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AL TÍTULO DE MAGÍSTER EN CIENCIAS DE LA INGENIERIA,
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BASES OPTIMALES EN MATROIDES CON INCERTIDUMBRE Y CÓMO ENCONTRARLAS
CON CONSULTAS DE COSTO MÍNIMO

Estudiamos el problema de bases de peso mı́nimo en matroides en un contexto donde los pesos en
los elementos son inciertos. Inicialmente, para cada elemento e de una matroide (E,I) se conocerá
un conjunto no vaćıo Ae ⊆ R, llamado área de incertidumbre, que contiene los posibles pesos del
elemento e. El algoritmo puede escoger un conjunto de elementos X ⊆ E a consultar, de manera
que si un elemento e es consultado se obtiene un peso we ∈ Ae con un costo de consulta ce ∈ R
asociado. El objetivo es encontrar un conjunto X ⊆ E que, al consultarlo, permita calcular una
base de peso mı́nimo independiente del valor de las aristas no reveladas. A estos conjuntos se les
llamará consultas factible; tenemos particular interés en encontrar una de costo mı́nimo. Esto es
de especial interés en aplicaciones donde obtener datos exactos es d́ıficil o costoso, pero datos vagos
son de fácil acceso.

El problema adaptativo bajo análisis competitivo fue estudiado anteriormente. En este trabajo
consideramos el caso no adaptativo; es decir, cuando los elementos a consultar se eligen todos
al mismo tiempo. Formalizamos el problema, definimos las bases de peso mı́nimo en el contexto
incierto, caracterizamos su existencia y demostramos que son las bases de una matroide. Proveemos
una caracterización de las consultas factibles de tamaño mı́nimo, probamos que los complementos
de consultas factibles forman una matroide sencilla y esto nos permite idear un algoritmo que
encuentra una consulta factible de costo mı́nimo con una cantidad polinomial tanto de recursos
computacionales como de llamadas al oráculo de independencia de la matroide.

OPTIMAL BASES OF UNCERTAINTY MATROIDS AND HOW TO COMPUTE THEM
WITH QUERIES OF MINIMUM COST

We study the minimum weight basis problem on matroids when element weights are uncertain.
Initially, for each element e in a matroid (E, I) a non-empty set Ae ⊆ R is known. This set, called
uncertainty area, contains the possible weights of the element. The algorithm can choose a set of
elements X ⊆ E to query, such that if an element e is queried a weight we ∈ Ae is obtained at
some cost ce ∈ R associated to the querying process. Our objective is to find a set X ⊆ E that,
when queried, allows us to compute a minimum weight basis. This sets are called feasible queries;
furthermore, we are interested in feasible queries of minimum cost. This is of particular interest in
applications where exact data is hard or expensive to obtain, but approximations are available.

The adaptative problem under competitive analysis has been previously studied. In this work
we consider the non adaptative setting, that is, each query is made at the same time. We formalize
the problem, define minimum weight bases in uncertainty matroids, characterize their existence and
prove that they are the basis of some matroid. We provide a characterization of feasible queries
of minimum size and prove that complements of feasible queries form an uncomplicated matroid.
These structural results allow us to design an algorithm that finds feasible query sets of minimum
cost in polynomial time and number of calls to the independence oracle.
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Introduction

Most classical set selection problems follow a common setting: there is a ground set where
each element has a precise certain weight and we wish to select a subset of elements that
satisfies some desired restrictions and optimizes some objective function. More often than
not, certainty and precision are very strict assumptions. Exact data can be expensive to
obtain, not immediately available, hard to keep updated or even not realistic (for example,
in the prescence of measurement inaccuracies).

Applications where uncertainty is key are not hard to come by. A first example occurs
when designing connected telecommunication networks: each connection has an expense often
associated by the traffic load which is hard to give explicitly, but one can come up with a
reasonable approximation. The objective is not clear, should one come up with a network
that fares well against all scenarios, one that most of the time works nicely or maybe we
should spend on understanding better how such traffic load works?

[2, 4]

[5,
10)

[1, 3] ∪ (5, 8)

{0} ∪ (1, 2] {0, 0.1}

[1, 7]

(3, 5]

Figure 1: An instance of the connected telecommunication network problem presented above.
The traffic load of each connection should lie on the label set.

For a second example consider a set of clients which are interested on specific products,
and a salesman that has only a vague idea of how much each client is willing to pay. In this
case the objective is clear, the salesman wants to maximize earnings, but it is not clear how
he should proceed; make further investigations, come up with prior probabilities on what
each client is willing to pay, or maybe pay an expensive consultant to come up with exact
data.
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(0, 3] {10, 15, 20, 25} [30, 80] ∪ (100, 200) (140, 150]

Figure 2: An instance of the salesman problem previously introduced. Each client is presented
with a rough budget that the salesman estimates and its product preferences.

In a third application one can imagine a scenario where there is a budget which allows the
construction of a fixed number k of hospitals from a preexisting list of potential hospitals.
Each potential hospital has an associated benefit which needs exhaustive polling to be made
exact but, again, estimates are easier to work out. Ideally we want to select the top k
potential hospitals but it is not clear how we can achieve this goal.

These three examples have two things in common: They have some matroidal structure
behind them, which is the framework of this work, and they show that it is not clear how to
proceed when facing uncertainty.

A first classical approach to combat uncertainty is randomness. Namely, each element gets
a probability distribution and we obtain a stochastic programming problem. A first issue
with this approach is intractability, when going from deterministic formulations to stochastic
ones the difficulty ramps up noticeably, a good example of this are PERT scheduling models
[Hag88]. Even though expected weight is a natural objective function, when the process
is not heavily repeated, it is not clear that this criterion is at all useful. This issue with
expectation made popular multi-staged approaches and the value-at-risk criterion, that is, to
ask for solutions such that its weight crosses a certain threshold with high probability.

Results in this paradigm are usually very distribution-specific. For example, if weights are
normal and independent any value-at-risk linear program may be reformulated as a non-linear
deterministic program. In particular, this happens for the MST problem with normal and
independent weights. This result and more insight on stochastic approaches can be found in
[KM05].

A second popular approach is robust optimization. In this setting each element can take
weights on a closed interval and the objective is to find a solution that fares well against all
scenarios. A first measure of faring well is finding a solution that minimizes its maximum
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weight over all scenarios. Sadly, this approach is not very interesting as the worst scenario is
usually achieved when each element is at its upper bound. Instead, the common approach is
to pick a solution that minimizes maximal regret, that is, the difference between the weight
of the solution and the weight of the best subset that could have been picked had the true
weights been known.

Despite the fact that intractability appears frequently when dealing with minmax regret
problems, there are interesting results involving matroids in the robust context. In [YKP01]
the problem is first introduced in its graphic version characterizing trees that have 0 regret,
in [KZ06] a 2-approximation is given for the minmax problem in general matroids and [KZ07]
gives an algorithm to compute bases with 0 regret when they exist. An exhaustive review of
robust optimization methods can be found in [Kas08].

A third approach that has gained popularity over recent years is the query model. First
introduced by Kahan in [Kah91], the query model allows algorithms an extra “query” oper-
ation that can be used to obtain exact information at some cost, that is, once an element is
queried its true weight is revealed permanently and the objective is to compute an optimal
solution.

To assess performance one common choice is to use competitive analysis, that is, to com-
pare the number of queries made by the algorithm against the number of queries made by
an adversary who knows the true weights beforehand and whose mission is to prove that the
solution they provide is correct.

This model allows for extensive variations. We list a few that are interesting and have
results related to this work.

• Queries can be adaptive, that is, the algorithm can query elements freely and on the
fly; non-adaptive, where the algorithm needs to make all queries at once; or in rounds,
where the algorithm can only make queries in predetermined stages.

An example of adaptive work is [EHK+08] and [EHK16], where the minimum spanning
tree and minimum basis problem are respectively solved with unit query costs via
optimal competitive analysis algorithms.

• Even tough competitive analysis is a common choice for measuring performance, an-
other option is to compare against the optimum number of queries needed to compute a
solution. An example of this is [FMO+07], where they provide a polynomial algorithm
for the s-t path problem in the non-adaptive against-optimum setting when paths are
given as part of the input.

• One can also allow randomness in the execution of the algorithm. The work done
in [MMS17] shows that randomization improves performance for the minimum basis
problem with unit query costs.

• One can consider queries that instead of revealing exact data provide a refinement on
the current data. Differences of refinement models are explored in [GSS16] for the
k-selection and minimum spanning tree problem.

• It is interesting to note that computing the actual weight of a solution is impossible
unless every element is queried. An interesting approach is to allow for an additive
gap δ, that is, the objective is to output a range [L,H] such that H − L ≤ δ and the
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actual weight of a solution is comprised within [L,H]. Work in this direction is [KT01],
where they compute the average number; [FMP+03], where they solve the k-selection
problem and; [FMO+07], where they prove that the s-t path problem with additive gap
is NP-HARD.

A key tool heavily used in the adaptive/competitive analysis setting are witness sets from
which we will draw some inspiration later on. They were first introduced in [BHKR05], and
are simply sets which unless queried do not allow any algorithm to make progress. A survey
detailing the nuances and recent work in the query model is [EH+15].

This work is set in the query model and our interest is to compute an optimal basis of
a matroid while querying a set of minimum cost. We work with non-adaptive queries and
compare our solutions against the optimum, as we are interested in minimizing cost.

Our results

We focus in two particular problems:

• The Uniformly Minimum Basis problem, where one is concerned in finding a basis
that is optimal in all scenarios or deciding that no such basis exists. We call such bases
uniformly minimum. This problem was already studied in the case that each area is a
closed interval in [KZ07] and an efficient algorithm was given.

We provide an efficient algorithm for the general case and give some additional struc-
tural insight by proving that bases that are optimal in all scenarios form a matroid.
We describe the structure of this matroid and characterize the existence of such bases.

• The Minimum Cost Feasible Query Set problem. In this problem we are interested
in studying feasible query sets, that is, sets of elements such that the revelation of their
true weight guarantees the existence of a uniformly minimum basis, no matter the
actual true weights. Moreover, we are interested in finding a feasible query set that
minimizes cost. To the best of our knowledge, this problem has not been previously
studied.

We provide a characterization of feasible query sets of minimum size, prove that the
complement of feasible query sets form an uncomplicated matroid and give an efficient
algorithm for solving the Minimum Cost Feasible Query Set problem.

Thesis structure

This thesis is structured into four chapters:

1. The first chapter presents the basics of matroid theory and serves to record-keep some
results related to matroids to be used in this work. Readers familiar with matroid theory
and its applications in combinatorial optimization may skip this chapter altogether.

2. The second chapter introduces our main objects of interest: uncertainty matroids and
uniformly minimum bases. We study generalizations of the traditional blue and red
rules for computing minimum spanning trees and provide generalizations for properties
already known for weighted matroids. We then prove two interesting results:
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(a) The equivalence between the existence of uniformly minimum bases and fully-
colored uncertainty matroids, and

(b) A combinatorial description of the matroid of all uniformly minimum bases.

This results end up providing algorithmic solutions to the Uniformly Minimum Basis
problem.

3. The third chapter focuses on feasible query sets. We start by approaching problems
simpler than the full-fledged Minimum Cost Feasible Query Set problem. We first
attack decomposable matroids and show two ways of joining decomposed solutions into
more complex ones. We follow by solving the problem in the case uncertainty areas are
either all {0, 1} or all intervals. Taking inspiration from the previous cases we define an
analogue to witness sets for this setting and prove some useful properties. These allow
us to provide a characterization of feasible sets of minimum size, give a description of
the matroid formed by complements of feasible query sets and conclude an algorithmic
solution to the Minimum Cost Feasible Query Set problem.

4. The fourth chapter is about algorithmic implementation. It starts with a brief exposi-
tion on the computation model and then discusses the implementation of the specific
algorithms deduced on previous chapters.
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Chapter 1

Preliminaries

In this first chapter we recall notions from matroid theory and combinatorial optimization
needed in this work. The purpose of this chapter is threefold. First, as a way to record-keep
known results that will be needed in the following chapters. Second, as a way to fix notation
that will be of posterior use. Lastly, as a way to introduce properties that will be later on
generalized.

We do not present proofs for well known properties; instead, we point to some general
references where proofs and more information is available.

We assume familiarity with the basics of graph theory. Even though we do not work
specifically with graphs on the algorithms and propositions presented, most of our examples
and motivations arise from graphs. A good reference that covers all the graph theory we use
is the second chapter of [KV12].

1.1 Matroids

The theory of matroids was introduced by Whitney in 1935 [Whi35]. In this foundational
paper, Whitney conceived matroids as an abstract generalization of matrices while adding
some graph theory flavor. This approach is motivated by his earlier work on graph theory
and it is palpable as matroid terminology borrows extensively from both linear algebra and
graph theory. Since then, matroids have made remarkable appearances in lattice theory,
combinatorial theory, geometries and, more relevantly to this work, have played a huge role
as a framework for combinatorial optimization problems.

We mostly follow the presentation and notation of matroids used in [Oxl06], but [Wel10]
is also a widely used reference. These two books cover a lot of material beyond the scope of
this work, so a more succinct and optimization-oriented reference is Chapter 39 of [Sch03].

A first characteristic of matroids is that they can be defined in multiple equivalent ways.
We proceed to define matroids in different ways, starting with a linear algebra inspired
definition, that is, via independent sets.
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Definition 1.1 (Matroids via independent sets) Let E be a finite set and I ⊆ 2E. The tuple
M = (E,I) is a matroid if:

(I1) ∅ ∈ I,

(I2) If Y ∈ I and X ⊆ Y , then X ∈ I,

(I3) If X, Y ∈ I and |Y | > |X|, then there is an element y ∈ Y \X with X + y ∈ I.

Conditions (I1) and (I2) make (E,I) an independence system. Condition (I3) is often called
the augmentation axiom. Sometimes we replace (I3) by an equivalent counterpart called the
weak augmentation axiom (I3’):

(I3’) If X, Y ∈ I are such that |X\Y | = 1 and |Y \X| = 2, then there is y ∈ Y \X such that
X + y ∈ I.

The sets in I are called the independent sets of the matroid, sets that are not independent
will be called dependent, and each e ∈ E is referred as an element of the matroid.

We start with a natural class of matroids inherited from linear algebra, namely, the
columns of a matrix with independence inherited from the subjacent vector space. This
class also give matroids its matrix related name.

Definition 1.2 (Vector Matroids over a Field) Let F be a field and A ∈ Fm×n. Consider
E = [n]. Then, the set:

I = {I ⊆ E : {A•,i}i∈I is linearly independent on the vector space Fm },

is such that (E,I) is a matroid. We denote such matroid by MF[A]. If M is a matroid such
that M = MF[A] for some field F and A ∈ Fm×n, we say that M is a vector matroid over F.

We follow with a pretty simple class of matroids. These are the ones where we consider
independent sets simply as sets of size less than a fixed positive integer.

Definition 1.3 (Uniform Matroid) If S is a finite set and k ∈ N, then Uk
S = (S, I) is a

matroid, where:

I = {I ⊆ S : |I| ≤ k}.

If a matroid M is such that M = Uk
S for some k ∈ N and finite set S we say that M is a

uniform matroid.

We now give an example of a less natural class of matroids, but an important one. These
are the matroids induced by sets systems.

Definition 1.4 (Transversal Matroid) Let S = {Si}ki=1 be a collection of finite sets (also

called a set system). We say that T ⊆
k⋃
i=1

Si is a partial transversal if there exists an injective
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function ϕ : T → [k] such that t ∈ Sϕ(t) for each t ∈ T . Consider E =
⋃k
i=1 Si, then the set:

I = {I ⊆ E : I is a partial transversal}

is such that (E,I) is a matroid that we denote by T [S]. If a matroid M is such that M = T [S]
for some collection of finite sets S, we say that M is a tranversal matroid.

Independence in matroids plays a similar role to independence in vector spaces. This
motivates the study of maximal independent sets as an analogous to bases in vector spaces.
It turns out that these sets can also be used to define matroids.

Definition 1.5 (Matroids via bases) Let M be a matroid. A basis is a maximal independent
set, and we denote the set of bases by B. One can prove that B satisfies the following
conditions:

(B1) B 6= ∅,
(B2) If T1, T2 ∈ B and x ∈ T1\T2, then there is an element y ∈ T2\T1 such that T1−x+y ∈ B.

Condition (B2) is often called the weak basis exchange axiom or, simply, the basis exchange
axiom. Moreover, if E is a finite set and B is a collection of subsets of E satisfying (B1)
and (B2), then the set:

I = {I ⊆ E : I ⊆ B, for some B ∈ B},

is such that (E,I) is a matroid having B as its set of bases. Condition (B2) may be replaced
by the equivalent strong basis exchange axiom (B2′):

(B2’) If T1, T2 ∈ B and x ∈ T1\T2, then there is an element y ∈ T2\T1 such that both T1−x+y
and T2 + x− y belong to B.

Similarly to the bases from linear algebra, all matroid bases have the same size. Further-
more, this property characterizes bases, as shown in the next proposition.

Proposition 1.6 Let M = (E,I) be a matroid, I ∈ I and B ∈ B such that |I| = |B|. Then,
I is a basis.

Our next definition is motivated by graph theory. We define matroids by circuits which
are a generalization of cycles in a graph.

Definition 1.7 (Matroids via Circuits) Let M be a matroid. A circuit is a minimal depen-
dent set, and we denote the set of circuits by C. The circuits of a matroid satisfy the following
properties:

(C1) ∅ /∈ C,

(C2) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2,

(C3) If C1, C2 ∈ C are distinct and e ∈ C1 ∩ C2, then there is a circuit C3 ∈ C such that
C3 ⊆ (C1 ∪ C2)− e.
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Property (C3) is usually called the circuit elimination axiom. Furthermore, if E is a finite
set and C is a collection of subsets of E satisfying (C1), (C2) and (C3), then the set:

I = {I ⊆ E : C 6⊆ I, for every C ∈ C}

is such that (E,I) is a matroid having C as its set of circuits.

Noting that the cycles of a graph satisfy (C1), (C2) and (C3) we can naturally define
matroids induced by graphs.

Definition 1.8 (Graphic Matroid) If G = (V,E) is a graph, we define the matroid M(G)
by its circuits:

C = {C ⊆ E : C is a cycle.}

If a matroid M is such that M = M(G) for some graph G, we say that M is a graphic
matroid.

We now define matroids via two concepts, once again, inspired by linear algebra. They
are, the rank function and the span of a set. Here we differ a little bit from the terminology
in [Oxl06] as they use the term closure instead of span.

Definition 1.9 (Matroids via Rank) Let M be a matroid. We define the rank of a set X ⊆ E
to be the size of the maximal independent set contained in X. The rank function r : 2E → N
is the function that maps each set to its rank, that is:

r(X) = max{|I| : I ∈ I and I ⊆ X}

One can check that the rank function verifies the following conditions:

(R1) If X ⊆ E, then 0 ≤ r(X) ≤ |X|,
(R2) If X ⊆ Y and Y ⊆ E, then r(X) ≤ r(Y ),

(R3) If X, Y ⊆ E, then r(X ∪ Y ) + r(X ∩ Y ) ≤ r(X) + r(Y ).

Condition (R2) is known as monotonocity and (R3) as submodularity. More so if E is a
finite set and r : 2E → N is a function that verifies (R1), (R2) and (R3); then, the set:

I = {I ⊆ E : r(I) = |I|}

is such that (E,I) is a matroid with rank function r.

Definition 1.10 (Matroids via Span) Let M be a matroid. We define the span of a set
X ⊆ E as the elements that when added to X do not augment its rank. The span operator
span : 2E → 2E is the operator that maps each set to its span, that is:

span(X) = {e ∈ E : r(X + e) = r(X)}

The span operator on a matroid has the following properties:
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(S1) If X ⊆ E, then X ⊆ span(X).

(S2) If X ⊆ Y and Y ⊆ E, then span(X) ⊆ span(Y ).

(S3) If X ⊆ E, then span(X) = span(span(X)).

(S4) If X ⊆ E, x ∈ E and y ∈ span(X + x)\ span(X), then x ∈ span(X + y).

Furthermore, if E is a finite set and span : 2E → 2E is an operator that verifies (S1), (S2),
(S3) and (S4), then the set:

I = {I ⊆ E : x /∈ span(I − x), for all x ∈ I}

is such that (E,I) is a matroid with span operator span.

Observation If M is a matroid we denote by E(M), I(M), B(M), C(M), rM and spanM
its elements, independent sets, bases, circuits, rank function and span operator respectively.
When there is no risk of confusion, the allusion to M will be omitted.

We now look at some ways in which a matroid induces smaller matroids on a subset of
its elements while preserving some of its original structure. These actions are called minor
or fundamental operations. We start with two simple operations: deletion and restriction.

Definition 1.11 (Deletion and Restriction) Let M = (E,I) be a matroid, X be a subset
of E and I\X = {I ⊆ E\X : I ∈ I}. Then, the pair (E\X, I\X) is a matroid. We call
this matroid the deletion of X from M and denote it by M\X. The following are known
characterizations for the bases, circuits, rank and span of M\X in terms of M :

B(M\X) = {T ⊆ E : T = B\X for B ∈ B(M) and maximal with respect to inclusion},
C(M\X) = {C ⊆ E\X : C ∈ C(M)},
rM\X(F ) = rM(F ) ∀F ⊆ E\X,

spanM\X(F ) = spanM(F )\X ∀F ⊆ E\X.

We also define restriction, which is simply deletion of the complement. That is, the restriction
of M to X is the matroid (X, I\[E\X]) and we denote it by M |X .

Note that the name minor operation comes from graph theory as deletion is one of the
two operations allowed in constructing minors of a graph.

The next fundamental operation is less simple than deletion or restriction, but it also
comes as analogous of graph minors operations; that is, contraction of elements.

Definition 1.12 (Contraction) Let M = (E,I) be a matroid and X be a subset of E. Choose
any B ∈ B(M |X) and let I/X = {I ⊆ E\X : I ∪ B ∈ I}. Then, the pair (E\X, I/X) is
a matroid. We call this matroid the contraction of X from M and denote it by M/X. The
following are known characterizations for the bases, circuits, rank and span of M/X in terms
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of M and B:

B(M/X) = {T ⊆ E\X : T ∪B ∈ B(M)},
C(M/X) = {C ⊆ E\X : C = C ′\X for C ′ ∈ C(M) and minimal with respect to inclusion},
rM/X(F ) = rM(F ∪X)− rM(X) ∀F ⊆ E\X,

spanM/X(F ) = spanM(F ∪X)\X ∀F ⊆ E\X.

It is also natural to consider multiple, or successive, contractions and/or deletions. It turns
out that contractions and deletions are commutative and associative; so, the order in which
these operations are applied does not matter and we can “merge” successive contractions or
deletions. We make this explicit in the following proposition:

Proposition 1.13 Let M = (E,I) be a matroid and S1, S2 ⊆ E disjoint subsets. Then:

1. (M\S1)\S2 = M\(S1 ∪ S2) = (M\S2)\S1.

2. (M/S1)/S2 = M/(S1 ∪ S2) = (M/S2)/S1.

3. (M\S1)/S2 = (M/S2)\S1.

Using this last result, we can drop the parenthesis when taking minor operations without
introducing ambiguity.

Most of the concepts already discussed come borrowed from the familiar settings of linear
algebra or graph theory. Matroid duality comes as less familiar, even though it generalizes
duality of planar graphs, but it is of fundamental importance in the development of this
work.

Definition 1.14 (Duality) Let M = (E,I) be a matroid and B∗(M) = {E\B : B ∈ B(M)}.
The set B∗(M) is the set of bases of a matroid on E. We call such matroid the dual matroid
of M , and denote it by M∗. Note that by this definition it is clear that (M∗)∗ = M .

The bases of M∗ are called cobases of M and they are denoted by B∗. A similar convention
is used for other concepts in matroids. For example: independent sets, circuits, rank and span
of M∗ are called coindependent sets, cocircuits, corank and cospan of M , and they are denoted
by I∗(M), C∗(M), r∗M and span∗M respectively.

We now state some results that characterize dual concepts in terms of the concepts in the
original matroid:

1. I∗ ∈ I∗ if and only if there is a basis B ∈ B such that B ∩ I∗ = ∅.
2. B∗ ∈ B∗ if and only if E\B∗ ∈ B .

3. C∗ ∈ C∗ if and only if E\C∗ is a maximal set such that r(E\C∗) < r(E).

4. For all subsets X of E:

r∗(X) = |X| − r(M) + r(E\X).
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5. For all subsets X of E:

e ∈ span∗(X) if and only if e /∈ span[(E − e)\X]

Duality also tells us that the minor operations of contraction and deletion are dual, that
is, if X is any subset of E, then (M\X)∗ = M∗/X.

We follow by listing some properties and definitions that relate circuits and cocircuits. We
start by showing a useful link between circuits and cocircuits that we will sometimes use.

Proposition 1.15 Let M be a matroid. If C is a circuit and C∗ is a cocircuit of M , then
|C ∩ C∗| 6= 1.

We now pay attention to a special kind of circuits and cocircuits, that is, the ones with
only one element.

Definition 1.16 (Loops and Coloops) Let M = (E,I) be a matroid. We say that e ∈ E is
a loop if e is in no basis of M . Dually, we say that e is a coloop if it is in no cobasis of M .
This statement can be “dualized” obtaining an alternative definition, namely, e ∈ E is a loop
if e is in every cobasis of M and e ∈ E is a coloop if it belongs to every basis of M . Another
equivalent definition can be given via span, that is, e is a loop if e ∈ span ∅. Dually, e is a
coloop if e ∈ span∗ ∅.

We also present circuits and cocircuits that arise when adding a single element to a basis
or cobasis respectively.

Definition 1.17 (Fundamental Circuit and Cocircuit) Let M be a matroid. If B is a basis
and e /∈ B, then B + e has a unique circuit called the fundamental circuit of B + e. In
dual fashion if B∗ is a cobasis and e /∈ B∗, then B∗ + e has a unique cocircuit called the
fundamental cocircuit of B∗ + e.

Elements on fundamental circuits and cocircuits can be exchanged with elements outside
of the respective basis or cobasis while preserving them. This is formalized in the following
proposition.

Proposition 1.18 Let M be a matroid and B a basis of M .

1. Let e /∈ B and consider C the fundamental circuit of B + e. For each f ∈ C the set
B + e− f is a basis of M .

2. Let e ∈ B and consider C∗ the fundamental cocircuit of Bc + e. For each f ∈ C∗ the
set B − e+ f is a basis of M .

We have already shown a way to obtain smaller matroids via minor operations. We now
show an operation that allows us to form bigger matroids, the direct sum of matroids.
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Definition 1.19 (Direct Sum) Let M1 = (E1, I1) and M2 = (E2, I2) be matroids such that
E1 and E2 are disjoint. Let E = E1 ∪ E2, then the set:

I = {I1 ∪ I2 : I1 ∈ I1, I2 ∈ I2}

is such that (E,I) is a matroid. This matroid is denoted by M1 ⊕M2 and called the direct
sum between M1 and M2. One can relate the set of bases, circuits, rank, span and dual of
M1 ⊕M2 to the ones of M1 and M2 as stated by the following propositions:

B(M1 ⊕M2) = {B1 ∪B2 : B1 ∈ B1(M), B2 ∈ B2(M)

C(M1 ⊕M2) = C(M1) ∪ C(M2),

rM1⊕M2(F ) = rM1(F ∩ E1) + rM2(F ∩ E2), ∀F ⊆ E\X,
spanM1⊕M2

(F ) = spanM1
(F ∩ E1) ∪ spanM2

(F ∩ E2), ∀F ⊆ E\X,
(M1 ⊕M2)∗ = M∗

1 ⊕M∗
2 .

Observation When writing M = M1 ⊕M2 it is understood, implicitly, that E(M1) and
E(M2) are disjoint.

An example of using the direct sum to form a “neat” larger class of matroids happens
when considering matroids that are the direct sum of uniform matroids.

Definition 1.20 (Partition Matroid) We say that M is a partition matroid if there exists

finite disjoint sets S1, . . . , Sk and natural numbers n1, . . . , nk such that M =
k⊕
i=1

Uni
Si

. Note

that, in this case,

I(M) = {I ⊆ E : |I ∩ Si| ≤ ni, ∀i ∈ [k]}.

In other words, independent sets simply select at most ni elements from each Si.

We have already seen some matroid analogues to graph theoretic ideas, so it makes sense
to search for an analogue to connectivity. As every graphic matroid is the graphic matroid
of a connected graph, it is hard to give a faithful analogue to 1-connectedness. Matroid
connectivity gives an analogous to 2-edge-connectivity for matroids. Even tough 2-edge-
connectedness is usually defined via separators, and one could do so for matroids (cf. Chapter
8 of [Oxl06]), we do so by defining a connectivity relation.

Definition 1.21 (Matroid Connectivity) Let M = (E,I) be a matroid. We say that e, f ∈ E
are connected if there exists a circuit C such that e, f ∈ C,. We write eγf if e and f are
connected or e = f . It turns out that γ is an equivalence relation. It is then natural to call
the equivalence classes of γ the “connected components of M”. If E is a connected component
we say that M is connected; otherwise, M is disconnected.

It turns out that each matroid can be decomposed into its connected components in a
unique fashion.
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Proposition 1.22 Every matroid is a direct sum of its connected components. Namely, if
M is a matroid, then M =

⊕
Γ∈E/γ

M |Γ. Moreover, this decomposition is unique, up to order

of the components.

The next result due to Krogdahl [Kro77], shows that the previous decomposition can be
computed efficiently.

Proposition 1.23 Let M = (E,I) be a matroid. We can compute the connected components
of M in O(|E|2) time with O(|E|2) calls to the independence oracle.

We end our brief discussion of matroid connectivity with a defining characteristic of con-
nected matroids, namely, every pair of elements is the intersection between a circuit and a
cocircuit.

Proposition 1.24 If M is a connected matroid and x, y are distinct elements; then, there
exists a circuit C and a cocircuit C∗ such that C ∩ C∗ = {x, y}.

1.2 Optimization problems on matroids

Matroids have played a key role in combinatorial optimization, both as a framework for set
selection problems and by its close relationship with greedy algorithms.

We mostly consider weight functions that are linear on the elements, as follows:

Definition 1.25 (Weight of a subset) If E is a finite set and f : E → R is a function, we
define the evaluation of any subset X of E by f(X) =

∑
e∈X

f(e)

A classic set selection problem that can be solved efficiently is the minimum spanning tree
problem.

Problem 1 (Minimum spanning tree) Given a connected graph G = (V,E) and a weight
function w : E → R, the minimum spanning tree problem (or MST for short) corresponds to
finding a spanning tree T such that w(T ) is minimum.

The MST problem can be generalized to finding a minimum weight basis on weighted
matroids as follows.

Definition 1.26 (Weighted matroid) A weighted matroid is a pair (M,w) such that M is a
matroid and w : E → R is a weight function.
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Problem 2 Given a weighted matroid (M,w), define the weight of any subset X of E by
w(X) =

∑
e∈X

we. The minimum weight basis problem associated to (M,w) is to find a basis

T ∈ B(M) such that w(T ) is minimum.

The set of minimum weight bases form a new matroid. More so, this matroid can be
characterized in terms of the original matroid and “level sets”, as shown in the following two
propositions.

Proposition 1.27 Consider a weighted matroid (M,w). Then:

Bw = {T ∈ B(M) : T is a basis of minimum weight},

is the set of basis of a matroid in E, called Mw.

The following result is slightly less known, but a proof can be found in [AK06].

Proposition 1.28 Consider a weighted matroid (M,w). Denote the ith minimum weight by
wi, the number of different weights by r, and:

Ei = {e ∈ E\E∗ : we = wi}, ∀i ∈ {1, ..., r},

Fi =
i⋃

j=1

Ei, ∀i ∈ {0, ..., r}.

Then, T is a basis of Mw if and only if:

1. B is a basis of M .

2. |B ∩ Ei| = r(Fi)− r(Fi−1) for each i ∈ [r].

Moreover Mw =
⊕k

i=1 M |Fi
/Fi−1

One of the more remarkable properties of matroids is their intimate relation with the
greedy algorithm. Generally speaking, a greedy procedure picks the best “present” choice
and never tracks back. We now describe the specific Greedy Algorithm for weighted matroids.

Definition 1.29 (Best-In Greedy Algorithm) The greedy algorithm for the weighted matroid
(M,w) proceeds as follows:
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Algorithm 1 Greedy Algorithm

Input: 〈M,w〉 where M is a matroid and w : E → R is a weight function.
Output: A minimum weight basis.

1: T ← ∅
2: Sort E by non-increasing weight; w(e1) ≤ w(e2) ≤ ... ≤ w(em).
3: for i ∈ [m] do
4: if T + ei ∈ I(M) then
5: T ← T + ei
6: return T

Moreover, using the equivalence between independence and span, it is easy to see that the
greedy algorithm always outputs the following base:

TGreedy = {ei : ei /∈ span{ej : j < i}}

It turns out that the greedy algorithm solves the minimum weight basis problem for
weighted matroids optimally. Furthermore, if the greedy algorithm in an independence sys-
tem solves the minimum weight basis problem for every weight function, such independence
system must be a matroid. This is the famed definition of matroids via the greedy algorithm.

Proposition 1.30 (Matroids via the Greedy Algorithm) Let M be a matroid. Then the
following property holds:

(G) For all weight functions w : E → R, the greedy algorithm produces a solution of the
minimum weight basis problem associated to (M,w).

Furthermore, if E is a finite set and I is a family of subsets of E such that (E,I) verifies
(I1), (I2) and (G), then (E,I) is a matroid.

We have seen the fact that the greedy algorithm outputs basis of minimum weight on
matroids. We end this chapter by noting that every minimum weight basis arises in this way.

Proposition 1.31 Let (M,w) be a weighted matroid. If T is a basis of minimum weight,
then there is a non-increasing ordering of E by weight such that the greedy algorithm outputs
T .
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Chapter 2

Uncertainty matroids and uniformly
minimum bases

This chapter studies uncertainty matroids and their uniformly minimum bases. It starts
by defining these objects and formalizing the querying process that allows the revelation
of true weights. We then study generalizations of the blue and red edges that appear when
computing minimum spanning trees and their relation with uniformly minimum bases. These
allows us to conclude the main results of this chapter;

A characterization of existence of uniformly minimum bases: An uncertainty
matroid has a uniformly minimum basis if and only if each element is colored.

A description of the matroid of uniformly minimum bases: Uniformly minimum
bases are the set of bases of a matroid. More so, a basis of the underlying matroid is a
uniformly minimum basis if and only if it contains every non-trivial blue element, avoids
every non-trivial red element and is of minimum weight in the weighted matroid obtained by
contracting non-trivial blue elements and deleting non-trivial red elements.

These two theorems allows us to deduce efficient algorithms for the uniformly minimum
basis problem.

2.1 Basic definitions

We first aim to model the computation of minimum weight bases on matroids with uncertainty
on their weights. We do so by defining uncertainty matroids, which generalize weighted
matroids, but instead of having a weight function one has a family of nonempty subsets of
the real numbers indexed by the elements.

Then we introduce the concept of revelation, that is, the process of selecting some elements
to be queried in order to “reveal” their true weights. By doing so, one gets another uncertainty
matroid where the queried elements can take only one possible weight, eliminating their
uncertainty.
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Next we introduce uniformly minimum bases, which have minimum weight in every pos-
sible revelation. They are uniform in the sense that they do not depend on any specific
revelation.

After giving these definitions, we formalize our two central problems. Suppose that we
have to pay an element-dependent cost in order to perform queries. How can one find a
minimum cost set of elements such that if we reveal them simultaneously, then, no matter
what the true weights of the revealed elements are, the existence of a uniformly minimum basis
is guaranteed. The second question is how to actually compute such a uniformly minimum
basis in case one exists.

We start by defining uncertainty matroids and formalizing the process of querying and
revealing elements.

Definition 2.1 (Uncertainty matroid) An uncertainty matroid is a pair (M,A) where M =
(E,I) is a matroid and A = {Ae}e∈E is a family of non-empty subsets of R indexed by E.
Each set Ae denotes the uncertainty area of an element e. If e ∈ E verifies that |Ae| = 1 we
say that such element is trivial, as its true weight is already determined.

Observation We will assume without loss of generality that each uncertainty area is bounded.
This reduction can be made by simply selecting any order preserving bijection between R
and a bounded subset of R (e.g. arctan : R→ (−π

2
, π

2
)).

Definition 2.2 (Revelations and Realizations) Let (M,A) be an uncertainty matroid and
X ⊆ E. A revelation that queries X and respects A is a family B = {Be}e∈E that verifies
Be = {we} with we ∈ Ae for each e ∈ X and Be = Ae for each e ∈ E\X. For X ⊆ E we
denote the set of revelations that query X and respect A by R(X,A). Revelations that query
X = E and respect A are called realizations of A.

Revelations and uncertainty matroids model the idea of querying the true weight of some
elements. Before the revelation it is not certain which weight in the uncertainty area is
the “true weight” of the queried element, and after the revelation there is only one possible
weight.

It is worth noting that in a realization every element is trivial, so they are not really
different to weighted matroids and we usually think of realizations as weight functions on the
elements of the matroid.

Example If (M,A) is an uncertainty matroid such that M = M(G) for a graph G we will
represent (M,A) as the graph G with each edge e labeled by its area of uncertainty Ae. For
example if M = M(K3), A = {Ae}e∈E(K3), A12 = {1}, A23 = (1, 2) and A13 = (1, 2) ∪ {0, 5}
then B = {Be}e∈E(K3) with B12 = {1}, B23 = {1.5}, B13 = {0} is a realization of A, as
depicted in Fig. 2.1.
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1

2

3

(1, 2)

(1, 2) ∪ {0, 5}

1

(a) (M,A).

1

2

3

1.5

0

1

(b) (M,B)

Figure 2.1: Uncertainty matroid (M,A) and one realization. In green we show the set of
non-trivial elements.

Example If (M,A) is an uncertainty matroid such that M is uniform we will depict (M,A)
as a list of the elements and, next to each element e, a number line representation of its
area of uncertainty. For example, if M = U2

[3], A = {Ai}i∈[3], A1 = (−3,−2), A2 = {0} ,

A3 = (−1, 1) ∪ (2, 3], then B = {Bi}i∈[3] with B1 = (−3,−2), B2 = {0} and B3 = {−0.5} is
a revelation that queries {3} and respects A.

1

2

3

(−3,−2)

0

(−1, 1) ∪ (2, 3]

(a) (M,A).

1

2

3

(−3,−2)

0

−0.5

(b) (M,B).

Figure 2.2: Uncertainty matroid (M,A) and one revelation. In violet we show the queried
set.

Example If (M,A) is an uncertainty matroid such that M is a transversal matroid we will
represent (M,A) as the usual bipartite graph associated with the set sistem while labeling
each element by its area of uncertainty. For example, if S1 = {1, 3, 4} , S2 = {1, 5}, S3 = [5],
M = M [{Si}i∈[3]], Ai = {0, 1} for i ∈ [4], A5 = (0, 1), then B = {Bi}i∈[3] with Bi = {1} for
i ∈ [4] and B3 = (0, 1) is a revelation that queries [4] and respects A.

The following definition is a generalization of minimum weight bases and it will be central
to our study. These are also introduced in the context of robust interval optimization as
strong bases (cf. to [KZ07]).

Definition 2.3 (Uniformly minimum bases) Let (M,A) be an uncertainty matroid. A uni-
formly minimum basis is a basis of the matroid M that has minimum weight for every real-
ization of A. The uniformly minimum bases of (M,A) are called (M,A)-bases or A-bases if
M is clear from context. We will often denote uniformly minimum bases by the capital letter
T .

If the uncertainty matroid has only trivial elements, then uniformly minimum bases are
exactly minimum weight bases.
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{0, 1}

{0, 1}

(0, 1)
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S3

(a) (M,A).

1

2

3

4

5

1

1

1

1

(0, 1)

S1

S2

S3

(b) (M,B)

Figure 2.3: Uncertainty matroid (M,A) and one revelation. In violet we show the queried
set.

Even though one can always guarantee the existence of minimum weight bases in weighted
matroids, this is not the case in uncertainty matroids. Furthermore, it is not clear when does
an uncertainty matroid has a uniformly minimum basis or even whether a specific subset of
elements is a uniformly minimum basis.

Example Consider the uncertainty matroid (M,A1) and (M,A2) shown in Fig. 2.4. There
are no (M,A1)-bases because any such basis T must include exactly one of the edges with
area {0, 1}, and that edge could be revealed as the heaviest in the circuit. This makes it
impossible for T to be optimal in this revelation. (M,A2) has an (M,A2) basis, because in
any revelation the edge with label 2 is the heaviest of the circuit, so the only (M,A2)-basis
consists of the other two edges .

{0, 1}

0

{0
, 1
}

(a) (M,A1).

{0, 1}

2

{0
, 1
}

(b) (M,A2).

Figure 2.4: Two uncertainty matroids. In yellow we have marked an (M2,A2)-basis.

The following proposition shows that uniformly minimum bases are preserved when re-
vealing elements.

Proposition 2.4 Let (M,A) be an uncertainty matroid, X ⊆ E and T an A-basis. If
B ∈ R(X,A), then T is a B-basis.

Proof. As T is a minimum basis for every revelation w ∈ R(E,A) and R(E,B) ⊆ R(E,A)
we have that T is a minimum basis for every revelation w′ ∈ R(E,B).
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In the case of uncertainty matroids that do not have uniformly minimum bases, we are
especially interested in sets X ⊆ E such that every revelation that queries X has a uniformly
minimum basis. Note that these sets always exist because, if X = E, every element becomes
trivial.

Definition 2.5 (Feasible query sets) Let (M,A) be an uncertainty matroid. A set X ⊆ E
is called a feasible query set, or feasible for short, if for all revelations B ∈ R(X,A) there
exists a B-basis.

Feasible query sets of minimum size (or, if there are costs associated to querying each set,
of minimum cost) are sets whose revelation guarantees the existence of uniformly minimum
bases (regardless of the true weight of non-revealed elements). They provide a first charac-
terization of existence of uniformly minimum weight bases, namely, that they exists if and
only if ∅ is a feasible query set. We pose two natural questions that are the central focus of
our study:

Problem 3 (Uniformly Minimum Basis) Given an uncertainty matroid (M,A). The uni-
formly minimum basis problem (or UMB for short) corresponds to finding an A-basis or
deciding that no A-basis exists.

Problem 4 (Minimum Cost Feasible Query Set) Given an uncertainty matroid (M,A) and
a cost function on the elements c : E → R. The minimum cost feasible query set problem
(or MCFQS for short) corresponds to computing a feasible query set X such that c(X) is
minimum. Note that the MCFQS with unit costs corresponds to computing a feasible query
set X such that |X| is minimum.

Example

1

2

3 4

7

5

6

(1,2)

(4,7)

(1,3)

2

(1,2)
(0

,9
) 4

(3
,5
)(1,2)

(a) In yellow we show a feasible query set.

1

2

3 4

7

5

6

(1,2)

(4,7)

(1,3)

2

(1,2)
2.
4 4

4

(1,2)

(b) A revelation of the feasible query set marked in yellow.
Once revealed we can find a uniformly minimum basis, this
time marked in green.

Figure 2.5: An uncertainty matroid and a feasible query set.
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2.2 Blue elements

In this section we provide a generalization of the so called blue rule for computing minimum
spanning trees.

Blue Rule: If e is the lightest edge of a cutset of a graph G (allowing ties), then e belongs
to at least one MST of G.

The blue rule has played a fundamental role in the development of MST algorithms. It
is the driving force in Prim’s, Boruvka’s and the Round Robin algorithm, so it is a natural
starting point when searching for algorithms that solve the MCFQS and UMB problem. The
rule also provides some structural insight as elements that satisfy the blue rule are “safe to
contract”, in the following sense: if e is a blue rule edge, then T is an MST of G/e if and
only if T + e is an MST of G. We give a direct analogous to this structural insight and some
useful characterizations of the blue rule for uncertainty matroids.

More discussion of the traditional blue rule can be found in chapter 6 of [Tar83]. The
idea of blue elements under uncertainty has already been introduced in the inverval case by
[YKP01] and [KZ07] under the name of weak elements.

We start by defining blue elements in uncertainty matroids.

Definition 2.6 (Blue elements) Let (M,A) be an uncertainty matroid and e ∈ E. We say
that e is blue if in each realization, e is in a basis of minimum weight. That is, ∀w ∈ R(E,A),
∃T w-basis such that e ∈ T .

If each element is trivial, then an element is blue if and only if there is a basis of minimum
weight that contains it. Moreover, if the matroid is graphic, one can prove that an element
is blue if and only if satisfies the traditional blue rule.

Note that the definition of blue elements is dependent on the uncertainty matroid. If there
is risk of confusion, we will make this dependency explicit, writing “e is blue in (M,A)”
instead of “e is blue”.

Example Every coloop of an uncertainty matroid is blue, since they are in every basis. In
the same manner, no loop is blue, because they are not included in any basis.

The next proposition indicates that blue elements in uncertainty matroids verify the same
“safe to contract” property as blue edges in weighted graphs.

Proposition 2.7 Let (M,A) be an uncertainty matroid and e ∈ E blue. Then:

T is an (M/e,A− Ae)-basis if and only if T + e is an (M,A)-basis.

Proof. For the direct implication observe that T is a basis of M/e and e is not a loop of M ,
therefore T + e is a basis of M . Let us suppose that T + e is not an (M,A)-basis, then there
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exists a basis T ′ ∈ B(M) and a realization w ∈ R(E,A) such that w(T ′) < w(T + e). As
e is blue in (M,A) there exists T ′′ an (M,w)−basis such that e ∈ T ′′, so w(T ′′) = w(T ′).
Notice that T ′′ − e is a basis of M/e. Since w(T ′′ − e) < w(T ) this contradicts the fact that
T is (M/e,A− Ae)-basis.

For the converse, suppose that T is not an (M/e,A−Ae)-basis. Then we have T ′ a basis
of M/e and a realization w ∈ R(E − e,A − Ae) such that w(T ′) < w(T ). Extending w to
ŵ ∈ R(E,A) by selecting any ŵe ∈ Ae we have that ŵ(T ′ + e) < ŵ(T + e). Since T ′ + e is a
basis of M we have contradicted that T is an (M,A)-basis.

We have not yet used any property that requires comparing specific areas of the elements.
The following definitions and notation will prove useful when dealing with comparisons.

Definition 2.8 Let (M,A) be an uncertainty matroid. For each e ∈ E we will denote supAe
by UAe and inf Ae by LAe . This allows us to define the following sets:

lowA(e) = {f ∈ E − e : UAf ≤ LAe },
highA(e) = {f ∈ E − e : UAe ≤ LAf },
midA(e) = {f ∈ E − e : Af ∩ (LAe , U

A
e ) 6= ∅},

bothA(e) = {f ∈ E\midA(e)− e : Af ∩ (−∞, LAe ] 6= ∅ ∧ Af ∩ [UAe ,∞) 6= ∅},
FA(e) = {f ∈ E − e : LAf < UAe },
F ∗A(e) = {f ∈ E − e : LAe < UAf }.

If the family of areas is clear from the context, we will usually omit superscripts.

Note that in every realization the elements of low (e) are “lighter” than e. Similarly, each
element of high (e) is “heavier” than e, no matter the realization. The elements of both (e)
and mid (e) have some realizations where e is heavier than them and some other realizations
where e is lighter, the difference being that elements of both (e) can never be revealed inside
of (Le, Ue). Additionally E−e is partitioned by these sets when e is non-trivial. We formalize
some of these properties in the following proposition:

Proposition 2.9 Let (M,A) be an uncertainty matroid and e ∈ E. We have the following:

1. E − e = low (e) ∪ mid (e) ∪ high (e) ∪ both (e).

2. F (e) = {f ∈ E − e : Lf < Ue} = E\high (e)− e.
3. F ∗(e) = {f ∈ E − e : Le < Uf} = E\low (e)− e.

Moreover, if e is non-trivial we have the following strengthened versions:

4. E − e is partitioned by low (e), mid (e), high (e) and both (e).

5. F (e) = E\high (e)− e = low (e) ∪ mid (e) ∪ both (e).

6. F ∗(e) = E\low (e)− e = high (e) ∪ mid (e) ∪ both (e).
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Proof.

1. As every set on the right hand side is included in E−e, the inclusion low (e)∪mid (e)∪
high (e) ∪ both (e) ⊆ E − e is clear.

For the other inclusion, suppose that f ∈ E − e and f /∈ low (e) ∪ high (e) ∪ mid (e).
Then, Le < Uf and, since Af∩(Le, Ue) = ∅, we get Af∩[Ue,∞) 6= ∅. Similarly, Lf < Ue
and using that Af ∩ (Le, Ue) = ∅, we conclude that Af ∩ (−∞, Ue] 6= ∅. Consequently,
f ∈ both (e), which implies the proposition.

2. g /∈ F (e) if and only if g ∈ {f ∈ E − e : Lf ≥ Ue} = high (e) which implies the
property.

3. g /∈ F ∗(e) if and only if g ∈ {f ∈ E−e : Le ≥ Uf} = low (e) which implies the property.

4. It is clear that, if f ∈ low (e), then Af ∩ (Le,∞) = ∅, which implies that e is neither
in mid (e) nor both (e). Similarly, if f ∈ high (e), then Af ∩ (−∞, Ue) which implies
that f is not in mid (e) nor both (e). As mid (e) ∩ both (e) = ∅, we only need to prove
that low (e) ∩ high (e) = ∅. Suppose that there is some f ∈ low (e) ∩ high (e). Then,
Le = Ue = Lf = Uf which contradicts the fact that e is non-trivial.

5. F (e) = (low (e)∪ mid (e)∪ high (e)∪ both (e))\high (e) = low (e)∪ mid (e)∪ both (e).

6. F ∗(e) = (low (e)∪mid (e)∪high (e)∪both (e))\low (e) = high (e)∪mid (e)∪both (e).

Example Consider the uncertainty matroid (U3
[6],A) as depicted in Fig. 2.6. Using the

definitions, we get that low (1) = {4}, high (1) = {6}, mid (1) = {2, 3} and both (e) = {5}.
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∈ mid (e)

∈ mid (e)

∈ low (e)

∈ both (e)

∈ high (e)

(−1, 1)

(−3, 3)

(−5,−4) ∪ (−2, 0)

[−3,−1]

{−2} ∪ (2, 3)

3

Figure 2.6: Uncertainty matroid (U3
[6],A). We have marked the set mid (1) in olive, low (1)

in teal, both (1) in orange and high (1) in violet.

As blue elements are in a minimum weight basis for any realization, this should occur
even when considering “hard” realizations that make it difficult for a particular element e to
be included in some minimum weight basis. Intuitively, this occurs when e is revealed close
to Ue and every other edge f 6= e near Lf . Surprisingly, the converse also holds, providing a
characterization of blueness. This property was already noted for intervals in [YKP01] and
[KZ07].
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Since F (e) are the elements that are lighter than e in this “worst case” realization, we
first state this property in terms of the span of F (e).

Proposition 2.10 Let (M,A) be an uncertainty matroid. Then e ∈ E is blue if and only if
e /∈ spanF (e).

Proof. For the direct implication, let K = min
f∈F (e)

Ue − Lf > 0. For each f ∈ E − e we can

choose εf ≥ 0 such that Lf +εf ∈ Af . Moreover, we can guarantee that εf <
K
2

. In a similar
way, we can choose εe ∈ [0, K/2) such that Ue − εe ∈ Ae. We then consider the following
realization w ∈ R(E,A):

wf =

{
Ue − εe if f = e,

Lf + εf if f 6= e.

Note that if f ∈ F (e) then wf < we. Indeed:

wf = Lf + εf < Lf +
K

2
≤ Lf +

Ue − Lf
2

= Ue −
Ue − Lf

2
≤ Ue −

K

2
< Ue − εe = we.

Suppose now that e ∈ spanF (e). Then, there exists a circuit C ⊆ F (e) + e such that e is
the heaviest element of C. This implies that e is not in any w-basis, which contradicts that
e was blue.

For the converse, first note that e is not a loop, as we would have e ∈ span ∅ ⊆ spanF (e).
Let us suppose that e is not blue. Then, there exists a realization w ∈ R(E,A) such that e
is not in any w-basis. Choose T to be any w-basis and C the fundamental circuit of T + e.
As e /∈ spanF (e) we have that C ( F (e) + e. Since e is not a loop we have that |C| ≥ 2 and
that F (e)\C 6= ∅, select any f ∈ C\F (e), then:

wf ≥ Lf ≥ Ue ≥ we

We conclude that T − f + e is a w-basis that contains e.

We now restate the property in terms of being selected in a minimum weight basis when
using the worst case weight function. As one could expect we only have to focus a weight
function that fixes e to Ue and every other element to Lf , instead of realizations that are
close to Lf and Ue. Note that this is not necessarily a realization as Lf or Ue could not
belong to Af or Ae respectively.

Proposition 2.11 Let (M,A) be an uncertainty matroid. Then e ∈ E is blue if and only if
e is in a minimum weight basis for the following weight function:

wf =

{
Ue if f = e,

Lf if f 6= e.
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Proof. We sort the edges by weight in increasing order, breaking ties in favor of e, i.e. e is
considered lighter than any other element of the same weight. Notice that:

F (e) = {f ∈ E − e : Lf < Ue} = {f ∈ E − e : wf < we} = {e1, . . . , ek−1}

Since e is blue, we have that e /∈ span{e1, . . . , ek−1}. Then, when executing the greedy
algorithm under the aforementioned order, ek is selected.

For the converse, as e is in a minimum weight base there exists an ordering of E such that
w(e1) ≤ · · · ≤ w(em) and the greedy algorithm selects e = ek. Using this, we have:

{e1, . . . , ek−1} ⊇ {f ∈ E − e : wf < we} = F (e)

Since e /∈ span{e1, . . . , ek−1}, we have that e /∈ spanF (e).

Example Using this last property we can test if a certain element is blue, by simply executing
the greedy algorithm on the uncertainty matroid with the “worst case” weight function for
the particular element.
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Figure 2.7: One uncertainty matroid and all of its blue elements.
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Figure 2.8: A certificate of the blueness of edge e = 23. In green we show a set that when
adding e forms an MST for its worst case weight function and, by Proposition 2.11, the edge
e must be blue.

Blue elements will play the following role in solving the MCFQS problem. Intuitively,
they are a first example of elements that do not need to be revealed since one could devise an
algorithm that consists on successive “safe contractions” eliminating all blue edges in each
iteration. Most importantly, they are key in understanding the UMB problem. In fact, as we
will see in the following section, they will provide useful characterizations of the existence of
uniformly minimum bases and, ultimately, lead to an algorithm to compute them.
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2.3 Red elements

In this section we give a generalization of the red rule for computing minimum spanning
trees.

Red Rule: If e is the heaviest edge of a cycle of a graph G (allowing ties), then e avoids
at least one MST of G.

Even though the red rule is not as popular in the development of fast MST algorithms, it is
still a key component of some of them, the most famous example being Kruskal’s algorithm.
The rule gives an analogous structural insight but, instead of “safe contraction”, it provides
“safe deletion” of red elements. That is, if e is a red rule edge, then T is an MST of G − e
if and only if T is an MST of G. We give an analogous result to this structural insight and
some characterizations for the red rule in uncertainty matroids.

Similarly to the blue rule, an in depth discussion of the classical red rule can be found on
[Tar83].

The red rule and the generalization proposed here are dual to the blue rule and its gener-
alization. This will be especially apparent in the proofs of this section, where the arguments
and ideas presented will be the same as the ones used in the previous section, but with dual
arguments instead.

Definition 2.12 (Red and colored elements) Let (M,A) be an uncertainty matroid and
e ∈ E. We say that e is red if, in each realization, e avoids a basis of minimum weight. That
is, ∀w ∈ R(E,A), ∃T w-basis such that e /∈ T . If an element is blue or red we say that it is
colored.

If each element is trivial, an element is red if and only if there is a basis of minimum
weight that avoids it. Moreover, if the matroid is graphic, one can prove that an element is
red if and only if satisfies the traditional red rule.

Similarly to the definition of blue elements, the definition of red elements is also dependent
on the specific uncertainty matroid. If there is risk of confusion, we will make this dependency
explicit, writing “e is red in (M,A)” instead of “e is red”.

We now state and prove the “safe to delete” property of red elements.

Proposition 2.13 Let (M,A) be an uncertainty matroid and e ∈ E red. Then:

T is an (M − e,A− Ae)-basis if and only if T is an (M,A)-basis.

Proof. For the direct implication observe that, as e is red, there is a basis T− ∈ B(M) that
avoids e. Furthermore, T− ∈ B(M − e). Since T, T− ∈ B(M − e) , then |T−| = |T | and
T is also a basis of M . Let us suppose that T is not an (M,A)-basis. Then, there exists
a basis T ′ ∈ B(M) and a realization w ∈ R(E,A) such that w(T ′) < w(T ). As e is red
in (M,A) there exists T ′′, an (M,w)−basis, such that e /∈ T ′′. So, w(T ′′) = w(T ′). Notice
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that T ′′ is a basis of M − e. Since w(T ′′ − e) < w(T ) this contradicts the fact that T is
(M − e,A− Ae)-basis.

For the converse, it is clear that T is a basis of M − e. Suppose that T is not an
(M−e,A−Ae)-basis. Then, we have T ′ a basis of M−e and a realization w ∈ R(E−e,A−Ae)
such that w(T ′) < w(T ). Extending w to ŵ ∈ R(E,A) by selecting any ŵe ∈ Ae we have
that ŵ(T ′) < ŵ(T ). Since |T ′| = |T | we have that T ′ is a basis of M which contradicts that
T is an (M,A)-basis.

We now provide dual characterizations to the ones presented for the blue elements. We
consider a realization that favors e when selecting minimum weight bases, that is, a realization
with e close to Le and every other element f 6= e is near Ue. Analogously to the blue case,
we first state this property in terms of the span of F ∗(e) = {e ∈ E− e : Le < Uf}, since they
are the elements that are heavier than e in this “best case” realization.

Proposition 2.14 Let (M,A) be an uncertainty matroid. Then, e ∈ E is red if and only if
e /∈ span∗ F ∗(e).

Proof. For the direct implication, define K = min
f∈F ∗(e)

Uf − Le > 0. For each f ∈ E − e we

can choose εf ∈ [0, K/2) such that Uf − εf ∈ Af similarly we can pick εe ∈ [0, K/2) such
that Le + εe ∈ Ae. We then consider the following realization w∗ ∈ R(E,A):

w∗f =

{
Le + εe if f = e,

Uf − εf if f 6= e.

Note that if f ∈ F ∗(e) then w∗f > w∗e , indeed:

w∗f = Uf − εf > Uf −
K

2
≥ Uf −

Uf − Le
2

= Le +
Uf − Le

2
≥ Le +

K

2
> Ue − εe = w∗e

Suppose now that e ∈ span∗ F ∗(e), then there exists a cocircuit C∗ ⊆ F ∗(e) + e such that e
is the lightest element of C∗, this implies that e is in every w-basis, contradicting that e was
red.

For the converse first note that e is not a coloop, as we would have e ∈ span∗ ∅ ⊆
span∗ F ∗(e). Let us suppose that e is not red, then there exists a realization w ∈ R(E,A)
such that e is in every w-basis. Choose T to be any w-basis and C∗ the fundamental circuit
of T c + e, as e /∈ spanF ∗(e) we have that C∗ ( F ∗(e) + e. Since e is not a coloop we have
that |C∗| ≥ 2 and that F ∗(e)\C∗ 6= ∅, select any f ∈ C∗\F ∗(e), then:

we ≥ Le ≥ Uf ≥ wf

We conclude that T + f − e is a w-basis that contains e.

We now prove the equivalence between red elements and elements not selected in a mini-
mum weight basis for their best case weight function.
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Proposition 2.15 Let (M,A) be an uncertainty matroid. Then e ∈ E is red if and only if
e is not in some minimum weight basis for the following weight function:

w∗f =

{
Le if f = e,

Uf if f 6= e.

Proof. We sort the edges by weight in ascending fashion, breaking ties against e, i.e. e is
considered heavier than any other element of the same weight. Notice that:

F ∗(e) = {f ∈ E − e : Le < Uf} = {f ∈ E − e : w∗f < w∗e}

Since e is red, we have that e /∈ span∗{ek+1, . . . , em} or equivalently e ∈ span{e1, . . . , ek−1},
then when executing the greedy algorithm under the aforementioned order ek is not selected.

For the converse, as e avoids a minimum weight base there exists an ordering of E such
that w∗(e1) ≤ · · · ≤ w∗(em) and the greedy algorithm under this ordering does not select
e = ek. Using this, we have e ∈ span{e1, . . . , ek−1} and consequently e /∈ span∗{ek+1, . . . , em}.
Since

{ek+1, . . . , em} ⊇ {f ∈ E − e : w∗f < w∗e} = F ∗(e)

we have that e /∈ span∗ F ∗(e).

Example Similarly to the blue case one can test whether a particular element is red by
executing the greedy algorithm on the uncertainty matroid with the “best case” weight
function for the particular element.
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Figure 2.9: One uncertainty matroid and all of its blue and red elements. Note that there
are elements that are not colored.
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Figure 2.10: A certificate of the redness of edge e = 12. In green we show an MST for the
best case weight function that avoids e and, by Proposition 2.15, edge e must be red.
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Colored elements are intimately related to the MCFQS and UMB problems. We have
already seen how blue elements intuitively do not need to be revealed. The same argument
can be made for red elements, where one could imagine an algorithm that works by successive
“safe deletion” arriving at an uncertainty matroid with no red elements. The relation between
colored elements and uniformly minimum will be throughly explored in the following sections.

2.4 Properties of uniformly minimum bases

In this section we explore some properties of uniformly minimum bases. First, we analyze
the relationship between colored edges and uniformly minimum bases. We prove that every
uniformly minimum basis contains every non-trivial blue element and avoids every non-trivial
red element. Moreover, when uniformly minimum bases do exist they provide an additional
characterization of blue and red elements. We end the section with two propositions on the
structure of uniformly minimum bases, namely, that they can only differ on trivial elements
and that they are well-behaved with respect to the direct sum.

Most of the proofs in this section work via an exchange argument similar to the one first
presented in proposition 2.10. The key idea of this argument is that if an element is not
colored we can select another element in a circuit or a cocircuit and perform some exchange.
If we ask for extra properties of the elements, like non-triviality, we can arrive at stronger
conclusions.

Consider the following “strict” version of the graph blue rule.

Blue Rule (Strict version): If e is the lightest edge of a cutset in a graph G (disallowing
ties), then e is in every MST of G.

This provides a strengthened version of the blue rule. Similarly, one can consider a strict
version of the red rule.

Red Rule (Strict version): If e is the heaviest edge of a circuit in a graph G (disallowing
ties), then e is not in any MST of G.

We generalize this results, but replace the notion of strictness in the colored elements by
non-triviality. Intuitively, non-trivial edges are “strict” since they cannot always participate
in ties, as one can consider realizations where they have different weight (effectively breaking
the tie).

Proposition 2.16 Let (M,A) be an uncertainty matroid and e ∈ E a blue and non-trivial
element. If T is an A-basis, then e ∈ T .

Proof. Let T be an A-basis such that e /∈ T . Consider C the fundamental circuit of T + e,
as e is blue, we have that e is not a loop and C 6⊆ F (e)+e (since e /∈ spanF (e)). Considering
that e is non-trivial there exists a realization w ∈ R(E,A) such that Ue > we. Then, by
selecting f ∈ C\F (e), we have:

wf ≥ Lf ≥ Ue > we,
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This implies that w(T − f + e) < w(T ), which contradicts the fact that T is an A-basis.

Proposition 2.17 Let (M,A) be an uncertainty matroid, and e ∈ E a red and non-trivial
element. If T is an A-basis, then e /∈ T .

The proof for the red elements works in the same way but using fundamental cocircuits
instead of fundamental circuits.

Proof. Let T be an A-basis such that e ∈ T . Consider C∗ the fundamental cocircuit of
T c + e, as e is red, we have that e is not a coloop and C∗ 6⊆ F ∗(e) + e (since e /∈ spanF ∗(e)).
Considering that e is non-trivial there exists a realization w ∈ R(E,A) such that we > Le,
then selecting f ∈ C∗\F ∗(e) we have:

we ≤ Le ≤ Uf < wf ,

This implies that w(T c + e − f) > w(T c) and w(T − e + f) < w(T ), which contradicts the
fact that T is an A-basis.

From these propositions we find that all uniformly minimum bases share all non-trivial blue
elements and avoid all non-trivial red elements. It is now natural to ask the relation between
general colored elements and uniformly minimum bases (independently of non-triviality).
In the graphic case, blue and red edges provide the existence of an MST that respectively
contains and avoid such edges. Furthermore, this property characterizes blue and red edges
in graphs. This same characterization can be obtained for colored elements in uncertainty
matroids as shown by the next results.

Proposition 2.18 Let (M,A) be an uncertainty matroid, such that an A-basis exists. Then
e ∈ E is blue if and only if there exists an A-basis such that e ∈ T .

Proof. Suppose that T is an A-basis such that e ∈ T . Since each A-basis is a w-basis for
every realization w ∈ R(E,A), we have that e is blue.

We now prove the converse. Note that if e is nontrivial the result follows from Proposition
2.16. We then assume that e is trivial. Let T be an A-basis, if e ∈ T we have nothing to
prove, so assume that e /∈ T . Again, consider C the fundamental circuit of T + e. As before,
e is blue, we have that e is not a loop and there exists some f ∈ C\F (e). If f is non-trivial
we would have w ∈ R(E,A) such that wf > Lf , and, therefore:

wf > Lf ≥ Ue = we.

So w(T + e − f) < w(T ), arriving at a contradiction. Moreover, if Lf > Ue, then for any
w ∈ R(E,A) we would have:

wf = Lf > Ue = we,

which leads to the same contradiction. The only remaining case is that e and f are trivial
elements of equal weight, so w(T ) = w(T + e − f) for each w ∈ R(E,A), implying that
T + e− f is also an A-basis.

31



Proposition 2.19 Let (M,A) be an uncertainty matroid such that an A-basis exists. Then
e ∈ E is red if and only if it exists an A-basis such that e /∈ T .

Again, the red proof follows the same ideas as the blue proof, but working with funda-
mental cocircuits instead of fundamental circuits.

Proof. Suppose that T is an A-basis such that e /∈ T . Since each A-basis is a w-basis for
every realization w ∈ R(E,A), we have that e is red.

For the converse, note that if e is nontrivial the result follows from Proposition 2.17. We
then assume that e is trivial. Let T be an A-basis, if e /∈ T we have nothing to prove, so
assume that e ∈ T . Consider C∗ the fundamental cocircuit of T c + e. As e is red, we have
that e is not a coloop and there exists some f ∈ C∗\F (e). If f is non-trivial we would have
w ∈ R(E,A) such that wf < Uf , and:

wf < Uf ≤ Le = we.

So w(T c+ e−f) > w(T c), arriving at a contradiction, since w(T − e+f) < w(T ). Moreover,
if Le > Uf , for any w ∈ R(E,A) we would have:

wf ≤ Uf < Le = we,

which leads to the same contradiction. The only remaining case is that e and f are trivial
edges of equal weight, so w(T ) = w(T −e+f) for each w ∈ R(E,A), implying that T +e−f
is also an A-basis.

With further examination of the proofs of Propositions 2.18 and 2.19, we find that if one
tries to swap colored elements while keeping uniformly minimum bases, the elements involved
must be trivial. This is not only the case when trying to swap colored elements. Furthermore,
any two uniformly minimum bases can differ only on trivial elements, as shown in the next
proposition.

Proposition 2.20 Let (M,A) be an uncertainty matroid. If T1 and T2 are two A-bases,
then every element of T1∆T2 is trivial.

Proof. Without loss of generality, we can assume that there is e ∈ T1\T2 non-trivial. Strong
basis exchange allows us to pick f ∈ T2\T1, such that, T1 − e+ f and T2 + e− f are basis of
M . As e is non-trivial, there exists a realization w ∈ R(E,A) such that we > wf or we < wf .
If we > wf , then w(T1− e+ f) < w(T1), which contradicts the fact that T1 is an A-basis. On
the other hand, if wf > we, then w(T2 + e− f) < w(T2), this is also a contradiction, since T2

is an A-basis.

We end this section with an expected result, namely, that uniformly minimum bases
behave similarly to bases when considering matroids that can be expressed as the direct sum
of k matroids. Recall that, for matroid bases, we have that T is a basis of the direct sum
if and only if the restriction of T on each summand is a basis. A similar proposition holds
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for uncertainty matroids and uniformly minimum bases, but we need to work out a way to
distribute the family of areas between the matroids in the direct sum. We do so by defining
restrictions of families of areas.

Definition 2.21 (Restriction) Let E be a finite set, A = {Ae}e∈E a family of sets indexed
by E and F ⊆ E. We define A restricted to F by:

A|F = {Ae ∈ A : e ∈ F}.

We can now state the result.

Proposition 2.22 Let (M,A) be an uncertainty matroid such that M =
k⊕
i=1

Mi and Ei =

E(Mi) for each i ∈ [k]. Then, T is an (M,A)-basis if and only if T ∩Ei is an (Mi,A|Ei
)-basis

for every i ∈ [k].

Proof. Suppose that T ∩ Ei is not an (M,A)-basis for some i ∈ [k]. Then, there exists T ′

basis of Mi and a realization w ∈ R(Ei,A|Ei
) such that w(T ′) < w(T ∩ Ei). We can extend

such w to ŵ ∈ R(E,A) by selecting ŵe ∈ Ae arbitrarily, then:

ŵ(T ′ ∪ (T\Ei)) = ŵ(T ′) + ŵ(T\Ei) < ŵ(T ∩ Ei) + ŵ(T\Ei) = ŵ(T ),

as T ′ ∪ (T\Ei) is a basis of M , we have contradicted the fact that T is an (M,A)-basis.

For the converse, suppose that T is not an (M,A)-basis, then there exists T ′ basis of M
and a realization w ∈ R(E,A) such that w(T ′) < w(T ). As every T∩Ei is an (M,w|Ei

)-basis,
we have that:

w(T ) =
k∑
i=1

w(T ∩ Ei) ≤
k∑
i=1

w(T ′ ∩ Ei) = w(T ′),

which contradicts the previous inequality.

This section was a first effort on addressing the UMB problem. Specifically, the part
that involves finding uniformly minimum bases. We know now that we do not need to pay
attention to red non-trivial elements and can include from the start every blue non-trivial
element in our uniformly minimum basis. We also concluded that we can consider only
connected components of the matroid as uniformly minimum basis behave well with direct
sums. The question remains on what to do with non-colored non-trivial elements and trivial
elements. These questions will be the focus of following sections.

2.5 Colorings and existence of uniformly minimum bases

The main objective of this section is to provide a solution for the decision part of the UMB
problem. Specifically, we characterize uncertainty matroids that have uniformly minimum
bases as the ones that are fully colored.
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An outline of the proof is as follows. We first prove that if uniformly minimum bases exist
there can not be non-colored elements (using the circuit and cocircuit of which a supposed
non-colored element would participate). For the converse, we first prove the interesting fact
that contracting blue non-trivial elements and deleting red non-trivial elements preserves
colorings. Then, we contract and delete every non-trivial edge, arriving at an uncertainty
matroid with trivial areas, where the result is easier to prove.

A small complication encountered in some of the proofs presented occurs when trying to
pick proper realizations with weights close to Le or Ue. This is not really a problem, since
colors only depend on infima {Le}e∈E and suprema {Ue}e∈E as made explicit by Propositions
2.11 and 2.15. We start by showing that colors are the same when replacing Ae by [Le, Ue]
and vice-versa. This simplifies some proofs in this section.

Definition 2.23 Let (M,A) be an uncertainty matroid. We define the closure of A as:

clA = {[Le, Ue] : e ∈ E}

Proposition 2.24 Let (M,A) be an uncertainty matroid. If B = {Be}e∈E is a family of
areas such that LAe = LBe and UAe = UBe for each e ∈ E, then (M,A) and (M,B) have the
same colors. In particular (M,A) and (M, clA) have the same colors.

Proof. Note that FA(e) = FB(e) and F ∗A(e) = F ∗B(e). By propositions 2.10 and 2.14 we
have that (M,A) and (M,B) have the same colors.

We now prove one direction of the characterization.

Proposition 2.25 Let (M,A) be an uncertainty matroid such that an A-basis exists. Then,
every element of E is colored.

Proof. Suppose that there exists e ∈ E non-colored and choose any A-basis T . Since e is
not red nor blue, by Propositions 2.10 and 2.11 we have that e ∈ spanF (e) ∩ span∗ F ∗(e).
As in the proof of proposition 2.10 and 2.14, we can choose realizations w,w∗ ∈ R(E,A)
such that for every f ∈ F (e) we have that wf < we and w∗e < w∗g for every g ∈ F ∗(e). We
conclude that e is not in any w-basis and it is in every w∗-basis. This is a contradiction since
T is both a w-basis and a w∗-basis.

The next propositions shows that contraction of non-trivial blue elements preserves colors.
Moreover red elements are always preserved when contracting blue elements, even when the
elements being contracted are trivial.

Proposition 2.26 Let (M,A) be an uncertainty matroid and e, f ∈ E blue elements in
(M,A) such that e is non-trivial. We have that f is blue in (M/e,A− Ae).
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Proof. Consider the weight function w : E → R given by:

wx =

{
Uf if f = x,

Lx if f 6= x.

Since f is blue in (M, clA), there exists some (M,w)-basis T such that f ∈ T . We start by
proving that e ∈ T , suppose not, then we can consider C the fundamental circuit of T +e. As
e is blue, we have that e /∈ spanF (e) and e is not a loop. Hence, we can select g ∈ C\F (e)
such that g 6= e. Since e is non-trivial:

wg ≥ Lg ≥ Ue > Le = we.

It follows that w(T − g + e) < w(T ), which contradicts the fact that T is a w-basis.

As e, f ∈ T we have that T − e is a (M/e,w|E−e)-basis such that f ∈ T − e, using
Proposition 2.11 it follows that f is blue in (M/e,A− Ae).

Proposition 2.27 Let (M,A) be an uncertainty matroid and e, f ∈ E be blue and red
elements in (M,A), respectively. Then f is red in (M/e,A− Ae).

Proof. Consider the realization w ∈ R(E, clA) given by:

wx =

{
Uf if f = x,

Lx if f 6= x.

As f is red in (M, clA), there exists some (M,w)-basis T such that f /∈ T . If e ∈ T then
T − e is an (M/e,w|E−e)-basis and by Proposition 2.15 we have that f is red in (M,A),
we may assume that e /∈ T . Since e is blue in (M, clA), there exists some (M,w)-basis T ′

such that e ∈ T . As (M,w)-basis are basis of a matroid (because they are basis of minimum
weight with respect to w) we can find e′ ∈ T\T ′ such that T − e′+ e is an (M,w)-basis, from
here we can proceed as before but working with T − e′ + e instead of T .

Dually, deletion of non-trivial red elements also preserves colors. Similarly, blue elements
are preserved even when deleting trivial red elements. Both proofs follow exactly the same
ideas as the blue case, but using dual concepts.

Proposition 2.28 Let (M,A) be an uncertainty matroid and e, f ∈ E red elements in
(M,A) such that e is non-trivial. We have that f is red in (M − e,A− Ae).

Proof. Consider the weight function w∗ : E → R given by:

w∗x =

{
Lf if f = x,

Ux if f 6= x.

Since f is red in (M, clA), there exists some (M,w∗)-basis T such that f /∈ T . We first prove
that e /∈ T , suppose not, we can then take C∗ the fundamental cocircuit of T c + e. As e is
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red, we have that e /∈ span∗ F ∗(e) and e is not a coloop. Then, we can select g ∈ C∗ 6⊆ F ∗(e)
such that g 6= e. Since e is non-trivial:

w∗e = Ue > Le ≥ Ug ≥ w∗g ,

it follows that w∗(T c − g + e) > w∗(T c) and w∗(T − e + g) < w∗(T ), which contradicts the
fact that T is a (M,w∗)-basis.

As e, f /∈ T we have that T is a basis of minimum weight in M − e such that f /∈ T − e,
using proposition 2.15 it follows that f is red in (M − e,A− Ae).

Proposition 2.29 Let (M,A) be an uncertainty matroid and e, f ∈ E be red and blue
elements in (M,A), respectively. Then, f is blue in (M − e,A− Ae).

Proof. Consider the realization w∗ ∈ R(E, clA) given by:

w∗x =

{
Lf if f = x,

Ux if f 6= x.

As f is blue in (M, clA), there exists some (M,w∗)-basis T such that f ∈ T . If e /∈ T then
T is an (M − e, w|E−e)-basis and by Proposition 2.11 we have that f is blue in (M,A), we
may assume that e ∈ T . Since e is red in (M, clA), there exists some (M,w)-basis T ′ such
that e /∈ T . We can find e′ ∈ T ′\T such that T − e+ e′ is an (M,w)-basis, from here we can
proceed as before but working with T − e+ e′ instead of T .

We now prove the main result of this section.

Theorem 2.30 Let (M,A) be an uncertainty matroid. There exists an A-basis if and only
if every element is colored.

Proof. We only need to prove the converse and we proceed by induction on the number of
non-trivial edges k. If k = 0 an A-basis is simply a basis of minimum weight, which clearly
exists. Suppose that k > 0, and let e ∈ E be any non-trivial element. If e is blue, we have
that every element of E − e is colored in (M/e,A − Ae), since colors were preserved. By
inductive hypothesis, we have an (M/e,A−Ae)-basis T and by proposition 2.7 we have that
T + e is an (M,A)-basis. On the other hand, if e is red, every element of E − e is colored
in (M − e,A−Ae), by inductive hypothesis, we have an (M − e,A−Ae)-basis T and using
proposition 2.13 we conclude that T is an (M,A)-basis.

It is interesting to note that the previous proof only uses the fact that non-trivial elements
are colored. We can then deduce the following strengthened version of theorem 2.30

Theorem 2.31 Let (M,A) be an uncertainty matroid. There exists an A-basis if and only
if every non-trivial element is colored.
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We end this section with a small remark regarding colorings. It may seem at first that
blueness and redness are mutually exclusive, this is not true for general elements, as shown
in fig. 2.11, but it is true for non-trivial elements. When A-bases do exist this remark is a
direct corollary of propositions 2.16 and 2.17, but it also holds in the more general setting.

Proposition 2.32 Let (M,A) be an uncertainty matroid. If e is red and blue, then e is
trivial.

Proof. Suppose for the sake of contradiction that e is non-trivial and pick w ∈ R(E,A) such
that we < Ue. As e is red there exists some w-basis T without e. Let C be the fundamental
circuit of T + e, since e is blue, there exists some f 6= e such that f ∈ C\F (e). Then:

wf ≥ Lf ≥ Ue > we,

therefore w(T − f + e) < w(T ) which contradicts the fact that T was a w-basis.

Example Consider an uncertainty matroid (M,A) as depicted in fig. 2.11. Since any set of
three elements is an A-basis, every element is colored red and blue.

5 5

55

Figure 2.11: All of the elements of (M,A) are red and blue.

This section partially solved the UMB problem by giving a characterization of when
uniformly minimum bases exist. Furthermore this characterization is easily testable as one
only needs to check the color of each element, this can be accomplished by executing the
greedy algorithm and appropriate weight functions.

2.6 A solution to the UMB problem

We end this chapter by solving the UMB problem fully via an important result on the
structure of uniformly minimum bases, namely, that they are the bases of some matroid.
This result is a generalization of the fact that optimal bases of weighted matroids are the
bases of a matroid and it will provide an algorithm for computing uniformly minimum bases
when they exist.

Proposition 2.33 Let (M,A) be an uncertainty matroid such that an A-basis exists. The
following set:

B = {T ⊆ E : T is an A-basis}
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is the set of bases of a matroid with elements in E, we will denote such matroid by Mat(M,A).

Proof. We only need to check the exchange axiom of bases as B is non-empty by hypothesis.
Let T1, T2 two A-bases and e ∈ T1\T2, as both are bases of M , by strong exchange we have
f ∈ T2\T1 such that T1 − e+ f and T2 + e− f are bases of M . By proposition 2.20 we have
that e and f are trivial, moreover for any realization w ∈ R(E,A) we must have we = wf ,
since if we > wf we have w(T1 + f − e) < w(T1) contradicting the fact that T1 is a w-basis,
similarly if we < wf we have that w(T2 + e − f) < w(T2) which is also a contradiction.
Therefore, for every realization w ∈ R(E,A) we get w(T1) = w(T1 − e+ f), concluding that
T1 − e+ f is also an A-basis.

Note that Mat(M,A) is finer than M in the sense that independence in Mat(M,A) implies
independence in M , this observation allows us to conclude that the set of non-trivial blue
elements must be independent in M , since non-trivial blue elements are included in every
uniformly minimum basis.

As every uniformly minimum basis is a basis of minimum weight for any realization, we
have that every uniformly minimum basis is fully colored blue. At first sight it may seem that
any blue basis, that is, a basis where every element is blue, is an uniformly minimum basis.
This converse does not hold, even when asking for blue bases that contain every non-trivial
blue element, as shown in Fig. 2.12.

In the end of this section we aim to give a useful characterization of bases and independence
of the uniformly minimum bases matroid. Note that if uniformly minimum bases exist one
can contract blue non-trivial elements and delete red elements while preserving colors in
each contraction or deletion. Since every element is colored one arrives at a matroid that has
only trivial elements, this matroid is key in comprehending uniformly minimum bases, as we
already know what to do with non-trivial elements.

Definition 2.34 (Trivial Matroid) Let (M,A) be an uncertainty matroid. Consider:

NB = {e ∈ E : e is non-trivial and blue}
NR = {e ∈ E : e is non-trivial and red}

If (M,A) has an A-basis, we define M t = M/NB\NR and consider w : E(M t) → R the
weight function that maps each trivial element e to Le = Ue. We call the weighted matroid
(M t, wt) the trivial weighted matroid associated to (M,A).

Example Consider (M,A) an uncertainty matroid as depicted in Fig. 2.12. Note that every
element is blue, but even though the non-trivial elements and the elements with area 2 form
a blue basis they are not an A-basis, as replacing any element with area 2 by the element
with area 1 would improve the weight of any realization.

Note that since colored elements allowed safe deletion and safe contraction minimality
of weight is preserved in each contraction or deletion arriving at a minimum weight basis
of the trivial weighted matroid. This property added to the already mentioned relations
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1 2

2

1

(0, 1)

(a) (M,A).

1 2

2

(0, 1)

(b) A blue basis that is not
an A-basis.

Figure 2.12: A blue basis that is not an A-basis.

with colored non-trivial elements allows us to prove a useful characterization of uniformly
minimum bases.

Theorem 2.35 Let (M,A) be an uncertainty matroid such that an A-basis exists and
(M t, wt) its trivial weighted matroid. Then T is an A-basis if and only if:

1. NB ⊆ T ,

2. NR ∩ T = ∅,
3. T\NB is a minimum weight basis of (M t, wt).

Proof. A-bases always contain every blue non-trivial element by Proposition 2.16 and avoid
each red non-trivial element by Proposition 2.17. We can delete each element in NR while
preserving colors in each deletion using Propositions 2.28 and 2.29, more so Proposition 2.13
concludes that T is an (M\NR,A\{Ae}e∈NR

)-basis. We now contract each element in NB

while preserving colors by Propositions 2.26 and 2.27 repeated aplication of Proposition 2.7
concludes that T\NB is an (M t, wt)-basis.

We show the converse by induction on the number of non-trivial elements k. If k = 0,
using condition 3 we get that T is a minimum weight basis of (M t, wt). Noting that M t = M
and A = {wt(e)}e∈E we conclude that T is an (M,A)-basis.

If k > 0 select any non-trivial element e ∈ E. If e is blue, we have that e ∈ T . As
colors are preserved when contracting e, it follows by inductive hypothesis that T − e is an
(M/e,A− Ae)-basis, and using Proposition 2.7 we conclude that T is an (M,A)-basis. If e
is red it cannot be blue, as it is non-trivial, then e /∈ T . Since deletion of e also preserves
colors, by inductive hypothesis we have that T is an (M − e,A−Ae)-basis, Proposition 2.13
allows us to conclude that T is an (M,A)-basis.

Note that this theorem in conjunction with the existential characterization of uniformly
minimum bases provides an algorithmic solution to the UMB problem. One can first decide
if a uniformly minimum basis exist by checking if it is fully colored, if it is, one can contract
all blue non-trivial elements, delete every red non-trivial element compute a minimum weight

39



basis of the trivial weighted matroid by using the greedy algorithm and return the output of
the greedy algorithm and every blue non-trivial element.

We now use this theorem to provide additional exploration on the structure of the matroid
introduced in this section, specifically, we give a characterization of its bases depending on
the rank function of the original matroid and express it as the direct sum of simpler matroids.

Proposition 2.36 Let (M,A) be a matroid with areas such that an A-basis exists and
(M t, wt) its trivial weighted matroid. Consider the set of trivial weights {wte : e ∈ E(M t)},
and order them increasingly w1 < w2 < ... < wr. We define the following sets:

Ei = {e ∈ E(M t) : wte = wi}, ∀i ∈ {1, ..., r},

Fi =
i⋃

j=1

Ei, ∀i ∈ {0, ..., r}.

Then T is an A basis if and only if:

1. T is a basis of M ,

2. NB ⊆ T ,

3. NR ∩ T = ∅,
4. |T ∩ Ei| = rM(Fi ∪NB)− rM(Fi−1 ∪NB) for each i ∈ [r].

Moreover Mat(M,A) = M t
wt ⊕ U |NB |

NB
⊕ U0

NR
=

[
r⊕
i=1

M |Fi
/Fi−1

]
⊕ U |NB |

NB
⊕ U0

NR
.

Proof. First note that as every element is colored the set of trivial elements is E\NB\NR.
By Proposition 2.35 we get condition 2. and 3. and since T\NB ∈ B(M t) and T ∩ NR = ∅
we have that T is a basis of M , hence we also get 1. We now check condition 4., since T\NB

is a minimum weight basis of (M t, wt), using Proposition 1.28 we have for each i ∈ [r]:

|T ∩ Ei| = |(T\NB) ∩ Ei|
= rM/NB\NR

(Fi)− rM/NB\NR
(Fi−1)

= rM(Fi ∪NB)− rM(NB)− [rM(Fi−1 ∪NB)− rM(NB)]

= rM(Fi ∪NB)− rM(Fi−1 ∪NB)

For the converse we only need to check that T\NB is a minimum weight basis of (M t, wt).
Note that:

|(T\NB) ∩ Ei| = |T ∩ Ei|
= rM(Fi ∪NB)− rM(Fi−1 ∪NB)

= rM(Fi ∪NB)− rM(NB)− [rM(Fi−1 ∪NB)− rM(NB)]

= rM/NB\NR
(Fi)− rM/NB\NR

(Fi−1)

we conclude by noting that T\NB is a basis of M/NB\NR and using Proposition 1.28.
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We now prove the decomposition part of the proposition. By Proposition 1.28 it suffices
to prove that Mat(M,A) = M t

wt ⊕M |NB
⊕ U0

NB
, by Proposition 2.35 we have:

B(Mat(M,A)) = {B ∪NB : B ∈ B(M t
wt))}

which implies that Mat(M,A) = M t
wt ⊕ U |NB |

NB
⊕ U0

NR
.

The solution of the UMB problem marks the end of this chapter. This is not only important
as it solves one of the two central problems presented at the beginning, but this chapter
provided us with some useful techniques an machinery that will provide a starting point in
dealing with the MCFQS problem, in particular blue/red ideas will provide motivation when
tackling this new problem.
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Chapter 3

Feasible query sets

This chapter focuses on feasible query sets and the MCFQS problem. We start by studying
how feasible query sets behave on the parts of decomposable matroids, providing a way to
combine solutions on its decomposition. Then, we study two particular cases of the MCFQS
problem that will provide inspiration later on:

MCFQS problem with unit costs on interval areas: In this case, the unique feasible
query set of minimum size is the set of non-colored elements.

MCFQS problem with unit costs on {0, 1} areas: In this case, every feasible query
set of minimum size consists of all elements but one in each connected component.

We then introduce an analogue to witness sets by studying sets that intersect every feasible
query set. We use this to define critical pairs as pairs of elements that intersect every feasible
query set but no single element does. This allows us to define a critical relation, and state
the two main results of this chapter:

A characterization of feasible query sets of minimum size: Each feasible query
set of minimum size consists of all elements but one in each equivalence class of the critical
relation.

A description of the cofeasible query set matroid: Complements of feasible query
sets are the independent sets of an uncomplicated partition matroid that depends only on
equivalence classes of the critical relation.

3.1 Feasible query sets in decomposable matroids

We start the search of a solution for the MCFQS problem by showing two ways of combining
feasible query sets of simpler matroids with areas into feasible query sets of a more complex
uncertainty matroid.

The first method applies when considering an uncertainty matroid that can be expressed
as the direct sum of simpler matroids. In this case, it suffices to simply find a feasible query
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set in each simple matroid and join them together afterwards.

The second property explored, applies when the elements of the uncertainty matroid being
studied can be partitioned into two sets such that the elements of one set are heavier than
the ones in other set for every realization. In such case, we can find a feasible query set for
the “light” set, contract them, and then find a feasible query set for the “heavy” set.

Both of these properties rely heavily on analogous facts for uniformly minimum bases.
These are; Proposition 2.22; and a generalization of the property that to find a minimum
weight basis, one can simply choose a threshold, select an optimal basis of edges below the
threshold, contract them, and then select an optimal basis of the edges above the threshold
in the contracted matroid.

We first state and provide proof of the property relating directed sums.

Proposition 3.1 Let (M,A) be an uncertainty matroid such that M =
k⊕
i=1

Mi and Ei =

E(Mi). Then X is a feasible query set for (M,A) if and only if X ∩ Ei is a feasible query
set for (Mi,A|Ei

) for each i ∈ [k].

Proof. For the forward implication, let Bi ∈ R(X ∩ Ei,A|Ei
) be a revelation of X ∩ Ei and

for each e ∈ X\Ei pick any we ∈ Ae, then we define B = Bi ∪ {we}e∈X\Ei
. Since B is a

revelation of X and X is feasible, there exists some (M,B)-basis T , by Proposition 2.22 we
have that Ti is an (M,B|Ei

)-basis. Finally, since B|Ei
= Bi, we have that X ∩ Ei is feasible

for (Mi,A|Ei
).

We now prove the converse. Consider B ∈ R(X,A) and note that B|Ei
∈ R(X∩Ei,A|Ei

).
As X ∩Ei is feasible in (Mi,A|Ei

) for each i ∈ [k], it follows that for each i ∈ [k] there exists

Ti an (Mi,B|Ei
)-basis. Note that T =

k⋃
i=1

Ti verifies that T ∩Ei is an (Mi,B|Ei
)-basis for each

i ∈ [k], and by Proposition 2.22 we conclude that T is an (M,B)-basis and that X is feasible
in (M,A).

Note that since every matroid can be written as the direct sum of connected matroids,
the previous property shows that connectivity isn’t such an strong assumption to make.

In the rest of this section we will consider matroids with areas (M,A) that are partitioned
into “light” and “heavy” elements.

Definition 3.2 (Light and heavy matroid) Let (M,A) be an uncertainty matroid. We say
that L,H is a light/heavy partition if max

e∈L
Ue ≤ α ≤ min

e∈H
Le for some α ∈ R, {e ∈ E : Le =

Ue = α} = ∅ and L ∪ H = E. Starting from this, we define the light and heavy matroid
respectively as ML = M |L and MH = M/L.
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Example Consider an uncertainty matroid as in Fig. 3.1 and the two candidate light/heavy
partitions provided. Let L be the set of teal elements in (b) and H be the set of orange
elements in (b). Even though these sets verify max

e∈L
Ue ≤ min

e∈H
Le, they are not a light/heavy

partition, as there is a trivial edge with area 1 that touches the only possible threshold α = 1.
This is a problem since it is not clear if this edge is light or heavy.

On the other hand consider L as the set of teal elements in (c) and H as set of the orange
elements in (c), again we have that max

e∈L
Ue ≤ min

e∈H
Le, but, even though there are two sets

touching the only possible threshold of α = 2, namely the sets {1, 2} and [2, 4], there is no
problem as the other there is no doubt that {1, 2} must be light and [2, 4] must be heavy.

1

{1
, 2
}

(0, 1)

4

(3, 4)

[2, 4]

(a) (M,A).

1

{1
, 2
}

(0, 1)

4

(3, 4)

[2, 4]

(b) The sets in teal/orange are
not a light/heavy partition.

1

{1
, 2
}

(0, 1)

4

(3, 4)

[2, 4]

(c) The sets in teal/orange are
a light/heavy partition.

Figure 3.1: An uncertainty matroid and two candidate light/heavy partitions.

We aim to prove that it suffices to find feasible query sets for the light and heavy matroids
with areas. We start by proving that colors are preserved. That is, if an element is heavy,
then it is colored the same in the heavy matroid with areas and in the original uncertainty
matroid; this same color-preserving property occurs for light elements. The proofs depend
mainly on Propositions 2.10, 2.14 and some span or cospan calculations.

Proposition 3.3 Let (M,A) be an uncertainty matroid and L,R a light/heavy partition.
Then:

1. e ∈ L is blue for (ML,A|L) if and only if it is blue for (M,A).

2. e ∈ H is blue for (MH ,A|H) if and only if it is blue for (M,A).

3. e ∈ L is red for (ML,A|L) if and only if it is red for (M,A).

4. e ∈ H is red for (MH ,A|H) if and only if it is red for (M,A).

Proof. 1. Note that:

spanML
FA|L(e) = spanM\H F

A|L(e) = spanM FA|L(e)\H = spanM FA(e)\H,

for the last equality note that if e ∈ L, then FA|L(e) = FA(e). As e /∈ H we have that
e /∈ spanML

FA|L(e) if and only if spanM FA(e). Using Proposition 2.10, we conclude
that e is blue for (ML,A|L) if and only if it is blue for (M,A).
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2. As for every e ∈ H we have FA(e) = FA|H (e) ∪ L , then:

spanMH
FA|H (e) = spanM/L F

A|H (e) = spanM [FA|H (e) ∪ L]\L = spanM FA(e)\L.

Since e /∈ L, we have that e /∈ spanMH
FA|H (e) if and only if e /∈ spanM FA(e). By

Proposition 2.10, we conclude that e is blue for (MH ,A|H) if and only if it is blue for
(M,A).

3. Since F ∗A|L(e) ∪H = F ∗A(e) for any e ∈ L, we have:

span∗ML
F ∗A|L(e) = span(M\H)∗ F

∗A|L(e) = spanM∗/H F
∗A|L(e)

= spanM∗ [F
∗A|L(e) ∪H]\H = span∗M F ∗A|L(e)\H.

Seeing that e /∈ H, we conclude that e /∈ span∗ML
F ∗A|L(e) if and only if e /∈ span ∗MF ∗A|L(e).

Proposition 2.14 implies that e is red for (ML,A|L) if and only if it is red for (M,A).

4. Note that for any e ∈ H we have F ∗A(e) = F ∗A|H (e) , then:

span∗MH
F ∗A|H (e) = span(M/L)∗ F

∗A|H (e) = spanM∗\L F
∗A|H (e) = spanM∗ F

∗A(e)\L.

As e ∈ L, e /∈ span∗MH
F ∗A|H (e) if and only if spanM∗ F

∗A(e). It follows by Proposition
2.14 that e is red for (MH ,A|H) if and only if it is red for (M,A).

Example Consider the uncertainty matroid previously discussed in Fig. 3.1. We exemplify
the coloring preserving property on its light and heavy matroid, as depicted in Fig. 3.2.

1

{1
, 2
}

(0, 1)

4

(3, 4)

[2, 4]

(a) The original matroid with
areas, edges are colored ac-
cordingly.

1

{1
, 2
}

(0, 1)

(b) The light matroid, edges
are colored accordingly.

4

[2, 4]

(3, 4)

(c) The heavy
matroid,
edges have
been colored
accordingly.

Figure 3.2: Three uncertainty matroids, colored accordingly.

We now state and prove the threshold property mentioned at the beginning of this section.

Proposition 3.4 Let (M,A) be an uncertainty matroid and L,H a light/heavy partition.
Then TL is an (ML,A|L)-basis and TH is an (MH ,A|H)-basis if and only if TL ∪ TH is an
(M,A)-basis.
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Proof. Since colors are preserved by Proposition 3.3, using Theorem 2.30, the existence of
A-bases in (M,A) implies that uniformly minimum bases exists in (ML,A|L) and (MH ,A|H),
and vice-versa. As all the uniformly minimum bases involved exist, we only need to prove
that Mat(M,A) = Mat(ML,A|L)⊕ Mat(MH ,A|H).

Consider r, {Ei}ri=1, {Fi}ri=0 as in Proposition 2.36 and l = max{i ∈ [r] : Ei ⊆ L}. Using
Proposition 2.36 on Mat(ML,A|L) we have:

Mat(ML,A|L) =

[
l⊕

i=1

ML|Fi
/Fi−1

]
⊕ U |NB∩L|

NB∩L ⊕ U
0
NR∩L

=

[
l⊕

i=1

M |Fi
/Fi−1

]
⊕ U |NB∩L|

NB∩L ⊕ U
0
NR∩L

Using the same proposition on Mat(MH ,AH) we get:

Mat(MH ,A|H) =

[
r⊕

i=l+1

MH |(Fi\L)/(Fi−1\L)

]
⊕ U |NB∩H|

NB∩H ⊕ U0
NR∩H

=

[
r⊕

i=l+1

M/L|(Fi\L)/(Fi−1\L)

]
⊕ U |NB∩H|

NB∩H ⊕ U0
NR∩H

=

[
r⊕

i=l+1

M |Fi
/Fi−1

]
⊕ U |NB∩H|

NB∩H ⊕ U0
NR∩H

Finally applying Proposition 2.36 on Mat(M,A), we can conclude after the following compu-
tation:

Mat(M,A) =

[
r⊕
i=1

M |Fi
/Fi−1

]
⊕ U |NB |

NB
⊕ U0

NR

=

[
r⊕
i=1

M |Fi
/Fi−1

]
⊕ U |NB∩L|

NB∩L ⊕ U
|NB∩H|
NB∩H ⊕ U0

NR∩L ⊕ U
0
NR∩H

=

[
l⊕

i=1

M |Fi
/Fi−1

]
⊕ U |NB∩L|

NB∩L ⊕ U
0
NR∩L ⊕

[
r⊕

i=l+1

M |Fi
/Fi−1

]
⊕ U |NB∩H|

NB∩H ⊕ U0
NR∩H

= Mat(ML,A|L)⊕ Mat(MH ,A|H)

The threshold property for uniformly minimum bases will allow us to deduce an analogous
version for feasible query sets. This proof will work similarly as when Proposition 2.22 allowed
us to deduce Proposition 3.1, that is, we fix revelations of the feasible query sets and start
working with the respective uniformly minimum bases that arise.

Proposition 3.5 Let (M,A) be an uncertainty matroid and L,R a light/heavy partition.
Then XL is feasible in (ML,A|L) and XH is feasible in (MH ,A|H) if and only if X = XL∪XH

is feasible in (M,A).
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Proof. Let B ∈ R(X,A) be a revelation of X, then B|L ∈ R(XL,A|L) and B|H ∈ R(X,A|H).
Since XL and XH are feasible we have an (ML,B|L)-basis TL and an (MH ,B|H)-basis TH .
By Proposition 3.4, we have that TL ∪ TH is an (M,B)-basis, implying that X is feasible in
(M,A).

For the converse, let BL ∈ R(XL,A|L),BH ∈ R(XH ,A|H) and define B = BL ∪ BH . Note
that B ∈ R(X,A) and, since X is feasible in (M,A), there exists T an (M,B)-basis. By
Proposition 3.4 we have that T ∩ L is an (ML,BL)-basis and T ∩ H is an (MH ,BH)-basis,
implying that they are both feasible.

This section provided us with two techniques to build larger feasible query sets from
smaller ones. More so, since the techniques are characterizations, one can use them to build
minimum size feasible query sets from those of simpler uncertainty matroid. We have also
found the expected remarks that matroid connectivity is a “free” assumption, and that areas
of uncertainty that cannot be separated by some threshold are troublesome.

3.2 Two illustrative cases: Interval and {0, 1} areas

In this section we study two particular type of areas that provide additional insight in how
we can arrive to a solution of the general MCFQS problem.

First, we restrict our attention to uncertainty matroids that have interval areas, that is,
every area of uncertainty is an interval in R. We prove that, in this case, there is a unique
feasible query set of minimum size; namely, the set of non-colored non-trivial elements.

Our second study case will be uncertainty matroids where each area is exactly {0, 1}. We
restrict ourselves to connected matroids and use Proposition 3.1 to conclude the general case.
For connected matroids with {0, 1} areas, we prove that every minimum size feasible query
set is exactly every element of the matroid except for one.

We start this section by studying uncertainty matroids with interval areas. We first prove
that non-colored non-trivial elements must be revealed, that is, they are in every feasible
query set. The main idea involved in this proof is that non-colored elements belong in a light
circuit and in a heavy cocircuit as they are not blue nor red respectively and since they are
non-trivial we can select the weight of the element in two “extreme” manners, causing it to
be the heaviest of a circuit in some realizations and the lightest of a cocircuit in others.

Proposition 3.6 Let (M,A) be an uncertainty matroid with interval areas and e a non-
colored non-trivial element. Then e ∈ X for every X ⊆ E feasible query set.

Proof. First note that in the interval case both (e) = ∅, since for every f 6= e such that
Af ∩ (−∞, Le] 6= ∅ and Af ∩ [Ue,∞) 6= ∅ we must have Af ∩ (Le, Ue) 6= ∅ as Af is an inverval.
Suppose that there is some feasible query set X such that e /∈ X, then E − e is a feasible
query set.

As e is non-colored, by Propositions 2.10 and 2.14 we have that e ∈ spanF (e)∩span∗ F ∗(e),
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in particular, we have a circuit C ⊆ F (e) + e and a cocircuit C∗ ⊆ F ∗(e) + e such that
e ∈ C∩C∗. Choose w ∈ R(E−e,A) so that wf ∈ Af for each f ∈ lowA(e)∪bothA(e) and for
every f ∈ midA(e) we choose wf ∈ (Le, Ue), we also pick ε = 1

2
min

f∈midA(e)
{Uf−wf , wf−Lf} > 0.

Consider the following revelation B ∈ R(E − e,A):

Bf =

{
wf if f 6= e,

Ae if f = e.

As E − e is a feasible query set, we have that there is a B-basis T . If e ∈ T we consider the
realization ŵ ∈ R(E,B) by fixing ŵe = Ue − ε. Since F ŵ(e) = lowA(e) ∪ midA(e) we have
that e is the heaviest element in C arriving at a contradiction. On the other hand if e /∈ T
the realization w̃ ∈ R(E,A) that arises by fixing w̃e = Le + ε has e as the cheapest element
in C∗. Since F ∗w̃(e) = highA(e) ∪ midA(e), this is also a contradiction.

We now prove that it is always sufficient to reveal non-colored non-trivial elements. If
we query all non-colored non-trivial elements they become trivial, and, by Theorem 2.31, we
only need to worry about the remaining (previously colored) elements. Therefore, it suffices
to show that these elements preserve their colors.

Proposition 3.7 Let (M,A) be an uncertainty matroid, X ⊆ E, e /∈ X and B ∈ R(X,A).
If e is blue (resp. red) in (M,A), then it is blue (resp. red) in (M,B).

Proof. Since B ∈ R(X,A), we get that UAe = UBe , LAf ≤ LBf and UAf ≥ UBf for every
f ∈ E − e. Therefore:

FB(e) = {f ∈ E − e : LBf < UBe } ⊆ {f ∈ E − e : LAf < UAe } = FA(e)

F ∗B(e) = {f ∈ E − e : LBe < UBf } ⊆ {f ∈ E − e : LB̌e < U B̌f } = F ∗B̌(e)

If e is blue in (M,A), then, e /∈ spanFA(e). Therefore, e 6∈ spanFB(e) and e is blue in
(M,B). Otherwise, e is red in (M,A), then, e /∈ span∗ F ∗A(e). Therefore, e 6∈ span∗ F ∗B(e)
and e is red in (M,B).

We can now conclude that the set of non-trivial non-colored elements is the only minimum
sized feasible query set.

Theorem 3.8 Let (M,A) be an uncertainty matroid with interval areas. Then the only
minimum size feasible query set is:

X = {e ∈ E : e is non-colored and non-trivial}.

Proof. Let F be any minimum size feasible query set, then, by Proposition 3.6 X ⊆ F .

We now prove that X is a feasible query set. Let B ∈ R(X,A), by proposition 3.7 every
non-trivial element of (M,B) is colored. By Theorem 2.31, we conclude that X is a feasible
query set and |F | ≤ |X|.
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We can now conclude that F = X for every minimum size feasible query set F .

It is interesting to note that Theorem 3.8 provides an algorithm for finding feasible query
sets of minimum size. We can test the color of each element via the greedy algorithm, by
using the worst and best case weight function. Then, the minimum size feasible query set
is the set of non-trivial non-colored elements. Furthermore, this can be done efficiently in
terms of computational resources and calls to the independence oracle.

Example Consider an uncertainty matroid as shown in Fig. 3.3. After doing the previous
procedure we arrive at a feasible query set of minimum size.

(1,2]

(4,7)

[1,3]

2

(1,2)
[0
,9
) 4

[3
,5
)(1,2]

Figure 3.3: An uncertainty matroid. Red and blue elements are colored accordingly. In green
we show a feasible query set of minimum size.

It is also interesting to see that this provides a solution to the MCFQS problem with
interval areas. One must query every non-colored non-trivial element independently of their
cost, and only query colored elements or trivial elements if they are of negative cost. Again,
this can be solved algorithmically.

Note that some parts of this proof work in a more general setting. For example, if
both (e) = ∅ for each element e, the proof of Proposition 3.6 works in the same way. Sadly,
the full theorem isn’t true for general uncertainty matroids, as they may have multiple feasi-
ble query sets of minimum size or non-colored elements that don’t need to be revealed. We
show this phenomena in the following example.

Example Consider an uncertainty matroid (M,A) as shown in Fig. 3.4. Note that every
element is non-colored, but if we reveal any two elements, we can sort the elements by weight
as follows: first the elements revealed to be 0, then the non-revealed element, and finally
elements revealed to be 1. We can use the greedy algorithm under the aforementioned order,
obtaining a uniformly optimum basis, this implies that any two elements form a feasible
query set.
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{0, 1}

{0, 1}

{0
, 1
}

Figure 3.4: Every element is non-colored and non-trivial, but every pair of elements is a
feasible query set of minimum size.

We now restrict our attention to connected matroids in which every area of uncertainty is
{0, 1}. As the previous example is a connected matroid where each area is {0, 1} the analysis
that worked for interval areas won’t work. Despite that, the key idea of selecting extreme
weights of non-colored elements to make them the heaviest of a circuit and the lightest of a
cocircuit will still work, albeit it will need some modifications.

One of the problems encountered in working with {0, 1} areas is that when trying to select
extreme weights there is no space to do it. Specifically, as one needs the elements to be the
“strict” heaviest and the “strict” lighter, ties between elements become troublesome. Note
that this problem doesn’t exist in uncertainty matroids with interval areas as one can always
pick weights such that ties are broken.

Even so, we will proceed in similar fashion by making use of an important fact of connected
matroids, that is, in a connected matroid every pair of elements is exactly the intersection
of a circuit and a cocircuit. As in the previous case with non-colored elements, we will make
use of such circuit and cocircuit to conclude that something must be revealed, in this case,
one element of each pair.

Proposition 3.9 Let (M,A) be an uncertainty matroid and x, y ∈ E. If M is connected
and every area is {0, 1}, then {x, y} ∩X 6= ∅, for every feasible query set X ⊆ E.

Proof. Suppose there is some feasible query set X such that X ∩ {x, y} = ∅, then it must
be that E\{x, y} is feasible. As the matroid is connected, by Proposition 1.24 we have C
circuit and C∗ cocircuit such that C ∩ C∗ = {x, y}. Define a revelation B ∈ R(E\{x, y},A)
as follows:

Bf =


0 if f ∈ C\{x, y},
1 if f ∈ E\C,
{0,1} if f ∈ {x, y},

since E\{x, y} is feasible, we have some B-basis T .

If x ∈ T , consider the realization ŵ ∈ R(E,B) that arises by fixing ŵx = 1 and ŵy = 0.
Note that x is the heaviest element in C arriving at a contradiction, since T is a w-basis. It
must then be that x /∈ T , but now we can consider the realization w̌ ∈ R(E,B) that emerges
by selecting w̌x = 0 and w̌y = 1. Note that x is the lightest element in C∗ arriving once again
at a contradiction, as T is a w-basis.
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The previous proposition indicates that every feasible query set touches every pair of
elements, so leaving any two elements unrevealed would not be enough. We now prove that
one doesn’t need to reveal every element, arriving at a feasible query set of minimum size.

Proposition 3.10 Let (M,A) be an uncertainty matroid such that M is connected and every
area is {0, 1}. Then E − e is a feasible query set of minimum size for any e ∈ E.

Proof. Let B ∈ R(E−e,A) and define E0 = {f ∈ E : Bf = {0}}, E1 = {f ∈ E : Bf = {1}}.
As we need to show that some B-basis exists, by Theorem 2.30, it suffices to prove that every
element is colored. Note that any f ∈ E0 has F (f) = ∅, then e /∈ spanF (f), since e is not a
loop because of connectivity. Similarly, any f ∈ E1 has F ∗(f) = ∅, then e /∈ spanF (f), as
e is not a loop because of connectivity. Using Propositions 2.10 and 2.14 we conclude that
every element in E0 is blue and evety element in E1 is red. Suppose that e wasn’t colored,
we have e ∈ spanF (e)∩ span∗ F ∗(e) = spanE0 ∩ span∗E1, since F (e) = E0 and F ∗(e) = E1.
Then, there is a circuit C ⊆ E0 + e and a cocircuit C∗ ⊆ E1 + e such that e ∈ C ∩ C∗, but
since E0 ∩ E1 = ∅, we must have C ∩ C∗ = {e} which is impossible by Proposition 1.15.

We now prove that E − e is of minimum size. Suppose that there is a feasible query set
F such that |F | < |E − e|, then there is a pair x, y ∈ E\F which contradicts Proposition
3.9.

Once again, this provides an algorithm to select a feasible query set of minimum size.
Moreover, we can extend this idea to not necessarily connected matroids by simply selecting
all but one element in each connected component, as the following proposition indicates:

Theorem 3.11 Let (M,A) be an uncertainty matroid such that every area is {0, 1}. Con-
sider {Ki}li=1 the connected components of M and choose ei ∈ Ki for each i ∈ [l], then
X = E\{ei}li=1 is a feasible query set of minimum size.

Proof. By Proposition 3.10 we get that Ki − ei is a feasible query set of (M |Ki
,A|Ki

) and
using Proposition 3.1 we conclude that E\{ei}li=1 is a feasible query set of (M,A).

Suppose that there is some feasible query set F such that |F | < |X|, therefore |F ∩Ki| <
|Ki|− 1 for some i ∈ [l]. As F ∩Ki is a feasible query set of (M |Ki

,A|Ki
) by Proposition 3.1,

we have contradicted that Ki − ei is a feasible query set of minimum size.

As one could expect, this result also holds for uncertainty matroids that instead of having
only {0, 1} areas have only {L,U} areas with L,U ∈ R. One can also expand the same idea
of selecting extreme weights in a circuit and a cocircuit to uncertainty matroids that have a
gap between their minimum and suprema. That is, uncertainty matroids where there exists
some α ∈ R such that maxe∈E Le < α < mine∈E Ue.

This last result combined with repeated uses of Proposition 3.5 allows to find feasible
query sets in uncertainty matroids with areas are of the form {n, n + 1} for multiple values
of n ∈ Z. One can proceed in the following manner, consider just the areas {n, n+ 1} for the
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smallest n and apply Theorem 3.11 finding a minimum size feasible query set, then contract
this areas and repeat the procedure for the next smallest n. Once more, this idea provides
an algorithm that allows the computation of feasible query sets of minimum size in this class
of uncertainty matroids.

Example Consider an uncertainty matroid as in Fig. 3.5 (a). In (b) we show L1, H1 a
light/heavy partition of M and obtain a minimum size feasible query set for ML1 using
Theorem 3.11 shown in (c). We continue in (d) by showing L2, H2 a light/heavy partition of
MH1 . In (e) and (f) we show a minimum size feasible query set for ML2 and MH2 respectively.
Repeated application of Proposition 3.5 allows us to conclude that all the elements selected
are a minimum size feasible query set for the original uncertainty matroid.

Note that these algorithmic remarks are just examples of larger classes of uncertainty
matroids where one can find feasible query sets of minimum size by just using the fact that
interval and {0, 1} areas can be solved with polynomial number of calls to the independence
oracle and the methods presented in Section 3.1. We don’t go in full extent of the even larger
classes of uncertainty matroid that could be solved via these techniques.

3.3 An analogue to witness sets

A key idea that appears in the previous section is to find small sets that intersect feasible
query sets. In the case of interval areas any non-colored non-trivial element intersected every
feasible query set, and in {0, 1} areas each pair in the same connected component intersected
every feasible query set.

These sets work similarly to witness sets in the adaptative setting. Namely, they are a
great tool to prove that proposed solutions are “small” in each context. In the adaptative
context, witness sets allow for a good competitive analysis algorithm, that is, the witness
algorithm; while in the MCFQS context, small sets that intersect every feasible query set
provide good lower bounds on the size of the sets we have to query.

In this section we prove two results that will play a huge role in the search of a solution
for the MCFQS problem:

1. We provide a two-way characterization of sets that intersect every feasible query sets.
First, as the sets one can select extreme weights of some element to make it the heaviest
of a circuit and the lightest of a cocircuit, exploiting to full extent the idea that allowed
us to solve uncertainty matroids with interval and {0, 1} areas. Second, as the sets
that have a special circuit in the contraction of light elements and deletion of heavy
elements, this will provide us with an easy to test characterization.

2. We also prove that sets which intersect every feasible query set can always be selected
to have at most two elements. This property is extremely good as it will provide us
with good lower bounds for proving minimality. Also, we have already dealt with the
problems that arise with elements and pairs that intersect every feasible query set in
uncertainty matroids with interval and {0, 1} areas respectively.
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(a) (M,A) and a minimum sized feasible
query set.
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(b) L1 in teal and H1 in orange.
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(c) A feasible query set for ML1
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(e) A feasible query
set for ML2
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(f) A feasible query set
for MH2

.

Figure 3.5: An example of an uncertainty matroid where the MCFQS problem with unit
costs can be solved by repeated application of Proposition 3.5 and Theorem 3.11.

53



We now state the two-way characterization of sets that intersect every feasible query set:

Proposition 3.12 Let (M,A) be an uncertainty matroid, F ⊆ E and for each e ∈ E denote
M/low (e)\high (e) by M ′

e. The following statements are equivalent:

1. F ∩X 6= ∅ for every feasible query set X.

2. There exists a non-trivial element e ∈ F and Y ⊆ both (e)\F such that:

e ∈ span[low (e)∪mid (e)∪Y ∪(F∩both (e))]∩span∗[high (e)∪mid (e)∪Y ∪(F∩both (e))],

where Y = both (e)\F\Y .

3. There exists a non-trivial element e ∈ F and C ∈ C(M ′
e) such that e ∈ C and C ∩

[mid (e) ∪ (F ∩ both (e))] 6= ∅.

Before proving this proposition we give some intuition on why these statements are equiv-
alent.

Note that the second statement is simply the selecting extreme weights argument made
in the previous section. That is, given a “good” revelation of the elements in Y , the span
will provide a light circuit and span∗ will provide a heavy cocircuit. The matroid M ′

e hasn’t
appeared before, but note that if low and high are non-empty we can reason in the same
spirit as Proposition 3.5, meaning that we can contract low , delete high and keep the
“essence” of the problem. The third statement just says that e is still “competing” to be
the heaviest of some circuit in M ′

e with some other elements, so, we should need additional
elements to be revealed as which one is going to be colored red is still uncertain.

Proof. We first prove that 1 and 2 are equivalent. Note that since E\F isn’t feasible there
is a revelation B ∈ R(E\F,A) such that there is no (M,B)-basis and by Theorem 2.31 we
must have an element e that is non-colored and non-trivial in (M,B). Note that e ∈ F as
every element in E\F is trivial in (M,B).

Consider the revelation B̌ ∈ R(both (e)\F,A) such that B̌f =

{
B̌f if f ∈ both (e)\F ,
Af if f /∈ both (e)\F .

.

Since B ∈ R(E\F, B̌) and e is non-colored in (M,B), by Proposition 3.7, we get that e is
also non-colored in (M, B̌).

Select Y as the elements revealed to be lighter than or equal to Le, that is, Y = {f ∈
both (e)\F : B̌f ≤ Le}. Note that:

low B̌(e) = lowA(e) ∪ Y mid B̌(e) = midA(e)

high B̌(e) = highA(e) ∪ Y both B̌(e) = F ∩ bothA(e)

Since e is not blue in (M, B̌):

e ∈ span[low B̌(e) ∪ mid B̌(e) ∪ both B̌(e)] = span[lowA(e) ∪ midA(e) ∪ Y ∪ (F ∩ bothA(e))],

54



and as e is not red in (M, B̌):

e ∈ span∗[high B̌(e)∪mid B̌(e)∪both B̌(e)] = span∗[highA(e)∪midA(e)∪Y ∪(F∩bothA(e))].

For the converse consider two revelations w+, w− ∈ R(E,A) as follows:

w+
f =


w+
f ∈ (Le, Ue) ∩ Af if f ∈ mid (e),

w+
f ∈ (−∞, Le] ∩ Af if f ∈ Y ∪ [F ∩ both (e)],

w+
f ∈ [Ue,∞) ∩ A+

f if f ∈ Y ,
w+
e ∈ Ae ∩ (Le, Ue] if f = e.

w−f =


w−f ∈ [Ue,∞) ∩ A+

f if f ∈ F ∩ both (e)],

w−e ∈ Ae ∩ [Le, Ue) if f = e,

w+
f otherwise.

Note that w+ and w− only differ on F ∩ both (e) and e. As e ∈ span[low (e) ∪ mid (e) ∪
Y ∪ (F ∩ both (e))] it is the heaviest element in a circuit in (M,w+), therefore it is in no
(M,w+)-basis. Similarly, since e ∈ span∗[high (e) ∪ mid (e) ∪ Y ∪ (F ∩ both (e))] it is the
lightest element in a cocircuit in (M,w−), hence it is in every (M,w−)-basis. To conclude
suppose that there is a feasible query set X such that F ∩X = ∅, we then pick the following
revelation B ∈ R(X,A):

Bf =

{
Af if f /∈ X,
w+
f if f ∈ X.

Select any B-basis T , as w+, w− ∈ R(E,B) we have that T is a w+-basis and a w−-basis,
this implies that e ∈ T and e /∈ T which is a contradiction.

We now prove that 2 and 3 are equivalent. Recall that e ∈ span∗Q if and only if e /∈
span(E\Q−e) for any set Q ⊆ E, using this we get that 2 is equivalent to e ∈ span[low (e)∪
mid (e)∪Y ∪(F ∩both (e))]\ span[low (e)∪Y ], we prove equivalence with this last statement.

For the direct implication note that e ∈ span[low (e)∪mid (e)∪Y ∪(F∩both (e))]\low (e) =
spanM ′e [mid (e)∪Y ∪(F ∩both (e))] and e /∈ span[low (e)∪Y ]\low (e) = spanM ′e Y . Therefore
there is a circuit C ∈ C(M ′

e) such that C ⊆ mid (e) ∪ Y ∪ F ∩ both (e) + e and e ∈ C. If
C ∩ [mid (e)∪ (F ∩both (e))] = ∅ , we get that C ⊆ Y + e, implying that e ∈ spanM ′e Y which
is not possible.

We now prove the converse. Choose Y = C ∩ [both (e)\F ] and note that:

e ∈ spanM ′e(C − e) = spanM ′e [(C ∩ mid (e)) ∪ (C ∩ (both (e)\F )) ∪ (C ∩ both (e) ∩ F )]

⊆ spanM ′e [mid (e) ∪ Y ∪ (F ∩ both (e))].

If e ∈ spanM ′e(Y ) we get some circuit D ∈ C(M ′
e) such that D ⊆ Y + e, since C ∩ [mid (e) ∪

(F ∩ both (e))] 6= ∅ we get D ( C which contradicts the minimality of C. Then:

e ∈ spanM ′e [mid (e) ∪ Y ∪ (F ∩ both (e))]\ spanM ′e Y

= (span[low (e) ∪ mid (e) ∪ Y ∪ (F ∩ both (e))]\low (e))\(span[low (e) ∪ Y ]\low (e))

= (span[low (e) ∪ mid (e) ∪ Y ∪ (F ∩ both (e))]\ span[low (e) ∪ Y ])\low (e)

⊆ span[low (e) ∪ mid (e) ∪ Y ∪ (F ∩ both (e))]\ span[low (e) ∪ Y ]
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Example Consider an uncertainty matroid as in Fig. 3.6 (a). Let F be the elements with
area of uncertainty {1, 3} and pick any e ∈ F . In (b) we show M ′

e for any of the elements and
note that there exists the circuit required in Proposition 3.12. In (c) we color the elements
in teal if they are in low , olive if they are in mid , orange if they are in high and violet if
they are in both so it is easier to visualize the span and cospan part of Proposition 3.12. We
conclude that F intersects with every feasible query sets (so one of them must be queried).
Consider then f as the element of area {0, 5}. Doing the same as before, we conclude that f
belongs to every feasible query set, so it must be queried (see Fig. 3.6 (d), (e) and (f)).

In the uncertainty matroids with {0, 1} areas we saw an example of pairs of elements
which intersected every feasible query set, but no single element needs to be revealed. A
natural question is to ask for trios that intersect every feasible query set, but no pair does.
More generally, it is reasonable to ask for big sets that intersect every feasible query set and
are minimal with respect to this property. The next proposition shows that these sets can
not exist as every set that intersects every feasible query set contains a pair that does.

Proposition 3.13 Let (M,A) be an uncertainty matroid, F ⊆ E such that |F | ≥ 2 and
F ∩ X 6= ∅ for every feasible query set X. Then, there exists distinct e, f ∈ F such that
{e, f} ∩X 6= ∅ for every X feasible query set.

Proof. If F ∩X 6= ∅ for every feasible query set X by Proposition 3.12 there exists non-trivial
e ∈ F , C ∈ C(M ′

e) such that e ∈ C and C ∩ [mid (e) ∪ (F ∩ both (e))] 6= ∅.

If C ∩ (F ∩ both (e)) = ∅, then C ∩ mid (e) 6= ∅ and by Proposition 3.12 we have that
{e} ∩X 6= ∅ for every X feasible query set, picking any f ∈ F such that f 6= e we conclude
that {e, f} ∩ X 6= ∅ for every feasible query set X. If C ∩ (F ∩ both (e)) 6= ∅, select any
g ∈ C ∩ (F ∩ both (e)), once again, Proposition 3.12 let us conclude that {e, g} ∩X 6= ∅ for
every X feasible query set.

This section gave us some key generalizations of the insight already presented in the
illustrative cases. We worked out the selecting extreme weights idea to its full extent by
providing the two-way characterization. More so, we found out that sets that intersect each
feasible query set cannot be too big. This is similar to what happened with {0, 1} areas,
therefore, we will try to emulate the same “all but one” approach on the next section.

3.4 Critical pairs and a solution to the MCFQS prob-

lem

In this section we provide a solution to the MCFQS problem by giving an easy to compute
characterization of feasible query sets of minimum size and showing that complements of
feasible query sets form a matroid. Note that elements that intersect every feasible set
provide a “core set” that is in every feasible query set, so, we do not need to worry about
these elements, as they must be revealed. A next natural step is to consider pairs of elements
that intersect every feasible query sets, but no element is in every query set. We call such
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Figure 3.6: An application of Proposition 3.12.
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pairs critical. Note that the previous section guarantees that our analysis stops here, that is,
we do not need to worry about trios or bigger sets of elements.

We start by studying critical pairs. We characterize them and prove that they induce an
equivalence relation on the complement of the core set previously mentioned. More so, they
provide good lower bounds on feasible query sets. Specifically, one must query all elements
but one in each equivalence class of the critical relation. We then prove two of the main
results of this work:

• All feasible query sets of minimum size arise by revealing all elements but one in each
equivalence class, and

• The complements of feasible query sets are the independent sets of a partition matroid.

We end the section and chapter by deducing again the results for illustrative cases as corol-
laries.

We now define critical pairs, the critical relation and prove some properties about them.

Definition 3.14 (Core set and critical pairs) Let (M,A) be an uncertainty matroid and:

core = {e ∈ E : e ∈ X for every feasible query set X}
core = E\core

We say that e, f ∈ core are critical if {e, f} ∩ X 6= ∅ for every feasible query set X. We
write e ∼ f if e, f are critical or e = f .

Proposition 3.15 Let (M,A) be an uncertainty matroid. Then:

1. Let e, f ∈ core, e ∼ f if and only if Ae = Af = {Le, Ue} with Le < Ue and there is a
circuit C ∈ C(M ′

e) such that e, f ∈ C.

2. ∼ is an equivalence relation on core.

3. If X is feasible and Γ ∈ core/ ∼, then |X ∩ Γ| ≥ |Γ| − 1.

Proof. 1. Let e, f ∈ core such that e ∼ f . As {e, f} intersects every feasible query set,
by Proposition 3.12, we get a circuit C ∈ C(M ′

e) such that e ∈ C and C ∩ [mid (e) ∪
({e, f} ∩ both (e))]. Note that C ∩ mid (e) = ∅, otherwise Proposition 3.12 allows us
to conclude that {e} ∩ X for every feasible query set which contradicts the fact that
e ∈ core. Then C ∩ {e, f} ∩ both (e) 6= ∅, consequently there is a circuit such that
e, f ∈ C and f ∈ both (e). Since ∼ is symmetric the same argument over f ∼ e allows
us to conclude that e ∈ both (f).

We now prove the converse. As e is a non-trivial element such that there is a circuit
C ∈ C(M ′

e) and f ∈ C ∩ {e, f} ∩ both (e) by Proposition 3.12 we conclude that {e, f}
intersects every feasible query set.

2. Since ∼ is clearly symmetric and reflexive, we only prove that it is transitive. Let
e, f, g ∈ core such that e ∼ f and f ∼ g. By the previous item Ae = Af = Ag =
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{Le, Ue}, in particular M ′
e = M ′

f = M ′
g
.
= M ′. The previous item also allows us to

conclude that there are two circuits C1, C2 ∈ C(M ′) such that e, f ∈ C1 and f, g ∈ C2.
Then e, f and g are in the same connected component in M ′, therefore there is a circuit
C ∈ C(M ′) such that e, g ∈ C and using the previous item we conclude that e ∼ g.

3. Suppose that there is some feasible query set X such that |X ∩Γ| < |Γ|−1, then, there
are e, f ∈ Γ\X such that e 6= f , since e, f are critical we have that {e, f} ∩ X 6= ∅
which is not possible.

Observation Note that if e is trivial then e ∈ core and its equivalence class is simply {e}.

We are ready to state and prove the first main result of this section:

Theorem 3.16 Let (M,A) be an uncertainty matroid and for each Γ ∈ core/ ∼ select any
eΓ ∈ Γ. Then:

X =

 ⋃
Γ∈core/∼

(Γ− eΓ)

 ∪ core = E\{eΓ : Γ ∈ core/ ∼},

is a feasible query set of minimum size. More so, every feasible query set of minimum size
arises this way.

Proof. We first prove that X is a feasible query set. Note that if E\X = ∅, we get that
X = E which is clearly a feasible query set, therefore we can assume that |E\X| ≥ 1.
Suppose that X is not a feasible, then F ⊆ X is not a feasible for any F , hence E\X = {eΓ :
Γ ∈ core/ ∼} intersects every feasible query set. We proceed by cases:

Suppose that E\X = {e} for some e ∈ E and consider B ∈ R(X,A) such that there
is no B-basis. As e is the only non-trivial element it must be non-colored by Theorem
2.31. Applying Propositions 2.10 and 2.14 we get that e ∈ spanFB(e) ∩ span∗ F ∗B(e). Let
Y = {f ∈ both (e) : Bf ≤ Le}, note that:

FB(e) ⊆ lowA(e) ∪ midA(e) ∪ Y.
F ∗B(e) ⊆ highA(e) ∪ midA(e) ∪ Y .

Therefore e ∈ span[lowA(e)∪ midA(e)∪Y ]∩ span∗[high A(e)]∪ mid A(e)∪Y ] and by Propo-
sition 3.12 we get that e /∈ core which is not possible.

We are only left with the case |E\X| ≥ 2. By Proposition 3.13 there are distinct elements
e, f ∈ E\X such that {e, f} ∩ X 6= ∅ for every feasible query set X, since e, f ∈ core we
conclude that e ∼ f which is a contradiction.

We now prove minimality of size. By Proposition 3.15.3, for any feasible query set F :

|F | = |F ∩core|+
∑

Γ∈core/∼

|F ∩Γ| ≥ |F ∩core|+ |F ∩core|− |core/ ∼ | = |F |− |core/ ∼ |,
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which implies that X is of minimum size. Moreover, every feasible query set F must at
least reveal all but one element of each Γ, that is, every set of minimum size must arise this
way.

Note that this theorem provides a solution to the MCFQS problem with unit costs. Since
a set is a feasible query set if and only if it contains a feasible query set of minimum size, this
theorem also tells us that the structure of feasible query sets is a very specific one. Namely,
they select every element except at most one of each equivalence class. This structural idea
is shown in the fact that cofeasible query sets form a partition matroid that selects at most
one on each equivalence class.

Definition 3.17 (Cofeasible matroid) Given (M,A) an uncertainty matroid, we define the
matroid of cofeasible query sets Cofeas(M,A) = (E,F). Where the independent sets are
given by:

F = {I ∈ 2E : E\I is feasible}

Theorem 3.18 Let (M,A) be an uncertainty matroid. Cofeas(M,A) is a partition matroid

and Cofeas(M,A) =

[ ⊕
Γ∈core/∼

U1
Γ

]
⊕ U0

core.

Proof. Note that E\I is feasible if and only if contains a feasible query set of minimum size.
By Theorem 3.16 we get:

I =

{
I ∈ 2E :

|(E\I) ∩ Γ| ≥ |Γ| − 1 , ∀Γ ∈ E/ ∼
|(E\I) ∩ core| = |core|

}
=

{
I ∈ 2E :

|I ∩ Γ| ≤ 1 , ∀Γ ∈ E/ ∼
|I ∩ core| = 0

}
,

that is Cofeas(M,A) is a partition matroid and Cofeas(M,A) =

[ ⊕
Γ∈core/∼

U1
Γ

]
⊕U0

core.

Since cofeasible query sets form a matroid we have arrived at a solution of the MCFQS
problem. We simply execute a variant of the greedy algorithm to find a maximum cost
independent set on the cofeasible query sets matroid and, by taking complements, we arrive
at a feasible query set of minimum cost.

We now prove some corollaries of Theorem 3.16.

First we show that, if there are not pairs of element with identical areas of uncertainty of
size two, then there is a unique minimum size feasible query set.

Corolary 3.19 Let (M,A) be an uncertainty matroid. If there is not a pair e, f ∈ E such
that Ae = Af = {Le, Ue} with Le < Ue. Then core is the unique minimum size feasible query
set.

60



Proof. By Proposition 3.15.1 we get that e 6∼ f for every pair. Then Γ = {eΓ} for each
equivalence class of ∼ and by Theorem 3.16 every feasible query set of minimum size is
exactly core.

We end the section by retrieving the illustrative cases as corollaries of Theorem 3.16. We
start by generalizing the result obtained for matroids with interval areas:

Corolary 3.20 Let (M,A) be an uncertainty matroid such that both (e) = ∅ for every e ∈ E.
Then, the only minimum size feasible query set is:

X = core = {e ∈ E : e is non-colored and non-trivial}

Proof. By Corollary 3.19 we have that the only feasible query set of minimum size is core.
Using Propositions 3.12, 2.10 and 2.14 we have:

core = {e ∈ E : e ∈ X for every feasible query set X}
= {e ∈ E : e is non-trivial and e ∈ span[low (e) ∪ mid (e)] ∩ span∗[high (e) ∪ mid (e)]}
= {e ∈ E : e is non-trivial and e ∈ spanF (e) ∩ span∗ F ∗(e)}
= {e ∈ E : e is non-colored and non-trivial}

Since both (e) = ∅ for each e if all areas are intervals this is effectively a generalization of
the illustrative result for interval areas.

Finally, we retrieve the result for {0, 1} areas:

Corolary 3.21 Let (M,A) be an uncertainty matroid such that every area is {0, 1}. Consider
{Ki}li=1 the connected components of M and choose ei ∈ Ki for each i ∈ [l], then X =
E\{ei}li=1 is a feasible query set of minimum size.

Proof. Note that for each e ∈ E we have mid (e) = ∅, therefore by Proposition 3.12 we have
that E = core. As M ′

e = M for each e ∈ core using Proposition 3.15 we have that e ∼ f if
and only if e and f are connected. We conclude by Theorem 3.16 and noting that connected
components are exactly the equivalence classes of ∼.

The solution of the MCFQS problem marks the end of the third chapter. More so, we
found out that the MCFQS problem is simply finding a maximum cost independent set on a
simple partition matroid. We also constructed a powerful tool, that is, the characterization
of minimum sized feasible query sets given by Theorem 3.16 reobtaining previous results as
simple corollaries.
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Chapter 4

Algorithmic solutions to the UMB
and MCFQS problems

In this chapter we discuss our computational model and algorithms for the UMB and MCFQS
problems. The main results of this chapter are;

An algorithm for the general MCFQS problem: We give an algorithm that uses
O(|E|3) time and calls to the independence oracle.

A coloring-based algorithm for the general UMB problem: We give an algorithm
that uses O(|E|2 log |E|) time and O(|E|2) calls to the independence oracle.

A simple way of converting algorithms that solve the UMB problem with closed
interval areas to ones that solve the general UMB problem: This shows that the
regret-base algorithm presented in [KZ07] solves the general UMB problem in O(|E| log |E|)
time and O(|E|) calls to the independence oracle.

4.1 Model of computation

We start this chapter with a small remark regarding the model of computation we are going
to use. We express algorithms in pseudocode and we are interested in counting elementary
steps and calls to the independence oracle.

Some examples of elementary steps are variable assignments, accessing variables, condi-
tionals (if, else if, else), for loops, while loops and simple arithmetic operations (addition,
subtraction, multiplication, division and comparison). We call the aggregate of elementary
steps time.

We assume that each matroid (E,I) is given via oracular access, that is, if I ⊆ E we
can determine if I ∈ I in O(1) time by asking an oracle. Since the time it takes to actually
determine matroid independence can differ wildly from matroid to matroid, so we also keep
track of the number of calls to this independence oracle. Sometimes we give results specific
to graphic or uniform matroids, in such case we assume direct acceass to the graph or the
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rank respectively.

We also assume access to some oracles related to the family of areas A = {Ae}e∈E, namely:

1. Infima and suprema oracles: Given e ∈ E we can compute Le and Ue in O(1) time.

2. Intersection oracle: Given e ∈ E and a, b ∈ R we can determine if Ae ∩ (a, b) 6= ∅
in O(1) time.

We call such oracles area oracles. Note that these allows us to compute the sets low , mid ,
both , high as follows:

Proposition 4.1 Let (M,A) be an uncertainty matroid. We can precompute low (e), mid (e),
high (e), both (e) for all e ∈ E totaling O(|E|2) time and O(|E|2) calls to area oracles.

Proof. It suffices to show that for each pair e, f ∈ E we can check if f belongs to low (e),
mid (e), high (e) or both (e) in O(1) calls to area oracles and O(1) time.

1. We can check if f ∈ low (e) by simply asking Le to the infima oracle, Uf to the
supremum oracle and checking if Uf ≤ Le.

2. Similarly, to check if f ∈ high (e), we ask Ue and Lf to their respective oracles and
check if Ue ≤ Lf .

3. To check if f ∈ mid (e), we ask Le, Ue to the infima and suprema oracle and then we
ask if Af ∩ (Le, Ue) 6= ∅ to the intersection oracle.

4. To verify if f ∈ both (e) we first make sure that f /∈ mid (e) and then ask the area
oracles for Le, Ue, Lf , Uf and answer affirmatively if Lf ≤ Le and Uf ≥ Ue.

Each of these procedures can be done in O(1) time with O(1) calls to area oracles.

We choose to use oracles so that we do not fix any specific representation of families of
areas, this is reasonable as we are not really interested in the time cost of the set operations
involved. More so, if one picks interval areas represented by their lower and upper bounds,
both types of oracles can be replaced by computations that take O(1) time. Similarly, if areas
are finite and represented by a list of elements one can precompute all infima and suprema
in linear time dispensing of the oracles. Additionally each call to the intersection oracle can
be computed in O(|Ae|) time for each e ∈ E and a, b ∈ R as needed, but as we will only use
lower and upper bound oracles to precompute mid (e) for each e, this will not yield a worse
bound than when considering the oracular model.

We end by stating that we will not keep track of calls to area oracles as we will only need
them to precompute low (e), mid (e), high (e) and both (e) which will always take O(|E|2)
calls to area oracles.
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4.2 Algorithmic solutions to the MCFQS problem

In this section we give some algorithmic solutions for the MCFQS problem. In the rest of
this chapter we will denote |E| by m and if there is a graphic matroid involved we denote
|V | by n.

We start by giving a coloring based algorithm that only works when both (e) = ∅ for each
e ∈ E, in particular, it works when each area is an interval. Recall the worst and best case
weight functions already mentioned in propositions 2.11 and 2.15:

Definition 4.2 (Worst and best case weight function) Let (M,A) be an uncertainty matroid
and e ∈ E. We define the worst case weight w : E → R function for e as:

wf =

{
Ue if f = e,

Lf if f 6= e.

Similarly, we define the best case weight function w∗ : E → R for e as:

w∗f =

{
Le if f = e,

Uf if f 6= e.

These functions allow us to design procedures that decide blueness and redness efficiently:

Algorithm 2 blue

Input: 〈M,A, e〉 where (M,A) is an uncertainty matroid and e ∈ E(M)
Output: TRUE if e is blue, FALSE otherwise.

1: Compute the worst case weight function w for e.
2: T ← Greedy(M,w) . Break ties in favor of e when comparing.
3: if e ∈ T then
4: return TRUE

5: else if e /∈ T then
6: return FALSE

Algorithm 3 red

Input: 〈M,A, e〉 where (M,A) is an uncertainty matroid and e ∈ E(M)
Output: TRUE if e is red, FALSE otherwise.

1: Compute the best case weight function w∗ for e.
2: T ← Greedy(M,w∗) . Break ties against e when comparing.
3: if e ∈ T then
4: return FALSE

5: else if e /∈ T then
6: return TRUE
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Observation Breaking ties in favor of e means that e is the first element of weight we
processed by the greedy algorithm. On the other hand breaking ties against e means that e
is the last element of weight w∗e processed by the greedy algorithm.

Proposition 4.3 For any uncertainty matroid (M,A) the procedures red and blue correctly
decide redness and blueness. In doing so they make O(m) calls to the independence oracle
and use O(m logm) time. If the matroid is graphic or uniform these procedures only use
O(mα(m,n)) or O(m) time respectively.

Proof. Correctness is given by propositions 2.11 and 2.15. Time complexity and number of
calls to the independence oracle are given by the greedy algorithm. If the matroid is graphic,
one can replace Greedy by any algorithm that computes an MST, in particular, it can be
done in O(mα(m,n)) time using an algorithm of Chazelle [Cha00]. If the matroid is uniform
of rank r any r-selection algorithm will do, in particular, it can be done in O(m) time by
using an algorithm of Blum, Floyd, Pratt, Rivest and Tarjan [BFP+73].

Recall from corollary 3.20 that when both (e) = ∅ for all e ∈ E, the set of non-colored
non-trivial elements is the unique minimum sized feasible query set. Since we are searching
for minimum cost feasible query sets we query non-colored non-trivial elements plus elements
with negative cost, as shown in the following algorithm:

Algorithm 4 Coloring based MCFQS algorithm

Input: 〈M,A, c〉 where (M,A) is an uncertainty matroid such that both (e) is empty
for each e ∈ E(M) and c : E → R is a cost function.
Output: A minimum cost feasible query set.

1: Q← E;
2: for e ∈ E(M) do
3: if blue(M,A, e) or red(M,A, e) then
4: Q← Q− e;
5: return Q ∪ {e ∈ E : ce < 0};

Proposition 4.4 For any uncertainty matroid (M,A) such that both (e) is empty for each
e ∈ E(M) and any cost function c : E → R the coloring based algorithm computes a minimum
cost feasible query set. In doing so it makes O(m2) calls to the independence oracle and uses
O(m2 logm) time, If the matroid is graphic or uniform we only need O(m2α(m,n)) or O(m2)
time respectively.

Before proving the proposition, we state a small lemma that will aid us in proving opti-
mality:

Lemma 4.5 Let (M,A) be an uncertainty matroid and c : E → R any cost function on the
elements. Then c(core ∩ {e ∈ E : ce ≥ 0}) ≤ c(F ∩ {e ∈ E : ce ≥ 0}) for any feasible set F .
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Proof. By definition of core we know that core ⊆ F , therefore core ∩ {e ∈ E : ce ≥ 0} ⊆
F ∩ {e ∈ E : ce ≥ 0} and the lemma follows.

We are now ready to prove proposition 4.4.

Proof. Let Q be as in the final iteration of the algorithm. Note that Q is the set of non-
colored non-trivial elements, so it is a feasible query set by corollary 3.20 therefore Q ∪ {e ∈
E : ce < 0} is a feasible query set. We now prove that the output is of minimum cost, note
that for any feasible set F we have:

c(Q ∪ {e ∈ E : ce < 0}) = c(Q ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})
= c(core ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})
≤ c(F ∩ {e ∈ E : ce ≥ 0}) + c(e ∈ E : ce < 0)

= c(F ) + c({e ∈ E : ce < 0}\F )

≤ c(F )

where we used lemma 4.5. Since we ask if and element is blue or red m times, we make O(m2)
calls to the independence oracle, using up to O(m2 logm) time. If the matroid is graphic or
uniform we only need O(m2α(m,n)) or O(m2) time respectively.

Example The coloring based algorithm simply colors each element and outputs elements
that are non-colored or have negative as shown in fig 4.2. Note that it is not necessary that
each area is an interval, simply that both (e) = ∅ for each e ∈ E.
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Figure 4.1: An uncertainty matroid (M,A). Red and blue elements are colored accordingly.
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Figure 4.2: The matroid M and the querying costs of each element. In green we show a
minimum cost feasible query set.

It is interesting to note that by theorem 3.16 there is a core of elements that must be
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queried no matter what. It is useful to have a procedure that efficiently computes these
elements, as the following algorithm does:

Algorithm 5 core

Input: 〈M,A〉 where (M,A) is an uncertainty matroid.
Output: The intersection of every feasible query set.

1: F ← ∅;
2: for e ∈ E(M) do
3: Compute low (e), mid (e) and high (e);
4: K ← {f ∈ E(M ′

e) : f and e are connected in M ′
e};

5: if K ∩ mid (e) = ∅ then
6: F ← F + e;

7: return F ;

Proposition 4.6 For any uncertainty matroid (M,A) the core algorithm outputs the set⋂
{F : F is a feasible query set}. In doing so it makes O(m3) calls to the independence oracle

and takes O(m3) time. If the matroid is graphic or uniform we only need O(m(m + n)) or
O(m2) time respectively.

Proof. Using proposition 3.12:⋂
{F : F is a feasible query set},

= {e ∈ E : There exists C ∈ C(M ′
e) such that C ∩ mid (e) 6= ∅},

= {e ∈ E : There exists f ∈ mid (e) such that e and f are connected in M ′
e},

hence the core procedure outputs the intended set. Using the connected components algo-
rithm for general matroids one can determine K with O(m2) calls to the independence oracle
and O(m2) time. If the matroid is graphic one can use the biconnected components algorithm

to compute K in O(m+ n) time. If the matroid is uniform of rank r, then M ′
e = U

r−|low (e)|
E(M ′e) .

Note that r − |low (e)| < E(M ′
e) if and only if |high (e)| < |E| − r, so we can determine K

in O(m) time.

More so, there are some cases where revealing these obligatory elements is enough, the
coloring-based algorithm is an example of such a case. We extend this idea to matroids with
areas that have no critical pairs. Once again, one shall also reveal elements of negative cost,
as shown in the next algorithm:

Algorithm 6 MCFQS algorithm with no critical pairs

Input: 〈M,A, c〉 where (M,A) is an uncertainty matroid such that there are no critical
pairs and c : E → R is a cost function.
Output: A minimum cost feasible query set.

1: return core(M,A) ∪ {e ∈ E : ce < 0};
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Proposition 4.7 For any uncertainty matroid (M,A) such that there are no critical pairs
and any cost function c : E → R the previous algorithm computes a minimum cost feasible
query set. In doing so it makes O(m3) calls to the independence oracle and uses O(m3) time.
If the matroid is graphic or uniform we only need O(m(m+ n)) or O(m2) time respectively.

Proof. Since core(M,A) is a feasible query set, we have that core(M,A)∪{e ∈ E : ce < 0}
is also a feasible query set. We use lemma 4.5 to prove that it has minimum cost. Note that
for each feasible set F :

c(core(M,A) ∪ {e ∈ E : ce < 0}) = c(core(M,A) ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})
≤ c(F ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})
= c(F ) + c({e ∈ E : ce < 0}\F )

≤ c(F )

Example The algorithm with no critical pairs simply outputs the core set and elements of
negative cost. An example is found in fig 4.3.

{2, 5
}

{0, 4}

{1, 3}

{3, 4
}

{0, 1}

(a) An uncertainty matroid. In olive the
core set is marked.

5

7

−1

10

2

(b) The previous matroid with the querying
costs. In green we show a minimum cost
feasible query set.

Figure 4.3: An example when no critical pairs are present.

We finish this section by giving the full-fledged MCFQS algorithm, the only refinement
needed with respect to the previous version is that we need to manage critical pairs. Theorem
3.16 tells us to discard an element for each equivalence class of the critical relation, so we
discard the one with maximum cost. Note that the previous idea is simply the greedy
algorithm on the cofeasible query sets matroid. Once again, we also need to add each element
with negative cost, obtaining the following algorithm:
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Algorithm 7 MCFQS algorithm

Input: 〈M,A, c〉 where (M,A) is an uncertainty matroid and c : E → R a cost function.
Output: A minimum cost feasible query set.

1: for e ∈ E(M) do
2: Compute low (e), mid (e) and high (e);

3: Q← core(M,A); E ′ ← {e ∈ E\Q : |Ae| = 2};
4: while E ′ 6= ∅ do
5: Select any e ∈ E ′;
6: Γ← {f ∈ E(M ′

e) : f and e are connected in M ′
e};

7: Choose any eΓ ∈ argmax{cf : f ∈ K};
8: Q← Q ∪ (Γ− eΓ);
9: E ′ ← E ′\Γ;

10: return Q ∪ {e ∈ E : ce < 0};

Proposition 4.8 For any uncertainty matroid (M,A) and any cost function c : E → R the
MCFQS algorithm computes a minimum cost feasible query set. In doing so it makes O(m3)
calls to the independence oracle and uses O(m3) time. If the matroid is graphic or uniform
we only need O(m(m+ n)) or O(m2) time respectively.

Before proving Proposition 4.8 we note that detecting if |Ae| = 2 for e ∈ E, can be done
by simply asking the area oracles if Ae ∩ (Le, Ue) = ∅.

Proof. We first prove correctness. Let Q be as in the final iteration of the MCFQS algorithm,
we start by proving that Q ∪ {e ∈ E : ce < 0} is a feasible query set. By Proposition 3.15 in
each iteration Γ is an equivalence class of ∼, more so every equivalence class appears once
as every element of E ′ is eventually deleted. Then Q = core ∪

⋃
Γ∈core/∼(Γ − eΓ) and by

Theorem 3.16 is a feasible query set, consequently Q ∪ {e ∈ E : ce < 0} is also a feasible
query set.

Before proving optimality we introduce a small lemma.

Lemma 4.9 For each Γ ∈ core/ ∼ and F feasible query set, one has c(Q ∩ Γ ∩ {e ∈ E :
ce ≥ 0}) ≤ c(F ∩ Γ ∩ ∩{e ∈ E : ce ≥ 0}).

We can assume that max
e∈Γ

ce ≥ 0, as in the contrary both sets are empty. We also know

that:

|F ∩ Γ ∩ {e ∈ E : ce ≥ 0}| ≥ |Γ ∩ {e ∈ E : ce ≥ 0}| − 1,

otherwise |F ∩ Γ| < |Γ| − 1 contradicting Proposition 3.15. If F ∩ Γ ∩ {e ∈ E : ce ≥ 0} =
Γ∩{e ∈ E : ce ≥ 0} it is clear that c(Q∩Γ∩{e ∈ E : ce ≥ 0}) ≤ c(F ∩Γ∩{e ∈ E : ce ≥ 0}),
therefore we can assume that F ∩ Γ ∩ {e ∈ E : ce ≥ 0} = Γ ∩ {e ∈ E : ce ≥ 0} − f for some
f ∈ Γ∩{e ∈ E : ce ≥ 0}. Let eΓ = argmax{cf : f ∈ Γ}, then if c(Q∩Γ∩{e ∈ E : ce ≥ 0}) >
c(F ∩ Γ ∩ ∩{e ∈ E : ce ≥ 0}) we would get cf > ceΓ which is not possible.
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We can now prove that Q ∪ {e ∈ E : ce < 0} has minimum cost by using the previous
lemma. Note that for any feasible query set F :

c(Q ∪ {e ∈ E : ce < 0})
= c({e ∈ E : ce ≥ 0} ∩ core) + c(Q ∩ core ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})

= c({e ∈ E : ce ≥ 0} ∩ core) +
∑

Γ∈core/∼

c(Q ∩ Γ ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})

≤ c({e ∈ E : ce ≥ 0} ∩ core) +
∑

Γ∈core/∼

c(F ∩ Γ ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})

= c({e ∈ E : ce ≥ 0} ∩ core) + c(F ∩ core ∩ {e ∈ E : ce ≥ 0}) + c({e ∈ E : ce < 0})
= c(F ) + c({e ∈ E : ce < 0}\F )

≤ c(F )

The complexity analysis is similar to the core procedure. Note that each element is selected
at most once, as they are surely deleted in line 9, so the while loop repeats at most m times.
In each while loop we compute a connected component in O(m2) time and O(m2) calls to
the independence oracle, and take linear time to find the argmax naively. If the matroid is
graphic we can improve the search of the connected component of e by using the biconnected
components algorithm, this takes O(m + n) time.If the matroid is uniform of rank r, then

M ′
e = U

r−|low (e)|
E(M ′e) . Note that r − |low (e)| < E(M ′

e) if and only if |high (e)| < |E| − r, so the
matroid is either connected or has no circuits, so the connected components are computed
in O(m) time.

Coloring based No critical pairs General
Uniform matroids O(m2) time O(m2) time O(m2) time
Graphic matroids O(m2α(m,n))

time
O(m(m+n)) time O(m(m+n)) time

Matroids O(m2) calls and
O(m2 logm) time

O(m3) calls and
O(m3) time

O(m3) calls and
O(m3) time

Table 4.1: A table summarizing the performance of each discussed implementation.

Example The general algorithm computes each equivalence class of the critical relation and
outputs the union of the following sets:

1. The core set,

2. All elements not in the core set but the most costly element of each equivalence class,
and

3. The elements of negative cost.

We give an example in Figs. 4.4 and 4.5
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{1, 3}

{1, 3}

{1, 3}

{1, 3}

{1, 3}

{2, 4}

0 0

Figure 4.4: An uncertainty matroid (M,A). In olive we have the core set, every other color
represents a different equivalence class of the critical relation.

−2

4

3

5

7

10

0 0

Figure 4.5: The matroid M and the querying costs of each element. In green we show a
minimum cost feasible query set.

4.3 Algorithmic solutions to the UMB problem

Once the a feasible query set of minimum cost is found and subsequently the revelation of the
queried elements is performed, we are still left with the task of finding a uniformly minimum
basis. More generally we give a coloring based algorithm to the UMB problem, that is based
on the following key properties:

1. The equivalence between existence of uniformly minimum bases and fully colored un-
certainty matroids.

2. The fact that every uniformly minimum basis is a basis that contains all non-trivial
blue elements, avoids each red element and is of minimum weight when restricted to
the trivial matroid.

The coloring based UMB algorithm will simply check these two properties.
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Algorithm 8 Coloring based UMB algorithm

Input: 〈M,A〉 where (M,A) is an uncertainty matroid.
Output: An uniformly minimum basis if it exists otherwise FALSE.

1: B ← ∅; R← ∅;
2: N ← {e ∈ E(M) : e is non-trivial}
3: for e ∈ N do
4: if blue(M,A, e) then
5: B ← B + e;
6: else if red(M,A, e) then
7: R← R + e;
8: else
9: return FALSE

10: Compute the trivial weighted matroid (M t, wt);
11: return B ∪ greedy(M t, wt);

Proposition 4.10 For any uncertainty matroid (M,A) the UMB algorithm finds a uni-
formly minimum basis or decides that none exist. In doing so it makes O(m2) calls to the
independence oracle and uses O(m2 logm) time. If the matroid is graphic or uniform we only
need O(m2α(m,n)) or O(m2) time respectively.

Proof. The algorithm simply checks if every element is colored and outputs non-trivial blue
elements and a minimum weight basis of the trivial weighted matroid so correctness is given
by Theorems 2.30 and 2.35. The for loops calls the independence oracle O(m2) times and
uses O(m logm) time, the greedy algorithm on the trivial weighted matroid uses O(m) calls
and O(m logm) time totaling the desired complexity. If the matroid is graphic, we can
improve the for loop to use O(m2α(m,n)) time and the greedy algorithm can be replaced to
use O(mα(m,n)) . If the matroid is uniform, we can improve the for loop to use O(m2) time
and the greedy algorithm can be replaced to use O(m) time.

Example Consider a revelation of the minimum cost feasible query set of Fig. 4.4. We have
colored accordingly, and in this case the blue elements form a uniformly minimum basis.

1

{1, 3}

3

{1, 3}

3

2

0 0

Figure 4.6: A revelation of the minimum cost feasible query set of Fig. 4.4.

It is interesting to note that in [KZ07] a fast algorithm for the UMB problem with closed
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interval areas is proposed. They show that uniformly minimum bases (or necessarily optimal
bases in [KZ07]) are simply bases with 0 regret and propose a regret based algorithm:

Algorithm 9 Regret based UMB algorithm

Input: 〈M,A〉 where (M,A) is an uncertainty matroid with closed interval areas.
Output: A UOB if it exists, otherwise FALSE.

1: for e ∈ E do
2: we ← Le+Ue

2

3: T ← greedy(M,w);
4: for e ∈ T do
5: w′e ← Ue

6: for e /∈ T do
7: w′e ← Le

8: T ′ ← greedy(M,w′);
9: if w′(T ′) < w′(T ) then

10: return FALSE;
11: else
12: return T ;

It turns out that this algorithm also solves the general UMB problem. Furthermore any
algorithm that solves the UMB problem for closed intervals works in the general setting with
little modification, as shown by the next proposition.

Proposition 4.11 Let ALG be any algorithm that solves the UMB problem for closed inter-
vals, then ALG’

.
= ALG(M, clA) solves the general UMB problem.

Proof. First we note that by Proposition 2.24 and Theorem 2.30, the existence of uniformly
minimium bases in (M,A) is equivalent to their existence in (M, clA). More so, as (M,A)
and (M, clA) have the same trivial matroids and same colors by Theorem 2.35 we conclude
that they have the same uniformly minimum bases.

This final chapter ends as we provided solutions to the uncertainty problems presented
at the beginning by executing the algorithms provided. Given any uncertainty matroid and
any element-dependent cost function, we can now compute a set of minimum cost that, when
queried, allows us to compute a uniformly minimum basis. Furthermore, we do so efficiently
in number of calls to the independence oracle and time.
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Conclusion

In the first part of this work we studied uniformly minimum bases and uncertainty on ma-
troids in general terms and later on we focused on solving the MCFQS problem with general
areas. We provided efficient algorithmic solutions and found interesting structural results
and insights along the way.

We started this work by introducing coloring ideas and provided an interesting equivalence
between the existence of uniformly minimum bases and fully colored matroids. On a similar
structural note, we proved that uniformly minimum bases are the bases of a matroid and
provided some new characterizations in this context.

We provided an analogous of witness sets, namely, sets that intersected every feasible
sets and characterized them in terms of the underlying matroid. Key insight on such sets
allowed us to detail the structure of feasible query sets of minimum size, which is one of our
main results. This result lets us conclude that cofeasible query sets form a partition matroid
that only depends on the critical pair relation, which ends up proposing an algorithm to the
MCFQS problem.

Even though the MCFQS was solved in full extent, a lot of interesting future work is
available. We give three lines of work that were not explored in this thesis.

A first non-explored line of work is to make accurate comparisons between the different
solutions provided by each uncertainty approach. How do adaptative competitive analysis
relate to non-adaptative against optimum solutions and what happens when we introduce
an additive gap are examples of natural questions to ask. An interesting approach in trying
to link non-adaptativeness with adaptativeness is to consider algorithms that must query in
limited rounds, either by limiting number of queries per round or the rounds themselves.

It is also interesting to consider a variant of the UMB and MCFQS problems that replaces
matroids with some other independence system. There is a plethora of well-structured and
compelling set systems to use; matchings, matroid intersections and k-systems among others.
One could try to generalize the approach presented in this work and see if it provides good
approximation algorithms for other independence systems, hoping for analogous results to
the ones in combinatorial optimization.

A final non-explored approach is to consider mixed criteria optimization that accounts
for both element weight and query costs. The approach utilized considers two “budgets”,
one for the queries involved and one for the actual weight of the solution, it may be useful
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to consider only one budget that accounts for both weights and costs. One could imagine
scenarios where this provides improvements; for example, if the cost of queries is too expensive
in relation to element weight, it may then be useful to remain uncertain at the cost of a worse
solution while being free of querying costs. One could also consider a compound approach
in which the significance of costs and weights is measured. In this context our work gives
a lot of significance to obtaining solutions that are uniformly minimum, while if we allowed
non-uniformly solutions savings could be made in querying costs.
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