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Resumen 

La naturaleza visual del logueo geológico conduce a una clasificación cualitativa o semi-
cuantitativa de los atributos petrofísicos de los testigos de sondajes, que está sujeta a errores. 
Debido al tiempo y dinero que se debe invertir para el relogueo, desarrollar una metodología 
objetiva y rápida para identificar muestras mal logueadas es una herramienta interesante para 
ayudar a los científicos e ingenieros antes del modelamiento geológico y geo-metalúrgico 
que se utilizará en la evaluación de recursos minerales y reservas mineras y en planificación 
minera. Respecto al modelamiento geológico, debido a la falta de cuantificación de la 
incertidumbre en las interpretaciones geológicas, el desarrollo de una metodología objetiva 
y rápida para identificar bloques mal interpretados conduce a una herramienta interesante 
para validar los modelos geológicos. Las interpretaciones geológicas son un insumo esencial 
para la evaluación de los recursos minerales y para la planificación minera y, como tal, 
afectan todas las etapas posteriores del proceso de minería. 

En este contexto, esta tesis tiene como objetivo presentar metodologías geoestadísticas para 
validar el logueo geológico y las interpretaciones geológicas cuando variables cuantitativas 
están disponibles a partir de análisis geoquímicos o pruebas geo-metalúrgicas. Se pretende 
calcular, para cada testigo de sondaje o cada bloque del modelo interpretado, una medida de 
la consistencia entre la clase logueada o interpretada y las covariables cuantitativas. Dos 
modelos diferentes están diseñados para este propósito. Respecto a la validación del logueo 
geológico, se supone que estas covariables están subordinadas a los dominios geológicos 
definidos por las clases logueadas; la medida de coherencia luego se calcula utilizando como 
herramientas el modelo de coregionalización, el cokriging y la validación cruzada. Por el 
contrario, en lo que respecta a la validación de la interpretación geológica, se propone un 
modelo en el que los dominios geológicos se definen sobre la base de las covariables 
cuantitativas y se obtiene la medida de consistencia utilizando herramientas como 
transformación Gaussiana conjunta, modelo de coregionalización, simulación Gaussiana y 
clasificación por árboles de decisión. 

Las herramientas y los modelos propuestos se aplican a un depósito de hierro. Los resultados 
muestran la capacidad de los modelos propuestos para identificar los datos para los cuales la 
categoría logueada no concuerda con las variables cuantitativas, así como para identificar los 
bloques para los cuales la categoría interpretada no concuerda con las variables cuantitativas. 
Vale la pena mencionar que las aplicaciones no están implementadas como caja negra, sino 
que permiten al profesional incluir criterios adicionales (por ejemplo, criterios geográficos) 
para detectar muestras o bloques sospechosos. 
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Abstract 

The visual nature of geological core logging leads to a qualitative or a semi-quantitative 
classification of petrophysical attributes of drill cores, which is subject to errors. Because of 
the time and money needed to be invested for relogging, developing an objective and fast 
methodology for identifying mislogged samples is an interesting tool to assist both scientists 
and engineers before the geological and geo-metallurgical modeling that will be used in 
mineral resources and ore reserves evaluation and in mine planning. Regarding geological 
modeling, because of the lack of uncertainty quantification in geological interpretations, 
developing an objective and fast methodology for identifying misinterpreted blocks leads to 
an interesting tool in validating geological models. Geological interpretations are an essential 
input for mineral resources evaluation and for mine planning and, as such, affect all 
subsequent stages of the mining process. 

In this context, this thesis aims to present geostatistical-based methodologies for validating 
geological logging and geological interpretations when quantitative variables are available 
from geochemical analyses or geo-metallurgical tests. It is intended to calculate, for each 
core sample or each block of the interpreted model, a measure of the consistency between 
the logged or interpreted class and the quantitative covariates. Two different models are 
designed for this purpose. Concerning geological logging validation, it is assumed that these 
covariates are subordinated to the geological domains defined by the logged classes; the 
consistency measure is then calculated by using coregionalization modeling, cokriging and 
leave-one-out cross-validation. In contrast, concerning geological interpretation validation, 
a model in which the geological domains are defined on the basis of the quantitative 
covariates is proposed and the consistency measure is obtained by using tools such as joint 
Gaussian transformation, coregionalization modeling, Gaussian simulation and decision-
tree classification. 

The proposed tools and models are applied to an iron ore deposit. The results show the 
ability of the proposed models to identify the data for which the logged category is not in 
agreement with the quantitative variables, as well as to identify the blocks for which the 
interpreted category is not in agreement with the quantitative variables. It is worthwhile to 
mention that the applications are not black-boxed and allow the practitioner to include 
additional criteria (e.g., geographical criteria) to detect suspicious samples or blocks. 
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Chapter 1: Introduction 

1.1. Problem setting 

1.1.1. Validating and reclassifying geological logs 

Drilling is the most expensive procedure in the exploration of mineral deposits and yields 
direct information about the geology and structure of the subsurface. Drilling is used for 
locating and defining economic mineralization and provides the ultimate test for all the 
theories and predictions that are generated in the preceding prospect generation and target 
generation phases of the exploration process. Information from drill holes can be extracted 
by different methods, such as assaying, down-the-hole geophysical logging or geological 
core logging (Knödel et al., 2007; Marjoribanks, 2010). 

Geological core logging is the geological study, visual recording and classification of 
petrophysical attributes of drill cores, such as their lithology, alteration or mineralogical 
assemblage. The information gathered from geological core logging is the basis for 
constructing geological and geo-metallurgical models for mineral resources evaluation and 
classification, ore reserves definition and mine planning; in particular, it is used for 
partitioning heterogeneous deposits into geological or geo-metallurgical domains in which 
the regionalized properties of interest are homogeneously distributed (Sinclair and 
Blackwell, 2002; Moon et al., 2006; Haldar, 2013; Rossi and Deutsch, 2014).  

However, due to the visual nature of logging, the classification of petrophysical attributes is 
qualitative and subject to errors, which may be explained by several factors, e.g. (Manchuk 
and Deutsch, 2012; Cáceres and Emery, 2013): 

 Presence of complex rock textures caused by overprinting processes; 

 Lack of chemical analyses during logging; 

 Lack of experience of mining geologists; 

 Non-unique logging criteria among geologists; 

 Low core recoveries; 

 High staff rotation; 

 Inherent difficulties to estimate mineral percentages. 

Inaccurate logs generate data that are inconsistent with geochemical analyses and geo-
metallurgical tests, such as high copper grades in supposedly waste or leached zones, low 
iron grades in supposedly supergene hematite zones, or low acid consumption in supposedly 
calcareous rocks. According to the limited time and resources for relogging, the inconsistent 
logs are often seen as outliers or discarded in the geological or geo-metallurgical modeling 
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stage (Theys, 1999, Cáceres and Emery, 2013). This shows the importance of finding and 
developing methods for identifying suspicious geologically mislogged samples and checking 
just these suspicious samples. 

1.1.2. Validating and reclassifying geological interpretations 

A geological interpretation consists of a three-dimensional representation of an ore deposit 
constructed by resource geologists on the basis of their knowledge on the deposit, geological 
field observations, geophysical surveys and drill hole logs and assays. Geological 
interpretations that represent the spatial locations and extents of rock types or ore types are 
an essential input for mineral resources / ore reserves evaluation and for mine planning and, 
as such, affect all subsequent stages of the mining process (Duke and Hanna, 2001; Sinclair 
and Blackwell, 2002; Knödel et al., 2007; Marjoribanks, 2010; Rossi and Deutsch, 2014). 

However, these models often correspond to a single interpretation of the ore deposit and often 
lack a quantification of the uncertainty in the actual rock types or ore type locations and 
extents. This motivates the need for quantitative methods to validate the model and to identify 
the areas of the deposit that have higher probabilities of being misinterpreted. 

1.2. Key idea of the thesis and research objectives  

For the first problem (validation of core logging), we will consider geological classes of a 
categorical regionalized variable, such as a rock type or a dominant alteration type, known 
with some imprecision, and a set of quantitative continuous covariates, such as metal grades, 
rock granulometry, rock density or metallurgical recoveries, known with precision from 
geochemical analyses and geo-metallurgical tests. Because of time and money needed to be 
invested for relogging, developing an objective and fast methodology for identifying 
mislogged samples based on the quantitative information is an interesting tool to assist 
scientists and engineers before the geological and geometallurgical modeling that will be 
used in resources/reserves evaluation and mine planning. 

In this context, considering the regionalized nature of petrophysical attributes and their 
spatial dependence relationships with quantitative variables from geochemical analyses or 
metallurgical tests, a geostatistical approach based on leave-one-out cross-validation will be 
proposed for identifying possible mislogged samples. The proposal aims to calculate, for 
each sample, a measure of the consistency between the logged classes and the quantitative 
covariates. The rationale is to identify geologically mislogged samples and to reclassify these 
samples, so as to construct more reliable geological and geo-metallurgical models of mineral 
resources and ore reserves and to better quantify geological uncertainty. 
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For the second problem (validation of geological interpretations), we consider an interpreted 
geological model of a categorical regionalized variable and sampling data with geological 
classes of the same categorical regionalized variable and a set of quantitative continuous 
covariates. As for the first problem, the proposal will rely on the dependence relationships 
between the quantitative variables and the geological categories from geological core logging 
and interpretation. It includes the geostatistical modeling and simulation of the quantitative 
variables, followed by their classification into geological categories. Then, comparing the 
prior (without sampling information) and posterior (accounting for sampling information) 
probabilities of categories for each target location provides a means of identifying the 
locations and areas of the deposit that are most likely to be incorrectly interpreted.  

1.3. Novel aspects 

There are currently few geostatistical-based methodologies for validating geological logging 
or geological interpretations. In this context, the ultimate goal of this study is to propose 
geostatistical-based methodologies for validating geological logging and geological 
interpretations when quantitative variables are available from geochemical analyses or geo-
metallurgical tests. In particular, the following aspects that will be explained in Chapters 3 
to 5 are novel: 

 Proposal of models to address the aforementioned problems (Chapter 3); 
 

 Design of methodological and practical geostatistical-based tools, models and algorithms 
for validating geological logs, and for identifying data for which the logged category is 
not in agreement with the quantitative variables (Chapter 4); 
 

 Design of methodological and practical geostatistical-based tools, models and algorithms 
for validating geological interpretations, and for identifying blocks or areas of the deposit 
for which the interpreted category is not in agreement with the quantitative variables 
(Chapter 5).  

1.4. Hypotheses 

The proposed methodologies will be based on the following four working assumptions 
(Cáceres and Emery, 2013): 

 Chemical analyses, geo-metallurgical tests and geological features such as lithology, 
alteration or mineralogical assemblage should be consistent in spatial and statistical 
terms, insofar as they are related responses to the same geological processes. 
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 Chemical analyses and geo-metallurgical tests (quantitative measurements) are more 

accurate than geological logs and interpretations (semi-quantitative or qualitative data). 
 

 A small proportion of the drill cores is likely to be mislogged. 
 

 The quantitative variables are regionalized and can be interpreted as realizations of 
random fields that, either globally or within domains partitioning the deposit, can be 
transformed into stationary Gaussian random fields, i.e., random fields whose finite-
dimensional distributions are multivariate normal and are invariant under a translation in 
space. This assumption is the basis of most current geostatistical approaches used for 
simulating quantitative variables and for quantifying geological uncertainty in mineral 
deposits (Verly, 1983; Chilès and Delfiner, 2012; Rossi and Deutsch, 2014). 
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Chapter 2: Literature review 

 

In this chapter, some leading approaches that are used for drilling, core logging and data 
quality are reviewed. Then, some of the geostatistical concepts applied in this research are 
explained, and the state-of-the-art about the validation of geological logs and geological 
interpretations is recalled. 

2.1. Drilling 

2.1.1. Importance of drilling 

Drilling is one of the most important and most expensive procedures in mineral exploration 
and yields direct information about the geology and structure of the ground below the surface. 
Drilling is used for locating and defining economic mineralization, and provides the ultimate 
test for all the theories and predictions that are generated in the preceding prospect generation 
and target generation phases of the exploration process (Marjoribanks, 2010; Knödel et al., 
2007). 

Even though a drilling program is planned in advance, which includes depth and location of 
drill holes, it should be concerned that such a drilling program is a dynamic system and the 
depth and positioning of subsequent drill holes should be updated by getting new information 
from already drilled boreholes (Marjoribanks, 2010). 

2.1.2. Core recovery parameters 

2.1.2.1. Percentage core recovery  

This is the measured core recovery per drill run expressed as a percentage (De Beer et al., 
1976). Recovery of a drill core is an important parameter for an effective project of mineral 
exploration. Good core recovery shows responsibility of the drill crews, while careless crew 
can ruin core by drilling too fast, over drilling a run beyond the core barrel capacity, using 
undesired type of barrel and faulty core lifter (Haldar, 2013).  

Core recovery should be 100% except for drilling in highly fractured, altered, sheared or 
caved zones. If core recovery in mineralized zones is less than 85-90%, results got from cores 
are not trustful. Because mineralized and altered rock zones are frequently more fragile parts, 
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those are the first parts that will be lost during the coring, therefore such cores could not be 
representative of the drilled rock. Core recovery represents the precision and reliability of a 
deposit evaluation. In the case of having a borehole in a mineralized zone with the core 
recovery below 85-90%, it should be rejected and has to be drilled again with utmost care 
(Moon et al., 2006; Haldar, 2013). 

2.1.2.2. Rock Quality Designation  

Rock Quality Designation (RQD) is measured per drill run and is defined as the total length 
of the pieces of core greater than 10 cm divided by the length of the core run and expressed 
as a percentage. Measurement of the RQD yields a quantitative assessing for the quality of a 
rock mass between 0 and 100. A low percentage means a poor rock while a high percentage 
means a good quality rock (De Beer et al., 1976). 

2.1.3. Core logging  

The quality of drilling, in addition to the best possible core recovery, depends on some other 
items like proper core placement in preservation box with correct arrow marking and shifting 
to the core shade from drill-site, which needs extreme care before study of the core and 
sampling. Any mistake during this process such as misplacing or missing core during the 
drilling, collection, placement and shifting will add uncertainty of delimitation and 
estimation of resources and reserves. Initially, the core is spread in the core laboratory on the 
extra-long conical plastic tray. Then the arrow directions of pieces of core are checked and 
the edges of two successive core pieces have to perfectly match. Any discontinuity in 
matching two edges must be recorded (Haldar, 2013).   

“Core logging” is the geological study, visual recording and classification of drill cores which 
is done by geologists in the core shack. Core logging includes some general description of 
the core, i.e., the main structural features (fracture spacing and orientation, shears, faults, 
folds) and a lithological description (rock type, alteration, mineralogy, visual estimates of 
metal values, color and texture) with other details such as core size (NX, BX, AX, BQ), run 
and core length, core recovery and the location of excessive core loss (when say >5%). These 
observations are made visually with the help of a hand-lens. The description should be 
systematic and as quantitative as possible; qualitative descriptions should be avoided. Lines 
are marked on mineralized core for splitting it into two identical halves (Moon et al., 2006; 
Haldar, 2013).  

The more important part of the core logging is describing the geological characteristics of 
the rocks, which requires good knowledge in the rock formations, mineralization and 
alteration types of the deposit. The geological information is used for better understanding 
and predicting the mineralization of the studied area. There is always a degree of subjectivity 
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in the geological descriptions depending on the experience of the geologists and knowledge 
of the local geology. The geological information gathered from drill hole is as important as 
the assayed grades (Rossi and Deutsch, 2014). 

Previously recording was just made on printed sheets but now, with advances in using 
computer and internet in the earth sciences, some special portable rugged laptops are 
designed and are extensively used for recording at site (Figure 2.1). These are designed with 
multiple spreadsheets for database with defined fields and features, so recording could be 
more accurate, more flexible and could be shared online. But still there are many exploration 
companies that continue working with printed sheets (Haldar, 2013).   

 

Figure 2.1: A high-tech Internet interfaced data sharing drill core logger (Haldar, 2013) 

2.1.4. Core logging systems  

The importance of using the most appropriate system for geological core logging will be 
clearer when one concerns that the way data are recorded affects significantly the amount 
and type of the observed data. Although a huge number of different core logging forms are 
used in the industry (almost every organization and exploration group has its own standard 
procedure), there are only three basic methods for geological core recording. And all 
geological logging systems used in the industry correspond to one or a combination of these 
basic methods (Marjoribanks, 2010). These three geological core logging methodologies are 
described by Marjoribanks (2010) and are brought here. 
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2.1.4.1. Prose logging 

In this method, an interval in depth is selected and then it is described in words. An example 
for this style of logging is shown in Figure 2.2. Long passages of prose are an ineffective and 
a laborious way of logging complex spatial relationships. Also there are not two geologists 
who would have the same descriptions from the same interval. It can be concluded that it is 
generally difficult and time consuming to extract precise and objective information from such 
logs. Therefore, it is not recommended to use this style, but it can be used as a complementary 
part in a “Comments” column to provide brief verbal commentaries in one of the other two 
styles of geological logging. 

 

Figure 2.2: An example of the prose method for geological logging of core or cuttings (Marjoribanks, 2010)  

2.1.4.2. Graphical scale logging 

Graphical scale logging is the best recording system for primary drillings, which need to 
make use of a logging system that permits detailed observation and presents the information 
in a way that helps interpretation. In such logs, a down-the-hole strip map is prepared in a 
chosen scale and structures are added easily on the map same as how they appear in the core. 
As shown in an example of Graphical scale logging in Figure 2.3, different columns can be 
allocated for recording different features of the core. One of the advantages of this method is 
the possibility of indicating gradational contacts in a simple graphical manner. 

Obviously, all the observations or measurements on the core cannot be shown graphically, 
so it is needed to be allocated some extra columns for recording digital data or for writing 
verbal description or some comments. 

The important characteristic of these logs is that they gather many different types of 
geological observation on a form and all the spatial relationships can be seen at a glance. But 



9 
 

it should be concerned that preparing these logs is very time consuming and that is why they 
are just used in the first stage exploration drilling. As soon as understanding enough about 
the geology of a prospect (depending on the complexity of the geology and the quality of the 
data gathered before drilling, it could be after the first 1–2 holes or after the first 10–20 holes), 
a simplified, more focused and objective logging method is appropriate. 

 

 

Figure 2.3: An example of the use of graphical scale logging of core (Marjoribanks, 2010).  
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2.1.4.3. Analytical spreadsheet logging 

Analytical spreadsheet logging is ideal for the advanced drilling stages of an exploration 
program (resources evaluation and definition) where the main geological problems of the ore 
body have been solved and the logging is done just for routine recording of masses of 
reproducible data. In this method, observations of core are broken down into a number of 
objective pre-defined categories (columns) such as lithology, type and intensity of alteration, 
mineral content, number and type of veins, etc. Selected down-the-hole depth intervals (the 
rows) are then described under these categories. 

For logging compactly and precisely, some numbers, abbreviations and symbols are used 
according to a pre-defined geocoding system. Using a geocoding system is suitable for direct 
entry of data into a computer and also supports a query system for faster access to the data. 
Figure 2.4 shows a simple example of the analytical spread sheet logging method. In spite of 
the advantages of this method, using this method has some problems like setting limits for 
the range of observations, or not providing a satisfactory way for recording the relationships 
between the different categories. 

 

Figure 2.4: A simple example of the analytical spreadsheet logging method (Marjoribanks, 2010). 
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2.1.5. Sampling and assaying 

Assaying diamond drill cores in the primary phases of exploration has two purposes. The 
first one is to provide more information on whether potentially mineable grades are present 
or not. The second is to give an understanding about place of economically significant 
elements in the system, which is necessary for targeting locations of new boreholes 
(Marjoribanks, 2010). 

In the primary stage of exploratory drilling, the intervals for sampling should be selected by 
the geologist and be marked onto the core during the logging. As far as possible, the intervals 
should correspond to the mineralization boundaries that the geologist recognizes. Generally, 
in this stage, each sample is for answering a geologist’s question about the core. Only where 
the core is relatively uniform, regular samples of predetermined length should be taken 
(Marjoribanks, 2010). 

For sampling and analyzing the mineralized part of a core, the core is divided or split into 
two identical halves lengthwise with respect to the mineral distribution as observed during 
the logging. One half is grinded, reduced and sent to laboratory for chemical analysis while 
the other half is back to the core boxes as original record for future studies and audits. It is 
an essential reference for developing new concepts of both geological and grade continuity 
as the knowledge about the deposit evolves. Obviously, structural features should be recorded 
before splitting and a good option is photographing the wet core to produce a permanent 
photographic record. The second halves can be used as composite samples for metallurgical 
test works for recognizing the amenability, optimum grinding, liberation and recovery (Moon 
et al., 2006; Haldar, 2013; Sinclair and Blackwell, 2002). 

2.1.6. Data quality 

The mining industry collects more data than other natural resource industries, which provides 
a chance of better understanding local variations and obtaining robust local estimates. The 
abundance of data in the mining industry is in contrast with, for example, some petroleum 
and environmental modeling applications where the amount of data collected is limited, so 
the final results are more model-dependent (Rossi and Deutsch, 2014). The quality of the 
resources/reserves prediction is directly dependent on the quality of the data gathering and 
handling procedures (Erickson and Padgett, 2011). The concept of data quality is that data 
(samples) from a certain volume will be gathered and used to predict tonnages and grades of 
the elements of interest. Decisions are made based on geological knowledge and 
geostatistical analyses accompanied by other technical information. So the quality of the 
numerical basis for the analyses should be good to support sound decision-making. This is 
more important when one considers that just a very small fraction of the mineral deposit is 
sampled (Rossi and Deutsch, 2014). 
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Individual value measures are subject to variability from three different sources of real 
geological variations, sampling errors and measurement errors. It can be dealt with the effects 
of real geological variations through the use of geostatistical tools and methods, according to 
the concept of range of influence or range of correlation of a sample. This source of 
variability can be decreased limitedly by increasing the sample size (Sinclair and Blackwell, 
2002). 

There are several approaches for arranging sampling and data gathering to maximize the data 
quality and improve the resulting mineral resources predictions. Some of the more important 
factors mentioned by Sinclair and Blackwell (2002) are the following: 

 knowing and reducing the magnitudes of errors in the database (assays, thickness, 
sample coordinates), for improving the quality of assays and the representativeness 
of samples; 

 developing a sampling plan and procedure, appropriate to the task; 

 making sure that analytical methods and procedures meet the adequate precision and 
accuracy; 

 integrating geology into the data accumulation and evaluation phases so that data are 
obtained and used properly according to the material being sampled. 

By minimizing errors in sampling and assaying, the nugget effect and the sill of the variogram 
of the measured variable decrease and the quality of the fitted spatial correlation model will 
be increased. Unfortunately, sampling methods, sample preparation procedures and assaying 
procedures are routinely accepted for different mineral deposits, without strictly checking 
specific characteristics of the deposit under study. Sampling parameters such as sample mass, 
particle size and number of particles per sample change from one mineralization to another, 
according to the characteristics of mineralization. There are some systematic tests to help in 
optimizing data-gathering procedures, which are not expensive measures and prevent from 
an increased error by added variance, but are too rarely used in practice (Sinclair and 
Blackwell, 2002). 

Sampling methods and their associated parameters should not be accepted without testing 
(Sinclair and Vallée, 1993), as sampling methods suitable for one deposit type could be 
totally inappropriate for another one. The same quality control studies in sampling procedures 
should be applied to assaying practices and results (Vallée, 1992). Reports of assay results 
should be accompanied with information about sample preparation and analytical methods, 
containing detection limits (Sinclair and Blackwell, 2002). 

Another important concept is that the samples should be representative of the volume (or 
material) being sampled, both in a spatial sense and at the location where the sample is being 
taken from. Representative sample refers to a sample that is statistically similar to any other 
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that one could have taken from the same volume. So it is considered that the sample values 
are a fair representation of the true value of the sampled volume of rock. Representation also 
implies that the samples have been taken in an approximately regular or quasi-regular 
sampling grid, so each sample is representative of a similar volume or area of the ore body. 
But practically, one will not face with such ideal conditions and some correction is required 
(Rossi and Deutsch, 2014). 

2.1.6.1. Location of samples 

Obviously, it is necessary to accurately know the locations of samples for using the resulting 
assays in mineral resources / ore reserves prediction, but sometimes one does not have 
accurate coordinates. So the sample sites and drill hole collars (headers) should be surveyed 
for accurate positioning in three dimensions. A significant reason for this problem is 
unintentional deviation in the borehole, which depends on the orientation of drill holes and 
the physical characteristics of the intersecting rocks. So drill holes should be surveyed at 
intermittent locations along their trace and then using a combination of this information with 
the collar coordinates can lead to the realistic three-dimensional coordinates of samples along 
the true drill-hole trace. Even small deviations from a planned orientation at the collar can 
lead to big movements at the end-of-hole from the planned position (Sinclair and Blackwell, 
2002). Most of the commercial, down-the-hole surveying devices have the capability of 
measuring angle of plunge and angle of azimuth with accuracies better than 1 degree and 0.1 
degree, respectively (Killeen and Elliot, 1997). This problem is shown in Figure 2.5, where 
small, progressive changes in the plunge of a drill hole (1–3 degrees over 50 m) result in 
shifting about 30 m at the end-of-hole from its planned position. 
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Figure 2.5: An example of a correct drill-hole trace based on surveying, comparing with the expected 
(projected) trace if the hole did not deviate. Triangles are survey positions along the drill hole. Dotted pattern 

indicates eighteen 10 ×20 m blocks intersected by expected collar orientation, but not intersected by the 
surveyed drill-hole position (Sinclair and Blackwell, 2002). 

2.1.6.2. Sampling patterns 

The first sampling patterns (grid orientation, spacing and sample sizes) are generally chosen 
for delimiting long range geological continuity and providing a general view of the grade 
distribution. Primary grids are commonly more or less square or rectangular with relatively 
wide-spaced grid sampling, but sampling patterns evolve by progresses in the deposit 
evaluation process through different stages. So the next stages should be supplemented by 
some local, closely spaced samples in all major directions for achieving the primary goal of 
a quantitative, 3D model for short-range, as well as long-range and grade continuity (Sinclair 
and Blackwell, 2002). 
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By progressing in the evaluation stages, additional factors like stricter sampling parameters 
(for ensuring about high quality of data), denser sampling networks and bulk-type samples 
are concerned for geological purposes and local estimation; especially by approaching to the 
mining feasibility studies. For quantifying short range continuity and possible anisotropy, 
closely spaced samples (e.g., assay mapping) are essential along all the principal dimensions 
of a deposit (Sinclair and Blackwell, 2002). 

2.1.6.3. Sampling database construction 

A computerized database is necessary for resources and reserves prediction and it presents 
another potential source of errors. If the primarily recording of the data was manual, there 
could be errors in the transcription and sometimes a lack of record-keeping. Also there could 
be some errors in digitizing the data from transcriptions. Geological databases should be 
compared to the information originally mapped and inconsistencies should be considered; 
inconsistencies can be along of errors or a decision to re-code certain drill hole intervals 
(Rossi and Deutsch, 2014). 

Quality control programs implemented on the data should also provide an estimate of error 
rates in the database. There should be some safeguards and checks for quality controlling, for 
example percentage of grade in rock is allowed to be between 0 % and 100 %, and also there 
is limitation in the maximum percentage of grade that can exist in the rock according to its 
mineralogy. Manual checks of original assay certificates and other information like grades, 
down-the-hole surveys and the surveyed drill hole collar locations should be done routinely 
as part of the quality control of the database. It is standard for auditors to check data line by 
line and manually verify about 10 % of the total information in the database. Generally, error 
rate of less than 1 % in the checked information is considered acceptable, but error rate more 
than 2 or 3 % makes a line-by-line check of the entire database (Rossi and Deutsch, 2014). 

2.1.7. Quality Assurance and Quality Control 

There are some key principles to ensure that good scientific information is collected, which 
include the following steps (Mitchell, 2006): 

 Step 1: Scoping and Design: A competent program design needs a good scientific 
knowledge about the issues, the study objectives and appropriate methods. 

 Step 2: Sampling: Collecting samples requires expertise and skill. 

 Step 3: Sample Analysis: Chemical analyses must be performed by valid laboratories 
and results must meet scientific tests to could be used trustfully. 



16 
 

 Step 4: Data Validation: High quality and reliability of the data must be ensured, this 
can be done by confirming field and laboratory methods, checking results and quality 
control of data, etc. 

 Step 5: Data Storage: All data must be stored reliably and accessible easily. It is 
undesirable to have many independent databases with separate validation procedures. 

 Step 6: Reporting: Qualified persons should convert the data to accurate, reliable and 
scientifically defensible information. 

To ensure about quality of the data, some quality assurance (QA) plans should be included. 
QA consists of the overall policy established to achieve the orientation and objectives of an 
organization regarding quality (Vallée, 1998). QA is process-oriented and focuses on defect 
prevention, it makes sure that one is doing the right things in the right way. For example, 
sampling program design is a fundamental step in quality assurance. An important part of 
QA is quality control (QC). Quality control refers to the technical activities used to reduce 
errors. These activities measure the performance against defined standards, then confirm if 
the data meet the expected quality or not (Vallée, 1998). Actually, quality control is product-
oriented and focuses on defect identification, it makes sure the results of what one has done 
are what one expects (USEPA, 1996). The four key steps of QC are: setting standards, 
appraising conformance, acting when necessary, and planning for improvements (Vallée, 
1998). Table 2.1 shows general differences between QA and QC from the Statistics Canada 
website (https://www.statcan.gc.ca). 

 

Table 2.1: Comparison of quality assurance and quality control, from Statistics Canada website. 

Quality assurance Quality control  

 Anticipates problems before being occurred 

 Uses all the available information to 

generate improvements  

 Is not tied to a specific quality standard  

 Is applicable mostly at the planning stage  

 Is all-encompassing in its activities  

 

 Responds to the observed problems 

 Uses ongoing measurements to make 

decisions on the processes or results 

 Requires a pre-specified quality standard for 

comparability 

 Is applicable mostly at the processing stage 

 Is a set procedure that is a subset of quality 

assurance 

 

There are no universally accepted procedures for QA/QC, although certain basic steps are 
always recommended. For being confident, any mineral resources model needs to take into 
account overall process of QA/QC for field practices, sampling, sample preparation, 
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assaying, data management, correctness of the laboratory reports and transfer of the 
information to the database(s). The quality of the mineral resources prediction depends firstly 
on the available data and the geological complexity of the deposit. It is also strongly 
dependent on the technical skills and experience of the mine staff, the level of attention to 
details, the way of solving encountered problems, the open disclosure of basic assumptions 
accompanied with their justifications, and the quality of the documentation for each step. 
Justification and documentation of every important decision is part of the quality control of 
the work, because it forces detailed internal reviews and facilitates third-party reviews and 
may have a significant impact on the overall perception of the model quality (Rossi and 
Deutsch, 2014). 

The QA/QC measures are compulsory in modern exploration programs for providing 
confidence in the quality of assayed data to be used for the estimation. Some of the control 
measures are (Haldar, 2013): 

 Normally during drill core sampling, one half of the core is sent for analysis without 
confirming the equal representation of the other half. But in advance, some lines could 
be marked on mineralized core for splitting it into two halves of identical mirror 
images according to the mineral distribution. 

 With respect to the inherent human and process error during analyzing a sample in a 
laboratory, some duplicate samples are inserted between the samples and analyzed at 
the same laboratory without disclosing the identity of the samples. 

 The standard (certified reference material of known value) and blank (certified 
reference material of zero value) samples are sent to the laboratory with other samples 
for quality control purposes. Generally, these samples are put at the start, end and 
every 10th or 20th position in the sample string. But for quality assurance, the 
sequence of inserting blank and standard samples should be changed. In the case of 
major differences, the samples are sent back to the laboratory for repeating the 
analysis. 

 If the samples from the same deposit are analyzed at different laboratories, according 
to different laboratory personnel and analytical procedures, some bias could exist 
between the results. A set of same sample should be analyzed at all the involved 
laboratories, also in a Referee Laboratory of international reputation. 

 The “data error” between paired set should be tested by various statistical tests. The 
erratic sample pair must be identified and isolated, also possible sources of errors 
should be investigated and recognized. Comparing with the geological conditions, 
samples can be verified or rejected. The filtered data set is suitable for QA/QC 
analysis. 
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 QA/QC programs include assay data relating to various sampling methods, duplicate, 
standard, blank, both half-core and inter-laboratory analysis from the above 
mentioned activities. The data sets are statistically compared using different methods 
and tests. There should be a remarkable degree of correlation at high confidence level 
between the original and respective new assay values received from the laboratory. If 
the check assay results are in the acceptable range of the standard deviation or within 
less than 5% variation from the mean value at 95% level of significance, then the 
assay results are incorporated to the main assay database. This process continues with 
incoming additional assay inputs until ending the exploration. Unacceptable results 
during the process are rejected and could not be included in the database. After 
meeting all the QA/QC protocols, the total sample database can only be used for 
resources/reserves prediction and grade parameters. 

2.2. Geostatistical concepts 

According to the Geostatistical Glossary and Multilingual Dictionary (Olea, 1991), 
geostatistics is “the study of phenomena that fluctuate in space and/or time”. Geostatistics is 
a branch of statistics defined as the application of probabilistic models for analyzing spatial 
datasets. It provides a collection of deterministic and statistical tools and methods for 
understanding and modeling spatial variability (Deutsch and Journel, 1998). Spatial – also 
called regionalized - variables are not completely random, as they usually show some form 
of structure based on the fact that locations close in space tend to assume close values (Chilès 
and Delfiner, 2012).  

The uncertainty of a value at an unsampled location can be modeled through a probability 
distribution that is location-dependent. The paradigm of predictive statistics is to characterize 
the probability distribution of any unsampled value z(x) as a random variable Z(x), where x 
denotes a generic spatial location. The collection of such random variables when x belongs 
to the 3D space (or to a region of interest) is called a random field. In such a setting, the data 
values are samples from one specific realization of this random field at given locations 
scattered in space (Deutsch and Journel, 1998; Leuangthong et al., 2008). 

2.2.1. Regionalized variable 

With the assumption that only one property has been measured at different spatial locations 
and that the time at which the measurements have been made has not been recorded, one has 
n observations z(xα) taken at locations xα, with α= 1, …, n.  The sampled locations in a region 
Ɗ can be considered as a part of a larger collection of locations. Limitations like cost and 
effort caused not taking more samples than the ones collected. For example, if the locations 
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have a (quasi-)point support, infinitely many observations are possible to be collected in the 
region. This possibility of taking infinitely many observations of the same type is introduced 
by dropping the index α to denote a generic location and by defining the regionalized variable 

as z = {z(x): x  Ɗ}. The primary dataset is now considered as a collection of a few values 
of the regionalized variable (Wackernagel, 2003). 

A regionalized variable is a deterministic function that represents, at every location in (a 
region of) the geographical space and/or in time, the value of a physical property associated 
with a natural phenomenon (also called regionalized phenomenon). A regionalized variable 
usually is characterized by at least three aspects (Wackernagel, 2003):  

 its nature: it can be measured on a continuous quantitative scale (continuous variable), 
on a discrete quantitative scale (discrete variable), or can result from the codification 
of the property into categories or classes (nominal or categorical variable); 

 the region or domain Ɗ in which the variable is defined; 

 the geometrical support on which the variable is measured (core of a borehole, blast 
hole detritus, selective mining unit, etc.).  

The grades of elements of interest (products, by-products and contaminants) such as copper, 
arsenic, molybdenum, gold and silver, the rock density (specific gravity) and the rock type 
are examples of regionalized variables. 

2.2.1.1. Random variable and regionalized value 

Each measured value in the domain Ɗ is called a regionalized value. A new viewpoint is to 
consider a regionalized value as the outcome of some underlying random mechanism, which 
is called a random variable, so that a sampled value z(xα) shows one draw from the parent 
random variable, denoted as Z(xα). In the following, the random variables are shown by a 
capital letter (Z), while their realizations (outcome values) are shown with the corresponding 
lower-case letter (z) (Deutsch and Journel, 1998; Wackernagel, 2003). A random variable 
can take a variety of outcome values according to a given probability distribution. Since the 
mechanism responsible for making a value z(xα) may be different at each point xα, the random 
variable Z(xα) could have a distribution that depend on the associated location xα.  

The cumulative distribution function (for short, cdf) of a random variable Z(x0) at a given 
location x0 in the domain Ɗ is defined as: 

F(x0; z) = Prob {Z(x0) ≤ z}, z  R                                                                         (2.1) 
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When the cdf is made specific to a particular information set of “n” neighboring data values 
Z(xα) = z(xα), with α = 1, …, n, the notation “conditional to n” will be used. The conditional 
cumulative distribution function (ccdf) is defined as: 

F(x0; z|(n)) = Prob {Z(x0) ≤ z | (n)}, z  R                                                               (2.2) 

Both of the above expressions (2.1) and (2.2) model the uncertainty about the value z(x0) of 
the regionalized variable at location x0, the first one prior to using the information set (n); the 
second one models the posterior uncertainty once the information set (n) has been accounted 
for. The goal of any predictive algorithm is to go from prior models of uncertainty to posterior 
models, which incorporate the available sampling information on the regionalized variable. 
Note that, in general, the ccdf is a function of the location x0, as well as the size (n), geometric 
configuration and values of the sampling data (Deutsch and Journel, 1998). 

2.2.1.2. Random field 

Considering the regionalized values at all points in a domain, the associated function z(x) for 
x ∈ Ɗ is a regionalized variable. The set of values {z(x): x ∈ Ɗ} can be viewed as one draw 
from an infinite set of random variables (one random variable at each location of the domain). 
The family of random variables Z = {Z(x): x ∈ Ɗ} is called a random field (Wackernagel, 
2003; Chilès and Delfiner, 2012). 

Figure 2.6 shows how the random field model has been set up by considering data from to 
different points of view. One aspect says that the data values depend on their location in the 
domain, so they are regionalized. Another aspect says that the regionalized sample values 
z(xα) generally cannot be modeled with a simple deterministic function z(x). According to 
the values of the samples, it seems that the behavior of z(x) is too complex to be modeled 
with deterministic methods, so a probabilistic approach is chosen, i.e. the mechanism is 
considered as random. Joining together these two aspects of regionalization and randomness 
leads to the concept of random field. A regionalized value z(x0) at a specific location x0 is a 
realization of a random variable Z(x0), which is itself a member of an infinite family of 
random variables, the random field {Z(x): x ∈ Ɗ}. The location x0 is an arbitrary point of the 
region which may or may not have been sampled (Wackernagel, 2003). 
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Figure 2.6: The random field model (Wackernagel, 2003). 

 

As it is shown in expression (2.1), the random variable Z(x0) is characterized by its cdf. The 
random field Z is characterized by all the sets of k random variables located at k different 
points as (Deutsch and Journel, 1998): 

F(x1, …, xk; z1, …, zk) = Prob {Z(x1) ≤ z1, …, Z(xk) ≤ zk}                               (2.3) 

with k  N*, z1, …, zk  R, x1, …, xk  Ɗ. 

Based on expression (2.3), one has an extraordinarily general model that is able to describe 
many processes in nature or technology. Generally, the inference of any statistics, whether a 
univariate cdf such as (2.1) or any of its moments (mean, variance), or a multivariate cdf such 
as (2.3) or any of its moments (covariance, variogram), requires some repetitive sampling. In 
practice, at best, one just has one sample at a specific location x, in which case z(x) is known 
(ignoring sampling errors), so it is impossible to infer all uni- and multivariate distribution 
functions for any set of points without further assumptions. Some simplification is needed 
and it can be provided by the idea of stationary (Deutsch and Journel, 1998; Wackernagel, 
2003; Chilès and Delfiner, 2012). 

2.2.1.3. Strict stationarity 

The lack of some repetitive samples at a given location x causes to incorporate these samples 
from somewhere else in space and/or time. For example, the cdf F(x; z) can be inferred from 
the samples gathered at other locations within the same domain, or at the same location x but 
at different times (Deutsch and Journel, 1998). 

Referring to Wackernagel (2003), stationary means that the characteristics of a random field 
stay the same when shifting a given set of k points from one part of the domain to another. 

Randomness

Regionalization

Random Variable

Samples 

Regionalized Variable

Random Field 
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This is called translation invariance. To be more specific, the random field {Z(x): x ∈ Ɗ} is 
said to be strictly stationary within the domain Ɗ if its multivariate cdf (2.3) is invariant for 
any set of k points x1, …, xk (where k is an arbitrary positive integer) and for any translation 
vector h, that is: 

F(x1, …, xk; z1, …, zk) = F(x1+h, . . . , xk+h; z1, . . . , zk)                                 (2.4) 

According to the concept of a strictly stationary random field, the distribution functions are 
everywhere and always the same. But logically there should be some limits for this concept, 
which leads to defining several types and degrees of stationary. These lie in the wide range 
between the concept of a non-stationary random field, whose characteristics change at any 
time and at any location, and the concept of a strictly stationary random field (Wackernagel, 
2003). 

Strictly speaking, stationarity is a property of the random field and not of the regionalized 
variable, so it cannot be checked from sampling data. However, it should be mentioned that 
a proper or judicious decision of stationarity is often critical for the representativeness and 
reliability of the geostatistical tools and datasets used. For instance, mixing data across 
different geological domains could hide important geological differences; on the other hand, 
dividing data into too many subdomains could lead to unreliable statistics and results based 
on too few data per domain and an overall confusion (Deutsch and Journel, 1998). 

2.2.1.4. Second-order and intrinsic stationarity  

Based on expression (2.4), for the random field to be strictly stationary, it is required that its 
multivariate cdf are translation invariant for any set of k points {x1, …, xk}. A lighter strategy 
is to consider only pairs of points {x1, x2} in the domain and try to characterize just the first 
two moments (mean value and covariance function), instead of a full distribution. It should 
be considered that such a strategy is ideal for the multivariate Gaussian distribution where, 
by characterizing the first two moments, the multivariate distribution can be characterized 
entirely (Wackernagel, 2003). 

There are two possibilities for stationarity of the first two moments, one is second-order 
stationary which assumes the existence and stationarity (translation invariance) of the first 
two moments of the random field. And the second one is intrinsic stationarity which assumes 
the stationarity of the first two moments of any increment (difference of a pair of values at 
two points) of the random field (Wackernagel, 2003). 
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2.2.2. Modeling spatial continuity: univariate case  

2.2.2.1. Covariance of a second-order stationary random field 

The covariance function C(h) (or covariance, for short) is defined based on the hypothesis of 
second-order stationarity (or weak stationarity), which assumes the existence and translation 
invariance of the first two moments (mean and covariance) of the random field: 

 E[Z(x+h)] = E[Z(x)] = m                                                          for all x, x+h ∈ Ɗ 

E[Z(x) - m] [Z(x+h) - m] = E[Z(x) Z(x+h)] – m2 = C(h)         for all x, x+h ∈ Ɗ 

The mean value m is constant in space and the covariance function C(h) only depends on the 
separation vector h. A covariance function must be a positive semi-definite function. It is 
bounded and its absolute value does not exceed the variance (Wackernagel, 2003; Chilès and 
Delfiner, 2012):  

|C(h)| ≤ C(0) = var(Z(x))                                                                                      (2.6) 

It is also an even function: C(-h) = C(+h). It should be noticed that h stands for a vector, so 
the covariance function depends both on its length (the distance between x and x+h) and on 
its direction. When the covariance depends only on length |h| and not on the direction, it is 
said to be isotropic (Wackernagel, 2003; Chilès and Delfiner, 2012). 

Due to its finite variance, a stationary random field tends to fluctuate around its mean. There 
are some regionalized phenomena that they do not exhibit this behavior: for example, when 
consider increasingly large domains, the sample mean may not stabilize, and the sample 
variance may always increase. This is a motivation for the next model (Chilès and Delfiner, 
2012). 

2.2.2.2. Correlogram 

A related function is the correlogram function, which is the covariance function divided by 
the variance and shows the correlation coefficient between Z(x) and Z(x+h). The correlogram 
shows how this correlation evolves with the separation vector h: 

ሺ݄ሻߩ ൌ
஼ሺ௛ሻ

஼ሺ଴ሻ
                                                                                                        (2.7) 

which is bounded by െ1	 ൑ ሺ݄ሻߩ ൑ 1. 

(2.5) 
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2.2.2.3. Variogram of an intrinsically stationary random field 

The theoretical variogram γ(h) is defined by the so-called intrinsic hypothesis, which is a 
milder hypothesis. This hypothesis is a statement about the type of stationarity characterizing 
the random field and is formed by two assumptions about the increments (Z(x+h)-Z(x)): 

 The drift, which is the mean m(h) of the increments, is invariant for any translation 
of a given vector h in the domain (linear drift): m(h) = E[Z(x + h) – Z(x)] = <a, h>, 
where < , > denotes the scalar product. 
 

 The variance of the increments has a finite value 2γ(h) depending on the length and 
the orientation of vector h, but not on the position of x in the domain: 
 
var[Z(x + h) – Z(x)] = 2γ(h) 
 

To prove that the drift is linear, one considers the obvious relation of: 

Z(x+h+hʹ) - Z(x) = [Z(x+h) - Z(x)] + [Z(x+h+hʹ) - Z(x+h)] 

Using the mathematical expectation for this relation gives m(h+hʹ) = m(h) + m(hʹ), which 
shows that m(h) is a linear function of the vector h, namely m(h) = <a, h> for some gradient 
vector a. Quite often, one considers that the intrinsic random field has no drift, or m(h) ≡ 0. 
The opposite case can be included in the universal kriging model or in the formalism of 
intrinsic random fields of higher orders (Chilès and Delfiner, 2012). 

An intrinsically stationary random field does not need to have a constant mean or a constant 
variance. The variogram shows how the dissimilarity between Z(x) and Z(x+h) evolves with 
the separation vector h. It is an even, nonnegative function valued 0 at the origin: 

γ(h) = γ(-h),                             γ(h) ≥ 0,                              γ(0) = 0 

Also, -γ(h) must be a conditionally positive definite function (Chilès and Delfiner, 2012). 

In case of second-order stationarity, the variogram function exists and can be deduced from 
the covariance function by γ(h) = C(0) – C(h), but in general the reverse is not true, because 
the variogram is not necessarily bounded under the intrinsic hypothesis. So the hypothesis of 
intrinsic stationarity is more general than the second-order stationarity and unbounded 
variogram models do not have an associated covariance function (Wackernagel, 2003; Chilès 
and Delfiner, 2012).  

It is quite common that the preliminary steps of variogram calculation, interpretation, and 
modeling be performed hastily or even skipped altogether, while they have a critical role in 
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geostatistical studies: (1) it is a tool to investigate and quantify the spatial variability of the 
phenomenon under study, and (2) most geostatistical prediction or simulation algorithms 
require an analytical variogram model. So the mentioned practice about performing hastily 
variogram analysis should be reversed and much more attention should be devoted to 
establishing a robust model of spatial variability (variogram) before proceeding with building 
numerical geological models. The variogram has an extremely important role to play in the 
appearance and behavior of the resulting 3D models (Gringarten and Deutsch, 2001). 

2.2.2.4. Basic variogram models 

In the following, a few basic variogram models are presented, all of which are defined for 
isotropic (rotation invariant) random fields. 

2.2.2.4.1. Nugget effect model 

The variogram model γ(h) that models the absence of spatial correlation is the nugget effect 
model (Figure 2.7): 

γ௡௨௚	ሺhሻ ൌ 	 ቄ
0														݂݅		݄ ൌ 0	
݁ݏ݅ݓݎ݄݁ݐ݋												ܾ

             and          lim
|௛|→଴

	 γሺ݄ሻ ൌ ܾ                   (2.8) 

where b is a positive value. In this model, two different data have independent (uncorrelated) 
values, irrespective of the distance separating the data locations. 

 

 

Figure 2.7: A nugget-effect variogram: its value is zero at the origin and b = 1 elsewhere  
(Wackernagel, 2003). 
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Some causes of the nugget effect (Carrasco, 2010) are: 

 a “micro-structure”: there actually exists a spatial structure with a very short range in 
comparison with the scale of observation; 

 small measurement support: the nugget effect variance is inversely proportional to 
the volumetric support of the sample; 

 measurement and position errors: sampling and/or assaying errors can create an 
artificial nugget effect or the so called ‘human nugget effect’. 

2.2.2.4.2. Spherical model 

A commonly used model is the spherical model, shown in Figure 2.8a 

γ௦௣௛	ሺhሻ ൌ 	 ቊ
ܾ	ሼ

ଷ

ଶ

|௛|

௔
െ

ଵ

ଶ
ቀ
|௛|

௔
ቁ
ଷ

ሽ																			݂݅		|݄| ൑ 0	

݁ݏ݅ݓݎ݄݁ݐ݋																																																		ܾ
                                     (2.9) 

where the parameter a shows the range of the spherical variogram model and the parameter 
b shows the sill (variance). The nugget effect model can be considered as a specific case of 
a spherical model with an infinitely small range. But is should be considered there is an 
important difference between these two models: γnug(h) shows a discontinuous phenomenon 
whose values change suddenly by changing the location, while γsph(h) shows a continuous 
phenomenon (Wackernagel, 2003). 

2.2.2.4.3. Exponential model 

The exponential variogram model (Figure 2.8b) increases exponentially with increasing 
distance and is similar to the spherical, except that it rises more steeply and reaches the sill 
asymptotically.  

γ௘௫௣	ሺhሻ ൌ ܾ	ሼ1 െ expሺെ
ଷ|௛|

௔
ሻሽ	                                                                        (2.10) 

where the parameter a shows the “practical” range of the exponential variogram model, 
which corresponds to the distance for which the variogram reaches 95% of its sill b. As the 
spherical model, the exponential model is linear near the origin (Wackernagel, 2003). 
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2.2.2.4.4. Gaussian model 

γ௚௔௨௦௦	ሺhሻ ൌ ܾ	ሼ1 െ expሺെ
ଷ|௛|మ

௔మ
ሻሽ	                                                                   (2.11) 

where the parameters of a and b show the practical range and sill of the Gaussian variogram 
model. The Gaussian model (Figure 2.8c), with its parabolic behavior at the origin, implies 
more short scale continuity and smoothness. It is suitable for slowly-varying variables, since 
the increase in variance is very gradual with distance (Rossi and Deutsch, 2014). 

 

Figure 2.8: Variogram models with unit sill: (a) spherical; (b) exponential; (c) Gaussian  
(Chilès and Delfiner, 2012). 
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2.2.2.5. Anisotropy 

In the previous section, it was assumed that all the discussed variograms and generally the 
spatial correlation structures are the same in all directions, or isotropic. So the covariance 
function, correlogram and variogram depend only on the length of the lag vector of h, and 
not on its direction. Experimental covariance, correlogram or variogram can be computed by 
pooling data pairs separated by the appropriate distances and regardless of the direction; such 
an experimental covariance, correlogram or variogram is referred to as omnidirectional. 

However, in many cases experimental calculations reveal a different behavior in different 
directions, which is called anisotropy. Anisotropy indicates that the regionalized variable 
possesses some preferential directions of spatial continuity. In practice, anisotropies can be 
detected by the variogram map, i.e., the map of the experimental variogram as a function of 
the separation vector (distance and orientation). Anisotropy directions can be pre-determined 
based on geological knowledge. As previously explained, variogram models are defined for 
the isotropic case, so some transformations of the coordinates are needed to obtain 
anisotropic random fields from the isotropic models (Wackernagel, 2003; Rossi and Deutsch, 
2014). 

2.2.2.5.1. Geometric anisotropy 

The variogram map as a function of a vector h can be drawn for showing the behavior of the 
experimental variogram. If the iso-value lines are circular around the origin, the variogram 
just depends on the length of the vector h and the phenomenon is isotropic. In other cases, 
the iso-value lines can be approximated by concentric ellipses (2D) or ellipsoids (3D) along 
a set of perpendicular main axes of anisotropy. This type of anisotropy where the directional 
variograms present the same level of variance (sill) in all directions, but the ranges are 
different, is called a geometric anisotropy (Figure 2.9) and relates the anisotropic variogram 
to a corresponding isotropic variogram by a geometric transformation (rotation-reduction of 
the coordinates): 

γ௔௡௜௦௢௧௥௢௣௜௖	ሺhሻ ൌ γ௜௦௢௧௥௢௣௜௖	ሺrሻ with ݎ ൌ ඨቀ
୦ೣ

ୟೣ
ቁ
ଶ
൅ ൬

୦೤

ୟ೤
൰
ଶ

൅ ቀ
୦೥

ୟ೥
ቁ
ଶ
                                       (2.12) 

with (x,y,z) the main anisotropy axes and (a௫, a௬, a௭) the correlation ranges along these axes. 

This transformation extends in a simple way a given isotropic variogram to a whole class of 
anisotropic variograms. The modeling only needs specifying the sill, the main directions 
(orthogonal) and the corresponding correlation ranges (Wackernagel, 2003; Rossi and 
Deutsch, 2014). 
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Figure 2.9: An example of a variogram map and related directional variograms with geometric anisotropy 
(Emery, 2017). 

2.2.2.5.2. Zonal anisotropy 

Another type of anisotropy is zonal anisotropy and it happens when the variograms calculated 
in different directions suggest a different value for the sill (Figure 2.10). Generally, it cannot 
be modeled using a simple coordinate transformation; in this case, one option is to consider 
an additional structure in the specific direction where the zonal component appears. This 
option is a special case of geometric anisotropy where the sill is reached asymptotically at 
large distances. So the zonal anisotropy changes to a geometric anisotropy case with a very 
large correlation range in one or more of the main anisotropy axes (Rossi and Deutsch, 2014). 

 

 Figure 2.10: An example for a variogram map and related directional variograms with zonal 
anisotropy (Emery, 2017). 
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2.2.2.6. Fitting a variogram model 

The experimental variogram (also known as sample variogram) measures the mean squared 
deviation between two data values, as a function of the separation vector between the data 
locations: 

γොሺhሻ ൌ
ଵ

ଶ|୒ሺ୦ሻ|
∑ ሾzሺx஑ሻ െ zሺxஒሻሿ

ଶ
୒ሺ୦ሻ                                                                (2.13) 

where N(h) is the number of pairs of data locations {x, x} a vector h apart (with, in practice, 
some calculation tolerances). Also a sample covariance can be calculated as: 

C෠ሺhሻ ൌ
ଵ

|୒ሺ୦ሻ|
∑ ሾzሺx஑ሻ െ zതሿሾz൫xఉ൯ െ zതሿሺ஑,ஒሻ஫୒ሺ୦ሻ                                                (2.14) 

where ̅ݖ is an estimate of the mean value, e.g., the average of all the data values. 

Variogram or covariance inference provides a set of experimental values for a finite number 
of lags and directions. Continuous functions (theoretical variogram or covariance) should be 
fitted to these experimental values to deduce variogram or covariance values for any possible 
lag h required by prediction or simulation algorithms (Goovaerts, 1997). 

2.2.2.6.1. Manual, semi-automatic or automatic fitting 

Fitting a model can be done with manual fitting, semi-automatic and automatic methods 
(Goovaerts, 1997; Chilès and Delfiner, 2012). But it should not be trusted to purely automatic 
fitting procedures because they cannot take into account ancillary information which is 
critical when sparse or preferential sampling makes the experimental variogram non-robust. 
Semi-automatic fitting methods are suggested when fitting is considered as an interactive 
work and the user has the final word. So the user pays attention to many factors during the 
fitting, such as the representativeness of the experimental variogram (number of data pairs 
used at each lag and direction), available information on the regionalized variable (sampling 
errors, geological information about the main directions of continuity) or working scale 
(Goovaerts, 1997; Chilès and Delfiner, 2012). 

Semi-automatic procedures may facilitate the determination of model parameters when the 
form of the experimental variogram is clear. In these methods, the most important decisions 
regarding the number, type and anisotropy of basic variogram models (nested structures) 
must be taken by the user. Depending on the defined procedure, some methods need the sill 
or the range for each basic variogram model. With the help of a good interactive graphical 
program, the user could do variogram fitting better than sophisticated fully automatic fitting 
procedures (Goovaerts, 1997). 
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Weighted least squares are commonly used in software to provide an automatic or semi-
automatic fit. In these methods the sum of squared deviations between the modeled points 
and the corresponding experimental variogram values is measured and minimized (Cressie, 
1985; Isaaks, 1999; Rossi and Deutsch, 2014). 

It is a good idea to perform leave-one-out cross-validation or split-sample jackknife to 
compare alternative variogram models. The comparison is done based on the results of the 
final objective, which most often is some kind of prediction. Each of two methods, leave-
one-out cross-validation or split-sample jack-knife, could be performed on different sets of 
estimates resulted from alternative variogram models; the better variogram model would be 
the one that yields a lower average prediction error (Rossi and Deutsch, 2014).  

2.2.2.6.2. Linear model of regionalization 

A regionalized phenomenon can be considered as being the sum of several uncorrelated sub-
phenomena with different spatial scales. So a model can be set up, which splits the random 
field representing the phenomenon into several uncorrelated random fields (Wackernagel, 
2003). 

For instance, a second-order stationary random field Z can be built by adding independent 
zero-mean second-order stationary random fields Zu and a constant m representing the 
expectation of Z: 

Z(x) = Z1(x) + … + Zu(x) + … + Zs(x) + m,                                                      (2.15) 

where cov(Zu(x), Zv(x+h)) = 0 for u ≠ v. With a simple computation, it can be proved that 
the corresponding covariance function model is a nested model of the form (Goovaerts, 1997; 
Wackernagel, 2003): 

C(h) = C1(h) + … + Cu(h) + … + Cs(h).                                                            (2.16) 

In the same way, an intrinsic random field Z(x) associated with a nested variogram can be 
thought as being the sum of S components acting at different scales, the increments of which 
are zero on average and uncorrelated:  

Z(x) = Z1(x) + … + Zu(x) + … + Zs(x),                                                             (2.17) 

With a simple computation, it can be shown that the corresponding variogram model is of 
the form (Goovaerts, 1997; Wackernagel, 2003): 



32 
 

γ(h) = γ1(h) + … + γu(h) + … + γs(h).                                                               (2.18) 

Often, several sills can be recognized on the variogram, which are related to the morphology 
of the regionalized variable. For example, Serra (1968) investigated spatial variations in an 
iron deposit and found up to seven sills, each with a geological interpretation, in the multiple 
transitions between the micrometric and the kilometric scales. For identifying small-scale 
factors, sufficiently fine sampling grids are required, while for identifying large-scale factors 
on the variograms, sufficiently large diameter of the sampling domain is needed 
(Wackernagel, 2003). 

By numbering different sills observed on the experimental variogram with an index u = 1, 
…, S, the nested variogram (2.18) with S elementary variograms can be rewritten as: 

γ	ሺhሻ ൌ ∑ 	γ௨ሺhሻ ൌ
ௌ
௨ୀଵ ∑ 	b௨g௨ሺhሻ

ௌ
௨ୀଵ                                                             (2.19) 

where the gu(h) are basic normalized variograms with given ranges, i.e. elementary variogram 
models with a sill normalized to one. The positive coefficients bu express the actual values of 
the sills of the basic variograms (Goovaerts, 1997; Wackernagel, 2003). 

2.2.3. Modeling spatial continuity: multivariate case  

2.2.3.1. Cross-covariance function 

The direct and cross-covariance functions are defined in the context of a joint second-order 
stationary hypothesis for N random fields Zi, with i = 1,…, N, when for any x, x+h ∈ Ɗ and 
all pairs i, j =  1, …, N, one has: 

ቊ
ሾZ௜ሺxሻሿܧ ൌ ݉௜																																																							

ሺZ௜ሺxሻൣܧ െ ݉௜ሻ. ൫Z௝ሺx ൅ hሻ െ ௝݉൯൧ ൌ ௜௝ሺ݄ሻܥ
																														

The mean of each random field Zi at any x ∈ Ɗ is equal to a constant (mi) and the covariance 
between a pair of random fields just depends on the translation vector h, so it is invariant for 
any translation of the point pair in the domain (Wackernagel, 2003). 

The cross-covariance function Cij for i ≠ j generally is not an even or an odd function. The 
following equalities and inequalities hold for cross-covariance functions: 

 (2.20) 
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ቐ

௜௝ሺ݄ሻܥ ് 			௜௝ሺhሻܥ	

௜௝ሺെ݄ሻܥ ് ௜௝ሺhሻܥ	

௜௝ሺ݄ሻܥ ൌ ௝௜ሺെhሻܥ	

                                      

The cross-covariance function between two random fields may take negative values, even at 
the origin, which indicates that the random fields are negatively correlated. Also it should be 
considered that the maximum value of a cross-covariance function may occur for a non-zero 
lag separation vector (delay effect, frequently observed with random fields that depend on 
time and evolve asynchronously). 

2.2.3.2. Cross-variogram 

The direct and cross-variograms of a set of N random fields Zi, with i = 1,…, N, are defined 
in the context of a joint intrinsic hypothesis, when for any x, x+h ∈ Ɗ and all pairs i, j =  1, 
…, N, one has: 

ቊ
ሾZ௜ሺxܧ ൅ hሻ െ Z௜ሺxሻሿ ൌ 0																																																												

ݒ݋ܿ ቂ൫Z௜ሺx ൅ hሻ െ Z௜ሺxሻ൯, ቀZ௝ሺx ൅ hሻ െ Z௝ሺxሻቁቃ ൌ 2γ௜௝ሺ݄ሻ
 

The cross-variogram can also be defined as in the following equation (2.23), which shows 
that it is an even function (Wackernagel, 2003): 

γij (h) = 
ଵ

			ଶ			
 E[(Zi(x+h)-Zi(x)).(Zj(x+h)-Zj(x))]                                                  (2.23) 

The cross-variogram is zero at the origin (γij (0) = 0), is symmetric with respect to the indices 
(γij(h) = γji(h)) and may be negative, which occurs with negatively correlated random fields. 

It is useful to know about the relation between the cross-variograms and cross-covariance 
functions in the joint second-order stationary framework. This relation is shown in equation 
(2.24). It can be seen that the cross-variogram takes the average between the corresponding 
cross-covariance function for –h and +h: 

γij (h) = Cij(0) െ
ଵ

			ଶ			
 (Cij(-h) + Cij(+h))                                                              (2.24) 

By decomposing the cross-covariance function into an even and an odd function (shown as 
equation (2.25)), it can be seen that the cross-variogram just recovers the even term of the 
cross-covariance function (Wackernagel, 2003): 

(2.21) 

(2.22) 
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even term  odd term

Cij (h) = 
ଵ

			ଶ			
 (Cij(+h) + Cij(-h)) + 

ଵ

			ଶ			
 (Cij(+h) - Cij(-h))                                     (2.25) 

 

2.2.3.3. Pseudo cross-variogram 

Myers (1991) and Cressie (1993) proposed the pseudo cross-variogram as an alternative for 
the traditional cross-variogram, by calculating the variance of cross increments: 

var[Zi(x+h) – Zj(x)] = 2ߨ௜௝ሺhሻ                                                                        (2.26) 

By assuming the expectation of the cross increments is zero, E[Zi(x+h) – Zj(x)] = 0, the 
pseudo cross-variogram can be calculated from 

௜௝ሺhሻߨ ൌ 	
ଵ

			ଶ			
	EሾቀZ௜ሺx ൅ hሻ	–	Z௝ሺxሻቁ

ଶ
ሿ                                                            (2.27) 

The advantage of this function is not being even. But it has some drawbacks, in particular the 
assumption of stationary cross increments does not look realistic, because it may not make 
sense to take the difference between two variables measured in different units (the difference 
between the two variables does not have a physical meaning) and it is difficult to interpret. 
According to the mentioned drawbacks, the pseudo cross-variogram is hardly ever used in 
applications (Wackernagel, 2003). 

2.2.3.4. Fitting a variogram model 

The experimental cross-variogram between two variables for a given lag separation vector h 
can be estimated by using all pairs of data points where both variables are known, using the 
following unbiased estimator: 

γො୧୨ሺhሻ ൌ
ଵ

ଶ|୒ሺ୦ሻ|
∑ ൣz୧ሺx஑ሻ െ z୧൫xஒ൯൧ሾz୨ሺx஑ሻ െ z୨൫xஒ൯ሿ୒ሺ୦ሻ                                 (2.28) 

where N(h) is the number of pairs of data locations a vector h apart (with some calculation 
tolerances). Data locations where only one of the variables is present are simply ignored in 
calculating the cross-variogram (Chilès and Delfiner, 2012). 
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2.2.3.4.1. Sampling designs 

The available measurements for different variables Zi in a given domain may be located at 
the same sample points or at different points for each variable, as shown on Figure 2.11. The 
following situations can be distinguished (Wackernagel, 2003): 

 entirely heterotopic data: the variables are measured on different sets of sample 
points and there is not any sample location in common; 
 

 partially heterotopic data: some variables share some sample locations; 
 

 isotopy: all the variables are known at all sampling points. 

 

 

Figure 2.11: Isotropic data, sample sites are shared (a), partially heterotopic data,  
sample sites may be different (b) (Wackernagel, 2003). 

 

It should be considered that the experimental cross-variogram cannot be calculated in the 
case of an entirely heterotopic sampling, or when most of the sampling data are heterotopic. 
So in this case, one has to use experimental cross-covariances or pseudo cross-variograms 
(Chilès and Delfiner, 2012). 

2.2.3.4.2. Linear model of coregionalization 

As it was explained about the necessity of fitting a variogram model in the univariate case, 
theoretical cross-variograms should be fitted on the experimental cross-variograms too. The 
major difference here is about the complexity of the process for the multivariate case. There 
exist many modeling strategies to fit the direct and cross-variograms. In particular, the linear 
model of coregionalization (Wackernagel, 2003; Chilès and Delfiner, 2012) is widely used 
in practice, for its versatility and simplicity of use. 
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This model extends the concept of nested structures to the multivariate context. Generally, 
the problem of fitting a suitable model includes three main aspects: (i) choosing the 
appropriate nested structures, (ii) estimating the parameters of the model, and (iii) meeting 
the requirements for the consistency of the multivariate model. In this respect, a sufficient 
condition is that, for each nested structure, the sill matrix is symmetric positive semi-definite, 
i.e., that its eigenvalues are non-negative (Journel and Huijbregts, 1978; Wackernagel, 2003). 

It is implicitly assumed that all the regionalized variables being studied are generated by a 
same set of physical processes acting additively at different spatial scales. So, in the linear 
model of coregionalization, the form of all the covariances (variograms) and cross-
covariances (cross-variograms) is that of a nested model composed of the same elementary 
covariance (variogram) functions, just weighted by specific coefficients. The parameters of 
the nested model should be estimated by fitting simultaneously the covariances (variograms) 
and cross-covariances (cross-variograms). 

Under this model, a second-order stationary vector random field Z = {Zi: i = 1, …, N} can 

be decomposed into a set of S spatially uncorrelated components ሼܼ௨ :	u	 ൌ 	1, … , Sሽ and a 
mean value, such that: 

ܼ௜ሺxሻ ൌ ෌ ܼ௨
௜ ሺݔሻ

ௌ

௨ୀଵ
൅ ݉௜                                                                                       (2.29) 

where one has the following equations for all values of the indices i, j, u and v, 

ە
ۖ
۔

ۖ
ۓ
ሾZ௜ሺxሻሿܧ ൌ ݉௜																																																																																																																						ሺ2.30ሻ					

௨ܼൣܧ
௜ ሺݔሻ൧ ൌ 0																																																																																																																								ሺ2.31ሻ					

	ݒ݋ܿ ቀܼ௨
௜ ሺݔሻቁ , ቀܼ௨

௝ሺݔ ൅ ݄ሻቁ ൌ ௨ܼൣܧ
௜ ሺݔሻ	ܼ௨

௝ሺݔ ൅ ݄ሻ൧ ൌ ௜௝ܥ	
௨ሺ݄ሻ																																	ሺ2.32ሻ					

൫ܼ௨	ݒ݋ܿ
௜ ሺݔሻ൯, ൫ܼ௩

௝
ሺݔ ൅ ݄ሻ൯ ൌ ݑ									݄݊݁ݓ																													0 ് 					ሺ2.33ሻ																													ݒ

 

The cross-covariance functions ܥ௜௝
௨ሺ݄ሻ associated with the spatial components can be written 

as the products of real coefficients ܾ௜௝
௨  and real-valued correlation functions ߩ௨ሺhሻ: 

௜௝ሺhሻܥ ൌ෍ ௜௝ܥ
௨ሺ݄ሻ

ௌ

௨ୀଵ
ൌ෍ ܾ௜௝

௨ ௨ሺ݄ሻߩ	
ௌ

௨ୀଵ
                                                              (2.34) 

A set of N×N coregionalization matrices Bu can be set up, so one will have a multivariate 
nested covariance function model C(h) with symmetric, positive semi-definite matrices Bu 

(known as coregionalization matrices), for u = 1… S:  
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ሺ݄ሻܥ ൌ ෍ܤ௨	ߩ௨ሺ݄ሻ

ௌ

௨ୀଵ

 

Similarly, the multivariate nested variogram model associated with a intrinsically stationary 
random fields is 

Γሺ݄ሻ ൌ ൭
ଵଵሺ݄ሻߛ ⋯ ଵேሺ݄ሻߛ
⋮ ⋱ ⋮

ଵேሺ݄ሻߛ ⋯ ேேሺ݄ሻߛ
൱ ൌ ∑ ݃௨ሺ݄ሻ	௨ܤ

ௌ
௨ୀଵ                                                  (2.35) 

where the gu(h) are basic variogram models with given ranges and with unit sills and the Bu 
are symmetric, positive semi-definite symmetric sill matrices i.e., with non-negative 
eigenvalues (Wackernagel, 2003). 

2.2.3.4.3. Manual or semi-automatic fitting 

By increasing the number of variables to three or more, checking the positive semi-
definiteness condition is difficult (one has to calculate the eigenvalues of each 
coregionalization matrix in order to verify that none of them is negative). There exist 
automatic sill fitting algorithms to ensure the positivity of the coregionalization matrices, for 
which the user has to propose the set of basic variogram models, in particular, their number 
(S), types and ranges (Goulard, 1989; Goulard and Voltz, 1992; Emery, 2010a; Desassis and 
Renard, 2011). The only difference with the univariate case (linear model of regionalization) 
is that the scalar sill of each elementary structure is replaced by a positive semi-definite 
matrix of sills.  

2.2.3.5. Coregionalization analysis 

In the second-order stationary model, let us consider the spectral decomposition of the 
variance-covariance matrix of the vector random field Z = {Zi: i = 1, …, N} at h=0: 

ሺ0ሻܥ ൌ  (2.36)                                                                                                    ்ܣܦܣ

where A is an orthogonal matrix (eigenvectors) and D is a diagonal matrix with non-negative 
entries (eigenvalues). Also one can define a vector of N factors (principal components), Y, as 
(Wackernagel, 2003): 

ܻሺݔሻ ൌ  ሻ                                                                                                 (2.37)ݔሺ்ܼܣ
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Such principal components have no cross-correlation at lag h=0. However, they may be 
cross-correlated at other lag vectors, unless specific conditions (in particular, when the linear 
model of coregionalization contains only one nested structure, i.e., S = 1). 

Coregionalization analysis (Goovaerts, 1992; Wackernagel, 2003) consists in decomposing 
the vector random field Z into S sets of spatially uncorrelated vector random fields Z1, …, 
ZS, whose respective covariance matrices at lag vector h are ܤଵ	ߩଵሺ݄ሻ, … ,  ௌሺ݄ሻ as definedߩ	ௌܤ
in equation (2.29): 

ܼሺݔሻ ൌ ∑ ܼ௨
ௌ
௨ୀଵ ሺݔሻ ൅ ݉                                                                                  (2.38) 

Then each of these vector random fields is factorized through principal component analysis, 
by putting: 

ݑ∀ ∈ ሼ1,… , ܵሽ, ௨ܻሺݔሻ ൌ ௨ܣ
்ܼ௨ሺݔሻ                                                                    (2.39) 

where Au is the orthogonal matrix of eigenvectors of Bu. Because the vector random fields 
Z1, …, ZS are spatially uncorrelated and because their respective coregionalization models 
contain a single nested structure, the components of Y1, …, YS have no spatial cross 
correlation. So the components of the initial vector random field Z are decomposed into N×S 
spatially orthogonal factors (the components of Y1, …, YS) (Emery and Peláez, 2012). These 
factors can be interpolated in space, through cokriging or simulation (Wackernagel, 2003; 
Larocque et al., 2006). 

2.2.4. Spatial prediction 

2.2.4.1. Kriging 

The basis for the kriging framework is to predict a random field Z at a target location x by 

weighting the known values Z(x) at surrounding locations {x:  = 1, …, n}, so that the 
expectation of the prediction error is zero and the prediction error variance is minimized. It 
is a probabilistic approach based on the random field model, in which the weighting of the 
data is determined according to the distances between the data and the target location, the 
redundancies between the data and the spatial continuity of the random field given by its 
variogram model. There are many flavors of kriging, but the basic forms differ mostly on the 
assumptions they make regarding the stationarity assumption and the knowledge of the mean 
value. This is expressed as conditions on the set of weights. The more common types of 
kriging are the following (Journel and Huijbregts, 1978; Isaaks and Srivastava, 1989; Chilès 
and Delfiner, 2012; Rossi and Deutsch, 2014): 
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 Simple kriging (SK), in which the mean m is known and often considered as a constant 
(second-order stationarity assumption), so that it can be inferred from the available 
samples in the entire domain. The predictor of the random field Z at location ݔ଴ is: 

                  ܼ∗ሺݔ଴ሻ ൌ ݉ ൅	∑ ఈሻݔఈሺܼሺߣ െ ݉ሻ௡
ఈୀଵ                                             (2.40) 

where ߣఈ are weights attached to the residuals ܼ ሺݔఈሻ െ ݉ and are obtained by solving 
the following system of linear equations (Wackernagel, 2003; Chilès and Delfiner, 
2012): 

                 ∑ ఈݔ൫ܥఉߣ െ ఉ൯ݔ ൌ ఈݔሺܥ െ ଴ሻݔ
௡
ఉୀଵ 																				                                 (2.41) 

The left-hand side of the equations contains the covariances between data locations. 
The right-hand side contains the covariance between each data location and the 
location where a prediction is sought. When ݔ଴ gets far from the data locations, the 
weights tend to be of small magnitude, so that the simple kriging predictor gets closer 
to the known mean value.  
 

 Ordinary kriging (OK), for which the random field is either second-order stationary 
with an unknown mean value or intrinsically stationary. Considering the mean value 
as unknown allows generalizing the predictor to situations where this mean is not 
constant in space: the mean can vary from one region to another, provided that it 
remains (approximately) constant at the scale of the kriging neighborhood (see next 
subsection). The predictor of the random field Z at location ݔ଴ is: 

                    ܼ∗ሺݔ଴ሻ ൌ ∑ ఈߣ
ை௄ሺܼሺݔఈሻሻ

௡
ఈୀଵ                                                           (2.42) 

where the weights are obtained by solving the following system of linear equations 
(Wackernagel, 2003; Chilès and Delfiner, 2012): 

                 ቊ
∑ ఉߣ

ை௄γ൫ݔఈ െ ఉ൯ݔ ൅ ை௄ߤ ൌ γሺݔఈ െ ଴ሻݔ
௡
ఉୀଵ

∑ ఉߣ
ை௄௡

ఉୀଵ ൌ 1
                                  (2.43) 

where ߣఉ
ை௄ is the weight assigned to the data located at ݔఉ and ߤை௄ is a Lagrange 

multiplier. 
 

 Kriging with a trend model, for which the mean value m(x) varies in space, which 
reflects the presence of a systematic trend or “drift” in the spatial distribution of the 
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random field. This variant is also called non-stationary kriging because of the 
location-dependent mean, often modeled as a polynomial function of the spatial 
coordinates (universal kriging) or scaled from a secondary exhaustively known 
variable (kriging with an external drift). 
 

The choice of the kriging method depends on the geological setting, the amount of available 
information, and the characteristics of the random field model envisioned. The most 
commonly used method is ordinary kriging (Rossi and Deutsch, 2014), as it allows more 
versatility in the model: the mean value can be constant at the scale of the local neighborhood, 
but variable at the scale of the entire field, a situation known as “local stationarity”. 

In addition to a prediction of the random field at any target location, kriging provides a 
measure of precision, through the variance of the prediction error (known as the “kriging 
variance”). This variance depends on geometric information (data and target locations) and 
on variogram information (nugget effect, range, sill, anisotropy…) but not on the actual data 
values. 

As an illustration, Figure 2.12 shows an example of simple and ordinary kriging predictions 
and error standard deviations (square root of kriging error variances) for cobalt concentration 
data distributed over a region of about 4 × 5 km2 (Emery, 2017). 

2.2.4.2. Kriging neighborhood 

In practice, the data selected for kriging are quite often a subset of all the available data (those 
located in a “moving neighborhood” around the target location), as using all the available 
data (“unique neighborhood”) may make the computation time prohibitive, or increases this 
computation time without significantly improving the precision of the predictor.  

The loss of precision is small when the moving neighborhood discards the data that would 
receive small weights under a unique neighborhood (in general, these are the data far from 
 ,଴) and/or the data redundant with (in particular, clustered with) non-discarded data (Emeryݔ
2009). 

The shape of the neighborhood should account for the anisotropy in the spatial correlation of 
the data. In general, the neighborhood is chosen as an ellipse (2D) or an ellipsoid (3D), which 
theoretically corresponds to the case of a geometric anisotropy. To improve the distribution 
of the data around the target location, it is common to split the neighborhood into angular 
sectors and to look for data in each sector (Figure 2.13). 
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Figure 2.12: An example of simple and ordinary kriging predictions (right, upper part) and simple and 
ordinary kriging error standard deviations (right, down part) for cobalt concentration data (left) (Emery, 

2017). 
 

 

 

Figure 2.13: An example of moving neighborhood for kriging with up to 3 data per quadrant (Emery, 2017). 
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2.2.4.3. Cokriging 

Cokriging is the multivariate version of kriging where one predicts a variable by accounting 
for data of this variable and of other correlated covariates. In other words, cokriging aims to 
perform the joint prediction of several coregionalized variables, taking into account their 
spatial dependences. Cokriging is advantageous when the target variable (primary variable) 
is under-sampled with respect to other cross-correlated variables (covariates or secondary 
variables). For example, the copper grade (primary variable) may be estimated from a 
combination of copper, gold and molybdenum (Au and Mo are secondary variables) samples 
values. For cokriging, there must be a spatial correlation between the primary and secondary 
variables that can be inferred from available information. As is the case when considering a 
single variable, there are several variants of cokriging, such as simple cokriging (SCK), 
ordinary cokriging (OCK), and universal cokriging (UCK). Conceptually these methods are 
the same as the ones explained with kriging; however, there is the additional complication of 
dealing with at least two variables. For example, cokriging requires a variogram (covariance) 
model for each variable, as well as the cross variograms (covariances) between the different 
pairs of variables, in order to measure the spatial cross-correlations between these variables 
(Rossi and Deutsch, 2014). 

 Simple cokriging 

This variant relies on the knowledge of the mean values {݉௜: i = 1… N} and direct and 
cross-covariances {ܥ௜௝: i = 1… N, j = 1… N} of the N variables under study. In the 

isotopic case, the predictor of the entire set of variables at location ݔ଴ can be written as 
(Chilès and Delfiner, 2012): 

଴ሻݔሺ∗ࢆ                     ൌ ࢇ ൅ ∑ ఈࢫ
ఈሻݔሺࢆ்

௡
ఈୀଵ                                                           (2.44) 

where ࢇ is a N × 1 vector and ሼࢫఈ, ߙ ൌ 1…݊ሽ are N × N weight matrices defined by: 

ࢇ ൌ ൭ࡵ െ෍ࢫఈ
்

௡

ఈୀଵ

൱࢓ 

൭
۱ሺݔଵ െ ଵሻݔ ⋯ ۱ሺݔଵ െ ௡ሻݔ

⋮ ⋱ ⋮
۱ሺݔ௡ െ ଵሻݔ ⋯ ۱ሺݔ௡ െ ௡ሻݔ

൱൭
ଵࢫ
⋮
௡ࢫ

൱ ൌ ൭
۱ሺݔଵ െ ଴ሻݔ

⋮
۱ሺݔ௡ െ ଴ሻݔ

൱  (2.45) 

 the N × 1 vector whose generic entry is ࢓ ,௜ݖ the N × 1 vector whose generic entry is ࢆ
݉௜, and ۱ሺݔఈ െ ఈݔఉሻ the N × N matrix whose generic entry is C௜௝ሺݔ െ   .ఉሻݔ

 
In the heterotopic case, the rows and columns associated with missing data values in 
equation (2.45) should be removed to calculate the weight matrices. 
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 Ordinary cokriging 
 

This variant relies only the knowledge of the direct and cross-covariances or direct and 
cross-variograms {γ௜௝: i = 1… N, j = 1… N} of the N variables under study, while the 

mean values are assumed unknown. In the isotopic case, the predictor of the entire set of 
variables at location ݔ଴ can be written as (Chilès and Delfiner, 2012): 

଴ሻݔሺ∗ࢆ                    ൌ ∑ ఈࢫ
ఈሻݔሺࢆ்

௡
ఈୀଵ                                                                (2.46) 

where ሼࢫఈ, ߙ ൌ 1…݊ሽ are N × N weight matrices defined by: 

൮

ડሺ1ݔ െ 1ሻݔ ⋯ ડሺ1ݔ െ ሻ݊ݔ ۷
⋮ ⋱ ⋮ ⋮

ડሺ݊ݔ െ 1ሻݔ ⋯ ડሺ݊ݔ െ ሻ݊ݔ ۷
۷ ⋯ ۷ ૙

൲൮

૚ࢫ
⋮
࢔ࢫ
െۻ

൲ ൌ ൮

ડሺ1ݔ െ 0ሻݔ
⋮

ડሺ݊ݔ െ 0ሻݔ
۷

൲  (2.47) 

ડሺݔఈ െ ఈݔఉሻ is the N × N matrix whose generic entry is γ௜௝ሺݔ െ  ,ఉሻݔ

M is a matrix of Lagrange multipliers, I the identity matrix, and 0 the zero matrix.  

Again, in the heterotopic case, the rows and columns associated with missing data values 
in equation (2.47) should be removed to calculate the weight matrices. 

 

Same as kriging, the variances of cokriging errors depend on geometric information (data 
and target locations) and on variogram information but they do not depend on the data values. 

For a particular variable, cokriging improves the results of kriging, i.e., it yields a smaller 
error variance, when the variable is under-sampled with respect to other cross-correlated 
variables (heterotopic sampling). This case is advantageous when secondary variables are 
more accessible or less expensive to be sampled than the primary variable of interest 
(Wackernagel, 2003; Chilès and Delfiner, 2012). 

2.2.4.4. Cokriging neighborhood 

Cokriging with many variables and data generates a very large linear system to solve, which 
can be time consuming or prohibitive. This urges the choice of a small subset of data located 
around the target location, called a neighborhood or a plan, as a crucial step in cokriging.  

Figure 2.14 shows three different neighborhoods for a given central target location (denoted 
by a star), primary data (denoted by full circles) as well as three alternate subsets of data from 
a secondary variable (denoted by squares). The neighborhood (A) which can be termed as 
the full neighborhood, uses all data available for the secondary variable. The neighborhood 
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(C), called a collocated neighborhood by Xu et al. (1992), uses the secondary data only at the 
location targeted for prediction, whereas the neighborhood (B) is called a multi-collocated 
neighborhood by Chilès and Delfiner (2012) and restricts the secondary information to the 
subset of locations where primary data is available as well as to the target location 
(Wackernagel, 2003). It has been observed that the latter option (multi-collocated, B) often 
yields predictions that are almost as precise as the ones obtained with the full neighborhood 
(A). In contrast, the collocated neighborhood (C) loses information and provides poorer 
predictions.  

In a more general context where the secondary variable is not exhaustively known, it is 
advisable to separately search for data of each (primary and secondary) variable, in order to 
avoid omitting a relevant data for cokriging (Madani and Emery, 2018). 

 

 

Figure 2.14: Three examples of neighborhoods (A) full neighborhood, (B) multi-collocated neighborhood, 
and (C) collocated neighborhood (Wackernagel, 2003). 

2.2.4.5. Leave-one-out cross-validation and split-sample jack-knife 

The many interdependent subjective decisions in a geostatistical study make somehow 
necessary to validate the entire geostatistical model and (co)kriging plan prior to any 
production run. The objective of leave-one-out cross-validation is to compare and validate 
two or more alternative theoretical variogram models, or alternative types of (co)kriging 
(ordinary kriging, universal kriging, etc.), or alternative (co)kriging neighborhoods (Deutsch 
and Journel, 1998). In this method, one data is removed at each time from the data set and is 
predicted by using the remaining data. To avoid inappropriate effects of the nearest datum in 
a drill hole, one or more of the closest data can be removed in the prediction exercise. Then 
one calculates the prediction error (true value minus predicted value) at each data location 
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and studies the quality of the prediction errors by means of statistical and graphical tools 
(Figure 2.15). As a complement, one can also examine the standardized errors (errors divided 
by their standard deviations).  

In split-sample jack-knife techniques, a subset of the data (say, 40 or 50 % of the total) is 
removed completely from the data set, and the prediction is done using the remaining data. 
Jack-knife is a more interesting alternative as long as there is sufficient data to obtain a 
statistically meaningful set of errors (Rossi and Deutsch, 2014). 

 

Figure 2.15: Error checks. Histogram of errors, cumulative distribution function of error, scatter diagram of 
true value vs. prediction, and scatter diagram of error vs. true values (Rossi and Deutsch, 2014). 
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2.2.5. Geostatistical simulation 

2.2.5.1. Simulation versus prediction 

Kriging provides a value that is, on average, as close as possible to the actual (unknown) 
value, according to some definition of goodness or quality (zero mean error and minimal 
error variance). The map of such best local predictions, however, may not be best as a whole. 
Kriging, like most other interpolation methods, has an unavoidable smoothing effect, which 
makes it useful for visualizing trends, but not local details. It does not reproduce the spatial 
variability of the variable, which can cause significant biases when nonlinear responses are 
of interest (Chilès and Delfiner, 2012; Rossi and Deutsch, 2014). 

Another drawback of prediction is that the smoothing is not uniform; actually it depends on 
the number and configuration of the local data. Smoothing is minimal close to the data 
locations and increases as the target location gets farther away from data locations. A map of 
kriging predictions appears more variable in densely sampled areas than in sparsely sampled 
areas, so the kriged map may show artifact structures (Goovaerts, 1997). 

This is where simulation comes into play. Unlike predicted models, simulated models (called 
“outcomes” or “realizations”) aim to reproduce the true spatial variability and, also, at 
providing a model of uncertainty at every target location or jointly over several locations 
(Dimitrakopoulos, 1997). In particular, the extreme values of the original distribution are 
preserved and are not eliminated like in the case of prediction and its smoothing effect (Figure 
2.16).  

Simulated models can be used for several purposes, such as (Goovaerts, 1997; Rossi and 
Deutsch, 2014):  

(i) risk analysis, by examining the most optimistic and the most pessimistic realizations; 

(ii) prediction, by averaging the realizations; 

(iii) estimation of the probability of an event, by calculating the frequency of occurrence 
of this event among the realizations; 

(iv) assessment of uncertainty, by checking how different are the realizations. 
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Figure 2.16: Comparison of predicted and simulated models (Rossi and Deutsch, 2014). 

2.2.5.2. Principles of simulation 

The formalism of random fields involves a family of alternative realizations similar in their 
spatial variability to the observed reality but different otherwise. Simulation aims to construct 
these realizations to visualize heterogeneity, to reproduce the true variability of the variable 
under study and to quantify spatial uncertainty, each realization representing a possible 
outcome or “scenario”.  

Simulation relies on the interpretation of the regionalized variable as one realization of a 
random field and consists in constructing other realizations of this random field. Then it can 
be computed a result for each realization and the statistical distribution of the results can be 
studied. There are three main challenges here: (1) defining the spatial distribution of the 
random field, insofar as knowing just the mean value and the variogram is not sufficient (Eq. 
2.3), (2) drawing realizations of the random field (Leuangthong et al., 2008; Chilès and 
Delfiner, 2012), and (3) conditioning these realizations to the available information, i.e., 
forcing the realizations to reproduce the data values observed at the data locations (concept 
of conditional simulation). 

In practice, high-order distributions cannot be defined from a limited set of sampling data, so 
a parametric model or some simplifying assumption is required. There are few distributions 
which can be parameterized simply, the multivariate Gaussian distribution being one of them, 
which is remarkable in its tractability and is the most common random field for representing 
regionalized variables measured on continuous quantitative scales. About random fields with 
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discrete or categorical distributions, truncated Gaussian and plurigaussian models are among 
the most commonly used, as they are based on the multivariate Gaussian model.  

Preferably, a large number of realizations are needed to better describe the conditional 
cumulative distribution functions at unsampled locations, thus to measure the uncertainty at 
these locations. However, according to the practical limitations, a smaller number is generally 
used. Based on authors’ experience, between 20 and 100 realizations are generally sufficient 
to characterize the range of possible values for the unsampled locations (Rossi and Deutsch, 
2014). 

Each realization constitutes a possible outcome, so that one can work on it as if it were the 
reality. Accordingly, each realization provides an unbiased response to the problem under 
consideration. And, with a set of realizations, one obtains a set of responses that reflect the 
uncertainty on the true unknown response. In particular, one can determine the most 
favorable response (best case), the least favorable response (worst case), and the average 
response (average case). 

Geostatistical simulation has become popular especially in the mining industry as a tool that 
provides models of uncertainty at different spatial scales and different stages of a mining 
project. It is often built on fine grids, fine enough to provide a sufficient number of nodes 
within the block size of interest. The vertical resolution of the grid should be a function of 
the support data, for example in modeling a variable mined by open pit, the size of the mining 
bench is considered. Sometimes larger grid sizes should be used, because of the limitations 
in processing ability of the computers (Rossi and Deutsch, 2014). Simulation can be applied 
in related fields of ore body modeling with different aims and purposes, such as: grade control 
tools in daily operations (Rossi, 1999; Verly, 2005), to analyze risk related to resource 
classifications (Rossi and Camacho, 2001; Emery et al., 2006; Dimitrakopoulos et al., 2009), 
to assess the uncertainty of minable reserves at the project feasibility stage (Guardiano et al., 
1995; Glacken, 1996; Journel and Kyriakidis, 2004; Leuangthong et al., 2006), mine 
planning (Jewbali and Dimitrakopoulos, 2009; Contreras et al., 2010), analysis of financial 
risk of a mining project (Dimitrakopoulos, 2009; Godoy, 2009), and to assess mineralization 
potential in certain settings. Other applications include assessment of recoverable reserves, 
drill hole spacing optimization studies and sampling design. 

2.2.5.2.1. Reproducing model statistics  

As explained previously, instead of a map of local best predictions, simulation generates 
maps of realizations, say, {z(l)(x): x	∈ D} with l denoting the l-th realization, which reproduce 
the statistics supposed most consequential for the problem in hand. Typical requisites for 
such simulated maps are as follows (Goovaerts, 1997): 

1. The realization is conditional to the data values: 
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z(l)(x) = z(xα)            ∀ x = xα , α = 1, …, n                                           (2.48) 

2. The histogram of simulated values reproduces closely the sample histogram. 

3. The covariance model C(h) or, better, the set of indicator covariance models CI(h; zk) 
for various thresholds are also reproduced. 

More complex features, such as the spatial correlation with a secondary attribute or high-
order statistics, may also be reproduced. The set of alternative realizations {z(l)(x): x	∈ D, l = 
1, …, L}, which meets the mentioned requisites, provides a visual and quantitative measure 
of spatial uncertainty. 

2.2.5.2.2. Non-conditional vs. conditional simulation 

Non-conditional simulation just aims to construct realizations with the same variability as 
the variable under study, but without reproducing the data values at the data locations. So 
different realizations have, up to statistical fluctuations, the same histogram, same variogram, 
etc., but not the same values (even at data locations). However, to be realistic, each realization 
should also reproduce the known values at the data locations. The simulation is said to be 
conditional when it restitutes the data values at the sampling locations {xα: α = 1, …, N}. 

Geostatistical conditional simulation reproduces the posterior spatial distribution of the 
regionalized variable of interest, i.e., the distribution conditional to the available data (Rossi 
and Deutsch, 2014). In particular, far from the conditioning data, posterior and prior (non-
conditional) distributions are the same, whereas, at a data location, there is no uncertainty 
and one obtains the data value in all the realizations. 

2.2.5.3. Multi-Gaussian model 

2.2.5.3.1. Definition and key properties 

The probability density function of the univariate Gaussian or normal distribution is: 

݃ሺݖ; ,ߤ	 ଶሻߪ ൌ
ଵ

√ଶగఙమ
݁
ି
ሺ೥షഋሻమ

మ഑మ                                                                              (2.49) 

where ߤ and ߪଶ are the mean or expectation and the variance of the distribution. The so-
called “standard normal distribution” is given by taking ߤ ൌ 0 and ߪଶ ൌ 1 in the general 
normal distribution. 

A random field is assumed to be Gaussian if it fulfills the following equivalent properties: 



50 
 

 every linear combination of the variables at given locations {ݔଵ, … ,  ௡} has aݔ
Gaussian distribution; 

 the joint probability density function of the random vector ܼ ൌ 	 ሺܼሺݔଵሻ, … , ܼሺݔ௡ሻሻ
௧ 

is: 

gሺݔଵ, … , ;௡ݔ ,ଵݖ … , ௡ሻݖ ൌ 	
ଵ

ሺ√ଶగሻ೙	ඥୢୣ୲ሺ∑ሻ
expሼെ

ଵ

ଶ
ሺݖ െ ݖሻ௧∑ିଵሺߤ െ  ሻሽ           (2.50)ߤ

with	ݖ ൌ 	 ሺݖଵ, … , ௡ሻݖ
௧, ߤ is the n-dimensional mean vector of Z, and ∑ is the n×n 

variance-covariance matrix of Z. 

In this model, the prior distribution of Z(x) is standard Gaussian. Given the values at some 
locations, the posterior or conditional distribution of Z(x) is still Gaussian, with mean equal 
to the simple kriging prediction of Z(x) and with variance equal to the simple kriging variance 
(Chilès and Delfiner, 2012): 

{Z(x) | data} = ZSK(x) + ߪSK(x) U(x) with U(x) ∼ N(0,1) independent of data. 

2.2.5.3.2. Gaussian transformation or anamorphosis 

In practice, the regionalized variables under study do not have a Gaussian univariate 
distribution, so that the direct fitting of a multi-Gaussian model is inadequate. However, the 
univariate distribution can be transformed into a standard Gaussian in order to become 
consistent with the multi-Gaussian model, a process known as Gaussian transformation or 
anamorphosis (Figure 2.17) (Chilès and Delfiner, 2012).  

 

 

Figure 2.17: An example of graphical Gaussian transformation (Chilès and Delfiner, 2012). 
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The compatibility of higher-order distributions with the multi-Gaussian hypothesis should 
also be checked. In practice, to validate this assumption, one can look at the bivariate 
distributions, i.e., the distributions of pairs of data, via the examination of lagged scatter plots, 
indicator variograms, madograms and variograms of order less than 2 (Goovaerts, 1997; 
Emery, 2005). 

2.2.5.3.3. Mahalanobis distance 

In equation (2.50), ඥሺݖ െ ݖሻ௧∑ିଵሺߤ െ  ሻ is called the Mahalanobis distance, which gives aߤ

measure of the distance between a test point of z from the mean ߤ. It should be considered 
that, in the one-dimensional case, the distribution reduces to a univariate normal distribution 
and the Mahalanobis distance reduces to the standard score. Actually this distance is a multi-
dimensional generalization of the idea of measuring how many standard deviations away z 
is from the mean ߤ, and it grows as z moves away from the mean. The Mahalanobis distance 
is dimensionless and scale-invariant, and takes into account the correlations of the data set.  

If ∑= I (identity matrix), then the Mahalanobis distance changes to ඥሺݖ െ ݖሻ௧ሺߤ െ  ሻ whichߤ

is the Euclidean distance. 

2.2.5.3.4. Geometry of the Gaussian 

The geometry of the Gaussian can be understood through the eigen-decomposition of the 
variance-covariance matrix ∑. It should be considered a curve of constant probability, so the 
exponential part of equation (2.50) should be constant because the other parts are just for 
normalizing. Thus, the following should be constant: 

Δଶ ൌ ሺݖ െ ݖሻ௧∑ିଵሺߤ െ  ሻ                                                                               (2.51)ߤ

For knowing Δଶ, it should be considered the eigen-decomposition of the variance-covariance 
matrix ∑: 

∑ ൌ ܷΛܷ௧                                                                                                        (2.52) 

where ܷ is a orthogonal matrix of eigenvectors and Λ is a diagonal matrix of eigenvalues. In 
the case of two components (bivariate Gaussian distribution), it can be written as: 

∑ ൌ ቂ
ଵݑ ଶݑ
↓ ↓

ቃ ൤
ଵߣ 0
0 ଶߣ

൨ ቂ
ଵݑ →
ଶݑ →ቃ                                                                     (2.53) 



52 
 

Then one can define ݇௜ ൌ ௜ݑ
்ሺݖ െ ݖሻ which is the projection of vector ሺߤ െ  ሻ onto the i-thߤ

eigenvector ݑ௜ (shown on Figure 2.18). So it can be seen that Δଶ has a very simple form in 
terms of these ݖ௜: 

Δଶ ൌ
௭భ
మ

ఒభ
൅

௭మ
మ

ఒమ
                                                                                                     (2.54) 

which is precisely the equation of an ellipse with one axis of size ඥߣଵ and the other axis of 

size ඥߣଶ. 

 

Figure 2.18: Geometry of the Gaussian 

 

So the multi-variate Gaussian distribution can be generalized by: 

 The vector mean 
 

 The covariance matrix, which describes the shape (eigenvectors ݑ௜) and the size 
(eigenvalues ߣ௜) of the bell-shaped model. 

2.2.5.3.5. Multi-Gaussian non-conditional simulation algorithms 

 Sequential Gaussian simulation 

Sequential Gaussian simulation is one of the most widespread algorithms for simulating 
Gaussian random fields (Ripley, 1987; Isaaks, 1990; Gómez-Hernández and Journel, 1992; 
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Gómez-Hernández and Cassiraga, 1994; Goovaerts, 1997; Deutsch and Journel, 1998; 
Emery, 2004, 2010b). 

At each step, one simulates the random field at one location and incorporates the simulated 
value to the set of conditioning data for simulating the random field at the next locations. 
This method allows directly constructing realizations conditional to existing data, is simple 
and easy-to-run, and also allows the refining of an existing simulation (i.e., increasing its 
resolution). But it has several drawbacks, such as being computationally slow and expensive 
(Goovaerts, 1997; Deutsch and Journel, 1998; Emery, 2004; Chilès and Delfiner, 2012). 

 

 Matrix decomposition method 

Simulation through the Cholesky decomposition of the covariance matrix provides the fastest 
solution when the total number of conditioning data plus the number of locations targeted for 
simulation is small (fewer than a few thousands) and a large number of realizations is 
requested (Luster, 1985; Alabert, 1987; Davis, 1987). This is an exact algorithm, i.e., it is 
theoretically correct and without any approximation. Once the Cholesky decomposition of 
the variance-covariance matrix is obtained, one can generate many realizations very quickly. 
However, the decomposition is difficult to obtain when the total number of conditioning data 
plus number of target locations is large (Chilès and Delfiner, 2012). 

 

 Continuous spectral method 

This method is based on Bochner’s theorem, according to which every continuous covariance 
function in Թௗ is the Fourier transform of a positive and integrable measure. It consists in 
simulating the random field as a mixture of cosine waves with random frequencies 
(distributed according to the spectral distribution of the covariance) and phases (distributed 
uniformly). This algorithm is an extremely fast and computationally parallelizable method, 
and one can simulate as many locations as desired without much computational requirement. 
But the simulated random field is not exactly multi-Gaussian, although it possesses the 
correct covariance function. For obtaining a simulation that is approximately multi-Gaussian, 
one has to sum numerous independent cosine waves (central limit theorem) (Shinozuka, 
1971; Mejia and Rodríguez-Iturbe, 1974; Lantuéjoul, 2002; Chilès and Delfiner, 2012). 

 

 Turning bands  

The turning bands method aims to simplify the simulation in multidimensional spaces, by 
generating a 3D simulation from several independent 1D simulations along lines that can be 
rotated in the 3D space (Matheron, 1973; Journel, 1974; David, 1977; Mantoglou and Wilson, 
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1982; Lantuéjoul, 2002; Emery and Lantuéjoul, 2006; Emery, 2008a). As the continuous 
spectral method, this algorithm is an extremely fast method, computationally parallelizable, 
and one can simulate as many locations as desired at a low cost. Also this algorithm exactly 
reproduces the desired covariance (or variogram). But the simulated random field is not 
exactly multi-Gaussian. To get close to the multi-Gaussian distribution, it is necessary to 
consider several hundreds or thousands of lines equi-distributed onto the unit sphere of the 
3D space (Figure 2.19).  

 

Figure 2.19: Simulations using 1, 10, 100 and 1000 turning bands (Wackernagel, 2013). Multivariate 
normality is almost reached in the last case 

 

2.2.5.3.6. Conditioning to data 

Two simulation algorithms allow directly obtaining conditional simulation: (i) sequential 
method and (ii) matrix decomposition method. The other algorithms only allow generating 
non-conditional realizations. However, it is possible to convert a non-conditional realization 
into a conditional one thanks to an additional step based on simple kriging. Indeed, consider 
a Gaussian random field Z known at n sample points {xα: α = 1, 2, …, n}, let Z*(x) denote 
the simple kriging predictor of Z at point x based on the conditioning data (Z(xα)) (Chilès 
and Delfiner, 2012). It can be written: 
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                                    Z(x)          =  Z*(x)                   + [Z(x) - Z*(x)]             (2.55) 

                                    true value = kriging predictor + kriging error 

 

Since Z(x) is not known, the kriging error is unknown too. Now it can be considered the same 
equality for a non-conditional simulation ZS(x), where ܼ ௌ

∗ሺݔሻ is the kriging predictor obtained 
as if the simulation were known only at the same sampling points xα: 

                                    ZS(x) = ௌܼ
∗ሺݔሻ+ [ZS(x) - ௌܼ

∗ሺݔሻ]                                     (2.56) 

This time, the value (ZS(x)) is known and so the error (ZS(x) - ௌܼ
∗ሺݔሻ) is known too. Hence 

the idea of substituting (in 2.47) the unknown error by the simulation of this error, as shown 
in Figure 2.20 gives us conditional simulation (Chilès and Delfiner, 2012): 

                                    ZCS(x) = Z*(x) + [ZS(x) - ௌܼ
∗ሺݔሻ]                                   (2.57) 

where: 

Z*(x) is the simple kriging predictor of Z(x) at the point x based on the conditioning data. 

ZS(x) is a non-conditional simulation at location x. 

ௌܼ
∗ሺݔሻ is the simple kriging predictor obtained as if the non-conditional simulation were 

known only at the sampling points xα. 

Since kriging is an exact interpolator, at the sampling points xα one has Z*(xα) = Z(xα) and 

ௌܼ
∗൫ݔ஑ ൯ = ZS(xα), so ZCS(xα) = Z(xα). Conversely, the effect of conditioning decreases and 

finally vanishes when moving away from the data and the conditional simulation coincides 
with the non-conditional one. 
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Figure 2.20: Conditioning a simulation: (a) real curve (unknown), sampling points and kriging; (b) non-
conditional simulation (known), sampling points, and simulation of the kriging error; (c) kriging errors are 

picked from the simulation and added to the kriged curve (Chilès and Delfiner, 2012). 
 

In practice, it suffices to perform a single kriging by writing:  

                                    ZCS(x) = ZS (x) + [Z*(x) - ௌܼ
∗ሺݔሻ]                                        

                                               = ZS (x) + ∆Z*(x) 
(2.58) 
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where ∆Z*(x) = [Z(x) - ZS(x)]*, which is the difference between the kriging prediction of the 
data and the kriging prediction obtained as if the non-conditional simulation were known 
only at the conditioning points. This re-expression shows that one can obtain a simulated 
value by (i) performing a non-conditional simulation to obtain ZS(x), and (ii) kriging the 
difference between the non-conditional simulated values at the data locations and the actual 
data values (Leuangthong et al., 2008).  

Some comments about the process of the conditioning should be considered: 

 For a given target location x, the kriging weights are the same for all the realizations. 
Therefore, solving a single kriging system is sufficient for conditioning several 
realizations. 
 

 Kriging only uses the original conditioning data, not the previously simulated values 
(this is a parallel simulation paradigm, not a sequential one). So, the calculations can 
be parallelized. 
 

 Usually, one uses simple kriging with zero mean. This can be replaced by ordinary 
kriging if one assumes the mean as unknown (Emery, 2008b). The resulting 
simulation still reproduces the prior variogram. 
 

 In the multivariate case, one just has to replace kriging by cokriging. 

2.2.5.4. Plurigaussian model 

The plurigaussian model (Galli et al., 1994) has been designed to simulate categorical random 
fields, i.e., random fields that assume a finite set of values (categories) in space and represent 
geological domains associated with lithology, alteration or mineralogical assemblage. 

This model has been initially used in the petroleum industry to simulate lithological facies in 
oil reservoirs, but over recent years the mining industry has also started using this approach 
for simulating rock types or mineralogical domains in ore bodies (Skvortsova et al., 2000, 
2002; Deraisme and Field, 2006; Emery and González, 2007a, 2007b; Emery et al., 2008; 
Armstrong et al., 2011; Yunsel and Ersoy, 2013). Applications have been carried out in a 
variety of ore deposits such as: 

 Granite-hosted uranium deposits (Skvortsova et al., 2000, 2002) 

 Roll front uranium deposits (Fontaine and Beucher, 2006) 

 Diamond pipes (Deraisme and Field, 2006) 

 Porphyry copper deposits (Carrasco et al., 2007; Emery and González, 2007a, 2007b; 
Emery et al., 2008) 
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 Nickel laterite deposits (Rondon, 2009) 

 Gold deposits (Yunsel and Ersoy, 2011) 

 Epithermal lead-zinc deposits (Yunsel and Ersoy, 2013). 

Application of the plurigaussian model in the geosciences is not limited to the petroleum and 
mining industries, as it has been applied in other fields like hydrogeology and environmental 
sciences (Cherubini et al., 2009; Mariethoz et al., 2009).  

The basic idea of the plurigaussian model is to consider two or more Gaussian random fields 
(usually independent), which are simulated at every location in the study area. Then, using a 
truncation rule, the Gaussian values are converted into geological domains (Figure 2.21).  

 

 

Figure 2.21: Examples of realizations of geological domains (bottom) obtained by truncating two independent 
Gaussian random fields (top). The truncation rule is represented by a flag below each realization, in which the 

abscissa axis represents the first Gaussian random field, the ordinate axis represents the second Gaussian 
random field, and the horizontal and vertical lines represent the truncation thresholds that define the partition 

of the bi-Gaussian space into geological domains. 
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2.2.5.4.1. Model parameters 

The practical implementation of the model requires defining:  

 a truncation rule: it has an impact on the contacts between domains 

 truncation thresholds: they have an impact on the proportion of space covered by each 
domain 

 the (direct and cross-)covariances or variograms of the underlying Gaussian random 
fields: they characterize the spatial continuity of these fields, hence, of the geological 
domains that will be obtained after applying the truncation rule.  

 

 Truncation rule  

The truncation rule consists in defining a partition of the Gaussian space, which associates 
the values of the Gaussian random fields with the geological domains (Le Loc’h et al., 1994; 
Armstrong et al., 2011; Lantuéjoul, 2002; Dowd et al., 2003; Xu et al., 2006). 

Domains that are in contact in space should be touching each other in the truncation rule too 
(shown on Figure 2.21). And when there is no contact, the truncation rule should represent 
it, which can be shown by sequential contacts between domains, as illustrated in Figure 2.21D 
with domains 1 and 3. Also, chronological relationships can be shown in the truncation rule; 
for example, in Figure 2.21C, the first domain is seen to cross-cut the other two, therefore, 
from a geological point of view, it should represent a younger domain, while domains 2 and 
3 are older. In conclusion, the layout of the truncation rule has implications on the spatial 
relationships between the geological domains, via the permissible and forbidden contacts 
between domains, and on their chronological ordering. 

 

 Truncation thresholds  

Given the geometry of the truncation rule, one has to specify the numerical values 
(thresholds) that delimit the different domains of the partition in the Gaussian space. For N 
underlying Gaussian random fields, grouped into a vector random field ܼ ൌ ሼܼሺݔሻ: ݔ ∈ Թேሽ 
with N components, and M geological domains, one usually has with M – 1 thresholds that 
should be defined according to the proportion of each domain. Let us suppose that g(.) is the 
joint probability density function of the Gaussian random fields. For calculating the 
probability of occurrence of the i-th geological domain at a given location x, one needs to 
solve the following equation:  

௜ܲሺݔሻ ൌ ׬ ݃ሺݖଵ, … , ଵݖேሻ݀ݖ ே஽೔ݖ݀…
                                                                  (2.59) 
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where ܦ௜ is the region of the partition associated with the i-th geological domain (a subset of 
Թே delimited by the thresholds). Even with two Gaussian random fields, it is hard to solve 
this equation analytically, but most often, it can be solved numerically by trial and error. Trial 
and error methods and testing successively all the thresholds, lead it to be very slowly. But 
these calculations may be done faster by grouping the domains, as in Figure 2.22: the desired 
partition is shown on the top line, while the second line shows the order in which the 
thresholds are evaluated, starting from the top block. 

 

Figure 2.22: Successive groupings to obtain the truncation thresholds (modified from Armstrong et al., 2011) 

 

 Variograms of the underlying Gaussian random fields  

For any separation vector h, the indicator cross-variogram between two geological domains 
(with indices i and j) is derived from the corresponding non-centered covariance 

௜௝ሺ݄ሻߛ ൌ ௜௝ሺ0ሻܥ െ
			ଵ			

ଶ
	ሺܥ௜௝ሺെ݄ሻ ൅  ௜௝ሺ൅݄ሻሻ                                                  (2.60)ܥ

with (Armstrong et al., 2011): 

௜௝ሺ݄ሻܥ ൌ ,௜ܦ	߳	ሻݔሼܼሺ	ܾ݋ݎ݌ ܼሺݔ ൅ ݄ሻ	߳	ܦ௝ሽ                                                       (2.61) 

If ܦ௜ and ܦ௝ are rectangular parallelepipeds of Թே and the components of the vector random 

field Z are independent, the second member of equation (2.61) is a function of the direct 
covariances or variograms of the components of Z and can be calculated by numerical 
integration (Dowd et al., 2003) or by using expansions into Hermite polynomials (Emery, 
2007). This establishes a link between the variograms of the underlying Gaussian random 
fields and the indicator variograms, which are accessible experimentally from the observed 
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geological domains at sampling locations. The former can therefore be determined according 
to the fitting of the latter, quite often, through a trial-and-error procedure (Emery, 2007; 
Armstrong et al., 2011). 

2.2.5.4.2. Conditional simulation 

Once the parameters of the plurigaussian model are specified as mentioned in the previous 
subsection, plurigaussian simulation can be performed in three main steps (Lantuéjoul, 2002; 
Dowd et al., 2003; Emery, 2007; Armstrong et al., 2011):  

1. Simulate the underlying Gaussian random fields at the data locations, conditionally 
to the categorical data.  

2. Simulate the Gaussian random fields at the target locations, conditionally to the 
values obtained in the previous step (this step can be performed by any multi-
Gaussian simulation algorithm).  

3. Apply the truncation rule to obtain the simulated domains.  

The first step is the difficult one, which can be realized by an iterative algorithm known as 
the Gibbs sampler (Geman and Geman, 1984; Casella and George, 1992), which belongs to 
the family of Monte Carlo Markov Chain (MCMC) approaches (Ripley, 1987; Gentle, 2009; 
Chilès and Delfiner, 2012). The general procedure is the following:  

 Initialization  

For each data location ݔఈ, generate a vector with N components ݖఈ in ܦ௜ሺఈሻ, where ݅ሺߙሻ is 

the index of the geological domain observed at ݔఈ. 

 Iteration  
 

1. Select a data location ݔఈ, regularly or randomly.  
 

2. Calculate the distribution of ܼ ሺݔఈሻ conditional to the other data ሼܼ൫ݔఉ൯:	ߚ ്  ሽ. Thisߙ

is a Gaussian distribution, with mean equal to the simple kriging of	ܼሺݔఈሻ and 
covariance matrix equal to the covariance matrix of the simple kriging errors.  
 

3. Simulate a vector ݖఈ according to the previous conditional distribution.  
 

4. If ݖఈ is compatible with the domain prevailing at ݔఈ (i.e., ݖఈ	߳	ܦ௜ሺఈሻ), replace the 

current value of ܼሺݔఈሻ  by ݖఈ.  
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5. Go back to step 1 and loop many times. 

The Gibbs sampler so presented is an irreducible, aperiodic and reversible Markov chain, 
with the target Gaussian distribution as its ergodic limit. In other words, if the number of 
iterations increases infinitely, the distribution of the simulated vectors at the data locations 
converges to the conditional distribution of the desired Gaussian random fields.  

There are some common strategies for selecting the data in Step 1 (Roberts and Sahu, 1997; 
Galli and Gao, 2001): 

 Random sweep: the index of the data is chosen uniformly in {1, …, n}.  

 Deterministic updating: the index of the data is increased by one unit at each iteration.  

 Reverse updating: the index of the data is increased by one unit at the first iterations, 
then decreased by one unit at the next iterations, and so on.  

 Random permutation: the index of the data follows a random permutation of {1, …, 
n} for each group of n successive iterations.  

Arroyo et al. (2012) showed that the last strategy (random permutation) is getting much faster 
to convergence. A full neighborhood is required for kriging at Step 2; an alternative version 
of the sampler has been proposed recently to face the case when the number of data is too 
large to implement such a neighborhood (Lantuéjoul and Dessassis, 2012; Arroyo et al., 
2012). 

2.3. State-of-the-art on validation of geological loggings and 
interpretations 

2.3.1. Validating and reclassifying geological logs 

Quality control and validation of geological logging have been discussed in both the mining 
and petroleum industries using different methods and approaches based on geological or 
geophysical knowledge, data analysis or data mining, or geostatistics.  

2.3.1.1. Geology and geophysics-based approaches 

Approaches that do not use geostatistics are mainly focused on geological knowledge such 
as chronostratigraphy and sequencing methods for justifying how facies of different drill 
holes should be correlated (Figures 2.23 and 2.24). These approaches have been followed 
with computerizing previously manual methods and also providing better visual space for 
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decision making. Agterberg (1990) provides comprehensive studies according to these 
approaches. 

 

Figure 2.23: Zonations based on average stratigraphic events (Agterberg, 1990). 
 

 

 

Figure 2.24: Chronostratigraphic correlation in two nearby wells (Luthi, 2001). 
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Furthermore, geophysical well logging allows mapping of petrophysical signature and can 
be used for cross-checking geological logs (Figure 2.25) (Hoyle, 1986; Spies, 1996; Hearst 
et al., 2000; Luthi, 2001; Dunn et al., 2002; Knödel et al., 2007; Soleimani et al., 2016).  

 

 

Figure 2.25: Gamma ray logs from two wells can easily be correlated except for some sandstone layers in the 
central part of the interval (Luthi, 2001). 

2.3.1.2. Data mining-based approaches 

Some studies propose the application of pattern recognition tools and neural networks to 
correlate geological logs and detect inconsistent logs (Figure 2.26) (Luthi and Bryant, 1997; 
Hassibi et al., 2003). Luthi (2001) covers both conventional and new approaches applied for 
logging correlation. 
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Figure 2.26: Neural network structure used for correlating seven wells in the Maracaibo area, 
Venezuela. This snapshot is from the training phase, whereby the clay volume (VCl, right) is 

presented in intervals of ten feet (21 samples) with the known output (1 for the marker to be present, 
0 for it to be absent). The learning progress at this stage of the training is shown in the panels at the 

bottom (Luthi, 2001). 

2.3.1.3. Spatial statistics and geostatistics-based approaches 

In the field of geostatistics, there are actually few studies for facing this challenge, which are 
reviewed hereafter. 

Bourgine et al. (2008, 2015) present a set of tools and methods designed and tested at BRGM 
(French Geological Survey) for (1) performing automatic consistency checks before and 
during modeling, and (2) facilitating the building of geological models (Figure 2.27). The 
approach is based on the following steps:  

(a) Selection of a loose network of boreholes with logging or coring information, enabling a 
reliable interpretation. This first interpretation is based on the correlation of borehole log 
data and allows defining a 3D sequence stratigraphic framework with the acceptable 
difference between logs in terms of maximum variation in formation thickness, maximum 
variation in the top or bottom elevations, and minimum similarity of logs. 
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(b) Geostatistical analysis of characteristic geological interfaces, which is based on cross-
validation tests. The goal is to identify quickly and semi-automatically potential errors 
among the data, so the geologist can check these potential errors and correct them.  

 
(c) Consistency tests are also used to verify the appropriateness of the interpretations 

according to other constraints such as geological maps, maximal formation extension 
limits, or digital terrain models.  

 
(d) Construction of a 3D geological model from the sum of reference boreholes and recently 

verified boreholes. Also standard-deviation maps are used for visualizing areas where 
data from available but not yet validated boreholes could be added to reduce uncertainty. 

 
(e) At last, truncated plurigaussian facies simulations are realized using the validated data. 

These approaches are really easier than the ones suggested in this thesis, because they work 
with only one variable and they should be improved by considering several variables. 
Another drawback is the risk of over-smoothing using "validated boreholes" and comparing 
new boreholes with them to be added or ignored. The authors have tested the presented 
procedure on two areas in France. 

 

 

Figure 2.27: Modeling and intersecting stratigraphic surfaces (Bourgine et al., 2008). 
 

More recently, Manchuk and Deutsch (2012) introduced a simple geostatistical measure of 
coherency based on covariance functions in facies between nearby boreholes. This measure 
of coherency is applied for quality control of borehole data and in geological zonations, 
specifically for categorical variables. Coherency measures the agreement between a borehole 
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and its immediate neighbors based on structural markers and facies interpretations. The 
authors applied the measure of coherency to a synthetic data set and identified potential 
problems with facies designations or borehole markers, maximized coherency and used the 
coherency measure for clustering data into groups having similar facies (Figure 2.28).  

This method is proposed for checking coherency of facies between nearby boreholes and 
tested onto a synthetic data set. However, it does not look to be a practical method for a real 
case study, as interpreting results and making conclusions by checking relations of each 
borehole by all surrounding boreholes would be a very time-consuming and tedious work. 
Also, as mentioned previously, the method is proposed for checking coherency of facies with 
large-scale spatial variations; checking geological loggings with possibly short-scale 
variations is more complicated. 

 

Figure 2.28: Basic concept of geological zonation using coherency. Wells are labeled A through D and facies 
are labeled 1 to 3. The difference between coherency of each well using the left and right neighbors and 

coherency between well pairs is shown. Determining if a zone boundary exists in facies 3 based on well pair 
coherency is problematic (Manchuk and Deutsch, 2012). 

 

Cáceres and Emery (2013) proposed a methodology based on leave-one-out cross-validation, 
which consists in predicting the quantitative variables at each data location by using only the 
remaining data. All logged categories are successively assigned to each sample and the 
predictions are obtained by conditioning to the nearby samples with the same category. 
Finally, these predictions are compared with the actual values of the quantitative variables at 
the data location under consideration, determining whether or not the accuracy can be 
improved by assigning to the sample a category different from the one that has been logged. 

Cáceres and Emery applied this methodology to a synthetic deposit by simulating a single 
quantitative variable (an assayed grade) and three logged classes (rock types), to which 
different errors are added. The results show that a small amount of logging errors can lead to 
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a severe distortion of the grade distribution per category, spatial structure and consequently 
mineral resources evaluation, which can be corrected to a great extent thanks to the proposed 
cross-validation procedure (Figure 2.29). The proposed approach is, however, applicable to 
mineral deposits with hard boundaries between logged classes, i.e., when there is no spatial 
correlation of the quantitative variables across the boundary between two classes, which is a 
restrictive assumption for disseminated deposits. 

 

Figure 2.29: Grade distributions by rock type for reference, perturbed and reclassified loggings, for three 
kinds of logging errors: small random error (top), large random error (center) and systematic error (bottom) 

(Cáceres and Emery, 2013). The distributions observed with the perturbed loggings (middle column) are 
significantly different from the original distribution (left). The corrected distributions after cross-validation 

(right column) are much closer to the original distribution. 
 

2.3.2. Validating and reclassifying geological interpretations 

A geological interpretation consists of a three-dimensional representation of the extents of 
rock types or ore types constructed on the basis of the geological knowledge of the deposit, 
geological field observations, geophysical surveys and drill hole logs and assays. However, 
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a single representation of the ore deposit is often constructed, which lacks a quantification of 
the uncertainty in the actual rock types or ore type locations and extents.  

Most published researches on geological interpretations focus on using all available data to 
generate a more accurate geological interpretation, e.g., by using structural and geophysical 
data together in addition to borehole data or by using data inversion methods to generate an 
interpreted model (Figure 2.30) (Guillen et al., 2008; Lelièvre, 2009). Studies on validating 
geological interpretations often concentrate on statistical and graphical analyses by 
comparing the models with the available data to detect inconsistencies (Rossi and Deutsch, 
2014).  

 

 

Figure 2.30: Comparison between a conceptual geological model and inversion results. (a) Conceptual model. 
(b) Probability to obtain the unit after inversion of the gravity field only. (c) Probability to obtain the unit after 

simultaneous inversion of the gravity field and the five tensors components (Guillen et al., 2008) 

 

In the same line, Maleki et al. (2017) propose comparing the indicator direct and cross-
variograms calculated on available borehole data with those calculated on the interpreted 
geological model. Such variograms convey information about the spatial and geometrical 
properties of geological domains and about their contact relationships, in particular in what 
refers to the smoothness of the domain boundaries, the contact area between two domains, 
and their propensity to be in contact with, or separated from, each other at short distances. 
The proposed tools, however, do not allow a local analysis to detect which part of a geological 
interpretation is likely to be mistaken. Rather, it provides a global overview of how much 
consistent is the interpretation with the logged data (Figures 2.31 and 2.32).  
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Figure 2.31: Indicator direct variogram for andesite rock type along two main anisotropy directions, 
calculated from (A) drill hole data, (B) interpreted model. Calculations consider the same angle tolerance of 

20° around the target directions and same lag values. Variograms in (A) and (B) exhibit the same shape, slope 
near the origin and behavior at short, medium and large scales, indicating consistency between the interpreted 

geological model and the drill hole data for this particular rock type (Maleki et al., 2017). 

 

 

Figure 2.32: Indicator cross-variogram between granodioritic porphyry and hydrothermal breccia along two 
main anisotropy directions, calculated from (A) drill hole data, (B) interpreted model. Calculations consider 

the same angle tolerance of 20° around the target directions and same lag values. Indicator cross-variogram in 
(A) is zero until a distance of 1000 m, indicating the minimal separation distance between granodioritic 

porphyry and hydrothermal breccia. However, the indicator cross-variogram in (B) is zero until a distance of 
500 m only, suggesting that the interpreted geological model underestimates the true separation distance 

between the two rock types (Maleki et al., 2017).  
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Chapter 3: Modeling the relationship between 
geological classes and quantitative variables 

 

Suppose that one has a categorical variable, such as a rock type or a dominant alteration type, 
known (with some imprecision) from qualitative geological logs, and a set of quantitative 
continuous variables (metal grades, rock granulometry, rock density, metallurgical 
recoveries, etc.) known with precision from assays or metallurgical tests at borehole samples. 
Also suppose that one has a model of the categorical regionalized variable over space, based 
on an interpretation from resources geologists.  

From this information, one is interested in solving two following problems: 

(a) Validate the geological logs and identify the data for which the qualitative logged 
category is not in agreement with the quantitative continuous variables; 
 

(b) Validate the geological interpretations and identify the data for which the interpreted 
category is not in agreement with the quantitative continuous variables. 

Several models can be designed to address the aforementioned problems. The following three 
will be of interest in the thesis and will be explained in this chapter; models 2 (an extension 
of model 1) will be used in the next chapter for validating geological logs, while model 3 will 
be used in the subsequent chapter for validating geological interpretations. 

3.1.  Model 1: Hard boundary model 

The model is hierarchical, with the quantitative continuous variables “subordinated” to the 
categorical variable. The space is partitioned into regions corresponding to the categories 
associated with the geological logs. The quantitative continuous covariates are defined in 
each category, with a joint correlation structure that can be represented by a linear model of 
coregionalization (Chilès and Delfiner, 2012). These continuous variables are independent 
from one category to another. To make the model operational, one can work with multi-
Gaussian variables, i.e., in each category, the continuous variables can be transformed into 
Gaussian random fields, whose direct and cross-covariances are modeled through a linear 
coregionalization model (Figure 3.1). 
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Figure 3.1: Left: rock type. Right: a quantitative continuous variable. The values of the quantitative variable 
are independent from one rock type to another, resulting in clear-cut discontinuities when crossing the rock 

type boundaries (hard boundary model). 

 

In this model, the validation of geological logs (problem 1) can be tackled by leave-one-out 
cross-validation (Figure 3.2). Specifically, for each drill core sample, do the following: 

a) Select a drill core sample and assume that it belongs to category k. 
 

b) Transform the N quantitative continuous variables measured at this drill core sample 
into normal scores. 
 

c) From the surrounding drill core samples of category k, perform cokriging of the 
continuous variables for the drill core sample under consideration. Obtain a vector of 
predictions and a variance-covariance matrix of cokriging errors. 
 

d) Extract the vector of cokriging predictions and the variance-covariance matrix 
associated with category k (i.e., remove the prediction of the Gaussian random fields 
associated with geological domains that do not contain category k). 
 

e) Based on the vector of cokriging predictions and variance-covariance matrix of 
cokriging errors, determine the Malahanobis distance corresponding to the vector of 
true values. 
 

f) Repeat steps (a)-(e) for all the categories. 
 

g) From the Malahanobis distances so obtained, construct a measure of consistency for 
each category for the drill core sample under consideration. 
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h) Determine whether or not the actual logged category is highly probable; identify other 

categories that may be more probable (possibly mislogged drill core sample). 
 

 

Figure 3.2: Workflow of the leave-one-out cross-validation steps based on model 1. 

3.2. Model 2: Transitional (semi-hard) boundary model 

Consider the previous hierarchical model, but now assume that the quantitative continuous 
variables are not independent from one category to another (Figure 3.3). This means that one 
has a complete coregionalization model that specifies the direct and cross-covariances (or 
variograms) of the continuous variables of the same categories, as well as of different 
categories. 
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Figure 3.3: Left: rock type. Right: a quantitative continuous variable. The values of the quantitative variable 
are dependent between one rock type and another, resulting in cross-correlations across the rock type 

boundaries (transitional boundary model) 
 

The solution of the previous problem is the same, except that cokriging at Step (c) should 
consider the surrounding data of the category under consideration as well as of other 
categories. 

3.3. Model 3: Soft boundary model 

Here, contrarily to the previous two models, the categorical variable is now subordinated to 
the quantitative continuous variables. The latter are represented by a global coregionalization 
model (without partitioning the space into regions). The category is then defined depending 
on the values of these continuous variables (Figure 3.4). 

In such a model, the validation of geological interpretations (problem 2) can be done by 
jointly simulating the continuous variables over the entire deposit, then applying a 
classification technique from statistics or from data mining, such as discriminant analysis, 
neuronal network, support vector machine or classification trees, so as to predict the 
categories on the basis of the quantitative continuous variables for the different realizations. 
The determination of the prior (ignoring borehole data) and posterior (conditioned to 
borehole data) probabilities of categories provides a means of identifying the blocks or areas 
of the deposit for which the interpreted category disagrees with the simulated continuous 
variables, which leads to identifying potentially geological misinterpreted blocks (Figure 
3.5). 
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Figure 3.4: The quantitative variable (right) is defined over the entire region, prior to the partitioning into rock 
type domains (left), resulting in no discontinuity across the rock type boundaries (soft boundary model). 

 

 

Figure 3.5: Workflow of the validation of geological interpretations based on model 3. 
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Chapter 4: Designing a geostatistical-based method 
for validating geological logs using quantitative 

covariates 

 

Errors in geological core logs may lead to inconsistencies between the logged categories and 
other quantitative variables obtained from geochemical analyses or metallurgical tests. Based 
on the spatial dependence relationships between both types of variables (qualitative logs and 
quantitative covariates) and on the transitional boundary model (model 2) presented in the 
previous chapter, this chapter addresses the problem of developing an objective methodology 
for identifying potentially mislogged samples. The contents have been published in the 
journal Ore Geology Reviews: 

Adeli, A., Emery, X., 2017. A geostatistical approach to measure the consistency between 
geological logs and quantitative covariates. Ore Geology Reviews 82, 160-169.  
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A geostatistical approach to measure the consistency between 
geological logs and quantitative covariates 

 
 

Abstract  

Core logging is the geological study, recording and classification of petrophysical attributes 
of drill hole samples, such as lithology, alteration or mineralogical assemblage. The 
geological logging is qualitative and subject to errors because of its visual nature and other 
factors inherent to logging, such as low drill hole recoveries, difficulties in estimating the 
volumetric contents of minerals, or different logging criteria among geologists. To date, 
different tools for quality control and validation of geological logging have been elaborated, 
based on geological knowledge, statistics, geostatistics, image analysis, neural network and 
data mining. 

This paper presents an alternative approach based on geostatistical modeling for identifying 
and reclassifying potentially mislogged samples when quantitative covariates from 
geochemical analyses or metallurgical tests are available. The principle of this approach is 
to: (i) define geological domains for each quantitative variable by an adequate grouping of 
the log classes; (ii) transform the quantitative variables into normal scores, accounting for 
the previously defined domains, (iii) model the spatial correlation structure of the normal 
scores, (iv) perform leave-one-out cross validation and obtain predictions of the normal 
variables and the associated variance-covariance matrices of prediction errors; (v) calculate 
a measure of consistency for each sample and each possible logged class under a multivariate 
normal assumption; and (vi) compare these measures of consistency with the actual logged 
classes to detect suspicious logs. The methodology is demonstrated in a case study from an 
iron ore deposit, with data of rock type logged by geologists and seven quantitative variables 
(grades of elements of interest, loss on ignition and granulometry).  

Key words: core logging; geological domaining; inconsistent data; misclassification. 

4.1. Introduction  

Drilling is the most expensive procedure in mineral exploration. Information from drill holes 
can be extracted by different methods, such as assaying, down-the-hole geophysical logging 
or geological core logging (Knödel et al., 2007; Marjoribanks, 2010). The latter is the 
geological study, visual recording and classification of petrophysical attributes of drill cores 
(essentially extracted by diamond drilling), such as lithology, alteration or mineralogical 
assemblage. Relevant information gathered from geological core logging is the basis for 



78 
 

constructing geological and geo-metallurgical models for mineral resources evaluation and 
classification, ore reserves definition and mine planning (e.g., Soltani and Hezarkhani, 2011). 
It is also often used for partitioning heterogeneous deposits into geological or geo-
metallurgical domains in which the regionalized properties of interest can be interpreted as 
stationary fields (Sinclair and Blackwell, 2002; Moon et al., 2006; Yunsel and Ersoy, 2011; 
Haldar, 2013; Rossi and Deutsch, 2014).  

However, due to the visual nature of logging, the classification of petrophysical attributes is 
qualitative and subject to errors, which may be explained by several factors (Manchuk and 
Deutsch, 2012; Cáceres and Emery, 2013): presence of complex rock textures caused by 
overprinting processes; inherent difficulty to estimate mineral percentages and thresholds; 
lack of geochemical analyses during logging; lack of experience of mining geologists; non-
unique logging criteria among geologists; and low core recovery because mineralized and 
altered rock zones are frequently more fragile and are the first parts that are lost during coring. 
Inaccurate logs generate data that are inconsistent with geochemical analyses and 
metallurgical tests, such as low iron grades in supposedly supergene hematite zones or low 
acid consumption in supposedly calcareous rocks. Due to limited time and resources for 
relogging, inconsistent logs are generally seen as outliers or ignored in the geological or geo-
metallurgical modeling stage (Theys, 1999, Cáceres and Emery, 2013). 

Quality control and validation of geological logging have been discussed in the fields of 
geosciences and resources engineering, where manual to automated procedures have been 
elaborated, based on geological knowledge, statistics, geostatistics, image analysis, neural 
network and data mining tools (Hoyle, 1986; Agterberg, 1990; Luthi and Bryant, 1997; 
Taylor, 2000; Luthi, 2001; Hassibi et al., 2003; Bourgine et al., 2008, 2015; Ewusi and Kuma, 
2011). Geological knowledge-based approaches are mainly focused on chronostratigraphy 
and sequencing methods for correlating the logs of different drill holes (Agterberg, 1990). 
Furthermore, geophysical well logging allows mapping of petrophysical signature and can 
be used for cross-checking geological logs (Spies, 1996; Hearst et al., 2000; Luthi, 2001; 
Dunn et al., 2002; Knödel et al., 2007; Soleimani et al., 2016). In recent years, Manchuk and 
Deutsch (2012) introduced a geostatistical measure of coherency for geological logs, based 
on a spatial correlation model, which can be applied for quality control of drill hole data. 
Another proposal by Cáceres and Emery (2013) relies on leave-one-out cross-validation in 
order to identify log data that disagree with quantitative measurements. This proposal was 
applied to a synthetic deposit characterized by a single quantitative variable (an assayed 
grade) and three logged classes (rock types) to which different logging errors were added. 
The results showed good ability to identify mislogged rock types based on grade information. 
However, the proposed approach is applicable to mineral deposits with hard boundaries 
between logged classes, i.e., when there is no spatial correlation among quantitative variables 
across the boundary between two classes, which is a too restrictive requirement for 
disseminated deposits. 
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This work aims to present an improvement of the approach by Cáceres and Emery (2013) for 
validating geological logs and identifying data for which the qualitative logged class is not 
in agreement with quantitative variables available from assays or metallurgical tests. The 
proposed methodology is also based on leave-one-out cross-validation, but will be set in a 
fully multivariate framework and will be applicable to mineral deposits where quantitative 
variables are correlated across boundaries between logged classes (soft boundaries). It relies 
on the following four working assumptions: (1) geochemical analyses, metallurgical tests 
and geological features such as lithology, alteration or mineralogical assemblage should be 
consistent in spatial and statistical terms, insofar as they are related responses to the same 
geological processes; (2) geochemical analyses and metallurgical tests are more accurate than 
geological logging; (3) a small proportion of the drill cores is likely to be mislogged; (4) the 
quantitative variables are regionalized and can be interpreted as realizations of spatial random 
fields that, within one or more domains that partition the deposit, are transforms of stationary 
Gaussian random fields, i.e., random fields whose finite-dimensional distributions are 
multivariate normal and are invariant under a translation in space. The latter assumption is 
the basis of most of the current geostatistical approaches used for simulating quantitative 
variables and for quantifying geological uncertainty in mineral deposits (Verly, 1983; Chilès 
and Delfiner, 2012; Rossi and Deutsch, 2014; Deutsch et al., 2016). 

The paper is outlined as follows. Section 2 describes our proposal from a methodological 
point of view and leads to the definition of a statistical measure (p-value) for each drill hole 
sample that indicates how closely the classes of the logged petrophysical attribute agree with 
the quantitative variables resulting from geochemical analyses and metallurgical tests. 
Section 3 presents an application to drill hole samples of an iron ore deposit, for which 
information of the logged rock type and seven quantitative covariates is available. 
Conclusions follow in Section 4. 

4.2. Methodology 

4.2.1. Problem statement  

Let us consider a set of drill hole samples with spatial coordinates {x1,…, xA}, for which 
geological logs are available. These logs provide a class number (between 1 and K) for a 
petrophysical attribute (e.g., rock type). In addition, there are N quantitative variables (for 
example, grade assays) for the same samples as that of the geological logs. The information 
from the quantitative variables is supposed to be accurate, due to a proper quality assurance 
and quality control program, while that of the logs is subject to errors. The proposed 
methodology is explained in the following subsections and summarized in the schematic 
diagram presented in Figure 4.1.  
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Figure 4.1: Schematic diagram of proposed methodology. 

4.2.2. Geological domaining 

For mineral resources evaluation in heterogeneous deposits, each quantitative variable is 
generally associated with geological domains that consist of a single log class or a group of 
log classes such that (i) the quantitative variable can be modeled as a stationary field (i.e., a 
field whose distribution is invariant under a spatial translation) within each domain and (ii) 
there is a change of distribution between one domain and another (e.g., one observes some 
discontinuity or some change in the spatial continuity when crossing the boundary between 
two domains). A contact analysis is helpful at this stage to determine the best grouping and 
therefore identify the geological domains (Glacken and Snowden, 2001; Rossi and Deutsch, 
2014; Maleki and Emery, 2015). Also note that the domains can differ from one quantitative 
variable to another, depending on the geological characteristics that control the behavior of 
each variable; in other words, the geological controls may not be the same for all the 
quantitative variables. 

4.2.3. Normal score transformation 

The data of each quantitative variable within each of its geological domains are declustered 
in order to obtain a distribution corrected for possible biases caused by irregular sampling 
patterns, then normal score transformed, i.e., transformed into data that follow a standard 
Gaussian distribution (Deutsch and Journel, 1998; Chilès and Delfiner, 2012). The one-to-
one relationships between the original variables and their normal scores can be stored in 
transformation tables. 
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As the geological domains associated with a given quantitative variable do not overlap, the 
normal score data associated with the different domains are totally heterotopic, i.e., they are 
not defined at the same locations. In contrast, the normal scores data associated with different 
quantitative variables may be isotopic, partially heterotopic or totally heterotopic, depending 
on whether the geological domains are the same, partially overlap or are disjoint and on the 
sampling design of the quantitative variables (isotopic or heterotopic). 

4.2.4. Covariance analysis 

Since sample cross-variograms cannot be calculated for heterotopic datasets (Wackernagel, 
2003), the spatial correlation structure of the normal score data is inferred by calculating their 
sample direct and cross covariances. Direct covariances measure the spatial continuity of 
each quantitative variable within each of its geological domains, while cross-covariances 
measure the spatial cross-correlation that exists between two different quantitative variables 
or the spatial cross-correlation of a quantitative variable between two different geological 
domains. This way, our methodology is able to account for soft boundaries, i.e., when 
measurements of a quantitative variable exhibit some correlation across domain boundaries 
(a frequent situation for disseminated deposits).  

On the basis of the calculated sample covariances, a linear coregionalization model can be 
fitted by using combinations of basic nested covariance models (Wackernagel, 2003; Chilès 
and Delfiner, 2012), so as to define a set of theoretical direct and cross covariances for the 
Gaussian random fields that represent the quantitative variables within their different 
geological domains.  

4.2.5. Cross-validation 

Leave-one-out cross-validation (Chilès and Delfiner, 2012) is then performed in order to get 
a consistency measure between the data associated with the quantitative variables and the 
logged classes. Specifically, one drill hole sample is removed at a time from the dataset and 
all the Gaussian random fields at this sample are predicted by cokriging, by using all the 
remaining data located in the same geological domain and in the other domains. The results 
of cokriging for the sample under consideration are a vector of the prediction of the Gaussian 
random fields and a variance-covariance matrix of the prediction errors. This process is 
performed for each sample successively. 

4.2.6. Calculation of p-values 

For each sample a  {1… A} and each class index k  {1… K}: 
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(1) Assume that, if no logging error occurred, class k would prevail at the sample under 
consideration. 

(2) Transform the N quantitative variables measured at this sample into normal scores, 
using the suitable normal score transformation tables obtained in subsection 4.2.3. 
Obtain a Gaussian vector zk,a with N components. 

(3) From the vector of cokriging prediction obtained in subsection 4.2.5, extract the sub-
vector zk,a

* corresponding to the Gaussian random fields that are defined for the class 
under consideration (i.e., remove the prediction of the Gaussian random fields 
associated with geological domains that do not contain class k). 

(4) Similarly, from the variance-covariance matrix of cokriging errors, extract the sub-

matrix k,a
* corresponding to the Gaussian random fields defined for the class under 

consideration. 

(5) Based on the assumption made at stage (1), the conditional distribution of the 
Gaussian random fields at the sample location is multivariate normal with mean equal 
to the cokriging prediction and with variance-covariance matrix equal to that of the 
cokriging errors (Chilès and Delfiner, 2012). Accordingly, it has the following 
probability density function: 

)}()()(
2

1
exp{

)det()2(

1
)( ,

1
,,

,

*
ak

*
ak

T*
ak*

ak
N

g zzzzz  


  (4.1) 

where N is the common size of vectors zk,a and zk,a
* (number of original quantitative 

variables), z is a generic point of RN, while zk,a
* and k,a

* have been obtained in the 
previous steps (3) and (4). Let us define the Mahalanobis distance as  
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It provides a measure of the distance between the generic point z of RN and the 
prediction zk,a

* (expected value of the conditional distribution in equation (4.1)). It is 
dimensionless, scale-invariant and takes into account the correlations between the N 
Gaussian random fields defined for the class k under consideration. If N = 1, the 
distribution in equation (4.1) reduces to a univariate normal distribution and the 
Mahalanobis distance reduces to the standard score. For N > 1, the Mahalanobis 
distance is just a multidimensional generalization of the idea of measuring how many 
standard deviations away z is from zk,a

*. 



83 
 

The p-value pk,a associated with zk,a (supposedly true Gaussian vector for sample a, 
which has been obtained at step (2)) is defined as the integral of the probability density 
in equation (4.1) over all the points of RN with a Mahalanobis distance greater than 
r(zk,a). This p-value gives a measure of the remoteness between the expected value 
zk,a

* and the supposedly true value zk,a, i.e.: 
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where )(/2 2
2/ NN   is the surface area of the unit-radius sphere of RN (Chilès and 

Delfiner, 2012). To calculate pk,a, let us define 
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This integral can be computed by using integration by parts. One finds: 
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where G stands for the standard Gaussian cumulative distribution function. 

At the end of this process, one obtains, for each drill hole sample (a) and each class (k), a p-
value pk,a that measures how “extreme” is the vector of N quantitative variables measured at 
this sample for the class under consideration. The analysis of the set of p-values will allow 
identification of the data for which the logged class is likely to be mistaken, as illustrated in 
the case study presented in the next section. 
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4.3. Case study 

4.3.1. Presentation of the data 

The proposed methodology is now applied to a data set from an iron ore deposit, the name 
and location of which are not disclosed for confidentiality reasons. The deposit is hosted by 
banded iron formations and is explored by diamond drill holes dipping from 60° to 90°. A 
total of 4,096 samples are taken from cores and sent for analysis, yielding data for seven 
quantitative variables: grades of iron (Fe), silica (SiO2), phosphorus (P), alumina (Al2O3) and 
manganese (Mn), loss on ignition (LOI) representing the mass concentration of volatile 
materials, and granulometric fraction of fragments with size above 6.3 mm (G). The 
dominant rock type is also available for each drill hole sample; it is deduced by geological 
logging and is classified into 10 classes: 

 Code 1: Friable hematite (FH) 

 Code 2: Compact hematite (CH) 

 Code 3: Alumina-rich hematite (ALH) 

 Code 4: Alumina-rich itabirite (ALI) 

 Code 5: Manganese-rich itabirite (MNI) 

 Code 6: Compact itabirite (CI) 

 Code 7: Friable iron-poor itabirite (FPI) 

 Code 8: Friable iron-rich itabirite (FRI) 

 Code 9: Amphibolitic itabirite (AI) 

 Code 10: Canga (CG). 

The deposit is divided into a supergene layer (surficial canga) and underlying ferruginous 
rocks. On the one hand, CG is a layer of well-consolidated rock composed mainly of goethite 
derived from weathering of the iron formation, with high iron grade, alumina grade and loss 
on ignition. On the other hand, the underlying rocks are subdivided on the basis of their 
granulometry and contents of iron, alumina, manganese and loss on ignition. Specifically, 
iron is mainly present in the form of hematite and itabirite. The former is an oxide-facies 
formation with high iron grade (most often above 62%), while the latter is a laminated, 
metamorphosed oxide-facies formation in which iron is present as thin layers of hematite, 
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magnetite or martite, with grade generally less than 62% (Dorr, 1964). The alumina and 
phosphorus grades are high in ALH, ALI, MNI and AI, with the last two rock types also 
having high manganese grade and high loss on ignition, respectively. Finally, the compact 
rock types CH and CI exhibit a coarse granulometry, with values of G most often above 50%, 
while the other rock types are associated with finer granulometry (G mostly below 50%) 
(Figure 4.2). These suggest that the quantitative variables are closely related to the rock type 
definition and that the proposed approach will provide an opportunity to detect 
inconsistencies between the former and the latter. In the following subsection, the 
methodology proposed in Section 4.2 is applied step-by-step. A general workflow is 
presented in Figure 4.3. 

 

Figure 4.2: Box plots showing quantiles Q2.5, Q25, Q50, Q75 and Q97.5 of the distributions of iron grade, 
phosphorus grade, alumina grade, manganese grade, loss on ignition and granulometry, for each rock type. 
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Figure 4.3: Workflow of proposed methodology for identifying mislogged rock types. 

4.3.2. Geological domaining 

The first modeling step involves partitioning the deposit into domains in which the 
quantitative variables are homogeneously distributed and can be represented by stationary 
random fields (Rossi and Deutsch, 2014). To this end, for each quantitative variable, the rock 
types are grouped into domains based on the following considerations:  

 The results of contact analysis, which aims to determine the behavior of the mean 
value of a quantitative variable in the neighborhood of the boundary between two 
rock type domains. Some examples are provided in Figure 4.4, where the mean values 
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are seen to change abruptly when crossing a rock type boundary, indicating that the 
rock types on either side of the boundary belong to different domains. 

 The data statistics (mainly the mean value and the standard deviation) within each 
rock type. The rock types belonging to the same domain are expected to have similar 
statistics. An example is given in Figure 4.5 for the iron grade and loss on ignition. 

 The location and contact relationships of the rock types in the deposit. In particular, 
CG appears as a specific domain for all the quantitative variables because of its 
surficial position and because the data statistics in CG differ from those in any other 
rock type (Figure 4.2).  

 The lithological controls on the variable under study. For example, hematites and 
itabirites are likely to form two different domains for the iron and silica grades, but 
not necessarily for the other quantitative variables. Likewise, the compact and friable 
rock types are likely to define two different domains for the granulometry, but not for 
the remaining quantitative variables.  
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Figure 4.4: Contact analysis for Fe (A, B and C) near the boundaries of geological domains 1 (FH + CH + 
ALH), 2 (ALI + MNI + FRI + AI) and 3 (CI + FPI), and for LOI (D, E and F) near the boundaries of 

geological domains 1 (AI), 2 (ALH + ALI + MNI) and 3 (FH + CH+ CI + FPI + FRI). 
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Figure 4.5: Mean values and standard deviations of Fe (A) and LOI (B) for the underlying rock types 
(excluding canga), and grouping of these rock types into geological domains. 

In the following, the study will focus on the underlying ferruginous rocks, i.e., we will no 
longer consider surficial canga, as its characterization depends more on the geographical 
position than on the quantitative variables. Table 4.1 gives a summary of the geological 
domains defined in the underlying rocks, where each quantitative variable is associated with 
two or three domains. 

Table 4.1: Geological domaining for each quantitative variable 

 FH CH ALH ALI MNI CI FPI FRI AI 

Fe 
1 1 1 2 2 3 3 2 2 

SiO2 1 1 1 2 2 3 3 2 2 

P 
3 3 2 2 2 3 3 3 1 

Al2O3 3 3 2 2 2 3 3 3 1 

Mn 
2 2 2 2 1 2 2 2 2 

LOI 
3 3 2 2 2 3 3 3 1 

G 
2 1 2 2 2 1 2 2 2 
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4.3.3. Normal scores transformation and coregionalization modeling 

Overall, there are 19 combinations of quantitative variables and geological domains: Fe-1, 
Fe-2, Fe-3, SiO2-1, SiO2-2, SiO2-3, P-1, P-2, P-3, Al2O3-1, Al2O3-2, Al2O3-3, Mn-1, Mn-2, 
LOI-1, LOI-2, LOI-3, G-1 and G-2. For each variable and each domain, the corresponding 
data are normal score transformed. The direct and cross covariances of the normal scores 
data are then calculated along the horizontal and vertical directions, identified as the main 
anisotropy directions, and fitted with a full linear coregionalization model thanks to a semi-
automated fitting algorithm (Emery, 2010a). The model uses a nugget effect and a set of 
nested exponential covariances with a geometric anisotropy between the horizontal and 
vertical directions, as its basic structures (Figure 4.6). 

Note that the normal scores associated with different quantitative variables and/or with 
different geological domains are assumed to be dependent, i.e., the linear coregionalization 
model assumes the existence of spatial cross correlations between all the 19 underlying 
Gaussian random fields. Accordingly, even if a quantitative variable is discontinuous across 
the boundary between two different domains, its values within these two domains are not 
necessarily independent (a situation sometimes referred to as a “transitional” boundary). 

The above model parameters (normal score transformation tables and theoretical direct and 
cross covariances) will not change in all the subsequent stages of the study, insofar as we 
assumed that only a small proportion of the samples is mislogged, hence their effect on the 
model parameters should be marginal. 
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Figure 4.6: An example of fitted direct covariances and cross-covariances for the transformed iron grade in 
domain 2 (Fe-2), transformed silica grade in domain 2 (SiO2-2) and transformed alumina grade in domain 1 

(Al2O3-1). 
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4.3.4. Cross validation 

For each drill hole sample, the 19 Gaussian random fields are predicted by simple cokriging, 
using a vector of zero means, the previously fitted linear coregionalization model and a 
moving neighborhood (in the present case, a ball with a radius of 300 meters, divided into 
octants, in each of which the 4 closest samples are searched) as input parameters, and the 
normal scores available at these closest samples as input data. Cokriging yields a 19×1 vector 
of predictions and a 19×19 variance-covariance matrix of prediction errors for each drill hole 
sample. 

4.3.5. Definition of consistency measures (p-values) 

For each drill hole sample (index a = 1,…, 4096) and each rock type (index k = 1,…, 9): 

 Assume that rock type k prevails at the sample under consideration. 

 In view of the geological domains associated with the quantitative variables (Table 
4.1), identify which of the 19 Gaussian random fields are defined for sample a.  

 Transform the measured values of the original quantitative variables (grades, loss on 
ignition and granulometry) into normal scores, using the transformation tables 
associated with the adequate geological domains. Obtain the “true” Gaussian vector 
zk,a of size 7×1. For example, for k = 1 (friable hematite FH), the Gaussian values 
associated with Fe-1, SiO2-1, P-3, Al2O3-3, Mn-2, LOI-3 and G-2 are obtained, while 
the remaining ones are not. 

 From the cross-validation results, extract the 7×1 vector of predictions (zk,a
*) and the 

7×7 variance-covariance matrix of prediction errors (k,a
*). 

 Calculate the p-value pk,a, as per equation (4.3). 

4.3.6. Detection of suspicious data 

To detect samples that may be mislogged, the following criteria based on the calculated p-
values are considered: 

 The p-value associated with the class that has been actually logged by the geologist 
should be less than 0.01, i.e., the logged class is very unlikely. 

 The p-value associated with some other class is more than 0.3 (quite likely). 
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In addition, to get results that are consistent with the geological zonation of the deposit, a 
geographical criterion is also considered, namely, that the alternative (likely) class has been 
logged at some drill hole sample distant less than 50 meters from the suspicious sample.  

Accordingly, each sample meeting all three mentioned conditions represents a suspicious 
data that should be examined on a case-by-case basis. Note that the geographical distance 
limit (50 m) and the p-value limits (0.01 and 0.3) can be freely modified by the practitioner, 
so that one could be more or less conservative in finding such suspicious data. 

4.3.7. Results and discussion 

The application of the previous criteria yields a total of 2.42% of the drill hole samples 
identified as suspicious. In the following, a few of these suspicious samples are discussed in 
more details, in the light of their logged rock types, values of the quantitative variables 
(grades, loss on ignition and granulometry) (Table 4.2), p-values (Table 4.3) and information 
of the 10 closest samples (Table 4.4). 

Table 4.2: Geochemical assay results for specified suspicious samples 

Sample number Fe SiO2 P Al2O3 Mn LOI G 

50 58.334 3.351 0.23 4.184 0.034 7.273 61.465 

61 58.575 3.34 0.221 4.051 0.034 7.139 62.23 

110 61.293 5.146 0.026 3.12 0.02 1.935 13.9 

138 36.643 4.958 0.069 2.431 24.729 7.077 41.5 

146 59.735 3.414 0.058 3.738 0.014 6.263 84.18 

1910 62.103 2.395 0.151 1.011 2.878 2.453 13.691 

 

Table 4.3: Calculated p-values for all possible rock types of specified suspicious samples 

Sample number FH (1) CH (2) ALH (3) ALI (4) MNI (5) CI (6) FPI (7) FRI (8) AI (9) 

50 0.316 0.292 0.983 0.865 0.000 0.006 0.007 0.114 0.003 

61 0.027 0.021 0.000 0.000 0.000 0.001 0.001 0.069 0.988 

110 0.006 0.001 0.881 0.143 0.010 0.000 0.001 0.000 0.062 

138 0.000 0.000 0.000 0.000 0.304 0.000 0.000 0.000 0.000 
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146 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.913 

1910 0.599 0.000 0.327 0.142 0.175 0.001 0.218 0.302 0.003 

 

Table 4.4: Distance, sample number and logged rock type of the 10 closest samples to the specified suspicious 
samples 

Sample Number  1 2 3 4 5 6 7 8 9 10 

50 Distance (m) 5.1 10.2 20.2 30.2 40.2 45.8 48.8 50.8 53.9 57.6 

 Sample no. 61 936 1042 568 614 615 563 591 321 917 

 Rock type 3 3 3 3 3 7 3 3 3 3 

61 Distance (m) 5.1 5.1 15.1 25.1 35.1 40.7 44.8 49.9 52.3 53.5 

 Sample no. 50 936 1042 568 614 615 563 591 321 917 

 Rock type 9 3 3 3 3 7 3 3 3 3 

110 Distance (m) 5.1 5.2 13.5 13.7 18.8 20.3 25.6 37.7 41.5 44.6 

 Sample no. 2472 109 118 664 604 830 446 32 44 45 

 Rock type 8 3 4 7 1 4 1 3 9 9 

138 Distance (m) 6.1 6.1 14.3 16.1 25.9 43.0 50.6 58.8 191.3 191.4 

 Sample no. 137 1287 721 661 1076 714 1026 1934 2169 1115 

 Rock type 5 1 1 1 1 1 8 7 5 5 

146 Distance (m) 5.3 7.2 11.8 17.2 18.2 27.2 34.0 40.9 49.2 50.1 

 Sample no. 145 1373 516 2433 358 2370 3358 1328 13 979 

 Rock type 9 1 3 1 3 2 2 3 3 3 

1910 Distance (m) 6.9 9.8 19.7 21.8 29.0 31.8 35.7 39.6 43.9 46.9 

 Sample no. 1942 2716 3126 2311 2043 3382 3257 3374 3182 1083 

 Rock type 3 2 2 3 2 3 2 3 1 8 

 

Sample n°61: This sample has been logged by the geologist as rock type 3 (ALH), but the 
p-value of this rock type is close to 0 and the p-value of rock type 9 (AI) is very high (about 
0.99) (Table 4.3). Looking at the assayed grades in Table 4.2, the measured iron grade 
appears to be abnormally low for an ALH, while the high loss on ignition agrees well with 
an AI. Therefore, it seems that sample n°61 is mislogged and should be relogged as rock type 
9. 

Sample n°50: This sample is the opposite case of sample n°61, as it has been logged as rock 
type 9 (AI), but the p-value of this rock type is close to zero and that of ALH (rock type 3) is 
close to 0.98 (Table 4.3). However, the measured grades (Table 4.2) are very similar to that 
of sample n°61 and agree well with rock type 9. Actually, sample n°61 (mislogged as rock 
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type 3) turns out to be the closest one (Table 4.4), therefore the most influential in the cross-
validation procedure, which explains why rock type 9 appears so likely. One concludes that 
sample n°50 is logged correctly and that the calculated consistency measures (p-values) are 
distorted due to the mislogged neighboring sample. 

Sample n°110: This sample has been logged as rock type 8 (FRI), but our criteria suggest 
changing it to rock type 3 (ALH). Based on the assays (Table 4.2) and the existence of 
samples with rock type 3 in the neighborhood (Table 4.4), it seems that sample n°110 is 
effectively mislogged and should be changed to rock type 3.  

Sample n°138: This sample has been logged as rock type 1 (FH), but may be relogged as 5 
(MNI). This relogging would definitely agree with the measured manganese grade (more 
than 24%) (Table 4.2) and with the fact that the closest sample (sample n°137, less than 10 
meters away) is also logged as rock type 5 (Table 4.4). Note that another very close sample 
(n°1287) is logged as rock type 1 (Table 4.4), but the manganese grade measured for this 
sample is substantially lower (0.26%) and the iron grade substantially higher (60.95%), 
consistent with FH (code 1). Therefore, sample n°138 should be relogged as MNI (code 5), 
the same as its neighbor sample n°137, while sample n°1287 is correctly logged as rock type 
1. 

Sample n°146: This sample has been logged as rock type 1 (FH), but could be relogged as 
rock type 9 (AI). From Table 4.2, it seems that rock type 9 is more likely (owing to the high 
value of LOI) but not decisively (owing to the high value of Fe and low value of SiO2, more 
compatible with a hematite). From Table 4.4, one observes that the closest sample (sample 
n°145) whose assays are very close to that of sample n°146 is coded as rock type 9, which 
may explain the p-value obtained for rock type 9. But, as for sample n°146, it cannot be said 
decisively whether rock type 9 or 5 is correct for sample n°145, so it is advised to physically 
check and relog these two samples. 

Sample n°1910: This sample has been originally logged as rock type 2 (CH) but, according 
to the calculated p-values, it could be rock type 1 (FH), 3 (ALH) or 8 (FRI) (Table 4.3). From 
Table 4.2, it can be understood that codes 2 and 8 are not adequate for this sample (because 
of the too low granulometry and the too high iron grade, respectively). Finally, it is suggested 
to discard codes 2 and 8 and to physically check this sample to choose between codes 1 and 
3. 

4.4. Conclusions 

There is an increasing need in the mining industry for high performance of mineral resource 
models. A portion of model deviations are caused by mislogged samples, for which the 
logged value of a petrophysical attribute such as the lithology, alteration or mineralogical 
assemblage is erroneous. 
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Considering the regionalized nature of petrophysical attributes and their dependence 
relationships with quantitative variables from geochemical analyses or metallurgical tests, a 
geostatistical approach based on leave-one-out cross-validation has been proposed for 
identifying possible mislogged samples. The proposal is aimed at calculating, for each 
sample, a measure of consistency between the logged classes and the quantitative covariates. 
It is worthwhile to mention that the application is not black-boxed and allows the practitioner 
to include additional criteria (e.g., p-value limits and geographical criteria) to detect 
suspicious samples. Also, because some samples may have all their measures of consistency 
smaller than the chosen p-value limit and may therefore not be classified into any of the 
logged classes, the proposed methodology cannot be used blindly as a substitute for the 
original logs. 

To illustrate the applicability of the proposal, a case study from an iron ore deposit has been 
presented, where the logged rock types are closely related with seven quantitative variables 
(grades of iron, silica, phosphorus, alumina, manganese, loss on ignition and granulometry) 
measured on the same set of exploration drill holes. The samples detected as suspicious have 
been carefully checked on the basis of their logged classes and quantitative covariates, as 
well as on the basis of the information of the neighboring samples, in order to confirm or 
reject the correctness of the original rock type logs. 

The proposed approach can be applied in several geometallurgical contexts, for example by 
using geochemical data as covariates for defining lithologies, ore mineralogical data from 
QEMSCAN (Quantitative Evaluation of Minerals by SCANning electron microscopy) 
analyses for finding mineral zones, or gangue mineralogical data derived from spectroscopy 
for recognizing alterations, or all the previous types of data as well as metallurgical tests for 
identifying geometallurgical domains. In all these contexts, the identification of misslogged 
samples can be beneficial for the overall performance of the value chain of the mining 
business and provide criteria to define samples that should be part of a relogging campaign. 
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Chapter 5: Designing a geostatistical-based method 
for validating geological interpretations using 

quantitative covariates 

 

The layout of geological domains in an ore deposit is the result of an interpretation from the 
resources geologists and, as for the geological logs, can be inconsistent with the information 
carried by quantitative covariates measured at surrounding boreholes. Based on the spatial 
dependence relationships between the geological domains and the quantitative covariates and 
on the soft boundary model (model 3) presented in Chapter 3, we here propose a geostatistical 
approach to construct simulated geological scenarios and to validate an interpreted geological 
model by identifying the areas of a deposit where the interpreted category is not in agreement 
with the quantitative variables. The contents of this chapter have been published in the journal 
Minerals: 

Adeli, A., Emery, X., Dowd, P., 2018. Geological modelling and validation of geological 
interpretations via simulation and classification of quantitative covariates. Minerals 8(1), 7. 
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Geological modelling and validation of geological interpretations 
via simulation and classification of quantitative covariates 

 
 

Abstract  

This paper proposes a geostatistical approach for geological modelling and for validating an 
interpreted geological model, by identifying the areas of an ore deposit with a high 
probability of being misinterpreted, based on quantitative coregionalised covariates 
correlated with the geological categories. This proposal is presented through a case study of 
an iron ore deposit at a stage where the only available data are from exploration drill holes. 
This study consists of jointly simulating the quantitative covariates with no previous 
geological domaining. A change of variables is used to account for stoichiometric closure, 
followed by projection pursuit multivariate transformation, multivariate Gaussian 
simulation, and conditioning to the drill hole data. Subsequently, a decision tree classification 
algorithm is used to convert the simulated values into a geological category for each target 
block and realisation. The determination of the prior (ignoring drill hole data) and posterior 
(conditioned to drill hole data) probabilities of categories provides a means of identifying the 
blocks for which the interpreted category disagrees with the simulated quantitative 
covariates. 

Key words: geological uncertainty; geological modelling; geological misinterpretation; 
geostatistical simulation; classification. 

5.1.  Introduction  

A geological model consists of a three-dimensional representation of an ore deposit 
constructed by resource geologists on the basis of their knowledge of the deposit, geological 
field observations, geophysical surveys, and drill hole logs and assays. A geological model 
that represents the spatial locations and extents of rock types or ore types is an essential input 
for mineral resources evaluation and mine planning and, as such, affects all subsequent stages 
of the mining process (Duke and Hanna, 2001; Sinclair and Blackwell, 2002; Knödel et al., 
2007; Marjoribanks, 2010; Rossi and Deutsch, 2014). The typical workflow for assessing 
mineral resources consists of grouping the rock types or ore types into geological domains in 
which the quantitative variables of interest (geochemical, geometallurgical, and/or 
geomechanical variables) are assumed to be homogeneously distributed and then 
interpolating these variables within each domain using geostatistical techniques. This 
hierarchical workflow accounts for geological controls on the distributions of the quantitative 
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variables but produces clear-cut discontinuities in the values of the quantitative variables 
when crossing the domain boundaries (Ortiz and Emery, 2006; Rossi and Deutsch, 2014). 
Several alternatives have been proposed to mitigate these discontinuities and to account for 
spatial correlation across the domain boundaries (Larrondo et al., 2004; Ortiz and Emery, 
2006; Vargas-Guzmán, 2008; Séguret, 2013; Mery et al., 2017). Another approach to produce 
gradual transitions near the domain boundaries is to model the quantitative variables of 
interest with no previous geological domaining by considering the controlling rock types or 
ore types as cross-correlated covariates (Dowd, 1994; Dowd, 1997; Emery and Robles, 2009; 
Emery and Silva, 2009; Maleki and Emery, 2015; Maleki and Emery, 2017). 

Geostatistical simulation approaches have been designed to construct several geological 
scenarios in order to quantify uncertainty in the actual locations and extents of rock types or 
ore types, accounting for their spatial continuity and proportions (which may vary in space), 
and contact relationships, including chronological associations, allowable and non-allowable 
contacts, edge effects (preferential contacts), and directional effects (asymmetrical spatial 
relationships) between rock types or ore types ((Xu et al., 2006; Armstrong et al., 2011; 
Mariethoz and Caers, 2014; Beucher and Renard, 2016) and references therein). However, 
these approaches are still in their infancy in practical orebody modelling where the geological 
model often corresponds to a single interpretation of the deposit, rather than multiple 
scenarios, which does not allow geological uncertainty to be measured. This motivates the 
need for quantitative methods to validate the model and to identify the areas of the deposit 
that have higher probabilities of being misinterpreted. 

Most published research on geological modelling focuses on using all available data to 
generate a more accurate geological model, e.g., by using structural and geophysical data 
together in addition to drill hole data or by using data inversion methods to generate an 
interpreted model (Guillen et al., 2008; Lelièvre, 2009). Studies of validating geological 
models often concentrate on statistical and graphical analyses by comparing the models with 
the available data to detect inconsistencies (Rossi and Deutsch, 2014). 

In this work we propose a geostatistical approach to construct simulated geological scenarios 
and to validate an interpreted geological model by identifying the areas of a deposit that are 
likely to be misinterpreted. The approach relies on the analysis of quantitative variables that 
are measured at sampling locations and are cross-correlated with the geological categories 
obtained from geological core logging. It includes the geostatistical modelling and simulation 
of the quantitative variables, followed by their classification into geological categories. 
Comparing the prior (without sampling information) and posterior (accounting for sampling 
information) probabilities of categories for each target location provides a means of identifying 
the locations that are most likely to be incorrectly interpreted. 

The paper is outlined as follows: Section 5.2 comprises the case study and the methodology 
used to model, simulate, and classify the quantitative variables of interest. Section 5.3 
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presents the results of comparing the prior and posterior probabilities of geological categories 
to identify potentially misinterpreted blocks. Conclusions and perspectives follow in Section 
5.4. 

5.2.  Materials and methods 

5.2.1. Case study presentation 

The case study is a banded-iron formation (BIF)-hosted iron ore deposit for which there are 
4177 diamond drill core samples. For reasons of confidentiality, the name and location of the 
deposit are not disclosed and a local coordinate system is used. Seven quantitative variables 
have been analysed for each sample: the grades of iron (Fe), silica (SiO2), phosphorus (P), 
alumina (Al2O3), manganese (Mn), loss on ignition (LOI), and the granulometric fraction of 
fragments with size above 6.3 mm (G). In addition, for each sample, the dominant rock type 
is available from geological logging, which is coded into ten categories: friable hematite 
(code 1), compact hematite (code 2), alumina-rich hematite (code 3), alumina-rich itabirite 
(code 4), manganese-rich itabirite (code 5), compact itabirite (code 6), friable iron-poor 
itabirite (code 7), friable iron-rich itabirite (code 8), amphibolitic itabirite (code 9), and canga 
(code 10). There are dependent relationships between the quantitative variables and the rock 
codes (Maleki et al., 2016), as summarised in Table 5.1. This implies that information about 
the former may help to detect inconsistencies in the interpretation of the latter, which is the 
basis of the proposed geostatistical methodology. 

Based on the drill hole information and their knowledge of the deposit, the resource 
geologists constructed two-dimensional representations of the rock type distribution in 
specific plan views and cross-sections, then interpolated these representations with indicator 
kriging to construct a rock type model (the most probable rock type, obtained by post-
processing the indicator kriging results) on a 3D grid with a regular spacing of 10 m × 10 m 
× 10 m (Figure 5.1). This 3D model is the basis for mineral resource evaluation and for mine 
planning, but does not provide any quantification of the uncertainty in the actual rock type 
assigned to each block. It is therefore of interest to design a method for validating the 
interpreted rock type assigned to each grid block and for finding the blocks for which the 
interpretation is likely to be mistaken. 
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Table 5.1. Associations between rock types and quantitative variables (for each variable, “poor” and “fine” 
refer to the rock types with the lowest values, and “rich” and “coarse” to the rock types with the highest 

values) (Maleki et al., 2016). 

G Fe SiO2 Al2O3 Mn LOI P Rock Code 

Coarse Rich Poor     2 

Coarse Poor Rich     6 

Fine Rich Poor Rich    3 

Fine Rich Poor Poor    1 

Fine Intermediate Intermediate Rich Rich   5 

Fine Intermediate Intermediate Rich Poor Rich Rich 9 

Fine Intermediate Intermediate Rich Poor Poor Poor 4 

Fine Intermediate Intermediate Poor    8 

Fine Poor Rich     7 

Intermediate Rich Poor Rich Poor Rich  10 

 

 
Figure 5.1: Isometric view of the interpreted rock type model, showing the plan view and vertical cross-

sections passing through the origin (local coordinate system). Waste and air are shown in dark blue and grey, 
respectively. 

 

In the following, we will exclude the waste rocks in the outer parts of the deposit, as well as 
the canga in the superficial part, as their locations and extents depend more on geographical 
position than on the quantitative variables. Accordingly, the following stages of the study 
will be restricted to the underlying ferruginous rock (rock types 1–9). 
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5.2.2. Modelling and simulation of quantitative variables 

Adeli and Emery (2017) presented a hierarchical model for this deposit, in which the rock 
type controls the distribution of the quantitative variables (Fe, SiO2, P, Al2O3, Mn, LOI, G) 
and the spatial correlation structure of these variables depends on the prevailing rock type 
domain. In the following, we will reverse this point of view and assume that the rock type is 
subordinate to the quantitative variables. In other words, the quantitative variables will be 
modelled and simulated throughout the deposit without any previous geological domaining. 
Because of the relationship between the grades, granulometry, and rock types (Table 5.1), 
the rock type will then be allocated on the basis of the simulated values of these quantitative 
variables by means of a classification algorithm. Unlike the aforementioned hierarchical 
model, this approach does not produce discontinuities in the values of the quantitative 
variables near the rock type boundaries, which conforms with the concept of a disseminated 
ore deposit (Emery and Silva, 2009; Maleki and Emery, 2015). In this deposit, the 
quantitative variables are spatially correlated across the rock type boundaries, as shown in 
(Adeli and Emery, 2017; Mery et al., 2017). 

5.2.2.1. Change of variables based on stoichiometric closure 

A joint simulation approach is required to reproduce the dependence relationships among the 
quantitative variables. In particular, the grade variables are linked through the following 
stoichiometric closure formula: 

1.4297 Fe + SiO2 + 2.2913 P + Al2O3 + 1.2912 Mn + LOI = 100 (5.1) 

in which the coefficients 1.4297, 2.2913, and 1.2912 are used to rescale the masses of iron 
(Fe), phosphorus (P), and manganese (Mn) to the masses of hematite (Fe2O3), phosphorus 
pentoxide (P2O5), and manganese monoxide (MnO), respectively. A convenient way of 
reproducing the stoichiometric closure in the simulated grade values is to conduct a change 
of variables. Some alternatives for such a change of variables are the additive logratio (alr), 
centred logratio (clr), or isometric logratio (ilr) transformations that are often used in 
compositional data analysis (Pawlowsky-Glahn and Buccianti, 2011), but these 
transformations are not suitable for variables that can take zero values, as is the case in the 
present case study. We therefore opt for a ratio transformation that does not use logarithms, 
as proposed in (Mery et al., 2017), where the quantitative variables are successively 
normalised by the residual of the closure: 
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In the above equation, the original variables have been ordered from the variable with the 
lowest mean value (P) to the variable with the highest mean value (SiO2) in order to minimise 
the distortion induced by the ratio transformation (the correlation coefficients between Z1 
and P, Z2 and Mn, Z3 and Al2O3, Z4 and LOI, and Z5 and SiO2 are all greater than 0.995 
(Mery et al., 2017)). The transformed variables have no stoichiometric constraint and take 
their values in the interval [0–1). Note that there are only five unconstrained transformed 
variables (Z1–Z5) instead of six constrained grade variables (Fe, SiO2, P, Al2O3, Mn, LOI). 
The back-transformation is obtained from equations (5.1) and (5.2): 
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5.2.2.2. Projection pursuit multivariate transformation 

The data for the five unconstrained variables (Z1–Z5) and granulometry (G) are transformed 
into multivariate Gaussian data, hereafter called “normal scores”. Because of the 
heteroscedastic dependence relationships between the variables prior to transformation 
(Figure 5.2), the normal scores transformation of each variable separately does not provide 
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truly multivariate Gaussian data (Chilès and Delfiner, 2012). For instance, the scatter diagram 
between any two transformed variables does not have an elliptical shape, which indicates that 
these transformed variables do not correspond to jointly Gaussian random fields. To avoid 
this inconvenience, a joint normal scores transformation can be used, such as stepwise 
conditional transformation (SCT) (Leuangthong and Deutsch, 2003), flow transformation 
(FT) (Van den Boogaart et al., 2016), or projection pursuit multivariate transformation 
(PPMT) (Friedman and Tukey, 1974; Friedman, 1987; Barnett et al., 2014). All these 
methods require all the variables to be known at all the data locations (isotopic sampling), 
which is the case in the present case study; otherwise, the data set should be completed by 
multivariate imputation techniques before joint normal scores transformation (Silva and 
Deutsch, 2016). In practice, the first two approaches are still limited to few variables (SCT) 
or to small data sets (FT), and for this reason we chose the third approach (PPMT) here. The 
PPMT transformation is based on an iterative algorithm and allows the complex dependence 
relationships (such as nonlinearities and heteroscedasticities) between cross-correlated 
variables to be removed, providing a set of new variables that are normally distributed and 
uncorrelated at collocated locations (Friedman and Tukey, 1974; Friedman, 1987; Barnett et 
al., 2014). The transformation uses declustering weights to account for the uneven positions 
of the drill hole data in space. For each rock type, the weights are obtained by considering 
the ratio of the rock type proportion in the interpreted geological model and the rock type 
proportion in the drill hole data. It is assumed here that the interpreted model, which is 
constructed from the drill hole information and geological knowledge of the deposit, is 
globally accurate, i.e., it provides a reliable estimate of the true rock type proportions, 
although it may be locally inaccurate as some blocks may be misinterpreted. 

Figure 5.2 shows how PPMT transforms the joint distribution of the quantitative variables 
(Z1, Z2, Z3, Z4, Z5, G) into a multi-Gaussian one. The marginal distributions (histograms) are 
bell-shaped, while the bivariate distributions (scatter plots) exhibit the typical circular shape 
of uncorrelated Gaussian variables. 

5.2.2.3. Spatial continuity modelling 

The PPMT transformed variables are represented by jointly stationary Gaussian random 
fields within the studied area. By construction, these random fields have a mean of zero, so 
that their finite-dimensional distributions are fully characterised by their direct and cross-
covariance functions. Under an additional assumption that the cross-covariances are even 
functions, one can use the direct and cross-variograms as an alternative to the covariances; 
this additional assumption implies the absence of asymmetries, such as spatial shifts or delay 
effects, in the spatial cross-correlation between variables (Wackernagel, 2003). 

In the first step, the spatial correlation structure of the normal scores data is inferred by 
calculating their experimental direct and cross-variograms (six direct variograms and fifteen 
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cross-variograms) along the horizontal and vertical directions, which were identified as the 
main anisotropy directions. The cross-variograms indicate a low correlation (not necessarily 
zero) between two different random fields taken at different locations (separation distances 
greater than zero). The direct variograms tend to a sill value close to one, which corroborates 
the validity of the stationarity assumption, at least at a local scale (quasi-stationarity) (Chilès 
and Delfiner, 2012). Based on this observation, a linear model of coregionalisation consisting 
of nested exponential models is fitted to the direct and cross-variograms, by using a semi-
automated algorithm to find the sill matrices associated with the nested structures that 
minimise the squared differences between experimental and theoretical variograms (Goulard 
and Voltz, 1992; Wackernagel, 2003; Emery, 2010a) (Figure 5.3). A simplified model, in 
which the cross-variograms are exactly zero and the PPMT-transformed variables are 
spatially independent, could also be considered, which amounts to neglecting the cross-
correlation between these variables. The full model (with non-zero cross-variograms) is used 
in the following, as it is not significantly more complex. 
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Figure 5.2: Histograms and scatterplots of Z1 vs. Z2, Z3 vs. Z4, and Z5 vs. G before (left) and after (right) 
PPMT transformation. 
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Figure 5.3: An example of experimental (crosses) and fitted (solid lines) direct and cross-variograms for the 
PPMT-transformed variables of Z1, Z3, and G, along the horizontal (black) and vertical (blue) directions. 

5.2.2.4. Conditional simulation 

The Gaussian random fields are jointly simulated using a spectral turning-bands algorithm 
(Emery et al., 2016). This algorithm is preferred to other alternatives, such as sequential, 
covariance matrix decomposition or circulant-embedding algorithms ((Chilès and Delfiner, 
2012) and references therein) because of its accuracy, versatility, unequalled computational 
speeds, and low memory storage requirements, being able to simulate highly-multivariate 
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random fields and to reproduce exactly the desired spatial correlation structure (Emery et al., 
2016). 

Twenty realisations are constructed on the same grid as the interpreted rock type model. These 
realisations are then conditioned to the PPMT-transformed data known at the drill hole 
locations by using post-conditioning cokriging and finally back-transformed into grades and 
granulometry (Chilès and Delfiner, 2012). To account for possible deviations from strict 
stationarity, the conditioning to data is performed by ordinary cokriging, which allows the 
mean values of the Gaussian random fields to vary locally (i.e., at the scale of the cokriging 
neighbourhood) and to reproduce the spatial trends exhibited by the conditioning data (an 
exception would be for extrapolation situations, but grid nodes located far away from the data 
are not the target of the proposed methodology) (Journel and Rossi, 1989; Emery and Robles, 
2009; Emery, 2010b). As an illustration, two realisations are shown in Figure 5.4. More than 
20 realisations could have been constructed, but this would increase not only the computational 
time to run the simulation (a few hours on a common desktop) and the memory requirements 
to store the simulated values, but also the combination of the results to be treated (support of 
the multinomial distribution used to model the combinations of rock type occurrences among 
the realisations, see equation (5.4) in Section 5.2.5). 

5.2.2.5. Checking the realisations 

The correlation coefficients of drill hole data and simulated grades and granulometry are 
shown in Table 5.2, while Figure 5.5 displays the scatter diagrams of three pairs of variables. 
Both tools show that the simulated values accurately reproduce the bivariate distributions of 
the data values (Leuangthong et al., 2004). Furthermore, by construction, the realisations also 
reproduce the stoichiometric closure (imposed by the change of variables), the spatial 
continuity (imposed by the direct and cross-variograms), and the conditioning data (imposed 
by post-conditioning cokriging). 

Table 5.2: Correlation coefficients of drill hole data and simulated outcomes of grades and granulometry 
(correlation observed on drill hole data: bold entries above main diagonal; average correlation over 20 

outcomes: regular entries above main diagonal; minimum correlation over 20 outcomes: bold entries under 
main diagonal; maximum correlation over 20 outcomes: regular entries under main diagonal). 

Variable Fe Si P Al Mn LOI G 

Fe 1 −0.98/−0.99 0.21/0.18 0.27/0.30 −0.04/−0.01 0.23/0.23 −0.11/−0.07 

Si −0.99/−0.98 1 −0.30/−0.29 −0.39/−0.42 −0.08/−0.08 −0.36/−0.37 0.14/0.11 

P 0.14/0.22 −0.32/−0.25 1 0.33/0.43 0.11/0.16 0.72/0.73 −0.07/−0.10 

Al 0.27/0.32 −0.44/−0.39 0.41/0.45 1 0.19/0.17 0.59/0.62 −0.38/−0.32 

Mn −0.03/0.02 −0.10/−0.06 0.13/0.20 0.14/0.21 1 0.19/0.15 −0.06/−0.08 

LOI 0.20/0.27 −0.40/−0.35 0.71/0.75 0.60/0.64 0.12/0.19 1 −0.18/−0.13 

G −0.12/−0.04 0.07/0.16 −0.14/−0.08 −0.34/−0.30 −0.10/−0.05 −0.17/−0.10 1 
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5.2.3. Construction of simulated geological scenarios by classification 

A classification algorithm is now used to assign a rock type from 1 to 9 for each realisation 
and each target grid block depending on the values of the simulated quantitative variables. 
To choose the algorithm, several classifiers are trained on the drill hole data set and compared 
through a stratified 10-fold cross-validation. Specifically, the drill hole data set (containing 
information on both the rock type and the quantitative variables) is divided randomly into ten 
subsets; each subset is held out, the classifier is trained on the remaining nine subsets and 
tested on the holdout subset, and its error rate is calculated. This procedure is executed in its 
entirety 10 times on different training subsets; ultimately, the ten error rates are averaged to 
get an overall error estimate (Witten et al., 2016). A geographical selection could be used 
instead of a random selection to define the ten data subsets, so as to reduce the redundancies 
between the training and testing subsets. However, the direct variograms of the normal scores 
data (Figure 5.3) exhibit a significant nugget effect (more than 25% of the total sill), so that 
the redundancies are low, even when using a random selection. Note that this training stage 
is the only instance in our proposed approach that uses the rock type data logged on the drill 
hole samples. 

The classifier that obtained the best results was the Simple Cart algorithm, with an error rate 
less than 18% (Table 5.3). This classifier is a decision tree algorithm; it is a logical choice given 
the associations between rock types and quantitative variables indicated in Table 5.1. Note that 
an error rate of 0% is not desirable since the logged rock type is a qualitative property obtained 
from geological core logging and is not error-free (unlike the quantitative measurements, which 
are assumed to be accurate) (Adeli and Emery, 2017). In addition, the incorrectly classified 
rock type data can be identified as the most likely to be mis-logged and be the priority candidate 
for checking (relogged) to ensure data consistency. 
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Figure 5.4: Isometric view of two realisations of the grades and granulometry (left: realisation 1 and right: 
realisation 2), showing the plan view and vertical cross-sections passing through the origin (local coordinate 
system). Waste and air are shown in grey. From top to bottom: iron grade, silica grade, phosphorus grade, 

alumina grade, manganese grade, loss on ignition, granulometry. 
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Figure 5.5: Scatter diagrams of Fe vs. SiO2, Fe vs. LOI, and LOI vs. P for drill hole data (red) and simulated 
values (blue). Left: realisation 1, right: realisation 2.  
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Table 5.3: Classifiers tested for the case study with their rates of correct classification on drill hole data. 

Classification Algorithm Algorithm Type 
Correct Classification Rate 

(Cross-Validation) 

Simple Cart Decision tree 82.6 

BF Tree Decision tree 81.7 

Classification via Regression 
Meta-learning 

algorithm 
81.7 

REP Tree Decision tree 81.6 

Random Forest Decision tree 81.1 

Multilayer Perceptron (Neural Network) Function 80.6 

Bayes Network Bayesian 77.5 

RBF Network Function 75.1 

Naive Bayes Bayesian 73.3 

Random Tree Decision tree 70.6 

 

The classification applied to the 20 conditional realisations resulted in a number of 
occurrences of each rock type (from 0 to 20) for each target grid block. Figure 5.6 shows the 
classified rock type for two realisations. 

 
 

Figure 5.6: Isometric view of two realisations of the classified rock type (left: realisation 1 and  
right: realisation 2), showing the plan view and vertical cross-sections passing through the origin (local 

coordinate system). Waste and air are shown in dark blue and grey, respectively. 

5.2.4. Determining the prior probability of occurrence of each rock type 

It is of interest to determine whether the conditioning drill hole information influences the 
classification results for each target block. To do so requires the prior probabilities of all rock 
types to be determined by classifying the grades and the granulometry simulated in the 
absence of the conditioning drill hole data. In detail, the simulation process is then repeated, 
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this time without any conditioning data, to produce 1000 realisations of the grades and 
granulometry. These non-conditional realisations provide the prior probabilities (p1, …, p9) 
of the different rock types by counting the numbers of occurrences of each rock type across 
the 1,000 realisations (Table 5.4). This only requires one block to be simulated because the 
prior probabilities are the same for all the blocks in the deposit. 

Table 5.4: Prior probability of each rock type. 

Symbol Rock Type Code Prior Probability

p1 1 0.023 

p2 2 0.051 

p3 3 0.003 

p4 4 0.048 

p5 5 0.025 

p6 6 0.345 

p7 7 0.384 

p8 8 0.090 

p9 9 0.031 

 

5.2.5. Comparing the prior and posterior probabilities of rock type occurrences to  
          identify potentially misinterpreted blocks 

Knowing the prior probability of occurrence of each rock type, the prior distribution of the 
rock types that should be observed on a limited set of independent realisations can be 
modelled as a multinomial distribution (Papoulis, 1984): 
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In particular, this distribution gives the probability of any particular combination of the 
numbers of occurrences for the nine rock types among twenty (n = 20) realisations in the 
absence of effects of conditioning drill hole data. 

If, for a given block, the numbers of rock type occurrences that are observed among the 
twenty conditional realisations constitute an unlikely combination of the prior multinomial 
distribution, then it can be concluded that the drill hole data has a significant effect on that 
block, i.e., there is statistical evidence that the drill hole data convey information about the 
rock type for this particular block. If, in addition, the rock type interpreted by the resource 
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geologists has a low frequency of occurrence (posterior probability) among the twenty 
conditional realisations, then the block can be identified as potentially misinterpreted. 

The statements in the previous paragraph require a quantitative definition of “unlikely” or 
“low”. To this end, the combinations of the prior multinomial distribution are ranked, from 
the least probable to the most probable, and the less probable combinations (up to a 
cumulative probability of 0.1) are classified as “unlikely” or “improbable”. One then looks 
for the blocks in which such improbable combinations arose in the twenty conditional 
realisations, i.e., the combination is very unlikely in the non-conditional case (absence of 
drill hole data) but has occurred in the conditional case, showing that there is a significant 
effect of the conditioning drill hole data on the blocks. Note that there is no particular reason 
to find 10% of the blocks in the geological model with the above-specified cumulative 
probability (0.1): more blocks may exhibit an “unlikely” combination if the conditioning data 
have a strong effect (long-range correlation structure), while fewer blocks (possibly none) 
may be identified if the conditioning data have low spatial correlation. 

Finally, the following three criteria are used to identify potentially misinterpreted blocks 
among the blocks that are significantly affected by the drill hole data: (i) the prior probability 
of the rock type interpreted by the geologists is greater than its posterior probability; (ii) the 
posterior probability of the rock type interpreted by the geologists is less than 0.15 (unlikely); 
and (iii) another rock type has a posterior probability higher than the posterior probability of 
the rock type interpreted by the geologists and has been logged at a drill hole sample less 
than 60 m away from the block. This last criterion is adopted to avoid extrapolating the drill 
hole information too much, bearing in mind that the geostatistical model is likely to be valid 
only at a local scale (quasi-stationarity assumption) and considering a distance lower than 
the spatial correlation range, for which the direct variograms reach about 70–80% of their 
sills (Figure 5.3). The particular values (0.15 probability and 60 m distance) chosen in criteria 
(ii) and (iii) can nevertheless be tuned by the user depending on his/her preferences, intuition, 
and expertise (or be modified in other case studies, depending on the observed correlation 
range of the quantitative data), which reflects more or less conservative detections of the 
misinterpreted rock types in the geological model. 

5.3.  Results and discussion 

The application of the criteria in the previous section identifies 3.39% of all the blocks 
(20,999 blocks out of 619,919 blocks flagged with rock types 1–9 in the original geological 
model) to be potentially misinterpreted (condition +5), as shown in Figure 5.7. Conditions 
+1 to +5 are described in Table 5.5. 

Except for a few blocks scattered across the deposit, the identified misinterpreted blocks 
(condition +5) are concentrated in the upper part of the ore deposit, in the margins of the 
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manganese-rich itabirite, alumina-rich itabirite, and hematite bodies, showing the necessity 
to check these blocks in order more accurately to separate these bodies located in the 
transitional parts of the deposit from high to low manganese, alumina, and iron grades.  

Table 5.5: Defined conditions. 

 

Symbol Condition 

+1 Block under consideration is not affected significantly by the drill hole data 

+2 
Prior probability of the rock type interpreted by the geologists is lower  
than its posterior probability (the interpreted rock type “agrees” with the  
posterior distribution) 

+3 
Block under consideration does not meet condition +2, but there is not any evidence for a 
misinterpretation (neither +4 nor +5) 

+4 
Prior probability of the rock type interpreted by the geologists is greater than its posterior 
probability, posterior probability of the interpreted rock type is less than 0.15 (unlikely), and 
another rock type has a higher posterior probability 

+5 
In addition to the criteria of condition +4, a rock type with higher posterior probability has 
been logged at some drill hole sample less than 60 m from the block 

 
 

Figure 5.7: Isometric view of block classification according to criteria in Table 5.5, showing the plan view 
and vertical cross-sections passing through the origin (local coordinate system). Waste and air are shown in 

dark blue and grey, respectively. 

The numbers of correctly interpreted and potentially misinterpreted blocks for each 
interpreted and suggested rock type are shown in Table 5.6. For example, 35 blocks are 
interpreted as rock type 1 (friable hematite) with the suggestion they be changed to rock type 
2 (compact hematite).  
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Table 5.6: Numbers of blocks with no evidence of misinterpretation (conditions +1 to +4) (diagonal line) and 
numbers of potentially misinterpreted blocks (condition +5) (off-diagonal) for each interpreted rock type 

(row) and each suggested rock type based on classification of 20 realisations (column). 

 

Rock 
Type 

1 2 3 4 5 6 7 8 9 

1 12,058 35 51 22 35 21 76 61 29 
2 198 7712 45 14 8 41 239 223 27 
3 70 61 5289 26 22 5 41 55 14 
4 93 39 99 15,917 22 6 99 78 70 
5 96 15 38 55 5788 3 85 89 4 
6 535 216 73 410 165 349,723 2607 415 619 
7 2292 990 1169 1458 776 1161 172,299 1623 2072 
8 369 172 336 149 110 72 403 18,259 233 
9 50 48 32 36 15 8 46 29 11,875 

 

In the following, three of the potentially misinterpreted blocks are selected and discussed in 
light of the simulated values of grades and granulometry. For the first selected block (referred 
to as “block n°1”), with easting coordinate 340 m, northing coordinate 380 m, and elevation 
−40 m in the local coordinate system, the mining geologist interpretation corresponds to rock 
type 6 (compact itabirite). However, the simulated values of granulometry (mostly less than 
50%) suggest that this block should actually be interpreted as rock type 7 (friable iron-poor 
itabirite) in 17 out of the 20 realisations (Table 5.7). This rock type code (7) is also the one 
logged in the three closest drill hole samples, all of which are less than 20 m from block 1. 
A similar situation occurs for block n°2 with easting coordinate −580 m, northing coordinate 
330 m, and elevation 280 m, interpreted as rock type 7 (friable iron-poor itabirite), which is 
re-interpreted as rock type 1 (friable hematite) in 17 out of the 20 realisations, based on the 
high simulated iron grades (Table 5.8); the four nearest drill hole samples, less than 35 m 
from the block, have been logged as rock type 1, which corroborates the suggestion for a re-
interpretation of the block. For block n°3 with easting coordinate 1390 m, northing 
coordinate 410 m, and elevation 390 m, 17 of the 20 realisations suggest classification as 
rock type 3 (alumina-rich hematite), based on the high simulated iron and alumina grades 
(Table 5.9), whereas the original geological interpretation corresponds to rock type 8 (friable 
iron-rich itabirite). This interpretation (rock type 8) coincides with the log of the closest 
sample, less than 30 m from the block, but examination of the grades of this sample suggests 
that it may actually be mis-logged: following the methodology proposed in (Adeli and 
Emery, 2017), the p-values of rock types 3 and 8 are 0.94 and 0.51, respectively, indicating 
that the former code is more plausible than the latter.  
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Table 5.7: Simulated grades and granulometry, and associated rock type, for 20 realisations of block n°1, 
interpreted as rock type 6 (compact itabirite) by mining geologists. 

 

Realisation Fe SiO2 P Al2O3 Mn LOI G Classified Rock Type 
1 47.22 30.21 0.019 1.411 0.026 0.798 55.92 6 
2 40.56 40.97 0.017 0.418 0.011 0.566 20.90 7 
3 35.79 47.56 0.017 0.678 0.010 0.533 16.69 7 
4 39.74 41.97 0.022 0.540 0.010 0.613 40.73 7 
5 36.71 46.70 0.010 0.416 0.010 0.368 23.99 7 
6 37.02 46.01 0.016 0.451 0.010 0.573 11.24 7 
7 41.50 38.96 0.017 0.536 0.020 1.113 32.39 7 
8 59.11 14.72 0.010 0.384 0.010 0.343 10.60 8 
9 52.29 20.23 0.072 1.703 0.029 3.113 31.50 8 

10 38.68 44.03 0.012 0.330 0.010 0.301 49.71 7 
11 37.93 43.16 0.036 0.570 0.010 1.950 43.22 7 
12 37.42 45.59 0.010 0.311 0.010 0.570 37.23 7 
13 30.67 55.29 0.014 0.320 0.010 0.502 14.52 7 
14 32.97 52.01 0.011 0.254 0.010 0.563 42.12 7 
15 30.54 54.77 0.012 0.702 0.010 0.814 34.56 7 
16 44.76 33.78 0.017 1.146 0.027 1.013 16.65 7 
17 45.96 32.21 0.017 0.988 0.014 1.032 33.37 7 
18 40.43 41.54 0.013 0.303 0.010 0.314 45.39 7 
19 47.19 30.01 0.032 1.164 0.018 1.263 41.08 7 
20 42.17 37.34 0.048 0.901 0.015 1.343 44.33 7 

 

Table 5.8: Simulated grades and granulometry, and associated rock type, for 20 realisations of block n°2, 
interpreted as rock type 7 (friable iron-poor itabirite) by mining geologists. 

 

Realisation Fe SiO2 P Al2O3 Mn LOI G Classified Rock Type 
1 67.59 1.07 0.013 1.193 0.010 1.054 26.67 1 
2 66.88 2.50 0.016 1.240 0.010 0.584 46.37 1 
3 66.17 3.46 0.015 1.275 0.010 0.613 48.08 1 
4 64.99 5.14 0.014 1.317 0.010 0.576 3.89 1 
5 67.46 1.68 0.018 1.020 0.010 0.805 19.45 1 
6 68.66 1.24 0.010 0.346 0.010 0.216 57.84 2 
7 62.30 7.40 0.015 2.319 0.010 1.161 10.35 1 
8 66.55 2.07 0.020 1.663 0.010 1.061 25.53 1 
9 67.89 2.27 0.010 0.361 0.010 0.272 2.92 1 

10 68.74 0.83 0.015 0.388 0.010 0.448 31.09 1 
11 62.57 9.15 0.012 0.851 0.010 0.503 10.12 1 
12 61.69 9.59 0.024 0.970 0.010 1.168 18.37 8 
13 65.41 3.59 0.016 1.816 0.010 1.021 35.01 1 
14 67.70 2.10 0.012 0.679 0.010 0.389 10.40 1 
15 67.63 0.65 0.028 1.240 0.011 1.339 37.19 1 
16 67.66 1.84 0.021 0.704 0.010 0.659 14.63 1 
17 59.19 14.67 0.010 0.397 0.010 0.272 1.93 8 
18 62.59 8.48 0.012 1.255 0.010 0.743 22.11 1 
19 66.79 1.55 0.032 1.533 0.016 1.338 31.18 1 
20 68.48 0.71 0.016 0.581 0.010 0.748 32.40 1 
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Table 5.9: Simulated grades and granulometry, and associated rock type, for 20 realisations of block n°3, 
interpreted as rock type 8 (friable iron-rich itabirite) by mining geologists. 

 

Realisation Fe SiO2 P Al2O3 Mn LOI G Classified Rock Type 
1 63.608 0.80 0.052 0.873 0.410 6.736 9.90 3 
2 62.235 2.79 0.076 3.258 0.021 4.770 14.71 3 
3 62.653 1.17 0.042 1.497 0.053 7.595 4.63 3 
4 64.02 2.96 0.037 2.453 0.064 2.884 1.80 1 
5 64.817 0.80 0.095 1.886 0.095 4.310 20.67 3 
6 62.642 2.64 0.105 3.058 0.083 4.397 14.68 3 
7 63.305 1.23 0.047 2.737 0.073 5.326 34.15 3 
8 62.068 1.11 0.126 3.221 0.034 6.600 21.30 3 
9 65.543 0.39 0.069 1.635 0.031 4.065 23.33 3 

10 62.09 0.97 0.070 2.925 0.095 7.048 44.50 3 
11 63.943 1.32 0.037 1.387 0.024 5.758 32.72 3 
12 63.108 1.14 0.039 2.357 0.039 6.141 7.71 3 
13 59.538 2.04 0.073 6.104 0.080 6.466 8.94 9 
14 62.418 0.52 0.099 3.669 0.075 6.244 5.13 3 
15 62.12 0.41 0.096 3.155 0.033 7.361 6.21 3 
16 63.739 0.52 0.040 1.420 0.148 6.644 23.91 3 
17 57.725 0.49 0.095 5.816 3.110 6.932 11.19 5 
18 64.591 1.03 0.067 1.721 0.033 4.707 17.59 3 
19 62.706 2.49 0.079 2.092 0.018 5.559 21.10 3 
20 64.873 0.57 0.043 1.131 0.025 5.423 40.42 3 

 

On a final note, the proposed methodology used for validating the interpreted geological 
model, based on the calculation of prior and posterior probabilities, and on the definition of 
heuristic criteria (Sections 5.2.4 and 5.2.5), can be applied not only to the geological 
scenarios obtained from the simulation and classification of quantitative covariates, as set out 
in Sections 5.2.2 and 5.2.3, but also to scenarios obtained from any other geostatistical 
simulation method, e.g., multiple-point, truncated Gaussian or plurigaussian simulation (Xu 
et al., 2006; Armstrong et al., 2011; Mariethoz and Caers, 2014; Beucher and Renard, 2016). 

5.4.  Conclusions 

The rock type or ore type model interpreted by mining geologists is the basis for mineral 
resource evaluation, mine planning, and subsequent stages of the mining process. This 
motivates the design of a method for validating the interpreted category assigned to each grid 
block and for finding the blocks for which the interpretation is likely to be incorrect. To this 
end, a geostatistical-based approach has been proposed for constructing a set of simulated 
geological scenarios and for identifying potentially misinterpreted blocks, assuming that 
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there is a clear association between geological categories and measured quantitative 
covariates. 

The applicability of the proposal was tested on an iron ore deposit in which there is a clear 
association between the interpreted rock types and seven quantitative covariates (grades of 
iron, silica, phosphorus, alumina, manganese, loss on ignition, and granulometry). The 
proposal combines a change of variables based on a stoichiometric closure formula, PPMT 
transformation, variogram analysis, turning-bands simulation, post-conditioning cokriging, 
and decision-tree classification. The potentially misinterpreted blocks are then identified by 
comparing the prior and posterior rock type probabilities, and by defining heuristic criteria 
that can be tuned by the user to achieve more or less conservative detections. 

The proposed approach can be applied not only in the context of geological modelling, but 
also in the wider context of geometallurgical modelling, in which there are relatively large 
volumes of multivariate data of different natures and qualities (e.g., grades, grain sizes, 
mineralogy, alteration, grindability indices, and metal recoveries), and where the correct 
identification and interpretation of geometallurgical domains is critical to improving process 
performance. 
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Chapter 6: Discussion, conclusions and perspectives 

 

6.1. General discussion 

There is an increasing need in the mining industry for high performance of mineral resources 
and ore reserves models. A portion of the model deviations are due to mislogged samples, 
for which the logged value of a petrophysical attribute such as the lithology, alteration or 
mineralogical assemblage is erroneous. Considering the regionalized nature of petrophysical 
attributes and their dependence relationships with quantitative variables from geochemical 
analyses or metallurgical tests, a geostatistical approach based on a transitional boundary 
model and on leave-one-out cross-validation has been proposed for identifying possible 
mislogged samples. The proposal aims to calculate, for each sample, a measure of 
consistency between the logged classes and the quantitative covariates, allowing the 
practitioner to include additional criteria (p-value limits and geographical criteria) to detect 
suspicious samples. Also, because some samples may have all their measures of consistency 
smaller than the chosen p-value limit and may therefore not be classified into any of the 
logged classes, the proposed methodology cannot be used blindly as a substitute for the 
original logs. 

Another source of deviations of mineral resources and ore reserves models comes from the 
misinterpretation of the spatial layout of lithological, alteration or mineralogical domains 
corresponding to rock types or ore types. Accordingly, there is a need for validating the 
interpreted category assigned to each area or block of the deposit and for finding the blocks 
for which the geological interpretation is likely to be incorrect. To this end, a geostatistical 
approach based on a soft boundary model has been proposed for constructing a set of 
simulated geological scenarios and for identifying potentially misinterpreted blocks. 

Each of the two models on which the proposed methodologies are based has been designed 
for a specific purpose. In the transitional boundary model (model 2 defined in Chapter 3), the 
quantitative variables are “subordinated” to the geological categories defined by the logged 
classes, whereas the reverse happens for the soft boundary model (model 3 defined in Chapter 
3), where the quantitative variables are defined prior to geological domaining. Despite this 
difference in their assumptions, both models rely on the idea that there is a strong association 
between the geological categories and the measured quantitative covariates. Also, both of 
them allow a spatial correlation of the quantitative variables across the geological boundaries, 
which is particularly suitable for the modeling of disseminated deposits where there are no 
clear-cut discontinuities in the values of quantitative variables obtained from geochemistry 
or from metallurgical tests when crossing a geological boundary.  
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In contrast, with a hard boundary model (model 1 of Chapter 3), the quantitative covariates 
would be useless for validating the geological interpretation of the deposit, insofar as these 
variables would not bring any information on the geological domain present at an unsampled 
location. 

6.2. Conclusions  

Different geostatistical models can be elaborated to describe the dependence relationships 
between qualitative regionalized properties (geological categories defined from geological 
core logging or from geological interpretations) and quantitative covariates available from 
geochemical analyses or metallurgical tests. In the case of disseminated deposits for which 
there are no clear-cut discontinuities of the quantitative variables when crossing a geological 
boundary, a transitional boundary model or a soft boundary model can be defined. 

The first (transitional boundary) model has been used to design a methodology for validating 
and reclassifying geological logs, based on leave-one-out cross-validation and the definition 
of a consistency measure between the logs and the quantitative covariates. In turn, the second 
(soft boundary) model has been used to design a methodology for validating geological 
interpretations, based on simulation and decision-tree classification. Both methodologies use 
data analysis and multivariate geostatistical tools, such as joint Gaussian transformation, 
coregionalization modeling, cokriging and joint Gaussian simulation. In order to illustrate 
their applicability, a case study from an iron ore deposit has been presented, where ten logged 
rock types are strongly correlated with seven quantitative variables (grades of iron, silica, 
phosphorus, alumina, manganese, loss on ignition and granulometry) measured on the same 
set of exploration drill holes. An important practical aspect of both proposals is the possibility 
to incorporate heuristic criteria that can be tuned by the user in order to achieve more or less 
conservative detections. 

6.3. Perspectives  

The methodological proposals presented in this thesis may be the basis for future works, in 
particular: 

1) The proposed approaches can be applied not only in the context of geological modeling, 
but also in the context of geometallurgical modeling, by using ore mineralogical data 
from QEMSCAN analyses for finding mineral zones, or gangue mineralogical data 
derived from spectral information for recognizing alterations. In geometallurgical 
studies, there are relatively large volumes of multivariate data of different natures and 
qualities (e.g., grades, grain sizes, mineralogy, alteration, grindability indices, and metal 
recoveries), and the correct identification and interpretation of geometallurgical domains 
is critical for improving the overall performance of the value chain in the mining business. 
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2) One can enhance the soft boundary model (model 3 suggested in Chapter 3) by focusing 
on the scales of variations of main interest for geological domaining. This enhancement 
could be based on the decomposition of the random fields representing the quantitative 
variables into components acting at different spatial scales via coregionalization analysis. 
Indeed, instead of integrally simulating these variables, it could be interesting to filter out 
the noisy or short-scale components (associated with the nugget effect or with the short-
range structures of the coregionalization model, which can relate to measurement errors), 
in order to obtain a simulation of the large-scale structures (nested structures with a large 
range of correlation). This model enhancement is the topic of ongoing research. 
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