of all items in the category and their respective facets. Additional nodes on
the visualization are added by selecting a facet from another category, thus making an edge
between such nodes. When one or more items in a category are selected, the other nodes will
highlight values compatible with the current selection; that way, a selection is a facet and
the highlighted items are the results of the facets. This system, however, was not built with
large-scale datasets in mind; large-scale datasets will have millions of items per category and
loading nodes with that many items (and consequently, facets) would be ineffective.

Facete is an application for faceted search over RDF with geographical data; it requires
the dataset be loaded in a SPARQL endpoint. Facete works in three views: the first view
shows all properties of the dataset, where selecting a property will display possible values
for the facet; the second view displays the items that match the query; and the third view
displays the item’s location on a map. The system needs to (or at least tries to) relate each
item with geographical coordinates, so many types of items are suitable for this system. We
provide an example screenshot of Facete in Figure 2.4.

Figure 2.4: Facete interface

SemFacet is a faceted browsing system that requires a SPARQL endpoint and an RDF
dataset with its ontology as input. The initial search is performed using a keyword over the
meta-data of the items, using information retrieval techniques; relevant facets are computed
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Figure 2.5: SemFacet interface

using the ontology file of the dataset. Facets and values are displayed at the left of the screen,
while on the right side the results with an image and description are shown. While SemFacet
can use the input ontology to perform reasoning about which are the relevant facets, this
limits the scalability of the system, where evaluation reported in the paper deals with only
a subset of the YAGO dataset. We tried loading Wikidata into this system, but it does not
work, not displaying any results or facets after one day of processing the dataset. We provide
an example screenshot of Facete in Figure 2.5.

eLinda [10] is a browsing interface that shows in a bar chart the possible types or properties
of the entities of the dataset. It requires an ontology for the dataset and class type hierarchy;
that way, it can make a bar chart of the subtypes, allowing the user to select a subtype to refine
the current results. Alternatively, it is possible to make the chart based on the properties,
similar to facets. The main difference between this system and a standard faceted browsing
interface is eLinda does not show the resulting entities, instead it groups them based on
its type or properties to select the next group; however, these groups are a way to suggest
“facets” to the user. This system uses a SPARQL endpoint to perform the queries and
assumes an ontology to create a class hierarchy.
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2.2 Information Retrieval
Information Retrieval is an area concerned with finding information resources relevant to a
user need from a large collection of resources. Searches can be directly over text, metadata
or both. In this work, an information resource is an entity identified by an IRI; this resource
contains text on the labels, alt labels and description, and its metadata are the pairs of
properties and values associated with it.

2.2.1 Inverted Index

To do searches over these information resources, they need to be indexed in some form.
Information Retrieval call these indexes inverted indexes (since it inversely maps keywords
to documents).

Inverted indexes store in a virtual document the information resource identifier, its con-
tents in fields, each field for a different type of content; for example, for the Wikidata dataset,
label, alt label and description are in separate fields. The contents of the documents are pro-
cessed at the moment of index creation to allow fast searches.

• Text fields contain text and ignore stop words and relate similar words.

• Numeric fields can contain any numeric format (integer, double) and provide support
for range queries and sorting techniques.

• String fields look for exact matches character by character

• Stored fields are not for querying but their contents are saved in the document.

Searches are done over the document’s fields; documents that fit the querying criteria
are returned, but the order of the results is also important. In the case of text fields,
different fields may be more or less important; for example, a matching word in the label
field is more important than in the description field, as well as the frequency of the matching
word (more frequency means a higher relevance) and how rare is the word (rarer words are
more important). A popular ranking measure used in practice is known as TF-IDF (term
frequency, inverse document frequency) and helps to determine what documents are more
relevant; results are then sorted accordingly.

2.2.2 Ranking Importance

Other measures help to determine the importance of a document independent of a query;
for example that Earth, the planet, is more important than the element. Some measures
consider links between documents: a document with more in-links is more important, but
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not every in-link is equally important; links from a document with fewer out-links are more
important and links from an important document are more important. One measure that
implements this idea is PageRank [4]. But, there are some scenarios to consider: the first
is when a document has no links and the second is when two documents link only to one
another. In order to avoid high ranks from these cases, there is a probability to not follow
any link and jump to a random document.

The process starts all documents with the same rank such that the sum of all document’s
rank is 1. Then, the rank of each document is shared to the documents it links, so a higher-
ranked document give higher rank to its links, while documents with lot of links give a low
rank because its rank is divided across all its links. With the probability to jump randomly
(usually set as 0.15), this process is recursive and guarantees to converge, so after a number
of iterations each document’s rank is fixed.

PageRank can also be used to rank nodes in an RDF graph where each resource A contains
a link to another resource B when there exists a triple (A, p, B) for some property p.
Combining the ranking from the PageRank algorithm and the relevance given by the TF-
IDF measure, documents in a query are returned in that order, so the user can always see first
the most important results (as estimated by the system) from a large document collection.
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Chapter 3

System Overview

The system aims to support faceted browsing over the Wikidata dataset. First, the user
needs to start with a basic search before adding facets to the results. A good initial search
can be a keyword or a type, so the system will allow both methods. With the results of the
initial search displayed, the user needs a list of all the possible facets in order to select one.
With a new facet selected, a new results set will be displayed and the user continues until he
or she has found the resources that match the required facets.

Example 3.1. A user selects the type person, but the results have more than three million
people, so to refine the search the user adds the facet gender: male. The user keep adding
facets, like occupation: sportsperson and country: US, to see all people who satisfy the
criteria.

Example 3.2. Another browsing session starts with a user searching for “john” as keyword;
the results contain resources with the keyword in their text fields. The user starts to add
facets to filter the results; this time, the type is just another facet, so for example, type:
building is added to the results. This way, a user can use a keyword and a type in a browsing
session and can add more facets as desired.

3.1 User Interactions
In order to fulfill the previous description, the system has four major user interaction stages
that connect to each other powering the faceted browsing interface. These interactions will
be called Keyword, Type, Results and Facets based on their main function. In summary, the
Keyword Interaction allows to perform a search over the system using a keyword, while the
Type Interaction provides the user all possible types in the dataset to select from. Once the
user has selected a type or specified a keyword to search over the resources, the query is sent
to the Results Interaction; this stage recovers all of the relevant data for every resource that
matches the query including all properties that they have. In the Results Interaction, it is
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Figure 3.1: Flow of user interactions

possible to select a property to send to the Facets Interaction, obtaining all possible values
given the previous results and the property selected; this way, all possible values for a given
property are available to make a new query and continue with these last steps. Other than
for the Keyword Interaction, a main design goal is that the user is only offered interactions
that will lead to non-empty results; we will discuss how this goal is accomplished in future
sections.

Example 3.3. For Example 3.1, the user interacts with Type to select people from the list
of types and starts the browsing session. In Results, the user sees the resources with type:
person and their other properties; in this case, selecting gender takes the user to the Facets
Interaction. Inside Facets, a list of all values for gender are displayed; the user selects male
to return to the Results Interaction, but now, the results include the facet gender: male
as well the previous type: person. The user can continue selecting properties from Results
and values in Facets. For Example 3.2, the user starts writing a keyword in the Keyword
Interaction; the Results and Facets interactions then work the same way as if the session
started with a type facet.

Next, each one of these interactions will be explained with more detail. Example screen-
shots of the user interface are provided in Chapter 5, which discusses the front end.
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3.1.1 Keyword

The Keyword interaction is one of the first with which the user can start the browsing session.
Because it is the starting interaction, it does not require any previous data nor server request.
Here, the user writes a keyword to search in the labels and description of each resource; then
the query will be executed and the results will be sent to the Results interaction; the Keyword
interaction then finishes.

3.1.2 Type

The Type interaction is the other way to start a browsing session: the user enters a text
(the name or the first letters of a type) to search what types match that text. Then, using
the input text, this interaction looks for all the types registered to obtain a list of possible
types; such a list is displayed by autocomplete to the user, where he or she then selects one
and sends the respective facet to the Results interaction. Matches are computed based on
autocomplete for types whose labels match the current user input. This step is necessary
because it may not be obvious what is a type or not, so to make sure a user enters a valid
type in the first place, it is required to select one from the list given based on matching as a
prefix what he or she typed.

Example 3.4. For Example 3.1, the user starts typing “person” in the input box; the list
will provide the user all types containing the letters as a prefix in their label or alt label field.
When the input has “p”, the list displays as auto-complete the types: person, paper, web
page, etc.; with “per”, the options would be: person, periodical, personality and so forth.

In order to implement this, there is an index with a document for every type containing
its identifier (because we are working on Wikidata, the prefix is dropped, and only the Q
number is stored), its labels, the number of resources that have this type or its frequency,
and a ranking that determine its relevance; the index is further explained in Section 4.3. To
obtain the list of types, a query over this index is run looking for matching labels (query
structures are explained in Section 4.4). The first fifteen results are returned sorted by the
ranking; the number of results is also returned such that the user knows how common that
type is. It is possible to use the number of results as a measure to determine if the type
is correct or not because the labels can and will be ambiguous, so this measure is a way to
overcome this issue, and avoid the user selecting an incorrect type.

3.1.3 Results

The Results interaction is the main part of the system: this interaction receives a query
(keyword and/or facets) and outputs the resources that match the criteria, providing its
name, description, image (if available) as well as all possible properties for all results.
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To allow this interaction to return all this information, there is an index with a document
per resource containing the following data: identifier (again storing only the Q number),
labels (names the resource is known for), description, type (its Q value), image, ranking,
properties that the resource has, and all pairs of properties and values. Full details of this
index are specified in Section 4.1.1.

To process a keyword query, the system looks in the labels and description for the key-
words. If it is a type query, it is necessary only to check the type field of the document and
return the matching documents. The Results interaction will be called again after a query
if the user has selected a new facet for the previous results set. In this case, for each facet a
new query is required to run over the index looking for documents with the specified pairs of
property and value. All queries need to join with an AND operator because the results set
needs to satisfy all criteria.

For all documents obtained from the search, we need to check all the properties associated
with any current result and add them to a list to allow the user to select a new property as
a facet; the values of the properties are loaded lazily to not overload this interaction with
work; the values for a property will be computed in the next interaction when a particular
property is selected. The fifty most relevant results based on the rank value of the documents
are displayed with its labels, description and images. In summary, the Results interaction
runs the specified query and returns a list of all properties that the entire results set has and
an overview for the first fifty results.

Example 3.5. For Example 3.1, the Results interaction displays the resources of type per-
son, such as Jimmy Wales, Nelson Mandela, Queen Elizabeth and also the properties of the
resources, like gender, country, occupation, award received, etc.

3.1.4 Facets

The Facets interaction receives as input the current query from the Results interaction and
a property available from the results itself. Using this data, the component runs the same
query as before but adds the condition that results have the selected property. From the
resulting documents, each possible value of the property is recorded and then returned to
the user to select a value for the property and obtain a new set of results with the new facet
added.

This approach is potentially costly, especially if there are many results; however, it guar-
antees that no query will return empty results. Avoiding empty results is a very important
feature in this work and it makes a major difference between this system and writing a query
in SPARQL because in the latter there is no way of knowing what properties or values each
resource has, whereas in this system, everything is computed before showing it to the users;
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this idea reinforces the principle of querying RDF with no knowledge of the structure of the
dataset.

Example 3.6. Referring back again to Example 3.1, after the user selects the gender prop-
erty; the Facets interaction will display the list of possible values for the property including
male, female, transgender ; the list will not display invalid values such as US, politician, queen.
In the second facet selection of the example, when the user selects the occupation property,
valid values for the property but not for the current query are not displayed; for example,
queen is a valid value for occupation, but the current query contains the facet gender: male,
so the facet occupation: queen would produce empty results so it is not available in the list
of values.

A cache is necessary to save all values and all properties if the results set is too large; this
way computing facets will not take minutes for each property. The cache is a document for
each entry cached using as identifier the type and facets selected; when a query is run on the
system it checks if there are cached results present for that query; if so, the cache returns the
data stored; if not, the values for the property are computed from scratch. Creating a cache
for all possible combinations of types and facets with many results can take days and the
time may increase to over a week with the new triples added to Wikidata. It is important to
note that it is impossible to cache over keyword searches; in that case if the results set is too
large, calculating the facets may take a couple of minutes. Cache conditions and structure
will be explained in further detail in Section 4.5.

3.2 Query Expressiveness

3.2.1 Operations

In order to define the operations that the faceted interface allows, we need to define these
operations with respect to an RDF graph.

Notation: The RDF graph G contains a set of triples (s, p, o), where s is the subject, p
the predicate and o the object. πS(G) = {s | ∃p, o : (s, p, o) ∈ G} is the set of all subjects
of G, similarly πP (G) and πO(G) are the sets of all predicates and objects respectively. The
elements of πS(G) which are IRIs are known as entities; the elements of πP (G) are the
properties. For a given entity s and property p, any o such that (s, p, o) ∈ G is the value of
the property p for entity s.

Keyword search: Entities with values for label and/or description properties (rdfs:label,
skos:altLabel, schema:description) can be searched with a keyword. The keyword search
function is defined as follows: κ : S→ 2πS(G), where S is the set of strings. The function will
return a set of entities whose label/description values match the keyword.
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Type selection: Another way to start a session is by selecting a type. The type of an
entity s is the value for the property wdt:P31. The set of types in a graph G is denoted as
T (G) := {o | ∃s, p : (s, p, o) ∈ G and p = wdt:P31 }. Then, the type selection function is
defined as: τ : T (G) → 2πS(G), where τ(t) := {s | (s,wdt:P31, t) ∈ G}. Thus, the function
will return all entities whose type is t.

Facet selection: For a results set, the user can select facets to refine the current results.
A facet is a property-value pair that at least one entity in the current results set has. For a
given current results set E ⊆ πS(G), the projection from G of all triples with a subject term
in E is denoted as E(G) := {(s, p, o) ∈ G | s ∈ E}. Then, the facet selection function is
defined as: ζ : 2πS(G) × πP (G) × πO(G) → 2πS(G), where ζ(E, p, o) := {s | (s, p, o) ∈ E(G)}.
This function returns a new result set which is a subset of E and whose elements contain the
specified property-value pair.

Facet navigation: A navigation session consists of sequential facet selections of a set of
entities which started with a keyword or type selection.

– ζ(ζ(...(ζ(κ(q), p1, o1)..., pn−1, on−1), pn, on)
– ζ(ζ(...(ζ(τ(t), p1, o1)..., pn−1, on−1), pn, on)
Note that the facet selection function is commutative and that the order of the selection

is not relevant for the final results set. Hence, the notation can be simplified as a conjunction
of criteria with a keyword or type as starting point.

– κ(q) [ζ(p1, o1) ∧ ... ∧ ζ(pn, on)]
– τ(t) [ζ(p1, o1) ∧ ... ∧ ζ(pn, on)]

3.2.2 Analysis versus SPARQL Queries

In the previous section, the main operations of the system were specified. SPARQL is the
current standard to query RDF triples, so now we discuss how these operations can be
expressed as a query and what is the best way to implement such operations in the system
we want to develop.

The keyword search operation is not possible to do efficiently in SPARQL: SPARQL only
supports basic string filters, so efficient keyword search must be supported using external
indexes. Type selection and facet selection operations are possible to translate to a SPARQL
query specifying the matching triples in the query clause. In summary, faceted navigation is
possible in SPARQL if it starts with a type selection; the SPARQL query will look like the
following:
SELECT DISTINCT ?s ?p ?o
WHERE {

?s wdt:P31 t .
?s p1 o1 .
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...
?s pn on .
?s ?p ?o .

}

Listing 3.1: Facet navigation on SPARQL

However, the resulting triples need to be filtered by entity to display the labels, images
and descriptions. After that, we need to filter by properties and values to obtained the
possible facets of the current result set. This approach is costly due to the need to process
and order multiple times a potentially long list of triples.

Due to the need of an inverted index to effectively support keyword searches, it is possible
to add to the documents in the index all the necessary information of a entity including
properties and values. In that case, all the necessary information needed for a result set
including labels, descriptions, images, property and values is within the respective documents
of the entities matching the criteria. The latter approach is faster than performing SPARQL
queries and filtering the triples afterwards. For a system with fast user interactions as a
main objective, performance is a key issue, and hence in this work we prefer custom inverted
indexes rather than using more general SPARQL indexing and optimization methods.
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Chapter 4

Back end

In the previous chapter, the user’s interactions with the system were explained with the usage
of indexes to access the data. In this chapter, all steps from the raw data to the indexes and
back-end queries will be explained.

All the back end code is written in Java. This work uses Apache Lucene1 as an inverted
index platform. All indexes and queries are done with Lucene. RDF parsing is done using
the RDF4J2 library.

4.1 Initial index
The raw data is obtained directly from Wikidata. Wikidata provides full RDF dumps in
different formats. This system uses the “truthy” dumps: they use the NT format and contain
only direct statements, which means they do not include meta data like references. The dump
is also grouped by subject; this property of the dump is very important and it is used to
build the index.

4.1.1 Structure of the documents

Each document in this first index contains the following fields:

• SUBJECT: String field. The IRI of the subject or resource without the prefix. For
Wikidata, this identifier is a number with the letter P (for properties) or Q (for entities
and types) at the beginning

• LABEL: Text field. Value that represents a name for the resource (that may be
ambiguous). In the dump, the label is the value of the triples with the predicate
http://www.w3.org/2000/01/rdf-schema#label. These values have a language tag.

1http://lucene.apache.org/
2http://rdf4j.org/
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For each language, a different field in the document has to be created, for example,
LABEL-en and LABEL-es.

• ALT LABEL: Text field. Other names the resource is known by. The predicate
for these values in the dump is http://www.w3.org/2004/02/skos/core#altLabel.
Different fields must be stored for each language. This field can store multiple values
for the same document.

• DESCRIPTION: Text field. Small description of the resource, which helps to dis-
ambiguate the resource from others with the same labels. Triples with a description
have the predicate http://schema.org/description. Descriptions have to be stored
for each language as per the previous two fields.

• IMAGE: Stored field. URL of an image that represents the resource. The predicate
used in the triple is a Wikidata property with the corresponding prefix and the number
P18.

• TYPE: String field. IRI of the resource that represents the type of this resource. All
types are a Wikidata IRI starting with the letter Q. The predicate in such triples is the
Wikidata property P31.

• PROPERTY: String field. All Wikidata properties that this resource has. This field
can store multiple values. All values in this field starts with the letter P (as the Wikidata
prefix is always omitted).

• PO: Predicate-Object, string field. All pairs of Wikidata properties and Wikidata
resources that this resource has with the string ## as separator. In other words, this
field stores the triples where the subject is the resource of the document, the predicate
is a Wikidata property (starting with the letter P) and the object is another Wikidata
resource (starting with the letter Q). This field can store multiple values per document.

Note that aside from labels and descriptions, we do not store datatype values in the index
since the current version of the browser does not support range queries.

Example 4.1. Using as an example the Wikidata resource in Figure 2.3, its respective
document in the index is as follows:

• SUBJECT: Q42

• LABEL-en: Douglas Adams

• ALT LABEL-en: Douglas Noël Adams
Douglas Noel Adams
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• DESCRIPTION-en: English writer and humorist

• IMAGE: commons.wikimedia.org/wiki/File:Douglas_adams_portrait.jpg

• TYPE: Q5 (human)

• PROPERTY: P31 (instance of)
P69 (educated at)
...

• PO: P31##Q5 (instance of: human)
P69##Q691283 (educated at: St John’s College)
P69##Q4961791 (educated at: Brentwood School)
...

The text in italics is only an explanation of the actual value and is not part of the index.
The PROPERTY and PO fields contain more values than listed in the example for the actual
document Q42.

4.1.2 Building the index

To build the index, the dump is read line by line. Each line contains a triple and triples are
grouped by subject. All triples with the same subject are processed; when a new subject is
read, all data of the previous subject is written in a document and the process starts over
with the new document for the new subject.

For each subject, a new document is created with its IRI in the SUBJECT field. The
process then checks the predicate position of the triple; if it is the predicate for label, alt
label or description, the value is added to the document with the respective language tag
(if that language is supported). If the predicate is a Wikidata property, then the process
checks the object in order to see if it is a Wikidata resource. In that case, the property is
added to a list of all distinct properties and the pair of property and value is added to the
document. Only when the program reads a new subject is the list of all properties added to
the document in order to avoid duplicate entries of the same value.
document ← new Document ()
for each line in dump:

s, p, o ← line
if s != previousSubject then

save( document )
document ← new Document ()
addTo(document , field(’SUBJECT ’, s))

if p = ’rdfs:label ’ then
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addTo(document , field(’LABEL ’, o))
else if p = ’skos: altLabel ’ then

addTo(document , field(’ALT_LABEL ’, o))
else if p = ’schema: description ’ then

addTo(document , field(’DESCRIPTION ’, o))
if p. startsWith (’wdt:’) then

if p = ’wdt:P31 ’ then
addTo(document , field(’TYPE ’, o))

if p = ’wdt:P18 ’ then
addTo(document , field(’IMAGE ’, o))

if o. startsWith (’wd:’) then
addTo(document , field(’PROPERTY ’, p))
addTo(document , field(’PO’, p + ’##’ + o))

save( document )

Listing 4.1: Pseudo code of the algorithm

4.2 Ranking data
Once the index is already built, it is possible to do some queries but first it is necessary to
determine what resources are more important than others. A well-known algorithm to rank
documents is PageRank (see Section 2.2.2).

As explained before, an RDF dataset can be interpreted as a graph. Since each document
in the index has the PO field that links to other documents, we can build a directed graph
from the index directly. With this information, a ranking is calculated for each document.
This is equivalent to applying PageRank over an RDF graph considering directed links from
subject to object; the predicate (edge label) is not considered. This is similar to applying
PageRank over the webpages of Wikidata, where the page of an entity A contains links to
the page of an entity B if, in the RDF graph, there is a triple (A, p,B), for some property p.

With the ranks computed, a new index is built with the same structure as before but
with two new fields.

• RANK: Numeric field. This is the value obtained from the PageRank algorithm over
the RDF graph built from the first index.

• RANK STORED: Stored field. Lucene does not allow to obtain values of a numeric
field; because of that, this field stores the rank value so it can be recovered as per the
other fields.

Together with the document and ranking metadata, this index contains the most im-
portant data from the RDF dump, so this index will be known as the Data Index. Most
operations and queries will be done over this index.
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4.3 Types index
The Types index stores each type present in the Data Index with its label and aliases, in
order to allow searches by keyword over all types obtaining its respective Q value. This index
is built taking the data directly from the Data Index. Hence, this index allows for searching
over only types (e.g. person, country, etc.) and has type-specific information not in the Data
Index; we mark these novel fields with *.

Documents in this index have the following fields:

• ID: String field. The Q value of the type.

• LABEL: Text field. Label of the type; same content as the Data Index.

• ALT LABEL: Text field. Alt labels of the type; same content as the Data Index.

• FREQUENCY*: Numeric field. Number of resources from the Data Index that
belong to this type.

• FREQUENCY STORED*: Stored field. Same number as the FREQUENCY field
but stored, in order to be recovered when the document is queried.

• RANK: Numeric field. Ranking of the resource, previously calculated and stored in
the Data Index.

Example 4.2. The document for the type human is as following:

• ID: Q5

• LABEL-en: human

• ALT LABEL-en: person - people - humankind - human being

• FREQUENCY: 3595226

• FREQUENCY STORED: 3595226

• RANK: 0.00517

4.4 Queries and results
To query over the Data Index and the Types Index, there are four main types of queries: by
identifier, by keyword, by type and by property-value pairs; the last two types only apply to
the Data Index. It is also possible to do mixed queries.
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4.4.1 Queries by identifier

Queries by identifier are the most simple type of queries. The query needs a Q value as input
to search documents where its SUBJECT (for the Data Index) or ID field (for the Types
Index) is the given input. These queries only return a single document because the field
stores the IRI of the resource, which is unique to that document and resource.

4.4.2 Queries by keyword

These queries use the fields LABEL, ALT LABEL and DESCRIPTION (only in the Data
Index) from the document; because these are text fields, the terms in the query need to
be processed as well. Such a query receives a keyword; then the keyword is processed and
the index is used to look for matches in the words previously processed in the fields of the
document.

Because the result is typically more relevant if the keyword is in the LABEL field than
if it is in the DESCRIPTION field, the results should not be sorted directly by the rank, so
the rank is added to the scoring function of the query by multiplying the score from Lucene
with the ranking.

Example 4.3. For the keyword query using “adam” over the Data Index, a multi-label
query is performed with different weights for each label. The query is done with the fol-
lowing weights: {LABEL-en: 5; ALT LABEL-en: 2; DESCRIPTION-en: 1} and search for
{LABEL-en: adam; ALT LABEL-en: adam; DESCRIPTION-en: adam}. The results contain
resources with the keyword in these fields, such as: Douglas Adams, Adam (given name),
Adams (surname), Adams County (one resource for every county in different states).

Example 4.4. Performing a keyword query on the Types Index is similar to the previous
example, but because there is no description field, weights for fields are dropped. How-
ever, a prefix query is used to enable the autocomplete function described in the previous
chapter. The full query is {LABEL-en: hum; ALT LABEL-en: hum; LABEL-en: hum*; ALT
LABEL-en: hum*} and it will return the types human, human settlement, fictional human,
etc.

Keyword queries are specific to the language in which the query was made. The same
keyword will likely return a different results set depending on the language used. Also, stop
words and word normalization (stemming, lemmatization) work differently for each language.

4.4.3 Queries by type

Queries by type return the documents whose TYPE value is that specified by the user.
Because all types stored in the document are Q values, in order to make a query by type the
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Q value of the type must be known (i.e., selected by the user through autocomplete).

Example 4.5. The query that returns all documents of type human (Q5) is {TYPE: Q5}.

This kind of query is a good starting point for a faceted browsing system: since all
documents of the same type share certain properties, it is easier to find relevant facets for
the current results set.

4.4.4 Queries by property-value

Similar to queries by type, these queries use the PO field from the document. There is no
language issue because the pair stored in the PO field uses the P values with a Q value. These
values need to be known beforehand; however, again, the interface will help users select the
P and Q values required by providing autocomplete interactions.

Example 4.6. The query that returns all documents that have the property gender (P21)
with the value male (Q6581097) is {PO: P21##Q6581097}.

Note that such queries correspond to adding facets to the current query.

4.4.5 Mixed queries

A mixed query is built from “atomic” queries joined with the logical operator AND or the
operator OR. Such queries are useful to do more complex faceted browsing that combines
criteria; the initial query is either a query by name or by type and then the facets are one or
more queries by property-value; these query criteria are combined with a conjunction using
the operator AND.

Example 4.7. The query that combines all previous examples (adam keyword, type: human
and gender: male) is {LABEL-en: adam; ALT LABEL-en: adam; DESCRIPTION-en: adam;
TYPE: Q5; PO: P21##Q6581097}.

In summary, the Data Index and these queries are enough to power an initial faceted
browsing interface. However, there still some issues to address, such as that the queries by
type and property-value require P and Q values and the users who will use the system do not
know what resource represents a certain P or Q value. To solve this, queries by identifier are
used to quickly translate an IRI to the LABEL field. More details will be provided in the
next chapter, which describes the user interface. Another issue is loading all possible facets
with interactive runtimes when there are potentially millions of results; this challenge we now
address.
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4.5 Improving times and caching
With a results set obtained from a query, it is necessary to compute all properties and values
to give the user possible facets for the displayed results. To do this, for each document in the
results set, a list of all properties needs to be stored, translating the P value to its respective
label and returning it to the user. When a P value is selected by the user, the same process
is repeated for all possible values for the property selected.

Example 4.8. The results set for the query type: human contains about 3.6 million docu-
ments. These 3.6 million documents are read sequentially, in order to create a list of every
value stored in their PROPERTY fields, where the resulting list contains over 350 unique
properties; then, 350 queries by identifier are executed to translate the P values to labels,
reading about 350 documents more. If the user selected the property occupation, which is
defined for about 3.4 million of the results, such documents are read once more to store the
values of their PO field starting with the P value of occupation; these latter values, which
are about 7,800, need to be translated, thus making 7,800 queries and 7,800 more documents
read. These two processes, which read approximately 3.5 million documents and involve
8,150 queries, take around two and a half minutes to complete.

IRI Label Documents Properties Time (s)
Q13442814 scientific article 6621865 50 404
Q4167836 Wikimedia category 4043768 96 230
Q5 human 3595226 358 135
Q16521 taxon 2270273 60 68
Q4167410 Wikimedia disambiguation page 1223596 147 34
Q11266439 Wikimedia template 857358 62 28
Q13100073 village-level division in China 588485 7 20
Q8502 mountain 476518 72 16
Q486972 human settlement 410027 126 31
Q532 village 293016 93 18

Table 4.1: Times of processing results for most common types

Queries that return a lot of documents thus take a lot of time in being processed (making
lists of properties/values and translating them); more time than a common user would like to
wait (see Table 4.1 for different times based on the number of documents and properties). To
overcome this issue, a cache will be created with facets for certain queries already computed.
Note that in order to keep the cache non-language-specific, the cache will store only the P
values; thus, a subject query will be needed to translate the IRI to a label. A second cache
index will also be needed to store the values that a certain property can take for a given
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results set. This cache, however, does store the labels for every language supported because
the number of values will be more than the number of properties. To sum up, the system
will use two separate caches. The first links a results set with all possible properties and
the second relates a results set and a property of the first cache to possible values of that
property.

While we aim to have good times for computing the results, on the other hand, it is not
reasonable to cache every possible query; hence we have a trade-off between time and space.
It is important to note that there should be a limited number of properties that return a
large result set; for example, the query type: human return more than 3.5 millions results,
adding the facet gender: male reduce the results to about 2.8 millions; but, adding the facet
father: Barack Obama reduce the results to only 2. Thus, the solution is determine which
are the properties and values (and combinations) that produce lots of results to cache the
corresponding queries; but, how much is “lots of results”? In order to calculate this threshold,
for every property p the following values were calculated in a table:

• Number of subjects: How many resources have the property p in their PROPERTY
field.

• Number of values: How many different values this property can have; this means,
counting all the different pairs of property and values in which the property is p.

• Frequency of the most common value: How many resources would the query with
the most common value for property p return.

Example 4.9. These are the values for the property gender.

• Number of subjects: 3,371,738 (documents with the property)

• Number of values: 15 (including: male, female, transgender, intersex)

• Frequency of the most common value: 2,793,564 (documents that have the most
common value for this property, which is male)

With this information, the frequency is the maximum number of documents produced
by a query containing the property p and the number of values is how many additional
queries and document readings are needed when p is selected for a facet; therefore, if the
values of p are not cached, number of values queries need to be executed if p is selected.

If we sum the number of values across all properties, the resulting value is the total of
work needed for computing the values for every property. Now, if we exclude the properties
whose frequency is less than a certain value (a threshold), the sum would represent the
extra work but only for included properties, which are the ones that produce more than
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threshold results. That means, the greater the threshold, the fewer properties will be
included in the sum.

Figure 4.1: Ratio of values that need cache versus threshold

Figure 4.1 plots the ratio (current sum of number of values divided by the total sum)
for different thresholds. As expected, the figure shows that starting from 50,000, the ratio
stays the same; this means that caching properties whose frequency of the most common
value is above 50,000 will only require caching 0.018 of queries, while only requiring live
computation of results sets with fewer than 50,000 entities. Thus, the threshold we select is
50,000; queries that contain more than 50,000 results need to be cached. A threshold greater
than 50,000 will not make much difference, because, the ratio would not drop (see Figure
4.1); with a threshold less than 50,000, the cache would include (much) more data, increasing
the cost of creating such a cache. To compute the facets for 42,632 results without a cache
takes 1 second, which we deem acceptable.

In order to determine which queries will return more than 50,000 results, the RDF dump
is read again doing the following: For each subject, a list is made with its type and all
combinations of property-value pairs.

Example 4.10. Assume a subject Q1, whose type is Q2 and whose pairs are P1##Q3, P2##Q4
and P3#Q5 in the PO field; then, for this subject this list is created is: {Q2, Q2||P1##Q3,
Q2||P2##Q4, Q2||P3##Q5, Q2||P1##Q3||P2##Q4, Q2||P1##Q3||P3##Q5, Q2||P2##Q4||P3##Q5,
Q2||P1##Q3||P2##Q4||P3##Q5} . This list contains all possible non-keyword queries (which
starts with a type and then facets) that can have this subject as a result. Clearly this list
can be exponential in the number of pairs that an entity has; however, resources do not have
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that many properties for this to become an issue; the computation of the list for all entities
takes around 4.5 hours (full details in Table 6.1).

The lists for every subject are combined and the elements counted, resulting in a map
where the key is a query and the value is the frequency of the key in the aggregated list; in
other words, the value is the number of results that the query would return. As mentioned
earlier, we were looking for queries with more than 50,000 results which we can determine
from this analysis and add to the need-caching list. In the current version of the system,
the number of queries that fit the criteria are 141; that means that the cache needs to store
the properties and values for 141 different possible queries.

4.6 Cache indexes
In the previous step we identified the keys of queries that require caching to maintain inter-
active runtimes. We now describe the indexes used to cache both the possible properties for
every such query and the values for each of the previous properties.

4.6.1 Cache for properties

The cache for properties consists of an index which maps a query key to its list of available
properties for selecting a facet. The cache is built by executing every query in the need-
caching list and saving the properties contained in the results. Documents in this index
have the following fields:

• ID: String field that contains a query key from the need-caching list.

• PROPERTY: Stored field consisting of all properties associated to the query key of
the ID field. Only P values are stored here.

Only identifier queries are needed over this index, in order to obtain the stored properties
when a user query matches one of the query keys stored in the cache. If the user query does not
match any document, properties are calculated from scratch using the results. Nevertheless,
queries for translating P values are still needed, since this cache does not store the labels for
the properties.

4.6.2 Cache for values

Similarly as before, the cache for values is an index that maps an identifier to a set of values.
This index is built using the cache for properties as a base: for every pair of query key and
property, its values need to be stored in a cache. Documents in this index have two fields:
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• BASE: String field that identifies the value cached; the identifier is a query key and
one of its properties using the same separator ||. For example, A||P1 means that this
document stores the cache for the property P1 in the query key A, (given results for
query A, what values are possible for property P1).

• VALUES: Stored field that contains the available values associated to the identifier
on the BASE field. This field stores the IRI (Q value) and its label for every language
supported.

When the user selects one property of a cached query, the values are loaded from the
cache using a query by identifier to this index. Unlike the cache for properties, this cache
stores the labels so no queries for translating Q values are needed; the data stored in the
VALUES field is sent directly to the user interface.
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Chapter 5

Front end

The front end is where the user interacts with the system; it also provides the interface
that connects the user with the indexes. In other words, the front end allows user-friendly
interactions that will be translated into queries over the indexes described in the previous
chapter.

5.1 Home page
The home page is where the user starts a faceted browsing session in one of two ways: keyword
search over all documents or selecting a type. The home page displays the type search by
default because it is the recommended way to start browsing.

Figure 5.1: Home page

In the type search, an input box is provided to write the first letters of a type, which will
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be matched against the Types Index to offer autocomplete suggestions. After half a second
of no input has passed (to not send too many autocomplete request as the user types), a
request to the back end is sent to do a query by keyword over the Type Index (which searches
prefixes, see Example 4.4); the results are returned to the front end recording the Q values
(invisible to the user) and the label (or alias, depending on which matches the user’s input)
and number of resources of that type (shown to the user) sorted by descending ranking (based
on PageRank); these values are already stored in the documents of the index. This process
can be seen in Figure 5.2, which displays autocomplete suggestions based on the text in the
input box; the types suggested also include the number of results that will be returned.

Figure 5.2: Type selection

Then the user must select one entry from the list of results; the user cannot submit
anything other than a valid type from the list to continue; otherwise, the Q value would not
be stored to perform a query by type over the Data Index as seen in Example 4.5. This user
interaction corresponds to the Type Interaction, mentioned in Section 3.1.2.

Note that type searches on the input box use (partial) keywords; in that sense, the list
of types may be different depending on the current language. The home page defaults to
the English version, but a language selector is located in the top right corner to change the
language at any time (seen in Figure 5.1).

To start a faceted browsing session using a keyword search, the tab to change to this
method has to be selected. Once selected, the user can enter a keyword and start the
search any moment; there is no list like the type search. The query by keyword function is
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executed over the Data Index, which searches the text on the LABEL, ALT LABEL and
DESCRIPTION field (as explained in Example 4.3). This user interaction corresponds to
the Keyword Interaction (see Section 3.1.1).

Figure 5.3: Search by keyword Tab

Whether a search by type or keyword was performed over the main Data Index, a results
set of documents is obtained and then sent to the results page.

5.2 Results page
The results page contains the documents returned by the keyword, type or combined (faceted)
query. This page is divided into two sections: the navigation bar at the left, which displays
the current query and available properties, and the results entries at the right, displaying the
metadata of the documents. An example is given in Figure 5.4.

Figure 5.4: Results page
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5.2.1 Navigation bar

The navigation bar displays the logo of the system (to return to the home page), the current
query, and the properties with the number of documents that have some value for it.

The current query consists of a type or keyword and zero-or-more facets. The real query
executed over the index requires the IRI of the type or facets; however, to keep the system
user-friendly, the query on the navigation bar is displayed with the corresponding labels,
performing additional identifier queries to translate the IRIs to labels. All facets in the
current query section can be removed; however, the type or the keyword (in other words, the
initial search) cannot; to start a new browsing session, it is necessary to return to the home
page.

Below the current query, there is a list of all properties of the results set that do not have
a facet already selected, which means that if the current query has a facet with property P1,
this property will not be displayed in the list. The list is ordered by the number of resources
that have that property. The list is manually created reading all documents from the results
set if the current query is not cached; note that all queries using a keyword at the beginning
cannot be cached. If the list is cached, it is directly displayed from the cache, although a
translation from identifiers to label must still be performed. Each property in the list has a
button to display its possible values; the values are not computed at the moment of loading
the page to save time (a user is likely to only be interested in a fraction of the properties).
This last process will be explained in Section 5.2.3.

5.2.2 Results entries

In the results section, the total number of documents of the results set and the metadata for
the first fifty (ordered by ranking) are displayed. This section shows the main label of each
result with its alt labels, description and image saved in the respective fields of the document
for that resource; the image is scaled to a fixed height, because the images in the Wikidata
triples are usually a high resolution image from Wikimedia. Clicking the label of one of the
result entries redirects to the external Wikidata page of the resource.

It is important to note that if no alt labels, description or image were present for that
resource, nothing will be displayed. However, if there is no label in the document, it defaults
to the IRI without prefix: that is the Q or P value. This rule is applied for every translation
from IRI to label, including the properties list of the navigation bar and facet selection.

The navigation bar and the result entries correspond to the Results Interaction in Section
3.1.3.
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5.2.3 Facet selection

Next to every property in the navigation bar there is a button with the symbol +. Clicking
the button sends a request to the back end to do a mixed query including the current query
and the selected property to read every value for that property; if cached, these values are
read from the cache for values and sent back to the front end directly. If the values are not
cached, the Q values need to be translated before displaying them to the user.

Figure 5.5: Value selection for a property

With the values returned, an autocomplete box is created. This autocomplete box pro-
vides a select-type input that shows all options (ordered by the respective ranking of the
value) but the box also allows to write in the box and suggest the values that start with the
input (as shown in Figure 5.5). Once a value is selected the query can be updated clicking
the search button; this will send to the back end the current query plus the new facet(s)
selected, resulting in loading again the results page but with a new query; each option in the
autocomplete box shows its label but the value sent to the server is its Q value. This user
interaction corresponds to the Facet Interaction described in Section 3.1.4.
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Chapter 6

Evaluation

In this thesis, our main hypothesis is that the caching methods proposed in Section 4.5
enable interactive faceted browsing over large-scale, diverse RDF datasets. In this chapter,
we present an evaluation over Wikidata to address the following related questions about our
proposed faceted browsing system:

• How long does the index creation process take?

• How much space do the indexes use?

• Are the query runtimes acceptable?

• Does the caching help to improve the previous times?

• How are the usability and responsiveness of the system compared to current alterna-
tives?

• Can the users perform successful queries on our system?

6.1 System Performance
All system performance measures were done using the Wikidata dump of 13 September 2017,
which contains 1,771,601,730 triples describing a total of 74,114,172 different entities. The
machine used has a processor Intel Xeon E5-2609 v3 and 32 GB of RAM.

6.1.1 Indexes statistics

As explained in Chapter 4, the system needs to store the information of the triples in two
indexes and two caches. This version of the index stores the metadata of the entities in
two languages: English and Spanish. Starting from the dump, the following processes are
executed in order:
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1. Initial index creation: described in Section 4.1.

2. Ranking computation: this process consists of performing the PageRank algorithm over
the graph.

3. Data Index: the creation of the Data Index using the initial index and the ranking from
the previous processes. (See Section 4.2)

4. The computation of the need-caching list described in Section 4.5.

5. Types index creation with the cache for properties: These two indexes are created at
the same time (since certain query keys are types).

6. The creation of the cache for values.

Table 6.1: Times of all index-creation steps

Process Time (s) Time (hh:mm)
Initial index 22451 006:14
Ranking computation 15595 004:20
Data Index 2305 000:38
Need-caching List computation 15382 004:16
Types Index + Properties Cache 4356 001:13
Values Cache 386304 107:18

In order to create a new version of the index with a newer version of the dump, all
processes need to be executed. The times for every step using the dump specified at the
beginning are listed in Table 6.1. For this particular dump, the whole process took just over
5 days; however, newer dumps will have more triples and more entities, so this period can
only be increasing over time. As well, adding more languages will impact the runtimes of the
creation process, specifically for the initial index, the Data Index, and the cache for values.

Table 6.2: Size and documents stored by index

Index Size (kB) Documents
Data Index 5967412 74114172
Types Index + Properties Cache 5064 44413
Values Cache 1076404 16048

In Table 6.2 are the size and number of documents for every index; as before, newer
dumps will increase in size and in number of documents for these indexes. The number of
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documents in the Data Index corresponds to the total number of entities in the dump file.
Due to the fact that the types index and the cache for properties are combined, the number of
documents of the second index is the total of the types and query keys cached; for reference,
the length of the need-caching list is 141 and the number of unique types is 44,272. The
number of documents in the cache for values is the sum of the number of properties cached
for every entry in the cache for properties; in spite of the size and the time building the
indexes for caching took, it still refers to a small fraction of the whole dataset.

Note that is possible that a new dump may require changing the threshold that determined
what properties needed a cache; this new threshold would have to be calculated and analyzed
the same way as described in the corresponding section.

6.1.2 Browsing performance

To measure response times of the server when a user uses the system, several sequential
requests are sent; the times, number of results and number of facets of each request were
recorded. All browsing sessions in the test starts with a type: human query; then the session
selects a random property from the first 20 in the properties list with a random value; the
browsing session ends when the query returns only one result or there are no more properties
to select. One thousand browsing sessions were executed with their respective requests to
obtain the values of the properties, resulting in 2,943 requests to return results and 1,950
requests to return values for a property.

100 101 102 103 104 105 106 107

0

1,000

2,000

3,000

Results

T
im

e
(m

s)

Figure 6.1: Times to load the Results page

Figure 6.1 depicts the times taken by the system to return a Results page based on the
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number of results of the query. According to the graph, cached results (that is when the
query has more than 50,000 results, shown to the right of the dashed line in the graph) have
a response time of less than a second; otherwise, most non-cached results (left of the dashed
line) took between one and two seconds to be returned to the user, reaching three seconds in
the worst case. It is also worth mentioning that there are no queries between one million and
two million results; there are two reasons for that: first, the process selects random properties
and values, so it is probable that general facets (that return lots of results) were not selected;
and second, the majority of facets will reduce the amount of results significantly. We look at
this phenomenon in the following.

Table 6.3: Queries with one result based on the number of facets

Facets Queries
0 0
1 404
2 387
3 116
4 48
5 22
6 20
7 2
No unique result 1

Table 6.3 shows how many facets the queries that return only one result have (not in-
cluding type); there is one query that returns more than one result but it did not have more
properties to select a facet; this is the result in the last row. In general, one or two facets will
narrow down the results to one, but it is important to note that common facets (e.g. gender:
male) will not and this random selection of facets will likely not choose one of them since
such facets are relatively few. Still we see from Figure 6.1 that our experiment has queries
that generate many results since we randomly select thousands.

Figure 6.2 shows the times specifically for the property requests (return all valid values
for a property with respect to the current results) of the one thousand browsing sessions
based on the number of available values for the given property. These times have a linear
behaviour whether the values are cached or not; in any case, all times measured were below
half a second, which we consider sufficient to support interactive browsing.

6.2 User study
For the next evaluation of the system, we gave 11 users individually the task to perform ten
queries over the system this work presents and the query service provided by Wikidata (5 on
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Figure 6.2: Times to load values for a property

each). Wikidata Query System1 (see Figure 6.3) is a SPARQL endpoint with a user interface
that provides suggestions of entities; the SPARQL query form is to the right and the filters
of the query are to the left with a box that provides suggestions of entities (any entity can
be entered, even if it does not make sense for the current query); the query in the figure is
equivalent to the query type: human in our system.

The tasks we select for the comparison were adaptations of example queries provided
by Wikidata (taken from the Example button in Figure 6.3); such tasks were ordered by
increasing difficulty and the solution consists of a type and two facets at most, which the
users need to infer based on the task description; no task would produce empty results and
they could skip the task if they could not find the answer. The tasks (with their correct
answers) were the following:

Question text Expected answer

Plays (type:plays)
Lakes in Cameroon (type:lake), (country:Cameroon)
Lighthouses in Norway (type:lighthouse), (country:Norway)
Popes (type:human), (position held:pope)
Women born in Wales (type:human), (gender:female), (place of birth: Wales)
Papers about Wikidata (type:scientific article), (main subject:Wikidata)
Law & Order episodes (type:TV series episode), (series:Law & Order)
Fictional characters from the Marvel Universe (type:fictional character), (from fictional universe:Marvel Universe)
People dying by burning (type:human), (manner of death:death by burning)
Mosquito species (type:taxon), (parent taxon:Culicidae)

Half of the participants have to respond to odd questions on Wikidata and to even ques-
1https://query.wikidata.org/
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Figure 6.3: Wikidata Query Service

tions on our system; the other half respond to odd questions on our system and to even
questions on Wikidata query service. All participants of the user study were students with
knowledge of the Semantic Web and SPARQL, and with some familiarity with Wikidata;
however, no details were provided on how to perform queries with the systems. Tasks were
given in Spanish; the participant could use the systems in English or Spanish as they prefer,
but the majority of the users prefer using the system in Spanish.

Participants have to register details of the solutions of every task to see if they were
able to perform the query successfully. After the participants complete the tasks, they
have to complete a questionnaire comparing the two systems; the questions were about how
responsive and intuitive to use are the systems in a scale from 1 to 7.

Table 6.4: Tasks results of the user study

System
Answer This system Wikidata Query Service
Correct 23 37
Incorrect (uses keyword) 10 0
Incorrect (wrong type/facets) 2 10
Incorrect (other reasons) 1 1
Empty 19 7

The common errors of the user while performing the queries were as follows: In Wikidata,
the users often did not select the correct predicate; that is probably because adding a filter to
a query in the Wikidata query service automatically suggests a predicate based on the object,
not selecting the correct one for the task. In our system, the participants had problems to
select a type to start the browsing session; this user study was performed with a previous
version of the system where boxes for type and keyword were displayed at the same time,
causing some users to start the session with a keyword instead of a type, which made their
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answer automatically incorrect; also, the previous version of the system allowed users to start
a session even if no valid type was provided (because the keyword option was available too),
resulting in users not waiting for the type suggestions to appear, leaving the solution for the
task empty. Type selection is not an easy task when users do not know what can be a type;
for example, pope is not a type (the correct type is person), but lighthouse is a type even
when building is another type. The details of answers to the task including the reason of
incorrect answers are given in Table 6.4.
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Figure 6.4: Responsiveness score according to users

The results were not very successful for the system presented in this work, which had
fewer correct answers when compared to the Wikidata system. In Figures 6.4 and 6.5 are
given the answers of the questionnaire; in the usability scale, our system scores on average
4.5 out of 7 (against the 5.5 of Wikidata’s) and in the responsive scale scores 4.7 (in which
Wikidata system scores 6). In the comments section, the main issue of this system, across all
users, was the autocomplete options, where the users did not understand that a type must
be selected in order for the system to return results, or the type they were thinking of was
not available in the autocomplete options.

This first user study allowed us to improve the system by resolving some superficial
but crucial issues we discovered; the two main improvements to the system were: separating
keyword and type searches, and restricting the type search to only allow valid types displayed
in the suggestions list; such improvements are included in the description of the system of the
previous chapters. With this new version of the system a new study was performed which
we now describe.
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Figure 6.5: Usability score according to users

6.3 Wikidata’s collaborators study
We sent a questionnaire with a link to our prototype and a list of 12 opinion-seeking questions
to the Wikidata mailing list. Nine Wikidata collaborators volunteered to try the system and
give feedback. The volunteers could freely use the system and respond to a new questionnaire
afterwards. They have to select of a scale from 1 to 7 if they agree or not with the sentence,
where 7 is strongly agree and 1 is strongly disagree. The results are presented in Figure 6.6.
The reception was better than the previous user study; a question not shown in the figure
was if they would use the system in the future: 4 of the 9 participants said yes, the other
5 said maybe; the participants expressed they like the system in the comments section and
how the system could be improved. The most requested features for the system were the
inclusion of datatype values, nested facets and subtypes (possible inclusion of these features
are discussed in Section 7.1).

According to the results of Figure 6.6, the participants consider the system useful and
it offers something novel for querying Wikidata; the ranking of the results was considered
good by the evaluators but the ranking of the facets they found less intuitive. For the other
answers the opinions were mixed; it is important to note that we do not know what queries
they used to test the system, so that is a possible reason for different experiences and thus
different evaluations about the loading times. About the question regarding if the system
is easy to understand, some participants wrote as comments that it is not easy to start a
session and they suggested to add some examples or placeholders in the boxes to better guide
the users in how to use the system. Overall, the comments suggested that users believed the
system was useful and offered a novel way to query Wikidata, though there is still room for
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Figure 6.6: Answers of Wikidata’s collaborators questionnaire
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improvement in future work (discussed in Section 7.2).

6.4 Discussion
At the beginning of the chapter, we presented some questions that we were trying to answer
with the results obtained from the three studies presented. The first questions were about the
indexes: the total size used in indexes is about 7 GB, where 6 GB are used for the main Data
Index, which stores 74 million documents; the remaining space is used in the caching, which
is a reasonable size considering that the possible combinations of property-value pairs are
quite a lot even for 141 cached queries. The total time to build the index and perform caching
is above 5 days, where 4.5 days are used exclusively for the values cache; without caching the
time required drops to 12 hours; despite that, the cache is needed to lower response times
for large results sets, as we now discuss.

The next questions were about runtimes of the system: without caching (see Table 4.1)
some queries would take minutes to complete, but adding the caching all times were below a
couple of seconds. The caching reduces runtimes a lot, where cached queries reduce their time
to below a second, so the time required to built the cache is worthwhile. Non-cached queries
can take between one and two seconds, which is reasonable considering the large amount of
documents in the cache and that some queries have to be excluded from the cache; the time-
consuming operation for non-cached queries is the making and translation of the properties
list, because the metadata extraction of the first fifty results is performed even for cached
queries.

The final questions that this evaluation looked to answer to were about the user’s ex-
perience with the system. Comparing the answers for the first user study with the second
one, the usability of the system increased after fixing the superficial issues found in the first
study, where Wikidata’s collaborators score higher in usability than the test with students.
Responsiveness of the system still has mixed opinions; the runtimes are probably not the ex-
planation since we saw in Figure 6.1 that these are generally within a second; another possible
explanation is the slow-paced process to obtain results (wait for the type suggestions, then
wait for the values after a property is selected); however, this approach was taken to prevent
suggesting empty-results to the user, so the question is: will the users prefer a faster-paced
system where their suggestions might produce no results or the current guidance the system
offers to select facets and obtain results. Nevertheless, the system still needs to better explain
how to be used; both user studies have the comment that it is hard to understand the system
at first and some examples could help to teach newcomers how to use this system.
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Chapter 7

Conclusion

This work presented a new faceted browsing interface using the Wikidata dataset; this inter-
face does not use a SPARQL endpoint, but instead uses indexes to store and search over the
data to allow the computation of properties and values; this technique requires caching cer-
tain queries that would return more than 50,000 results in order to keep reasonable response
times. The complete creation of the indexes and caches for Wikidata can take a week and
uses about 7 GB of memory for two languages; times for queries will not take more than one
second for cached queries and four seconds for non-cached queries (though most will execute
faster), where the observed slowest queries at a few seconds should be contrasted with the
slowest queries without caching, which require minutes. On the other hand, the size of the
cache remains relatively small by selecting only the non-keyword queries with more than
50,000 results.

User response to the system was mixed: the consensus was that the system offers a new
way to query RDF datasets with an intuitive selection of facets; however, the initial type
search was not intuitive enough if the user has no prior knowledge of what is a type or what
are the available types; the system requires a type selected from a list after they write a
prefix and if there are no matches a browsing session cannot be started. Selecting a facet
afterwards was simpler because the properties are already given to the user, as well the values
for a selected property; unlike for the type selection, the users can see all properties available
and their values.

7.1 Current limitations
The system considers as facets a pair of property and value where that value is a Wikidata
resource; this is a current limitation that suggests some requested features for the system:
datatype values, nested facets and subtype reasoning. First, properties whose values are
datatype values (numbers, dates, coordinates) are not eligible as facets; the reason for this
is that the system stores the values of a property in a string field of the document, where
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its contents can be queried only by exact (or prefix) match character by character; in that
case, the user could not add facets where the value is within a range (for example: museums
between certain coordinates or humans with a date of birth in certain decade) because the
facet would require the specific value, which is not viable for the user-interface. A naive
solution would be to have a special field for every property with datatype values to store
them in the documents, and thus, allow range queries; however, this approach would increase
significantly the complexity of the system: first, the system would require a full analysis to
determine which datatype values are important enough to have an exclusive field; second,
the system would require a user interface with a range query selection between valid values
to avoid empty results; third, it would not be possible to cache range queries with many
results (e.g. people born between 1800 and 2000) since there would be too many possible
range values.

The inclusion of nested facets is the next requested feature that is limited by the current
structure of documents; nested facets allow to select as a value for a property a faceted search
(for example: people whose father is a politician; the value for the property father is a new
faceted search with the facet occupation: politician); the values for the properties have to
be a specific resource, not a certain entity that has certain facets. This kind of query is
very easy to perform in SPARQL, but not in our system. There is no easy way to add this
feature because it would require to pre-compute all resources that match the nested facet
and then add every value to the query with the logical operator OR; this approach is not
reliable because if the nested facet contains millions of results, combining millions of queries
might take too long, affecting the usability of the system.

The final feature limited by the structure of the system is subtype reasoning; this feature
expects that when a type search is performed, the results include entities whose type is a
subtype of the selected type. For example, the type of apple is pome and its supertype is
fruit, fruit is a subtype of food; so apple should be included in the results of type: fruit (one
level of subtype) and type: food (two levels of subtype). Although one level of subtype is
easy to include in the system, more levels of subtype reasoning is a real challenge because
determining all subtypes for a single entity is a recursive process; more problematically the
possible results for general types (e.g. food) would return a massive amount of entities that,
then again, the caching should consider.

7.2 Future work
Besides investigation on how to add the features described in the previous section, there are
other possible future directions for this system and on the topic of querying RDF datasets.
Note that all improvements to the system would require to keep the core of the system, which
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is a user-friendly interface that does not require expertise on RDF and offers reasonable times
for a user application. The first topic is to improve the main issues of the current system
regarding the type selection; this could be fixed with an example query or providing a more
intuitive interface trying to guide the user as to what are the available types and what could
be a type.

Next, there is the topic of adding more flexibility to the facets, such as multivalue facets,
where the user can select multiple values for a given property (e.g. people with citizenship in
Chile and the USA), although certain restrictions to the number of values would be needed
to not overload the query; existential facets, requesting that the items have some value for a
given property (e.g. people with some award), so facets would not be restricted to a specific
value. These kinds of queries are possible to implement with the current structure; however,
these new ways to create queries would result in more queries with lots of results, so new
caching techniques would need to be created to preserve the ideal execution times for a
responsive system.

Finally, the amount of data in RDF is rapidly increasing, so the natural question is:
will the structure of the system keep up with bigger datasets? More resources means more
documents and thus more results to certain queries, causing an increase in both the cache’s
size and creation time; how can the system be improved to support even larger datasets
(which will be normal in the up coming years); does the amount of properties to cache
converge at some point, or will the cache grow so much that it would become unsustainable.
These are some of the questions and challenges this system could face in the future.

Building usable interfaces for querying large-scale datasets that assume minimal user
expertise or specific data structures, and that can offer responsive runtimes, remains a chal-
lenging problem. This thesis has established a first proof-of-concept for faceted browsing over
RDF datasets with billions of triples, and has revealed some interesting research directions
towards making such a system more usable, more efficient, more scalable and able to express
more complex queries in future. We have named the final system GraFa (Graph Facets).
The version loaded with Wikidata is publicly available at http://grafa.dcc.uchile.cl.
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