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HYPERGRAPH CYCLE PARTITIONS

The main focus of this thesis is the study of monochromatic cycle partitions in uniform hyper-
graphs.

The first part deals with Berge-cycles. Extending a result of Rado to hypergraphs, we prove
that for all r,k € N with k > 2, the vertices of every r(k — 1)-edge-coloured countably infinite
complete k-uniform hypergraph can be core-partitioned into at most r monochromatic Berge-
cycles of different colours. We further describe a construction showing that this result is best
possible.

The second part deals with ¢-cycles. We show that for all £, k,n € N with £ < k/2 the follo-
wing hypergraph-variant of Lehel’s conjecture is true. Every 2-edge-colouring of the k-uniform
complete graph on n vertices has at most two disjoint monochromatic ¢-cycles in different colours
that together cover all but a constant number of vertices, where the constant depends on k and
{. Furthermore, we can cover all vertices with at most 4 (3 if £ < k/3) disjoint monochromatic
{-cycles.

The third part deals with tight cycles in 2-edge-colourings of complete 3-uniform hypergraphs.
We show that for every > 0 there exists an integer ny such that every 2-edge-colouring of the
3-uniform complete hypergraph on n > ny vertices contains two disjoint monochromatic tight
cycles of distinct colours that together cover all but at most nn vertices.

Finally, the fourth part deals with tight cycles in a more general setting. We prove that for
every k,r € N, the vertices of every r-edge-coloured complete k-uniform hypergraph can be
partitioned into a bounded number (independent of the size of the hypergraph) of monochromatic
tight cycles, confirming a conjecture of Gyarfas. We further prove that for every r,p € N, the
vertices of every r-edge-coloured complete graph can be partitioned into a bounded number of
p-th powers of cycles, settling a problem of Elekes, D. Soukup, L. Soukup and Szentmikléssy. In
fact we prove a common generalisation of both theorems which further extends these results to
all host hypergraphs with bounded independence number.
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PROFESOR GUIA: MAYA STEIN

HYPERGRAPH CYCLE PARTITIONS

El principal foco de esta tesis es el estudio de particiones monocromaticas por ciclos en hiper-
grafos uniformes.

La primera parte trata sobre Berge-cycles. Extendiendo un resultado de Rado a hipergrafos,
probamos que para todo r, k € N con k > 2, los vértices de todo r(k — 1)-arista-coloreo del hiper-
grafo completo k-uniforme de tamafio infinito numerable pueden ser core-particionados en a lo
mas r Berge-cycles monocromaticos en colores diferentes. También describimos una construcciéon
mostrando que este resultado es ajustado.

La segunda parte trata sobre £-cycles. Mostramos que para todo £,k,n € N con ¢ < k/2
es cierta la siguiente variante para hipergrafos de la conjetura de Lehel. Todo 2-arista-coloreo
del hipergrafo completo k uniforme en n vértices tiene a lo mas dos ¢-cycles monocromaticos
disjuntos en colores diferentes, que juntos cubren todos salvo a lo mas un nimero constante de
vértices, donde la constante depende de k y €. Mas aun, podemos cubrir todos los vértices con a
lo mas 4 (3 si £ < k/3) {-cycles monocromaticos disjuntos.

La tercera parte trata sobre tight cycles en 2-arista-coloreos de hipergrafos completos 3-uniformes.
Mostramos que para todo n > 0 existe un entero ng tal que todo 2-arista-coloreo del hipergrafo
completo 3-uniforme en n > n, vértices contiene dos tight cycles monocromaticos disjuntos en
colores distintos que juntos cubren todos salvo a lo mas nn vértices.

Finalmente, la cuarta parte trata sobre tight cycles en una configuracion méas general. Probamos
que para todo k,r € N, los vértices de todo r-arista-coloreo de un hipergrafo k-uniforme pueden
ser particionados en un numero acotado (independiente del tamario del hipergrafo) de tight cy-
cles monocromaticos, confirmando una conjetura de Gyarfas. También probamos que para todo
r,p € N, los vértices de todo r-arista-coloreo de un grafo completo pueden ser particionados en un
numero acotado de potencias p-ésimas de ciclos, respondiendo un problema de Elekes, D. Soukup,
L. Soukup y Szentmikléssy. De hecho probamos una generalizacién comtin a ambos teoremas, que
extiende estos resultados a todos los hipergrafos base con nimero de independencia acotado.
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Introduction

In the foundational paper “On a problem of formal logic”, Frank Ramsey [Ram30] laid the guiding
philosophy of what is now known as Ramsey Theory. To better understand the kind of ques-
tions that Ramsey Theory aims to answer, we start with the well-known Theorem on friends and
strangers: in any group of six people we can always find three of them which are either mutual
acquaintances or mutual strangers. This apparent coincidence does not hold if we consider only
five people, so the appearance of this pattern can be explained as a consequence of considering
sufficiently many people. Ramsey’s Theorem [Ram30]] states that a monochromatic copy of the
complete graph K,, on n vertices is guaranteed to appear in any r-edge-colouring of the complete
graph K,,, provided that m is sufficiently large in terms of n and r. The least integer m for which
Ramsey’s Theorem holds is known as the r-colour Ramsey number of K, denoted by R,(K},). In
the Theorem on friends and strangers we have two colours (acquaintances and strangers) so the
theorem states that Ry(K3) = 6. The focus of classical Ramsey theory is to study Ramsey numbers
in more general settings.

Of particular interest for this dissertation is a paper of 1967, where Gerencsér and Gyar-
fas [GG67] study the Ramsey numbers of paths. They observed, as a side-product, that every
2-edge-colouring of a complete graph (of any size) contains two vertex-disjoint monochromatic
paths in different colours covering all the vertices. This statement captures a different pattern,
that is, the existence of a partition of the vertices of K,, into few monochromatic subgraphs of a
fixed kind, in this case paths, starting the area of monochromatic partitions as a branch of Ramsey
Theory. Here we understand few monochromatic paths as a number of paths not depending on n.

Observe that the partition into two monochromatic paths from the previous paragraph pro-
vides an upper bound for the Ramsey number of the path P, on n vertices, namely, it guarantees
that Ry(P,) < 2n. Even if the best possible upper bound is approximately 3n/2 (see [GG67]), we
can see that monochromatic partitioning can help us to understand classical Ramsey problems.
We will see that this relation also appears in the opposite direction, that is, results from classical
Ramsey problems can help finding partitions into few monochromatic pieces.

In 1979, Lehel (see [Aye79]) replaced the paths in the observation from [GG67] with cycles, and
conjectured that for all n € N and every 2-edge-colouring of the complete graph K, it is possible to
partition its vertices into two monochromatic cycles of different colours. Here we consider single
vertices and edges as (degenerate) cycles as well. This statement, known as Lehel’s conjecture,
turned out to be much harder to solve than the path version of Gerencsér and Gyarfas in [GG67].
It was proved to be true for all n € N by Bessy and Thomassé [BT10] more than 30 years later,
after posititive results for sufficiently large n in [All08, LRS98]].

A natural extension is to consider r > 2 colours and ask if we can still partition the vertices of
any r-edge-coloured complete graph K, with few (independent of n) monochromatic cycles. This
question was answered positively by Erdos, Gyarfas and Pyber [EGP91]] in 1991, who proved that
25r% log r monochromatic cycles suffice to partition the vertex set of every r-edge-coloured com-



plete graph (this number was improved in [GRSS06]). Since then, this problem has been gener-
alised in many directions, gradually giving shape to the area of monochromatic partitions. The cy-
cles have been replaced by paths [Gya89, Pok14], trees [HK96, FFGT12], k-regular graphs [SSS13]],
cycle powers [Sar17] and bounded-degree graphs [GS16]. The host graph K, has also been re-
placed, allowing sparser graphs, such as complete balanced bipartite graphs [Hax97, [Pok17/] and
multipartite graphs [SS15, [LSS17], graphs with large minimum degree [BBG"14] [DN17, Let15]
and Ore-type conditions [BS16], bounded independence number [BBG™14,/Sar11]] or few missing
edges [GJS97]]. We can also allow for the host graph to be random (Erdés-Rényi model) and ask for
the analogous versions of the questions already mentioned (see [BD17, KMN™"17, KMS18| [LL18]]).
Also, infinite versions have been considered by replacing K, with the complete graph with ver-
tex set N [Rad78|] or with countably infinite balanced bipartite graphs [Soul5]. The colouring
itself has been relaxed, by allowing r-local-colourings [[CS16| [LS17]. Monochromatic partitions
in hypergraphs have also been studied [[GS13| Sar14, [GS14} [ESSS17, FFGT12]]. In particular, this
dissertation deals with monochromatic cycle partitions in hypergraphs.

It is worth to mention that there are analog results of many of the previous to monochromatic
coverings instead of partitions. A great selection of these problems and an overview of the state
of the art can be found in the surveys of Fujita, Liu and Magnant [FLM15]], and Gyarfas [Gya16].

0.1 Graph cycles

Lehel’s conjecture (now a theorem) states that, for all n € N, every 2-edge-colouring of K, admits
a partition of the vertex set of K, into two monochromatic cycles of different colours. This is best
possible in the following way. For all sufficiently large n, there exist 2-edge-colourings of K, with
no monochromatic Hamiltonian cycleﬂ Moreover, there is no constant m € N such that every
2-edge-colouring of a complete graph yields a monochromatic cycle covering all but m vertices,
as the following construction shows.

For n € N, we consider K3, and a bipartition of its vertices into sets A;, A, with |A;| = n
and |A;| = 2n. We colour every edge intersecting A; with colour blue and every other edge with
colour red. On the one hand, every blue cycle contains at most 2|A;| vertices. On the other hand,
the largest red cycle has at most |A;| vertices. Therefore, the number of vertices of the largest
monochromatic cycle C is 2n, and C does not cover n vertices.

As already mentioned above, Erdés, Gyarfas and Pyber studied the monochromatic cycle par-
titioning problem for an arbitrary number of colours, proving the following result.

Theorem 0.1.1 ([EGP91])). Foreveryr € N the following holds. Everyr-edge-colouring of a complete
graph admits a partition of its vertices into at most 25r* log r monochromatic cycles.

The currently best known upper bound for cycle partitions, due to Gyarfas, Ruszinko, Sarkozy
and Szemerédi in [[GRSS06]], is the following.

Theorem 0.1.2 ([GRSS06]). For everyr € N the following holds. Every r-edge-colouring of a com-
plete graph admits a monochromatic cycle partition of size at most 100r log r.

Regarding lower bounds for the size of monochromatic cycle partitions, Erdés, Gyarfas and
Pyber proposed the following conjecture, that, even if is now disproved (see below), constitutes
the main reference for most of the subsequent development of monochromatic cycle partitions.

1A cycle C in a host graph G is said to be Hamiltonian if the vertex set of C is equal to the vertex set of G.



Conjecture 0.1.3 ([EGP91]]). For every r,n € N and every r-edge-colouring of K, the following
holds. The vertex set of K,, can be partitioned into at most r monochromatic cycles.

Conjecture would have been best possible in the same way as Lehel’s conjecture is best
possible: we can extend the construction for two colours to show that, for all ¢ € N and sufficiently
large n € N, there exist r-edge-colourings of K, such that every family of r — 1 vertex-disjoint
monochromatic cycles leaves at least ¢ uncovered vertices, as proved in [EGP91]] with very similar
arguments to the two colour case.

There are several results towards a positive answer to Conjecture For instance, a result
preceding Conjecture for the countably infinite complete graph Ky, due to Rado [Rad78],
implies that every r-edge-colouring of Ky admits a partition into r monochromatic cycles in dis-
tinct colours. Here we define infinite cycles as two-way infinite paths. As mentioned above, the
case r = 2 was answered positively in [BT10]. In [GRSS11]] the case r = 3 was answered asymp-
totically, that is, for all n > 0 there exists np = no(n) € N such that every 3-edge-colouring of
K,, with n > ny, contains three vertex-disjoint monochromatic cycles covering all but at most
nn vertices. Apart from these results, Conjecture remained open for almost 25 years until it
was disproved for all r > 3 by Pokrovskiy in [Pok14]. All of Pokrovskiy’s counterexamples are

r-edge-colourings of a complete graph with the property that there exist r monochromatic vertex-
disjoint cycles covering all but one vertex. This led him to propose a slightly relaxed version of

Conjecture

Conjecture 0.1.4 ([Pok14]). Every r-edge-colouring of a complete graph contains r monochromatic
vertex-disjoint cycles covering all but c, vertices, where c, is a constant depending only onr.

Pokrovskiy confirms his conjecture for r = 3 and ¢; = 43000 in [Poklé]E] Furthermore, he
conjectures that c; = 1 and that other counterexamples to Conjecture for r = 3 should be
very similar to the constructions in [Pok14].

0.2 Hypergraph cycles

In order to generalise monochromatic partitioning problems to hypergraphs we first need to give
a precise definition of the sub-structures that we are looking for. More precisely, to discuss parti-
tions into monochromatic hypergraph cycles requires extending the notion of a graph cycle to the
hypergraph setting, and there is no unique way of doing this. Here we only deal with k-uniform
host hypergraphs, that is, hypergraphs in which every edge contains exactly k vertices.

The earliest extension of cycles to hypergraphs, due to Berge, is the following. Let H = (V, &)
be a k-uniform hypergraph. A Berge cycle in H is a pair (X, ¥) where X, called the core of the
cycle, is a cyclically ordered subset of V and F C & is a subset of edges with || = |X|, such
that every pair of consecutive vertices is contained in exactly one edge of . Dorbec, Gravier and
Sarkozy [DGS08] extended this notion of hypergraph cycles to what we call t-tight Berge cycles,
by requiring that every set of ¢ consecutive vertices in X, with 2 < t < k, is contained in exactly
one edge of ¥, instead of just every consecutive pair as in the Berge cycles. We will refer to 2-tight
Berge cycles simply as Berge cycles.

The other classic extension of cycles to hypergraphs consists of the families of £-cycles. For a
k-uniform hypergraph H = (V,E)and 1 < £ < k—1, an {-cycleis a pair (X, ¥) where X C V and
F C & are cyclically ordered sets such that every edge of # contains k consecutive vertices of

2 An unpublished result of Letzter [Let18]] improves c3 to 60.



X and consecutive edges of ¥ intersect in exactly ¢ vertices, as shown in Figures[1b]and[1d We
also consider sets of exactly k — £ vertices, and two edges intersecting in 2¢ vertices (if 2¢ < k),
as degenerate f—cycles We will refer to k-uniform (k — 1)-cycles as tight cycles, and to 1-cycles
as loose cycles.

(¢) A 3-uniform 2-cycle, 3-
uniform 3-tight Berge cycle or
3-uniform tight cycle.

(a) A 4-uniform 2-tight Berge (b) A 4-uniform 1-cycle or 4-
cycle. Grey vertices correspond  yniform loose cycle.
to the core of the cycle.

Figure 1: Different notions of hypergraph cycles.

Observe that all of these notions of hypergraph cycles coincide, as expected, with the definition
of graph cycles if we restrict to the case k = 2. It is worth mentioning that the family of k-tight
Berge cycles and the family of (k — 1)-cycles are the same family of hypergraphs, that is, tight

cycles (see Figure [1d).

0.2.1 Partitions into ¢-tight Berge cycles

In contrast to a graph cycle Cg = (V, E), where the cyclic ordering of V is an equivalent description
of Cg, a t-tight Berge cycle Cyy = (X, ) is not uniquely determined by the ordering of X. The
vertices of Cyy, that is, the union of its edges, are not necessarily members of X, so we need ¥ to
fully characterise Cy;. We will say that a t-tight Berge cycle C = (X, ) in a host hypergraph H
is Hamiltonian if X = V(H). Accordingly, we say that a family C; = (X1, %1), . .., Cn = Xm, Fm)
of t-tight Berge cycles partitions the vertex set of a host hypergraph H if the sets Xj, i € [m], are
pairwise disjoint and Uie[n) Xi = V(H).

As mentioned in Section there are 2-edge-colourings of complete graphs with no mono-
chromatic Hamiltonian cycle. The simplest example is to take any complete graph with at least
three vertices, choose a vertex v, colour every edge containing v with blue and every other edge
with red. However, if we consider a 3-uniform complete graph hypergraph 7(,(13) on n vertices,
colour blue every edge containing a fixed vertex and colour red all the other edges, then the
resulting edge-colouring will always contain a blue Hamiltonian (2-tight) Berge cycle. In fact,
as Gyarfas, Lehel, Sarkozy and Schelp proved in [GLSS08], any procedure to obtain a 2-edge-

colouring of the complete 3-uniform hypergraph 7(,<,3) on n vertices yields the same result.

Theorem 0.2.1 ([GLSS08])). Every 2-edge-colouring of‘Kflg), with n > 5, admits a monochromatic
Hamiltonian Berge cycle.

3We can also define degenerate edges as single edges and their subsets, as in the graph case. However, our
arguments in Chapter only consider sets of size k — £ as degenerate cycles.
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So now the problem of monochromatic partitions into Berge cycles reveals an additional fea-
ture which is not present in the graph case. It is possible for an r-edge-colouring of 7(,(,k) to contain
a Hamiltonian Berge cycle even if r > 1. Omidi [Omil4] (after partial results in [[GSS10al/GSS10c,
MO17]) proved the following sharp result, which was stated as a conjecture in [GLSS08], and
extends Theorem to every uniformity.

Theorem 0.2.2 ([Omil4]). For every integer k > 2 there exists ny € N such that the following

holds. Every (k — 1)-edge-colouring of?(,(,k), with n > ng, contains a monochromatic Hamiltonian
Berge cycle.

A generalisation of Theorem to t-tight Berge cycles was conjectured by Dorbec, Gravier
and Sarkozy.

Conjecture 0.2.3 ([DGS08])). For any fixed 2 < t < k there exists ny; € N such that the following

holds. Every (k—t +1)-edge-colouring of7(,(,k), withn > ny;, contains a monochromatic Hamiltonian
t-tight Berge cycle.

Conjecture was confirmed for k = 4 and t = 3 in [GSS10b]. If true, Conjecture is
best possible, as shown in [DGS08]. Observe that Conjecture addresses only Hamiltonian
Berge cycles.

In Chapter ]| we study monochromatic partitions into t-tight Berge cycles by considering the
countably infinite k-uniform complete hypergraph V(éf ) as the host combinatorial object. Here
we consider a two-way infinite ¢-tight Berge pathlz_f] as the infinite analogue of t-tight Berge cycles.
Our main result of Chapter |1} in joint work with Jan Corsten and Nora Frankl, is the following
generalisation of Theorem [0.2.2]

Theorem 0.2.4. For everyr > 1 and k > 2 the following holds. Every r(k — 1)-edge-colouring of
‘K;\f) admits a partition into at most r monochromatic Berge cycles.

In addition, we extend Conjecture to an arbitrary number of colours in the following
way.

Conjecture 0.2.5. For any fixedr > 1 and 2 < t < k there exists n,yy, ¢,k € N such that the
following holds. Every r(k — t + 1)-edge-colouring of‘K,Sk), with n > n,;, contains r core-disjoint
monochromatic t-tight Berge cycles covering all but at most c, i ; vertices.

We also prove that Conjecture[0.2.5]is best possible, that is, for every positive integers ¢, r > 1
and 2 < t < k there exist infinitely many r-edge-colourings of complete k-uniform hypergraphs
such that the following holds. Every family of r — 1 core-disjoint monochromatic ¢-tight Berge
cycles leaves at least ¢ vertices uncovered by the cores of the family (see Theorem in Chap-
ter [1).

0.2.2 Partitions into {-cycles

We say that a family of Cy, .. ., C,, of £-cycles partitions a host hypergraph H if the £-cycles are
vertex-disjoint and the union of the vertices of Cy, ..., Cy is the vertex set of /. Observe that,
unlike -tight Berge cycles, it is much more natural to define an ¢-cycle partition. However, if

*A t-tight Berge path is defined as its cycle counterpart but replacing the cyclic ordering of its core with a linear
ordering and removing the edge containing the first and the last vertices.



we compare different notions of hypergraph cycle partitioning in terms of the relation between
the number of necessary cycles and the number of colours, we strongly believe that k-uniform
{-cycles are harder than ¢-tight Berge cycles forall £ > 1 and all 2 < t < k. In fact, we will see
in Chapter [2| that for all r,£ > 1 and k > 2, k-uniform {-cycle partitions of r-coloured complete
k-uniform hypergraphs may require at least r pieces.

Up to now, most of the work on ¢-cycle partitions has focused on loose cycles (1-cycles). Such
questions were first studied by Gyarfas and Sarkozy in [GS13], where they prove the following
result.

Theorem 0.2.6 ([GS13]]). For everyk,r € N there is some ¢ = c(k, r) such that the vertices of every
r-edge-coloured complete k-uniform hypergraph can be partitioned into at most c monochromatic
loose cycles.

Later, Sarkozy showed in [Sar14] that the constant c(k,r) of Theorem can be chosen
to be 50rk log(rk). An interesting generalisation of Theorem due to Gyarfas and Sarkozy
in [[GS14], considers edge-colourings of k-uniform hypergraphs with bounded independence num-
ber instead of complete k-uniform hypergraphs’|

Theorem 0.2.7 ([GS14]). For every k,r,« € N there is some ¢ = c(k, r, a) such that the vertices of
every r-edge-coloured k-uniform hypergraph with independence number a can be partitioned into at
most ¢ monochromatic loose cycles.

In [Gyal6]], Gyarfas conjectured that a result similar to Theorem holds for tight cycles.

Conjecture 0.2.8 ([Gyal6]]). For every k,r € N there is ¢ = c(k, r) such that the vertices of every
r-edge-coloured complete k-uniform hypergraph can be partitioned into at most c monochromatic
tight cycles.

If true, Conjecture is best possible, as showed by Gyarfas in [Gyal16]]. A recent result
in [ESSS17] for countably infinite uniform complete hypergraphs (due to Elekes, D. Soukup, L.
Soukup and Szentmikldssy) can be seen as an infinite analogue of Conjecture

Theorem 0.2.9 ([ESSS17]). Every r-edge-colouring of the countably infinite complete k-uniform

hypergraph 7(1<\§C) admits a partition into at most r monochromatic tight cycles, where two-way infinite
tight paths count as tight cycles as well.

In Chapters[2|and [8| we study monochromatic £-cycle partitions in 2-edge-colourings of uni-
form hypergraphs. Chapter [2|is joint work with Maya Stein and focuses on k-uniform ¢-cycles
with ¢ < k/2. Our main result is the following.

Theorem 0.2.10. For everyk > 2 and { < k/2 the following holds. Every 2-edge-colouring ofwg)
contains two vertex-disjoint £-cycles in different colours covering all but at most 5(k —€) — 1 vertices.

We also improve the number of leftover vertices in the case ¢ < k/3. In addition, we show
that Theorem is best possible in the following sense: for every positive integers c,r > 1
and ¢ < k/2 there are r-edge-colourings of k-uniform complete hypergraphs such that the largest
monochromatic ¢-cycle leaves at least ¢ uncovered vertices. Observe that (k — £) divides the
number of vertices of every (non-degenerate) k-uniform £-cycle. Therefore, k — ¢ — 1 is a lower

STheorem also extends a previous result for graphs with bounded independence number in [Sar1ll]. We
provide details of the graph version of Theorem in Chapter

6



bound for the constant ¢ in Theorem [0.2.10f We conjecture (see Conjecture in Chapter

that, provided that (k — ¢) divides n, any 2-edge-colouring of ‘K,(lk) admits a monochromatic ¢-
cycle partition of size two, with cycles of different colours.

Chapter [3 deals with tight cycles in 2-edge-colourings of 3-uniform complete graphs. In joint
work with Hiép Han and Maya Stein, we prove the following asymptotic result on monochromatic
tight cycle partitions.

Theorem 0.2.11. For every n > 0 there exists ny € N such that the following holds. Every 2-edge-

colouring of’K,(f), with n > ny, admits two vertex-disjoint monochromatic tight cycles covering all
but at most nn vertices.

For all sufficiently large n, there exist 2-edge-colourings of 7(,(,3) with the following property:
the largest monochromatic tight cycle leaves roughly 4n/3 vertices uncovered (see [HLP*09]).
Therefore, we cannot replace the two monochromatic tight cycles in Theorem with just
one, so in this sense Theorem[0.2.11]is best possible.

Finally, in Chapter 4| we study monochromatic tight cycle in a more general setting, by con-
sidering r-edge-colourings of k-uniform hypergraphs with bounded independence numberﬁ as
host hypergraph instead of k-uniform complete hypergraphs. In joint work with Jan Corsten,
Nora Frankl, Jozef Skokan and Alexey Pokrovskiy, we prove the following result.

Theorem 0.2.12. For every k,r,a € N, the vertices of every r-edge-coloured hypergraph with in-
dependence number a can be partitioned into a constant (depending only on k,r and o) number of
monochromatic tight cycles.

Theorem [0.2.12| generalises Theorem and confirms Conjecture by taking o = 1. It
also answers a question of Grinshpun and Sarkézy in [GS16)], regarding monochromatic cycle

powerﬂ partitions in 2-edge-colourings of complete graphs (see Chapter .

®The independence number of a hypergraph # is the size of largest set of vertices inducing an empty hypergraph.
"The p-th power of a cycle is obtained by adding all the edges joining vertices at distance at most p. A suitable
generalisation of tight cycle powers is provided in Chapter

7



Chapter 1

Partitioning countably infinite complete
hypergraphs into few Berge cycles

Abstract

We prove that for all r, k € N with k > 2, the vertices of every r(k — 1)-edge-coloured countably
infinite complete k-uniform hypergraph can be core-partitioned into at most r monochromatic
Berge cycles of different colours. We further describe a construction showing that this result is
best possible. This is joint work with Jan Corsten and Nora Frankl.

1.1 Introduction

In 1978 Rado [Rad78] studies monochromatic partitions in r-edge-colourings of the countably
infinite complete graph Kjy instead of finite complete graphs. By considering a two-way infinite
path as an analogue of the infinite cycle, he proves that every r-edge-colouring of Ky admits a
partition into at most r monochromatic finite or infinite cycles![]

The main focus of this chapter is an extension of Rado’s theorem to Berge cycles in countably
infinite hypergraphs. Recall that Theorem [0.2.2] states that, for sufficiently large n, every (k — 1)-
edge-colouring of 7(,(,k) contains a monochromatic Hamiltonian Berge cycle. This result is also
sharp, as shown in [GLSS08]] and in Theorem below.

A generalisation of Theorem to t-tight Berge cycles was proposed as a conjecture (see
Conjecture[0.2.3in the Introduction) by Dorbec, Gravier and Sarkézy in [DGS08]]. We now restate
Conjecture to its original form.

Conjecture 1.1.1 ([DGS08]). For any fixed 2 < c,t < r satisfying c +t < k + 1 and sufficiently
large n the following holds. Every c-edge-colouring of?(,(lk) admits a monochromatic Hamiltonian
t-tight Berge cycle.

We know that Conjecture is true for t = 2 (see [Omil4]]), and also for k = 5,¢t = 3 and
¢ = 2 (see [DGS08]). The following weaker result from [DGS08] replaces the sum ¢ + ¢t with the
product ct.

In fact, Rado’s theorem answers the question for paths instead of cycles, where one-way infinite paths are con-
sidered as the infinite analogue of the finite path. However, the cycle version of Rado’s Theorem can be proved by
considering a slight modification of Rado’s original proof.



Theorem 1.1.2 ([DGS08]). For any fixed 2 < c,t < r satisfying ct + 1 < k andn > 2(t + 1)kc?
the following holds. Every c-edge-colouring of?(,(lk) contains a monochromatic Hamiltonian t-tight
Berge cycle.

For more colours or infinite hypergraphs not much is known in this direction. A recent result
from Elekes, D. Soukup, L. Soukup and Szentmikldssy in [ESSS17] extends Rado’s Theorem to the
hypergraph setting (see Theorem [0.2.9), by considering edge-colourings of the countably infinite
k-uniform hypergraph ‘Kg ) and studying monochromatic tight cycle partitions. It is worth to
mention that every tight cycle is also a t-tight Berge cycle (for every 2 < t < k), so Theorem|[0.2.9]
provides an upper bound for the t-tight Berge cycle partition number of 7(]‘%{C ). Our main result
shows that monochromatic Berge cycle partitions require, in general, fewer parts than their tight
cycle counterparts.

Theorem 1.1.3. Forallr,k € N withk > 2 and every r(k — 1)-edge-colouring of’Kg) the following

holds. The vertices of Wg ) can be core-partitioned into at most r monochromatic Berge cycles of
different colours.

We will prove this theorem in Section We will rely on the existence of non-trivial ultra-
filters and therefore on the axiom of choice. In Section [1.2| we describe a construction for ¢-tight
Berge-cycles showing that Theorem is best possible. A slight modification of this construc-
tion also shows a lower bound for the finite case. We therefore believe that Theorem[1.1.3| should
hold in a similar form in the finite case as well.

Conjecture 1.1.4. For all r,k,t € N withk > t > 2, there is some ¢ = c(k,r,t) € N such that

the following is true for alln € N. In every r(k — t + 1)-edge-colouring ofq(f,k), there are at most r
monochromatic t-tight Berge cycles, whose cores are disjoint and cover all but ¢ vertices.

1.2 The constructions

We will prove that Theorem is best possible, that is, r — 1 monochromatic Berge cycles do
not suffice to partition all the vertices of certain r(k — 1)-edge-colourings of 7{§C ). This is done by
considering the case ¢t = 2 of the following result on ¢-tight Berge cycles, generalising a previous
construction for the case r = 1 in [DGS08]].

Theorem 1.2.1. Forallr,k,t € N withk > t > 2, there is an edge-colouring ofwg) with q =
r(k—t+1)+1 colours in which the vertices cannot be covered by the cores of r monochromatic t-tight
Berge cycles.

Proof. We denote the lexicographical ordering on ([‘r’]) by <. Partition N into sets {B; : I € ([‘r’])}
so that [B;| > r- 3., |B;| forevery I € ([g]). Note that all B;’s but B;_,,1,... 4 will be finite.

For x € N, let I(x) be the r-subset of [g] for which x € By(y). We define a g-edge-colouring ¢ of
7(1(\?) as follows. For every e € E(Kg)) we consider an order x, ..., x¥ of e satisfy@ng I(x) <1 (x{;)
forall 1 <i < j < k, and define ¢(e) as an arbitrary member of [q] \ U;<r_s41 I(x¢)-

Assume for contradiction that there are monochromatic ¢-tight Berge cycles Cy, . . ., C, with
cores X, ..., X, sothat | J; Xj = NandletI C [g] be a set of size r which contains all colours used
by these t-tight Berge cycles.



First observe that |e NUj<r BJ| > k —t + 1 for every edge e with e N By # 0 and ¢(e) € I.
Therefore, if e € E(C;) for some i € [r] then every t-subset of e containing an element of B; also
contains at least one vertex in [ J;; B;. We conclude that

XN Byl < )" 1Bl < |Byl/r
J<I

for every i € [r] and hence |B;| = |B; N (U; Xi)| < |Byl, a contradiction. O

A simple modification of the argument yields the following result which shows that Conjec-

ture is best possible if it is true.

Theorem 1.2.2. Forallc,r,k € N with k > 2, there is some ng = no(c, r, k) such that the following

: : . k) . :
is true for every natural number n > ny. There is an edge-colouring of7(;\1) in which the cores of any
r monochromatic Berge cycles can cover at most n — ¢ vertices.

Proof. If for the B;’s instead of |B;| > r - 3};. ; |Bj| we require |B;| > ¢ +r - 3 ;. |B;|, we obtain
the desired construction. O

1.3 The upper bound

Our proof is based on the simple proof of Rado’s theorem given by Elekes, D. Soukup, L. Soukup
and Szentmiklossy in [ESSS17].
An ultrafilter on a set X is a set-system U C 2% satisfying the following properties:

(i) 0¢Uand X € U,

(i) Ae HandACBC X = BeU,

(iii) ABeU = ANBeU,

(iv ACBforsomeBe = AeUorB\AcU.

An ultrafilter U on X is called trivial if there is some x € X suchthat U = {AC X : x € A} and
non-trivial otherwise. A standard application of Zorn’s Lemma shows that there exist non-trivial
ultrafilters whenever X is infinite. Note that we are assuming the axiom of choice here.

Proof of Theorem[1.1.3, Let g = r(k — 1) and let ¢ be the given g-edge-colouring of Wg ) Let U
be a non-trivial ultrafilter on N and note that U contains all co-finite sets. We define an edge-
multicolouring ¢ : E(?(g)) — 2l py

@2(uv) = {p(e) : e € E(‘Kg)) and u, v € e}.

For a vertex v € N and for a colour ¢ € [q], let Nj(v) := {u € N : ¢ € ¢,(uv)}. Now define a
vertex-colouring y : N — 2lg] by

x(@) = {c € [q] : N3 (v) € U}.

Partition [q] into sets Ay, ..., Ax_; of size r. We claim that there is some iy € [k — 1] such that
x(@) N A;, # 0 for every v € N. Assuming the contrary, there are vertices vy, ...,vx_; € N for

10



which y(v;) N A; = 0 for every i € [k — 1]. Let N;j be the set of vertices u € N\ {vy,...,vk-1}
for which ¢(vy, ..., vk-1,u) € A;. By assumption we have N; ¢ U for every i € [k — 1] and
consequently Uiex—1) Ni ¢ U. This is a contradiction since Uiefr-1) Ni = N\ {v1,..., vp-1} is
co-finite.

We may assume that A;, = [r] and delete all other colours. Partition N into sets By, ..., B,
such that i € y(v) for every v € B;. If B; is finite for some i € [r], we write B; = {vil, ces v,iq}. On
the other hand, for every i € [r] such that B; is infinite, we write B; = {v. : n € N}U{w! : n € N},
where Ui1 = wi1 and {v} :n e N} N {w) :n e N} = {Ui} Fori € [r] and u,v € N, let Pi(u, v) be
the set of Berge paths in colour i of lengt at most three with endpoints u, v.

Our purpose is to build hypergraphs inductively in such a way that at every step of the process
we have that these hypergraphs are either Berge paths or Berge cycles. In order to find the right
edges (and vertices) to add at each of the steps, we will use the following claim.

Claim 1.3.1. Ifu,v € B; then Pi(u,v) is infinite.

Indeed, since Nzi(u) N N;(v) € U and for every w € Nzi(u) N Nzi(v) either {u, v, w} C e for

some edge e € E(‘Kg)) with ¢(e) = i, or there exist ej, e; € E(?(g)) such that u,w € e, v, w € e,
and ¢(e1) = ¢(ez) = 1. Therefore Claim[1.3.1holds.

We start the inductive process as follows. For every i € [r], let P} be the Berge path ({01}, 0).
If |Bi| < 1then we set C; = (Bj, 0) as the monochromatic Berge cycle in colour i, so we assume
that |Bj| > 2 for all i € [r]. In what follows we consider as induction hypothesis that P}_l isa
Berge path for every j € Nandi € [r].

At each step j € N we will choose i € [r] such that C; is not already defined and Pji._1 has
minimum length.

If all the vertices of B; are in the core of the Berge path P]i._1 then we take the endpoints u, v of
Pji._1 and choose (by Claim Q € Pi(u, v) such that the core of Q has empty intersection with
the core of P]i./_1 for all i’ # i, and intersects the core of P]i._1 exactly in {u, v}. Now we can define
C = P]i._1 U Q as the desired Berge cycle in colour i.

If the core of P]i._1 does not cover the vertices of B; then we choose an endpoint o' € B; of P]i._1
and the smallest positive integer z for which viz € B; (or wfz € B;, if B; is infinite) is not in the core
Pji._l. Then, by Claimwe can choose a Berge path Q € Pi(v!, v!) such that the core of Q has
empty intersection with the core of P]i./_1 for alli’ # i, and intersects the core of P]i._1 only in u. This
is possible since the Berge paths P}/_l are finite for all i’ € [r]. Now we set P} =Pi_1UQ, P}’ = P}/_l
for all i’ # i and proceed with step j + 1.

Observe that if B; is finite then the monochromatic Berge cycle in colour i will be defined at
some step j € N. On the other hand, for all the infinite sets B; we can define C; as the two-way

infinite Berge path ;e P]1 This gives us the desired Berge cycle core-partition of 7(gc). m|

2The length of a Berge path is the size of its core.
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Chapter 2

Partitioning 2-edge-coloured complete
k-uniform hypergraphs into
monochromatic {-cycles

Abstract

We show that for all £, k,n € N with ¢ < k/2 and (k — ¢) dividing n the following hypergraph-
variant of Lehel’s conjecture is true. Every 2-edge-colouring of the k-uniform complete hyper-
graph on n vertices has at most two vertex-disjoint monochromatic ¢-cycles in different colours
covering all but at most 4(k — ) vertices. If ¢ < k/3, then at most two vertex-disjoint £-cycles
cover all but at most 2(k — ¢) vertices. Furthermore, we can cover all vertices with at most 4 (3 if
t < k/3) vertex-disjoint monochromatic £-cycles. This is joint work with Maya Stein.

2.1 Introduction

This chapter focuses on monochromatic £-cycle partitions in 2-edge-colourings of complete uni-
form hypergraphs. Recall that £-cycles are k-uniform hypergraphs with at least three edges, a
cyclic ordering of their vertices and a cyclic ordering of their edges such that every edge contains k
consecutive vertices, consecutive edges intersect in exactly ¢ vertices, and non-consecutive edges
have empty intersection. We also consider two edges intersecting in 2¢ vertices and vertex sets
of size k — € as degenerate {-cycles of length two and one, respectively. In general, the length of
an {-cycle is the size of its edge set.

It follows from work of Gyarfas and Sarkézy [GS14] that the number of monochromatic loose
cycles needed to partition any 2-edge-coloured 7(f,k) is bounded by a function in k. |'| The same au-
thors conjectured [Gyal6,GS14] that any 2-edge-coloured ‘Kflk) has two disjoint monochromatic
loose paths (a loose path is obtained from a loose cycle by deleting one edge), together covering
all but at most k — 2 vertices, and show this is best possible. This conjecture has recently been
confirmed by Lu, Wang and Zhang [LWZ17]).

Here we show that for arbitrary n,k € N, and £ < k/2, all but a constant number of vertices
of every 2-edge-colouring of 7(,5’0 can be covered by two disjoint monochromatic £-cycles.

The actual result in [[GS14] is on cycle partitioning in r-coloured complete hypergraphs (for arbitrary r > 2).

12



Theorem 2.1.1. Let {,k,n € N such that 0 < £ < k/2 and k —{ divides n. Let any 2-edge-colouring
of 7(,(lk) be given.

(a) There are two vertex-disjoint monochromatic £-cycles in different colours together covering all
but at most 4(k — €) vertices.

(b) If € < k/3, the two {-cycles cover all but at most 2(k — ) vertices.

Our proof does not use Bessy and Thomassé’s theorem, nor does it rely on hypergraph regu-
larity.

We include in our results the condition that k—¢ divides the order of the involved hypergraphs.
However, it is clear that by dropping this condition in Theorem we can partition all but at
most 5(k —¢)—1 with two monochromatic £-cycles in different colours. We suspect that a partition
of all vertices into two cycles should always be possible. (It is not difficult to construct colourings
which require at least two disjoint {-cycles for covering all the vertices, so this would be best
possible.)

Conjecture 2.1.2. If {,k,n € N withn = 0 (mod k — {), then every 2-edge-colouring 0f‘7(,(1k)
contains two vertex-disjoint monochromatic {-cycles in different colours covering all vertices.

An easy argument shows that for £ = k/2 the conjecture is true. In order to see this, take
any partition # of the vertices of V(f,k) into sets S;,i € [2n/k], of size k/2. Consider an auxil-
iary 2-edge-colouring of the complete graph on P, giving {S;, S;} the colour of 5; U §; in 'K;lk).
Bessy and Thomassé’s theorem [BT10] yields two graph cycles, which correspond to two disjoint

. 1 . k)
monochromatic ¢-cycles in different colours in %K, .
Also, we can obtain the following corollary from Theorem[2.1.1]

Corollary 2.1.3. Let {,k,n € N such that 0 < { < k/2 and k — € divides n. Then for any 2-

edge-colouring of 7(,(lk), one can cover all the vertices of 7(,5’() with four vertex-disjoint monochromatic
{-cycles, and if € < k/3, it can be done with three cycles instead of four.

This follows directly from our main theorem together with the observation that the Ramsey
numbelﬂ of the k-uniform ¢-cycle of length two is 2(k —£). This can be seen by observing that any

. k k-2¢
2-edge-colouring of K := 7(;(12_{,) = Wé(k_f))
any edge e* in K™ the colour of V(%K) \ e* in K. Then a monochromatic matching of size two in
K™ corresponds to a monochromatic ¢-cycle of length two in K. Now, results of Alon, Frankl and
Lovasz [AFL86] imply that the Ramsey number of a 2-edge matching of uniformity r is at most

2r + 1, which, since 2(k — 2¢) + 1 < 2(k — {), is enough for our purposes.

naturally defines a 2-edge-colouring of K™ : by giving

2.2 Partition into a path and a cycle

We will identify a hypergraph H with its edge set, so when we write e € H it refers to the edge
e of H. Let us go through some necessary notation.

For an ¢-path or {-cycle X, we order the k vertices of each edge in such a way that the last
¢ vertices of an edge e; are the first £ vertices of the edge ej;;. For an edge e = {vy,..., vk}, we

2The two colour Ramsey number of a k-uniform hypergraph H is the least integer R(H) for which every blue-red

colouring of xk)

ROH) contains a monochromatic copy of H.
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write Vi(e) to denote the vertex set {v; € e : i € I}, lete™ denote the vertex set Vj;j(e), let e* denote
the vertex set Vjx\[k—¢](e), and use é for the set e \ (e” U e™).

An (-path P of length m is a blue-red {-path if there is my € [m], called turning point, such
that the {-paths {e; : i € [mg]} and {e; : i € [m] \ [mo]} are monochromatic and have different
colours.

One of the first results in the field of monochromatic partitions was Gerenscér and Gyarfas’
observation [GG67] that every two-edge-coloured complete graph has a spanning blue-red path.
We extend this observation to £-paths in hypergraphs in the following lemma.

Lemma 2.2.1. Let{,k,n € N such that0 < ¢ < k/2 and k—{ dividesn. Then every 2-edge-colouring
of?(,(,k) contains a blue-red €-path P with |V(P)| =n—k + 2¢.

Proof. Take a longest blue-red {-path # in 7(,(lk), with edges e; for i € [m] and turning point my.
Assume that all e; with i € [m] are blue and all later edges on P are red.

If the set Z of all vertices not covered by P has size k — 2¢, we are done. So assume otherwise;
then Z contains at least 2k — 3¢ elements. Fix three disjoint sets Zy, Z1, Z, C Z with |Zy| = € and
|Z1| = |Z,| = k—2¢. Since P is maximal, we know that e = e] UZ; U Zj isred, eg = e UZ1UZ
is blue, and mg # m.

By colour symmetry, we can assume the edge e = e, UZ,UZ; isred. Then (P \ {e;, })U{e, er}
is a blue-red ¢-path longer than #, which contradicts the maximality of . ]

Observe that the blue-red £-path # given by Lemma2.2.1]is as large as possible, since |V(P)| =
¢ (mod k — ¢) and k — ¢ divides n.

Now we can show that there are a monochromatic {-path and a monochromatic ¢-cycle that
together cover almost all the vertices.

Lemma 2.2.2. Let{, k,n € N such that0 < £ < k/2 andn = no(k—{) for some integer ny > 3. Then
every 2-edge-colouring of 7(,(,k) contains an {-cycle C and an {-path P with the following properties:

1. C and P are vertex-disjoint;

2. C and P are each monochromatic but use distinct colours;

3. C has at least two edges;

4. if P # 0, then |V(C)| + |V(P)| € {n—k + 2(,n — 2k + 3(}; and
5 if P =0,then|V(C)|=n—-k+<¢.

Proof. By Lemma there is a blue-red {-path with edges e; for i € [m] and turning point
my that covers all but a set Z of k — 2¢ vertices of 7(,(lk) . Among such ¢-paths, choose Ppax such
that max{mg, m — my} is as large as possible (i.e. P.x maximises the length of a monochromatic
sub-£-path). By symmetry, we can assume that max{mg, m — mg} = my, that Pp = {e; : i € [mo]}
is blue and that Pr = {e; : i € [m] \ [mo]} is red. Since n > 3(k — £), we know that m > 2. If
my < m and the edge

e::e:“nOUZUe;Ln

is blue, then (Pmax \ €my+1) U {€} is a blue-red ¢-path contradicting the choice of Prayx. If my < m
and the edge e is red, then the {-cycle Cr = Pr U e together with the {-path P \ {en,} are as
desired.
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So we can assume that my = m, that is, Py is all blue. If also one of the two edges e] U e;Ue,
e;‘ U Z U e}, is blue, we can close Py, forming an £-cycle that covers all but e U Z, or all but
e] U ey, respectively, which is as desired. So we can suppose both edges ef Ue; Uej,, el UZ Uej,
are red. They form an ¢-cycle with two edges, which together with Py \ {e1, ez, e} covers all
but e] U €, U €, (note that possibly m = 2, in which case e, coincides with ep,). So, we found an
{-cycle and an ¢-path which are as required (in particular, either they cover n — 2k + 3¢ vertices,
or the ¢-path is empty and the {-cycle covers n — k + € vertices). ]

2.3 Proof of Theorem (a)

This section is devoted to the proof of Theorem[2.1.1](a).
Consider a monochromatic ¢-cycle Cp with at least two edges and a disjoint monochromatic

¢-path Pg as given by Lemma Note that if P has at most two edges, we are done, so assume
otherwise. By deleting at most two edges from P, if necessary, we can assume that

IV(Cp U PR)| = n — 3k + 4L,

Among all such choices for Cg and P (including those where Py is empty), assume we chose

Cg and Pk such that

Cp has as many edges as possible. (2.3.1)

By symmetry, we may assume that Cp is blue and Py is red. Say Cp has edges e;, i € [m,] (and
thus length m. > 2), while P has edges f;, j € [m,] (and thus length m,, > 0).

Assuming that Theorem (a) does not hold, we will reach a contradiction by analysing
the connections from the first/last edge of P to Cg. If these cannot be used to close up $x to an
{-cycle, we find a red ¢-cycle on the same vertices as Cp. In a last step, we will use this new red
{-cycle together with $g to form one large red £-cycle.

We start by making a couple of easy observations. First of all, note that
mpy > 2, (2.3.2)

as otherwise Cg covers all but at most 4k — 4¢€ vertices.
Let Z1, Z,, Z3 be mutually disjoint subsets of vertices not covered by Cg U g such that |Z;| =
|Z,| = |Z3| = k — 2£. Consider the edges

wh=fTUZ U f

for t = 1,2, 3. If any of the edges w' is red, then Cp together with P U {w'} are {-cycles as in the
theorem, covering all but 2k — 2¢ vertices. So,

whi= ffUZ U f,;fp is blue, for t = 1, 2, 3. (2.3.3)

Consider the edges

1

vl = fn“;p UZ Ue;

fori € [mc] and t,t" € {1,2,3}. If for some triple i, ¢, with ¢ # t, both edges v, vitil are blue,
then the ¢-cycle {v, v', } U(Cs\ {e;}) together with the ¢-path Pr \ {fm,} contradicts (2.3.1). So,
for each i € [m,], and each pair and t, ¢’ € {1, 2,3} with t # t/,

one of the edges v, vfil is red. (2.3.4)
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Similary, for each i € [m,], and each pair and t,¢' € {1, 2,3} with t # ¢, setting
u = fUZ Ue,

we observe that
one of the edges u}, u!,, is red. (2.3.5)

We now establish that our £-cycle is a bit longer than our £-path.
Claim 2.3.1. It holds that m; > m,, + 2.

Proof. Suppose to the contrary that m. < m, + 2. By (2.3.5), we can assume the edge u; is red. If
the edge vf is red, too, then Pr U {u%, vf} and Cg \ {e1, ey, } contradict the choice of Cg and Pg
fulfilling (2.3.1). So the edge v? is blue, and thus by (2.3.4), the edge v; is red.

Now, if the edge u, is red, then P U {v}, u}} is a red {-cycle of length greater than m,, which
together with the path Cp \ {e;, ez} contradicts (2.3.1). Therefore, u; is blue. But now, since

by (2.3.3), the edge w* is blue, we found a blue {-cycle, namely {v?, w*,u;} U (Cp \ {e1}), which

together with the red {-path Pr \ {f1, fm,} contradicts (2.3.1). O
Note that Claim [2.3.1] together with implies that
me > 4. (2.3.6)

Let us now consider the edges

gi = (e; \ ei+) U eitz and h; == (e \ ei+) U e;3,
fori € [m,] (considering all indices modulo m.). The advantage of these edges is that on the one
hand, each of these edges, if blue, provides a shortcut on Cp (and the vertices left out of Cp can
be used for closing up Pr). On the other hand, if all these edges are red, then they form new red
{-cycles on the vertex set of C.

Let us first show why any of the edges g;, h; would be useful in blue.

Claim 2.3.2. The edges g; are red for alli € [m.], and if m. > 4, then the edges h; are red for all
i€ [me].

Proof. Suppose that one of these edges g; or h; is blue (the latter only in the case that m, > 4).
Then there is a blue cycle Cj obtained from Cp by replacing the edges e, ej1, €j42 With the edge
gi, or by replacing the edges ey, ej;1, €j+2, ei+3 with the edge h;.

Consider the edges u/,, and v ,. If both of these edges are red then the theorem holds, since
Cj together with Pg U {u/, ,, v? |} either covers all but 3k — 3¢ vertices (if g; is blue); or cover all
but 4k — 4¢ vertices (if h; is blue). So by symmetry, we can assume that uil+1 is blue. Similarly, if
the edges u12+2 and vi3+2 are both red then the theorem holds, so at least one of them is blue.

Since u/,, is blue, implies that u? , is red, and thus ©? , is blue. Recall that by (2.3.3), the
edge w? is blue, too, and so, the {-cycle {u,,, w?, 02} U (Cp \ {eir1}) together with the {-path

i+2

Pr\ {f1, fm, } contradicts (2.3.1). O

Finally, consider the edge sets
Rj:={gi:i=j (mod 3)},
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for j = 0,1, 2. Notice that Ry, Ry, R, are three £-cycles of length % ifm, =0 (mod 3), and together
form one ¢-cycle otherwise.

The remainder of the proof is split into several cases, depending on the value of m., and which
of the edges u}, v/ are red. Note that by (and after possibly renaming the edges on Cg, or
the sets Z;), we may assume that u% is red. Moreover, by , at least one of the edges vi, vg is
red (if m; = 4, we take indices modulo 4, meaning that one of v3, v? is red).

In all the cases considered below we use that m. > 4 by (2.3.6).

Case 1. m; # 0 (mod 3) and v} is red.

In this case, consider the red ¢-cycle formed by Ry U R; U R;. We can substitute the edge ¢4
from this ¢-cycle with the path {u}} U Pz U {0} to obtain one red {-cycle which covers all but
2(k — €) vertices.

Case 2. m; = 0 (mod 3) and v? is red.

Consider the auxiliary red £-cycle formed by

{ha} U (R2\ {g2,95}) U {h2} U (Ro \ {g5})
U {h3} U Ry \ {g4}).

Similar as in the previous case, we can substitute the edge g; from the auxiliary £-cycle with the
path {u]} U P U {0} to obtain one red ¢-cycle which covers all but 3(k — €) vertices. (Note that
this works fine even if m, = 6.)

Case 3. m; # 1 (mod 3) and v} is red.
Consider the auxiliary red £-cycle formed by

{h1} U(R2 \ {g2}) U {h2} U (Ro \ {g5})
U {h3} U Ry \ {g1.94})

and substitute its edge h; with {u]} U g U {02} to obtain one red ¢-cycle which covers all but
3(k — ¢) vertices. (Note that this works even if m. = 5.)

Case 4. m. = 1 (mod 3), m # 4, and v} is red.

If m, is odd, then we can use the cycle spanned by all edges h; except h;, and the path P,

together with edges u] and vZ. This (-cycle covers all but 2(k — ¢) vertices. Otherwise, since

m. > 4 and m, = 1 (mod 3), we know that m, > 10. So we can use a similar approach as above,

using five edges h; instead of two. More precisely, the red {-path formed by

{hs} U (Ro \ {g3.96}) U {h2, hs} U (R1 \ {91, 94, 97})
U {h3, h7} U (Rz \ {92, g5, g8 })

and {uj} U PR U {U;’} covers all but 4(k — £) vertices.
Case 5. m, = 4, and v} is red while 7 is blue.

Then by (2.3.4), the edge v} is red, and we can close Pr using the edges 2, vi, g1, gs. We
covered all but 3(k — €) vertices.
This finishes the proof of the theorem.
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2.4 Proof of Theorem (b)

In this section we give a proof of Theorem (b), the first part of which follows very much
the lines of the proof of Theorem [2.1.1] (a), while the last part is a bit different. In order to avoid
repetition, we only sketch the first part, but give all details for the last part. We remark that much
of the work can be avoided if we are only interested in two {-cycles covering all but 3(k — ¢)
vertices instead of the output of Theorem[2.1.1](b).

For the first part of the proof, the main difference is that now, we use Lemma to find a
monochromatic £-cycle Cp of length m. > 2 with edges ej, i € [m,], and a disjoint monochromatic
{-path Pr of length m, > 0 with edges f;, j € [m,] such that

|V(Cs U PR)| = n — 2k + 3¢, (2.4.1)

choosing Cp maximal under the these conditions. That is, now we leave only 2(k — £) + £ vertices
uncovered in the beginning. Instead of defining Z;, Z,, Z3, we only define Z;, Z, as two disjoint
sets of vertices not covered by C U Py with |Z;| = |Z,| = k—2¢. The idea is that now, consecutive
edges on Cp only intersect in at most k/3 vertices, which means that the interior of such an edge
can be used in the same way as one of the sets Z;. With this we can overcome the difficulty due
to having only two sets Z; to operate with.

Again we easily show that m, > 2 (using (2.4.1)), and that edges w* defined for ¢ = 1,2 and
i € [m,], have the same properties as in the proof of Theorem (a). Now we define v! and u}
as in that proof for ¢t = 1, 2, and set
03 = f,;:p U(e'\ef)and & := f; U(e'\ e).

1

It is easy to see that for each i € [m,], and each pair and t,¢" € {1,2,3} with t # t" and t’ # 3, at
least one of the edges v/, v!" | is red and at least one of the edges !, u’, | is red.

For showing that m. > m,+2 (and thus m. > 4), observe that in the proof of Claimin the
proof of Theorem[2.1.1](a), there is only one time where we need that all three sets Z; are present,
and that is at the very end, when we form the blue ¢-cycle {vZ, w?,u;} U (Cp \ {e1}). Instead, we
can use the ¢-cycle {v?, w?, u)} U (Cp \ {e1}).

For the rest of the proof one might define the edges g;, h; as in the proof of Theorem (a),
show they are red, and then go through Cases 1—5 However, for establishing that edges h; are
red, we would have to content ourselves with the outcome of two ¢-cycles covering all but 3(k—¢)
vertices. We can do a slightly better than that by arguing as follows.

Consider the edges

a:= fi UesU Vize[e(e2)
and
a’ = Viaeje)(f1) U €4 U Vie—gp\[k-2¢1(e5)
(note that these edges are symmetric with respect to e; N ey, as Figure [2.1| shows).

3To see this goes through we remark that first, near the end of the proof of Claim of that theorem we used
to occupy the set Z3, by employing the edge 7, ,. With the new definition of this edge, this works here too.
Second, when going through Cases 1-5, we cannot use the edges u!, v%, v7 as before. This problem is easily overcome
by first finding out which of v3, v} is red. Say this is v; (otherwise rename all edges). Now, if the edge u3 is red, then
we are in the same situation as in Case 1, 2 or 5 of the proof of Theorem (a) (with indices augmented by one).
Otherwise, the edge u; is blue, and thus the edge u; is red, as otherwise we could augment Cg using these two edges,
and destroying one edge of Pg. Now we are in a situation that is very similar to Cases 3 and 4 of Theorem [2.1.1] (a).
As in these cases, neither of the edges g1, h; was used, we have no problem finding our red ¢-cycle using u? instead
of u].
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Figure 2.1: Solid gray and solid white edges are blue and red edges, respectively.

If both a and @’ are blue then we can replace the edges es, e, € Cp with the edges a, a’, w'

and the blueﬂ edge Viaep(e1(f) Y 22 U f,;’p to obtain a blue cycle which together with the red path
Pr \ {f1, fm} contradicts the maximality of Cp. Therefore, we can assume that one of these edges
is red, without loss of generality say

a is red. (2.4.2)

Next, consider the edges
qi := Viaep\[e)(e1) U €i+1 U ef’+3,

fori € [m,]. It is easy to see that the edges g; form an ¢-cycle, which we will call Cg.
Claim 2.4.1. We may assume that q; is red, for alli € [m.].

Proof. Suppose one of these edges, say qi, is blue. Obtain Cj from Cp by replacing the edges
ey, 3, €4 with the edge q;.

First assume u; is blue. Then u, is red, by our analogue of (2.3.5). Also, v is red, as otherwise
we can replace e3 with the edges u}, w' and vZ, and thus contradicting the maximality of Cp. But
now, $Pr U {ui, Uﬁ} is a red ¢-cycle, which, together with the blue ¢-cycle Cl’3 is as desired for the
theorem.

So from now on, assume that ug’ is red. Then, the edge vé is blue or we found £-cycles Pr U
{ug, 031.} and CIQ which are as desired for the theorem. Now consider a set Z, C Z, of size k — 3¢.
By the maximality of Cp and taking into account that v; is blue, we see that the edge

b= ff:l-p U Zé U V[zg]\[[](eg) U e;f

has to be red (see Figure [2.2).
But then the {-cycles Pg U {u3, b} and C}, give the desired output of the theorem. ]

We are now ready to prove Theorem (b). For this, first assume that v, is red. Then,

by and by Claim we know that (Cg \ {g1, ¢2}) UPrU{a, v} is a red £-cycle, as desired
for the theorem.

*This edge is blue for the same reason for which w? is blue.
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Figure 2.2: Diagram of edges g1, u3, v and b. The dotted circles inside v; and b are the sets Z; and
Z,, respectively.

From now on assume vi is blue. Then ¢ := f,:;p U €4 U Vizep\[e)(es) is red, as otherwise the cycle

obtained by replacing e4 € Cp with the edges v}, c yields a contradiction to the maximality of Cg.
So, by (2.4.2), and since we chose ¢ so that it meets g5 in exactly ¢ vertices,

C],Q = (CR \ {CIZ’ qs, Q4}) ) PR ) {a’ C}
is a red {-cycle covering all vertices, except the 3(k — ¢) vertices lying in
Z1UZ,UW U (és\c)Ues Ue, Uer,

where W is a set of ¢ vertices outside Cp U P disjoint from Z; U Z,.
Consider d := Vjk_¢)\[k-2¢](fm,) YU Z2 U e;. Observe that either the {-cycle

(Cr \ {g2.q3}) U PR U {a,d}

is red, and then it covers all but 2(k — ¢) vertices, as desired for the theorem, or the edge d
is blue, which we will assume from now on. Then by the maximality of Cp, the edge d’ :=
Vik-en\[k-261(fm,) U Z1 U €/ is red. Now consider the edge

e=e, UZyUej.

If e is blue, consider the blue path e and the red cycle Cj, to obtain a contradiction to the maximality
of Cg in the choice of Cg and Pg.
So e is red. Then the £-cycle

(Cr\{g2.q3}) UPr U {a,d’, e}

is red and covers all but k — € vertices, as desired for the theorem.

This concludes the proof of Theorem (b).
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Chapter 3

Almost partitioning 2-edge-coloured
complete 3-uniform hypergraphs into
two monochromatic tight-cycles

Abstract

We show that for every n > 0 there exists an integer nj such that every 2-edge-colouring of the
3-uniform complete hypergraph on n > ny vertices contains two disjoint monochromatic tight

cycles of distinct colours that together cover all but at most nn vertices. This is joint work with
Hiép Han and Maya Stein.

3.1 Introduction

Tight cycles are the most restrictive notion of hypergraph cycle and, up to now, the only known
result in tight cycle partitioning is Theorem where the host hypergraphs are countably
infinite uniform complete hypergraphs. In this chapter we study 2-edge-colourings of 3-uniform
complete hypergraphs. Inspired by Lehel’s conjecture, we show that two disjoint monochromatic
tight cycles suffice to cover almost all the vertices of 7(,(13). We will see in Chapter (4] that there
exists an absolute constant c such that 2 + ¢ monochromatic tight cycles suffice to partition the
vertices of every 2-edge-colouring of 7(,53) (see Theorem in Chapter .

Our main result in this chapter is an approximate result on monochromatic tight cycle parti-
tioning for 2-edge-colourings of complete k-uniform hypergraphs.

Theorem 3.1.1. For everyn > 0 there exists ny such that if n > ngy then every two-coloring of the

edges of the complete 3-uniform hypergraph 7(,(,3) admits two vertex-disjoint monochromatic tight
cycles, of distinct colours, which cover all but at most nn vertices.
Moreover, we can choose the parity of the length of each of the cycles.

We might be interested in choosing the parity of the cycles for the following reason. If ¢ is
even, then any 3-uniform tight cycle on ¢ edges contains a loose cycle. Hence, we can deduce that
an analogue of Theorem|3.1.1] holds for loose cycles.

Corollary 3.1.2. For everyn > 0 there exists ny such that ifn > ny then every two-coloring of the

edges of the complete 3-uniform hypergraph ‘K,SS) admits two vertex-disjoint monochromatic loose
cycles, of distinct colours, which cover all but at most nn vertices.
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As shown in Chapter [2| (see Theorem in a more general way, the error term nn in The-
orem [3.1.1] can be improved, so every 2-edge-colouring of the edges of a 3-uniform complete hy-
pergraph admits two disjoint monochromatic tight cycles which cover all but at most a constant
number ¢ of vertices (for some ¢ independent of n).

The proof of Theorem is inspired by the work of Haxell et al. [HLP"06, HEP*09] and
relies on an application of the hypergraph regularity lemma [FR02]. This reduces the problem
at hand to that of finding, in any two-colouring of the edges of an almost complete 3-uniform
hypergraph, two disjoint monochromatic connected matchings which cover almost all vertices.

Here, as usual, a matching M in hypergraph H is a set of pairwise disjoint edges and M c H
is called connected if between every pair e, f € M there is a pseudo-path in H connecting e
and f, that is, there is a sequence (ey,...,e,) of not necessarily distinct edges of H such that
e = ey, f = ep,and |ejNejy| = 2 foreachi € [p— 1]. (Note that these pseudo-paths may use
vertices outside V(M).) Now, we call a connected matching M in a 2-coloured hypergraph a
monochromatic connected matching if all edges in M and all edges on the connecting paths have
the same colour.

So, our main contribution reduces to the following result, which might be of independent
interest.

Theorem 3.1.3. Foreveryy > 0 there is ty such that the following holds for every 3-uniform hyper-
graph H with t > to vertices and (1 — y)(;) edges. Any two-colouring of the edges of H admits two

disjoint monochromatic connected matchings covering at least (1 — 290)/%)1‘ vertices of H.

We prove Theorem in Section In Section [3.3] we introduce the regularity lemma for
hypergraphs and state an embedding result from [HLPT09]. The proof of Theorem will be
given in Section

3.2 Monochromatic connected matchings

Before giving the proof of Theorem we introduce some notation and auxiliary results.

Let H denote a k-uniform hypergraph, that is, a pair H = (V, E) with finite vertex set V =
V(H) and edge set E = E(H) C (Z), where (Z) denotes the set of all k-element sets of V. Often H
will be identified with its edges, that is, H C (Z) and for an edge {x1,...,xx} € H we often omit
brackets and write x; . . . x; only. A k-uniform hypergraph C is called an {-cycle if there is a cyclic
ordering of the vertices of C such that every edge consists of k consecutive vertices, every vertex
is contained in an edge and two consecutive edges (where the ordering of the edges is inherited
by the ordering of the vertices) intersect in exactly £ vertices. For ¢ = 1 we call the cycle loose
whereas the cycle is called tight if { = k — 1 (and we do not consider other values of ¢).

A tight path is a tight cycle from which one vertex and all incident edges are deleted. The
length of a path, a pseudo-path or a cycle is the number of edges it contains. As above, two edges
in H are connected if there is a pseudo-path connecting them. Connectedness is an equivalence
relation on the edge set of H and the equivalence classes are called connected components.

All hypergraphs H considered from now on are 3-uniform. We will need the following result
concerning the existence of perfect matchings in 3-uniform hypergraphs with high minimum
vertex degree.

Theorem 3.2.1 ([HPS09])). For all n > 0 there is a no = ny(n) such that for alln > ny, n € 3Z,
the following holds. Suppose H is a 3-uniform hypergraph on n vertices such that every vertex is
contained in at least (g +1) (;) edges. Then H contains a perfect matching.
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Denote by 0H the shadow of H, that is, the set of all pairs xy for which there exists z such that
xyz € H. For a vertex x in a hypergraph H, let Nyy(x) = {y : xy € dH }. For two vertices x, y, let
Ng((x,y) = {z : xyz € H}. Note that if y € Nyy(x) (equivalently, x € Ng/(y)) then Ny (x,y) # 0.
We call all such pairs xy of vertices active.

Lemma 3.2.2 ([HLP706], Lemma 4.1). Let y > 0 and let H be a 3-uniform hypergraph on tg
vertices and at least (1 — y)(t,f) edges. Then H contains a subhypergraph K on tgc > (1 —10y"/%)ty
vertices such that every vertex x of K is in an active pair of K and for all active pairs xy we have

INge(x, )| = (1= 10yt
We are now ready to prove Theorem[3.1.3]

Proof of Theorem[3.1.3 For giveny > 0 let § = 10y*/° and apply Theoremwith n=5/36to

obtain ny. We choose t; = max {%, 2"7—% .

Suppose we are given a two-coloured 3-uniform hypergraph H = Hieq U Hye On tgy > to
vertices and (1—-y)('%) edges. Apply Lemmato H with parameter y to obtain K, t := t¢ with
the properties stated in the lemma. Observe that at most §t4 vertices of H are not vertices of K.
We wish to find two monochromatic connected matchings covering all but at most 285t < 285t4,
vertices of K.

Since every vertex is in an active pair in K, we have
[Nge(x)| = (1 =96)t forall x € V(K). (3.2.1)

Let K = Kied U Kplue be the colouring of K inherited from H. Then a monochromatic component
C of K is a connected component of Kieq or Kpye-

Observation 3.2.3 ([HLP"09], Observation 8.2). For every vertex x € V(K) there exists a mono-
chromatic component Cx such that |[N¢_(x)| > (1 = 6)t.

For each x € V() choose arbitrarily one component Cy as in Observation[3.2.3] Let R = {x €
V(K) : Cy isred} and B = {x € V(K) : Cy is blue}, and note that these two sets partition V(K).

Observation 3.2.4 ([HLP09], Observation 8.4). If |R| > 65t (or |B| > 60t, respectively), then
there is a red component R (a blue component B) such that C, = R (Cx = B) for all but at most 26t
vertices x € R (x € B).

Set Vieq := {x € R: Cy = R} if |Vieq| = 66t, and set Vyue := {x € B : C, = B} if |B| > 65t.
Otherwise, define Vieq (or Vhue, respectively) as the empty set. Our aim is to find two differently
coloured disjoint connected matchings in K that together cover all but 165t < 285t —125t vertices
of Vred U Vblue-

We start by choosing a connected matching of maximal size in R U B. This matching de-
composes into two disjoint monochromatic connected matchings, M;.q € R and Mpp C B,
which together cover as many vertices as possible. Let V', = Vieq \ V(Mpea U Mpie) and
Ve = Wlue \ ViMrea U Mplye). We may assume that V! , or V| has at least 126t vertices,

blue
as otherwise we are done. By symmetry we may assume that

V4l = 86t. (3.2.2)

Observe that there is no edge xy withx € V! andy € V| such that xy € R N 9B. Indeed,
any such edge xy constitutes an active pair (by Lemma(3.2.2) and as |V ;| > 5t + 2, there must be
a vertex z € V' ; such that xyz is an edge of K. This contradicts the maximality of the matching

Mred U Mblue .
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Next, we claim that

[Viel < 26t. (3.2.3)

Assume otherwise. Then, Observation and the choice of the set V.4 implies that the
number of edges between V' ; and V| . that belong to R is at least

Vieal " Vil = 1) > |Ved| Vitue!-

Similarly, there are at least [V} |- (V| —6t) > 3 |Ve al Vil edges between V! and V|  that
belong to d8B. As there is no edge xywithx € V! andy € V’ e Such that xy € RN IB, we have
more than |V’ .| - [V} | edges from V' . to V; . This yields a contradiction and (3.2.3) follows.
Because of the max1mahty of Mred U Mbluea each edge having all its vertices in V', is blue.
Fix one such edge xyz, which exists because of (3.2.2 - Obtain V”, from V' ; by deletlng the at
most §t vertices w with wx ¢ R. Consider any edge x"y’z" with x’ y 7' € Vr’é which also exists
because of . As the pairs xy, xx’, x'y’ are all active, and |Vr’e’ d| > 35t, thereis a vertex v € Vr’é q
that forms an edge with each of the three pairs, thus giving a pseudo-path in K[V | from xyz
to x’y’z’. Denote by B” the blue component of K[V ] that contains xyz, and let 8’ be obtained
from B” by deleting at most 2 vertices and all incident edges, so that |V[8’]| is a multiple of 3.
Then, by (3.2.2), we have
VB’ = |V, 4] = 6t — 2 > 66t. (3.2.4)

Let x € V[B’] be given. At least |V[B’]| — 5t vertices y € V[B’] are such that xy € IR, and,
for each such y there are at least |V[8B’]| — §t vertices z € V[B’] such that xyz € B’. So, the total
number of hyperedges of B’ that contain x is at least

1 , 25 (|V[8']|
savig-are > 2o,

Thus, Theorem with 77 = 2 yields a perfect matching M, of B'.

At this point, we have three disjoint monochromatic connected matchings, one in red (Meq C
R) and two in blue (Mppe € B and M], = C B’). Together, these matchings cover all but at most
36t + 2 vertices of Vieq U Viue (by and by (3.2.4)).

Our aim is now to dissolve the blue matching My, and cover its vertices by new red edges,
leaving at most 65t vertices uncovered. In order to do so, let us first understand where the edges
of Mppue lie

For convenience, let us call an edge in K good if two different pairs of its vertices {a, b} and
{c, d} are such that ab € R and cd € 8. Notice that every good red edge is contained in R and
every good blue edge is contained in 5.

First, we claim that for every edge uvw € Myjye,

Hu, v, w} N Vel < 1. (3.2.5)

Indeed, otherwise there is an edge uvw € My with u, v € V. By the definition of B, and
by (3.2.2), there is an active edge ua € 98 with a € V! .. Asua is an active pair, as a has very large
degree in IR, and by (3.2.2), there is an edge uab € K with b € V/ , such that ab € IR. Hence
uab is a good edge. Similarly, there is a good edge vcd, with ¢,d € V7 .\ {a, b}. Remove the edge
uvw from My, and add edges uab and vcd to either M,eq or Mpe, according to their colour.
The resulting matching covers more vertices than the matching M4 U My, a contradiction. This
proves (3.2.5).
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Next, we claim that there is no edge uvw € My, with
Hu, v, w} N Vel = 1. (3.2.6)

Assume otherwise. Then there is an edge uow € My with u € Wy and v, w € Vieq. As in
the proof of (3.2.5), we can cover u with a good edge uab such that a,b € V .. Moreover, since
vw is an active pair, and v has very large degree in JR, there is an edge vwc withc € V' .\ {a, b}
and cv € OR. Since vw € 98B, the edge vwc is good. So we can remove uvw from My, and
add edges uab and vwc to Mg U Mpe, thus covering three additional vertices. This gives the
desired contradiction to the choice of M;eq U Mpjye, and proves (3.2.6).

Putting and together, we know that for every edge uvw € My, we have u, v, w €
Vied- We can assume that My, contains at least two hyperedges, as otherwise we can just forget
about My, and we are done. Consider any two edges u;v;wy, upv,wy € Mppye. As before, there
are vertices a,b € Vr’e d such that edges vy wya, v, wyb are good. Now, if there is a red edge ujuzc
with ¢ € Vr/ed and u;c € IR then we can remove edges u;v;wy, u2v;w, and add the red edge uqu;c
to Mieq and edges vywia, vawab to Mieq U Mppe, according to their colour, contradicting the
choice of Mieq U Mpue. Therefore, for any choice of u;v;wy, upvowy € Mppye, we have that

all edges ujuyc with ¢ € Vr'ed and u;c € OR are blue. (3.2.7)

Moreover, if there is a blue edge uju,x with x € {v, wy, v2, wo} then uju, is an active pair.
In that case, we can calculate as before that an edge ujusc with ¢ € Vr’e d and u;c € OR exists,
and by (3.2.7), this edge is blue. The existence of the blue edge ujuzx implies that we can link
uyuzc to Mppe with a blue tight path. Thus, removing u;v;w; and u;v,w, from My, and adding
VIW1a, Vawab, uitse to Mieg U Mpwe (Where a, b are as above), we obtain a contradiction to the
choice of Meq U Mppe- So, for any choice of ujv;wy, upgvowy € Mypye, we have that

all edges ujusx with x € {vq, wy, vy, wy} are red. (3.2.8)

We can now dissolve the edges of Mpp,e. For this, separate each hyperedge uvw in Mpj,e
into an edge uv and a single vertex w. Let X be the set of all edges uv, and let Y be the set of
all vertices w obtained in this way. Note that every uv € X is an active pair in K, and therefore
forms a hyperedge uvw’ with all but at most 5t of the vertices w’ € Y. Moreover, all but at most
ot of these hyperedges uvw’ are such that uw’ € dR, because of the large degree u has in OR.
Now we can greedily match all but at most 26t edges uv in X with vertices w’ in Y such that for
every match uvw’ we have that uow’ is an edge of K and uw € JR.

In K, this corresponds to a matching M/, covering all but at most 65t vertices of V(Mpiye)-
By (3.2.8), all hyperedges of M!_, are red. Furthermore, since we ensured that every hyperedge
in M/_, contains a pair uw’ that forms an edge of 9R, we know that M,.q and M/_, belong to the
same red component of K. In other words, M;eq U M; ed and Ml;lue are the two monochromatic
connected matchings we had to find. m]

3.3 Hypergraph regularity

In this section we introduce the regularity lemma for 3-uniform hypergraphs and state an embed-
ding result from [HLP"09]].
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Graph regularity. Let G be a graph and let X, Y C V(G) be disjoint. The density of (X, Y) is
de(X,Y) = eggﬁﬁ) where eg(X, Y) denotes the number of edges of G between X and Y.

The bipartite graph G on the partition classes X and Y is called (d, ¢)-regular, if |dg(X’, Y')—d| <
¢ holds for all X’ C X and Y’ C Y of size |X’| > ¢|X]| and |Y’| > ¢|Y|. If d = dg(X, Y) we say that

G is e-regular.

Hypergraph regularity. Let H be a 3-uniform hypergraph. Let P = P2 U P13 U P?® with
V(P) c V(H) be a tripartite graph which we also refer to as triad. By 7 (P) denote the 3-uniform
hypergraph on V(P) whose edges are the triangles of P. The density of H with respect to P is

|H N T(P)

W(P) = =7 )

Similarly, for a tuple Q= (Q1, ..., Q) of subgraphs of P, we define the density of H with respect

to Q as
[H N Uiegr) 7(Q)
| Uier 7 (O0I

Let @, > 0 and let r > 0 be an integer. We say that H is («, 8, r)-regular with respect to P if,
for every r-tuple Q = (Qs, . . ., Or) of subgraphs of P satisfying | ;e 7(Qi)| > 8|7 (P)|, we have
|d7{(é) —a| < 4. If a = dgy(P) we say that H is (3, r)-regular with respect to P, and in the same
situation, we say P is (8, r)-regular (with respect to H).

If in addition the bipartite graphs P'4, P'*, P? of an (a, §, r)-regular P = P12 U P® U P? are
(1/¢, €)-regular then we say that the pair (H, P) is an («, 8, €, r, €)-regular complex.

Finally, a partition of V into V; U V; U --- UV, is called an equipartition if |Vy| < t and |V;| =
Vol = =1[Vi|.

We state the regularity lemma for 3-uniform hypergraphs [FR02] as presented in [RRS06]].

du(@Q) =

Theorem 3.3.1 (Regularity Lemma for 3-uniform Hypergraphs). For all §,ty > 0, all integer-
valued functionsr = r(t,{), and all decreasing sequences e({) > 0 there exist constants Ty, Ly and Ny
such that every 3-uniform hypergraph H with at least Ny vertices admits a vertex equipartition

VH)=V,uVU---UV, withty <t < Ty,
and, for each pairi,j, 1 < i< j < t, an edge partition of the complete bipartite graph

K(V,, V) = U P/ with1< €< L
kele]

such that

1. all graphs P]i(j are (1/¢, e(€))-regular.

2. H is (8, r)-regular with respect to all but at most 5¢3t* tripartite graphs PH U P;’j u Py,

Note that the same partitions satisfy the conclusions of Theorem for the complement
of H as well. Further, as noted in [HEP"09] by choosing a random index k;i; € [¢] for each pair
(Vi, V;) Markov’s inequality yields that with positive probability there are less than 25t chosen
triads which fail to be (8, r)-regular. Hence one obtains the following.
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Observation 3.3.2. In the partition produced by Theorem|3.3.1there is a family P of bipartite graphs
P — P]g with vertex classes Vi, Vj, where 1 < i < j < t, such that H is (8, r)-regular with respect to

1y

all but at most 25t> tripartite graphs P U P U PV,

We end this section with a result from [PRRS06] and [HLP™09] which allows embedding tight
paths in regular complexes. In the following, an S-avoiding tight path is one which does not con-
tain any vertex from S. (Note that although Lemma 4.6 from [HLP*09] is stated slightly differently,
its proof actually yields the version below.)

Lemma 3.3.3 ((HLP"09], Lemma 4.6). For each @ € (0, 1) there exist 6; > 0 and sequences r({),
e(£), and ny(£), for € € N, with the following property.

For each t € N, and each § < 6y, if (H, P) is a (dg((P), 3, £, r(€), (£))-complex with d¢((P) > o and
all of the three vertex classes of P have the same size n > ny((), then there is a subgraph Py on at most
27Vén? /¢ edges of P such that, for all ordered pairs of disjoint edges (e, f) € (P\ Py) X (P\ Py) there is
m = m(e, f) € [3] such that the following holds. For every S C V(H)\ (e U f) with |S| < n/(log n)?,
and for each € with3 < € < (1— 28%)n, there is an S-avoiding tight path frome to f of length 3¢ + m
inH.

3.4 Proof of Theorem

We follow a procedure suggested by Luczak in [Euc99] for graphs and used for tight cycles in
3-uniform hypergraphs in [HLP™09].

Proof of Theorem[3.1.1, For given n > 0 we apply Lemma with y = (1/580)° to obtain t,.
With foresight apply Lemma [3.3.3 with @ = 1/2 to obtain d;, and sequences r(£), £(£), and n;(¢).

Finally, apply Theoremwith to, r(t, £) = r(€), e(€), n1(£) and § = min{5,/2,y/58, (1/16)*} to
obtain constants Ty, Ly and Nj.

Given a two-colouring K, = Hieq U Hplye of the 3-uniform complete hypergraph K, onn > N
vertices. Apply Theorem 3.3.1] with the chosen constants to Heq to obtain partitions

V(%K) =V UViu---UV, and K(V,Vj) = UPij,1Si<j$t
=1

with ty <t < Ty, and ¢ < Ly which satisfy the properties detailed in Theorem The partitions
satisfy the same properties for Hyyye as it is the complement hypergraph of H;q. 3
Observation [3.3.2] then yields a family of (1/¢, ¢)-regular bipartite graphs PV = P_ , one for
ij

each pair (V;,V)), 1 <i < j < t, such that H,q (and thus also Hyye) is (5, r)-regular with respect
to all but at most 28t° tripartite graphs PV = PV U P U P/k, We use this family to construct the
reduced hypergraph R which has the vertex set [t] and the edge set consisting of all triples ijk such
that PV is (8, r)-regular. Further, colour the edge ijk red if day, d(Pijk) > 1/2 and blue otherwise.
Then we have a two-colouring of R = Ryed U Rpiye, Where R has at least (5) — 26¢° > (1 - y)(;)
edges.

Since t > t;) Lemma yields two disjoint monochromatic connected matchings M4 and
Myue Which cover all but at most 290yét < nt/2 vertices of R and in what follows we will turn
these connected matchings into disjoint monochromatic tight cycles in %,.

We start by choosing a red pseudo-path Q,eq = (e1, . .., €y) C Rreq Which contains the match-
ing Meq. This is possible since M;q is a connected matching, and so, consecutive matching
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edges gs, gs+1 € Myeq are connected by a red pseudo-path of length at most (;) The concatena-
tion of these paths then forms a Q.4 as desired. In the same manner, choose a blue pseudo-path
Qplue = (], ..., e;) C Rplue containing the matching Mp,e. Note that although M,.q and Mppe
are disjoint, the two paths Q.4 and @y}, may have vertices in common.

The general idea is to find long tight cycles in different colours is as follows. For each edge
{i,j,k} = e € Qreq let P* denote the triad PV U P* U P/¥ on the partition classes V; U V; U Vj
and recall that P° is (6, r)-regular (with respect to Heq). Lemma guarantees that one can
find long tight paths in the complex (Hieq, P°) for each matching edge e; € Meq C Qreq Which
exhaust almost all vertices of V; U V; U Vj.. Using the connectedness of Q.q and Lemma we
then want to connect these long tight paths by short tight paths, hence obtain a tight cycle Cieq
which covers almost all vertices of K, spanned by M;.q. We wish to do the same with Qp,e to
obtain a tight cycle Cyye Which covers almost all vertices of K, spanned by My,e. The two cycles
Creq and Cppye then exhaust most of the vertices of K,.

To keep the two cycles disjoint, however, the strategy will be slightly less straightforward.
First, we will find two disjoint short tight cycles C’ , and C}, . in K, visiting all triads P° corre-
sponding to edges e; € M,.q and P corresponding to e; € Myy,e, respectively. Then, for each
edge e; € M,ed, and each edge e; € Mype, we will replace parts of the cycles C’ , and of C/, .
i.e., paths corresponding to e; and e; by long tight paths as mentioned above. We now give the
details of this idea.

For each s = 1,...,p, apply Lemma to the complex (Hieq, P°) to obtain the subgraph
P; C P° of “prohibited” edges and let

By = (P°\ Py) N (P \ Bg™)

which is a bipartite graph on the partition classes V; U V; where {i, j} = e; N es4;. We choose mu-
tually distinct edges f;, gs € Bs, s € [p— 1] which is possible due to the restriction on |Pj| provided
n is sufficiently large. Using Lemma we then find a short tight cycle C’ , by concatenating
disjoint paths each of length at most 12 between f; and f,, f; and f3 ... between f, 1 and g,
and backwards between ¢,-; and g, > ... and finally between g; and f;. Note that the lemma
allows the paths to be S-avoiding for any vertex set S of size |S| < n’/(logn’)? where n’ is the size
of the partition classes. Therefore, to guarantee the disjointness of the paths, we simply choose S
to be the vertices of the paths constructed so far which has size at most 24p, i.e., independent of
n’ > n/2t. In the same way choose a short tight cycle C/| _disjoint from C’_, by including V(C’ )
to S in the applications of Lemma [3.3.3]

Let $" = V(C/,;) U V(C},,.) which satisfies |S'| < n’/(log n’)?. It is easy to see that for each
es € Meq there are two non-prohibited edges in P°, connected by a subpath of C’ , which is
entirely contained in (Hed, P*). Hence, by Lemma we can replace this short path by an S-
avoiding path in (Heq, P*) which covers all but at most 46/4n’ vertices and having any desired
parity. Doing this for all e; € M.q and all e, € My, and noting that n’ < n/t we obtain two
monochromatic disjoint tight cycles which cover all but at most

(ered| + |Mblue|)451/4n,+(|V(R)| - |Mred| + |Mblue|)n, + |Vb|

1 1
< -nn+-npn+t<nn
4’7 2’7 n

vertices of K, and have any desired parity. This finishes the proof of the theorem. ]
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Chapter 4

Partitioning k-uniform hypergraphs into
few monochromatic tight-cycles

Abstract

We prove that for every k,r € N, the vertices of every r-edge-coloured complete k-uniform hy-
pergraph can be partitioned into a bounded number (independent of the size of the hypergraph)
of monochromatic tight cycles, confirming a conjecture of Gyarfas. We further prove that for
every r,p € N, the vertices of every r-edge-coloured complete graph can be partitioned into a
bounded number of p-th powers of cycles, settling a problem of Elekes, D. Soukup, L. Soukup and
Szentmiklossy. In fact we prove a common generalisation of both theorems which further extends
these results to all host hypergraphs with bounded independence number. This is joint work with
Jan Corsten, Nora Frankl, Alexey Pokrovskiy and Jozef Skokan.

4.1 Introduction

In [EGP91]], Erdés, Gyarfas and Pyber proved that the number of monochromatic cycles required
to partition the vertices of every r-edge-coloured complete graph on n vertices does not depend
on n. Similar problems have been considered for powers of cycles. Given a graph H and a natural
number p, the p-th power of H is the graph obtained from H by putting an edge between any two
vertices whose distance is at most p. Grinshpun and Sarkézy [[GS16] proved that the vertices of
every 2-edge-coloured complete graph can be partitioned into at most 2°?1°6? monochromatic p-th
powers of cycles, where c is an absolute constant. They conjectured that a much smaller number
of pieces should suffice. For more than two colours not much is known. Elekes, D. Soukup, L.
Soukup and Szentmikléssy [ESSS17]] proved a similar result using r colours when the host graph
is infinite and ask whether it is true for finite graphs.

Problem 4.1.1 ([ESSS17, Problem 6.4]. Prove that for everyr,p € N, there is some c = c(r, p) such
that the vertices of every r-edge-coloured complete graph can be partitioned into c monochromatic
p-th powers of cycles.

We prove a substantial generalisation of Problem as a corollary of our main result (see

Corollary [4.1.4).

IThe problem is phrased differently in [ESSS17] but this version is stronger, as Elekes et. al. explain below the
problem.
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In this chapter we consider similar questions for k-uniform hypergraphs. The k-uniform loose
cycle of length m is the k-uniform hypergraph consisting of m(k — 1) cyclically ordered vertices
and m edges, each consisting of k consecutive vertices, such that consecutive edges intersect in
exactly one vertex. The k-uniform tight cycle of length m is the k-uniform hypergraph consisting
of m cyclically ordered vertices in which any k consecutive vertices form an edge. Loose and tight
paths are defined in a similar way.

Such questions were first studied by Gyarfas and Sarkozy [[GS13] who showed that for every
k,r € N, there is some ¢ = c(k,r) so that the vertices of every r-edge-coloured complete k-
uniform hypergraph can be partitioned into at most c loose cycles. Later, Sarkozy [Sar14] showed
that c(k, r) can be be chosen to be 50rk log(rk).

In [Gyal6], Gyarfas conjectured that a similar result can be obtained for tight cycles.

Conjecture 4.1.2 ([Gyal6])). Foreveryk,r € N, there is some c = c(k, r) so that the vertices of every
r-edge-coloured complete k-uniform hypergraph can be partitioned into at most ¢ monochromatic
tight cycles.

We shall prove the following generalisation of Conjecture allowing the host-graph to be
any k-uniform hypergraph with bounded independence number. A similar result for graphs was
obtained by Sarkozy [Sar11]], and for loose cycles in hypergraphs by Gyarfas and Sarkozy [[GS14].

Theorem 4.1.3. For every k,r,a € N, there is some ¢ = c(k,r, ) such that the vertices of every
r-edge-coloured k-uniform hypergraph G with a(G) < a can be partitioned into c monochromatic
tight cycles.

The p-th power of a k-uniform tight cycle of length m is the k-uniform hypergraph consisting
of m cyclically ordered vertices, so that any k + p — 1 consecutive vertices form a clique. An
immediate corollary of Theorem [4.1.3]is the following strengthening.

Corollary 4.1.4. Foreveryk,r,p,a € N, there is somec = c(k, r, p, @) such that the vertices of every
r-edge-coloured k-uniform hypergraph G with a(G) < a can be partitioned into c monochromatic
p-th powers of tight cycles.

Proof. Let f(k,r, a) be the smallest ¢ for which Theorem is true and let g(k, r, p, @) be the
smallest ¢ for which Corollary is true. We will show that g(k,r,p,a) < f(k,r, &), where
a = Rgi)l (k+p—-1,....,k+p—1,a+ 1) — 1. Suppose now we are given an r-edge-coloured k-
uniform hypergraph G with «(G) < a. Define a (k + p — 1)-graph H on the same vertex-set whose
edges are the monochromatic cliques of size k + p — 1 in G. By construction we have a(H) < a
and thus, by Theorem[4.1.3 there are f(k, r, @) monochromatic tight cycles partitioning V(H). To
conclude, note that a tight cycle in H naturally corresponds to a p-th power of a tight cycle in

G. O

4.2 Notation

In this section we will introduce some basic notation about hypergraphs. Fix a set of vertices V
of size n and a natural number k > 2 for the rest of this section.

Given a k-uniform hypergraph H® and a partition = {Vi,...,V;} of V we say that H® is
P-partite if |e N Vi| < 1 for every e € E(H®) and every i € [t]. H is s-partite if it is P-partite
for some partition P of V with s parts. We denote by K%*)(P) the complete P-partite k-uniform
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hypergraph. Furthermore, given some 2 < j < k — 1 and a j-uniform hypergraph H, we define
K®(HY) to be the set of all k-cliques in HY, seen as a k-uniform hypergraph on V.

Given a k-uniform hypergraph H®) and ¢ < k distinct vertices vy, . . ., v; € V(H®), we denote
by Lkyw(v1,...,ve) the (k — £)-graph on V(H®) \ {vy, ..., v} with edges {e € (V(Ii(;))) ceVU
{v1, ..., 0} € EH®)}. If, in addition, disjoint sets V4, ..., V, ¢ V(H®)\ {vy, ..., v} are given,
we denote by Lk (vy, . .., ves Vi, . . o, Vk—p) the (k—€)-partite (k—¢)-graph with parts V3, .. ., Vi,
and edges {e € K*O(Vy,...,Vip) : e U {oy,...,v;} € EH®)}. If H® is understood, we drop
the subscript.

4.3 The proof

The proof idea follows an absorption method introduced in [EGP91]]. For complete k-uniform
hypergraphs as hosts, the proof can be summarised as follows. First, we find a special mono-
chromatic k-uniform hypergraph H, with the following special property. There is some B C
V(Hy), such that for every B’ C B there is a tight cycle in Hy with vertices V(Hy) \ B’. This is
explained in section We then greedily remove vertex-disjoint monochromatic cycles until
the set of leftover vertices R is very small in comparison to B.

Finally, we show that the leftover vertices can be absorbed by Hy. More precisely, we show
that there are constantly many vertex-disjoint tight cycles with vertices in R U B which cover all
of R. This is the main difficulty of the paper and will be done in section Here, we will need
basic tools from hypergraph regularity (see section to build tight cycles in well behaved
sub-hypergraphs by concatenation of short tight paths.

In order to prove the main theorem for k-uniform hypergraphs with bounded independence
number as hosts, we need to iterate this process a few times. Here the main difficulty is to show
that this iteration stops after constantly many steps. This will be done in section [4.3.4]

4.3.1 Finding short paths

The goal of this section is to prove the following lemma, which allows us to find in any dense k-
uniform hypergraph G, a dense sub-k-uniform hypergraph H C G in which any two non-isolated
(k — 1)-sets are connected by a short tight path of a given prescribed length. For this, we need to
use basic tools from hypergraph regularity, but the reader may use Lemma [4.3.1)as a black box if
she would like to avoid it.

Before stating the lemma, we need to introduce some notation. Fix some k > 2 and a par-
tition P = {V4,..., Vk}. We call a tight path in K)(P) positively oriented if its vertex sequence
(41, . .., up) travels through ¥ in cyclic order, i.e. there is some j € [k] such that u; € V; for
every i € [m], where we identify k + 1 with 1. In this subsection, we will only consider positively
oriented tight cycles. In particular, given some e € K&~)(9), the ordering of e in a tight path
starting at e is uniquely determined.

Lemma 4.3.1. For everyd > 0, there are constants § = 6(d) > 0 and 0 = a(d) > 0, such that the
following is true for every partition P = {Vi, ..., Vk} and every P-partite k-uniform hypergraph G
of density at least d. There is a P -partite sub-k-uniform hypergraph H C G of density at least § such
that for every setS = S;U...US, withS; € Vi and |Si| < o |Vi| and any twoe, f € K*~D(P) which
are disjoint from S and have positive co-degree, there is a positively oriented tight path of length
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t e {k+2,...,2k + 1} in H which starts at e, ends at f and avoids S.E]

Note that the length of the tight path in Lemma is uniquely determined by the types
of e and f. The type of e € K&~V(9P), denoted by tp (e), is the unique index i € [k] such that
eNV; = 0. Given two (k — 1)-sets e, f € K&~D(P), the type of (e, f) is given by tp (e, f) :=
tp (f) — tp (e) (mod k). It is easy to see that every tight path in K¥)(?) which starts at e and ends
at f has length ¢k +tp (e, f) for some £ > 0. In particular, in lemma[4.3.1) we have £ = k+tp (e, f)
iftp (e, f) > 2 and ¢ = 2k + tp (e, f) otherwise.

4.3.1.1 Hypergraph regularity

We will now introduce the basic concepts of hypergraph regularity in order to state a simple con-
sequence of the strong hypergraph regularity lemma which guarantees a dense regular complex
in every large enough k-uniform hypergraph.

For technical reasons, we want to see a 1-uniform hypergraph on some vertex set V as a
partition of V in what follows. We call H®) = (HW, ..., H®) a k-complex if HY is a j-uniform
hypergraph for every j € [k] and HY underlies HU*V, i.e. H*Y) ¢ K®(HD) for every j € [k —1].
Note that, in particular, HY) is HV-partite for every j € [k]. We call H® s-partite if H!) consists
of s parts.

Now, given some j-uniform hypergraph H?) and some underlying (j — 1)-uniform hypergraph
HUY, we define the density of HY) with respect to HU=V by

|H(/') N KU)(H(J'—l))|
|KO)(H(/‘—1))|

d (H<j>|Hu—1>) _

We are now ready to define regularity.

Definition 4.3.2. o Letr,j € Nwithj > 2;¢d; > 0, and HY be a Jj-partite j-uniform
hypergraph and HV=" be an underlying (j-partite) (j — 1)-uniform hypergraph. We call H?)
(¢, d;, r)-regular with respect to HU™V if for all Q?_l), ..., 0Y™ ¢ E(HYY), we have

| &x© (fo‘”) > E‘KO) (HU—D)‘ = [d|HY| J o/ |-dj| <.

i€[r] i€[r]

For short, we say (e, , r)-regular for (¢, d (H ©) |H (7_1)) ,r)-regular, and (e, d)-regular for (¢, d, 1)-

regular.

« Let j,s € Nwiths > j > 2,¢,d; > 0, and HY) be an s-partite j-uniform hypergraph and
HU=Y be an underlying (s-partite) (j — 1)-uniform hypergraph. We call HY) (e, dj)-regular
with respect to HU™V if HO[V, .. ., Vj] is (¢, d)-regular with respect to HU™V[V,, ..., V; ] for
all1 <ij <...<1i; <s, where {Vi,...,V;} is the vertex partition of V(HY).

19+

e Letk,r € N, ¢, ¢,dy,...,d > 0, and H® = (Hi, ..., Hy) be a k-partite k-complex. We
call H® (da, . . ., dk, &, €, r)-regular, if H 0) is (¢, dj)-regular with respect to H U-1) for every
j=2,...,k—1and H® ig (&k, dg, r)-regular with respect to H&D,

“More precisely, £ = k + tp (e, f) if tp (e, f) > 2 and £ = 2k + tp (e, f) otherwise.
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The following theorem is a direct consequence of the strong hypergraph regularity as stated
in [RS07] (with the exception that we allow for an initial partition of not necessarily equal sizes).

Theorem 4.3.3. For all integers k > 2, constants ¢ > 0, and functions € : (0,1) — (0,1) and
r: (0,1) — N, there exists some § = &(k, ¢, e, r) > 0 such that the following is true. For every
partition P = {Vi,...,Vi} of some set V and every P-partite k-uniform hypergraph G, there
are sets Uy C V; with |Uj| > & |Vi| for everyi € [k] and constants dy, ...,dx > & for which there
exists some (dy, . . ., dk, €(d), e, r(d))-regular k-complex H® | so that H®) = G(k)[Ul, ..., Ux] and
HY =A{Uy,...,U}.

We will use the following special case of the extension lemma in [CFKO09, Lemma 5] to find
short tight paths between almost any two (k —1)-sets in a regular complex. Fix a (dy, . . ., d, €, €)-
regular complex H® = (P, H®, .. .,H(k)), where P = {V1,...,Vi}. Let Hi(k_l) c H*Y denote
the edges of type i and note that the dense counting lemma for complexes [[CFKO09, Lemma 6]
implies that, for all iy € [k],

(k=1) 1 5
)Hio =azo| g [] m.
j=2 ie[k\io

Given some f > 0, we call a pair (e, f) € Hi(lk_l) X Hi(zk_l) B-typical for H® if the number of
tight paths of length £ := k + tp (i1, 1;) in H®) which start at e and end at f is

K ()=2(c)
a=p| |7 ] ml
j=2

i€{iy,....i}
where {iy, ..., 12} is understood in cyclic ordering.
Lemma 4.3.4. Letk,r,ng € N, f,dy,...,dk, & & > 0 and suppose that
1/ng < 1/r,e < min{eg, ds, ..., dx_1} < & < f,dg, 1/k.

Then the following is true for all positive integers n > ny, for all indices i1,i, € [k] and every

(da, . . ., dg, &, €, r)-regular complex HE = (H(l), e H(k)) with |Vi| > ng for alli € [k], where
HY = {V,,...,Vi}. All but at most }Hi(lk—l)
HE),

Combining Theorem and Lemma gives Lemma[4.3.1]

Proof-sketch of lemma Apply Theorem with suitable constants and delete all e € H*~V
of small co-degree. Let e € Hi(lk_l) and f € Hi(zk_1 for some iy, i, € [k] and define

A
12

pairs (e, f) € Hi(lk_l) XHi(Zk_l) are B-typical for

X = {g(k_l) eH Y eu g(k_l) € H(k)} and

i+1
Y = {g(k_l) eHM D fughhe H(k)} .
LetX c X and 1?~C Y be the sets of all those edges in X and Y avoiding S. By Lemma at least
one pair in X X Y must be typical and by a counting argument not all of the promised paths can

touch S. O
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4.3.2 Absorption Method

The absorption method was introduced in [EGP91]] and has been successfully applied to answer
several questions involving partitions of graphs and hypergraphs. A good reference can be found
in [Zhal6], where Zhao surveys methods that helped to develop Dirac-type problems for hyper-
graphs. In what follows we present a suitable generalisation for tight cycles of the absorbing
structure introduced in [EGP91]].

Definition 4.3.5. Let H be an edge-coloured hypergraph and A, B ¢ V(H) disjoint subsets. A
is called an absorber for B if there is a monochromatic tight cycle with vertices A U B’ for every
B’ C B.

Lemma 4.3.6. For everyk,r,a € N, there is some f = B(k,r,a) > 0 such that the following is true
for every k-uniform hypergraph H with a(H) < «a. In every r-colouring of E(H) there are disjoint
sets A, B C V(H) with |B| > B|V(H)| such that A absorbs B.

The following hypergraph (see Figure will function as our absorber. A very similar hy-
pergraph was used by Gyarfas and Sarkozy to absorb loose cycles [GS13,GS14]).

Definition 4.3.7. The (k-uniform) crown of order t, T(k), is a tight cycle with n = t(k —1) vertices
Vo, - - -» Un—1 (the base) and additional vertices uy, . .., u;—1 (the rim). Furthermore, for each i =
0,...,t—1, we add the k edges {u;, V(k=1)itjs + + +» v(k_l)i+j+k_2},j =0,...,k—1.

Figure 4.1: The 3-uniform crown of order 6. White vertices are the base of the crown, where the
gray edges form the required tight cycle on the base vertices. Black vertices are the rim of Té3).

It is easy to see that the base of a crown is an absorber for the rim. To prove Lemma [4.3.6] we
therefore only need to show that we can always find monochromatic crowns of linear size. This
is a consequence of the following theorem of Conlon, Fox and Sudakov [[CES09]].

Theorem 4.3.8. For every r,k,A € N, there is some C = C(r,k,A) > 0 so that the following is

true for all k-graphs Hy, . . ., H, with at most n vertices and maximum degree at most A, and every
N > Cn. In every edge-colouring ofKJ(\I;) with colours cy, . . ., ¢, there is some i € [r] for which there

is a c;-monochromatic copy of H;.
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Proof of Lemma(4.3.6. Suppose k, r, @ and H are given as in the theorem and that E(H) is coloured
with r colours. Let n = |V(H)|, A := max {Zk, (kfl)} and ¢ = 1/C, where C = C(r+ 1, k, A) is given
by Theorem Consider now the (r + 1)-colouring of the edges of Kﬁ,k) in which every edge in

E(H) receives the same colour as in H and every other edge receives colour r + 1. Let H,; = K((Xli)l

and H; = TC(,’? for all i € [t], and note that A(H;) < A for alli € [r + 1]. By choice of A, there is no
monochromatic H,;; in colour r+1 and hence, by choice of c, there is a monochromatic copy of
H; for somei € [r]. O

4.3.3 Absorption Lemma

In this section we prove a suitable absorption lemma for our approach.

Lemma 4.3.9. For everye > 0 and k,r € N, there is somey = y(k,r,¢) > 0 and some ¢ = c(k, 1, €)
such that the following is true. Let H be a k-partite k-uniform hypergraph with parts By, . . ., Bx such
that |By| > ... > |Bx—1| = |Bkl|/y and | Lk(v; By, ..., Bg_1)| > €|By|- - - |Bk-1| for every v € By.
Then, in every r-colouring of E(H), there are ¢ vertex-disjoint tight cycles covering By.

In the proof, we will need the following simple but slightly technical lemma.

Lemma 4.3.10. For every ¢ > 0 there is some § = §(¢) > 0 and some C = C(¢) > 0 such that the
following is true for every m € N. Let X be set of size m and F C 2% be a family of subsets such that
|F| > em for every F € . Then there is some G C F of size |G| < C and a partition P of F \ G
into sets of size 4 such that |(\ B| > dm for every B € P.

We will prove Lemma [4.3.10| with §(e) = £*/2° and C(e) = 8/¢? + 2/e.

Proof. Define a graph G on ¥ by {F, F,} € E(G) if and only if |F; N F,| > (¢/2)?m. We claim that
a(G) < 2/e. Suppose for contradiction that there is an independent set I of size 2/¢ + 1. Then we
have |Fy \ Upep () Fl = em/2 for every Fy € I and hence | F| > m, a contradiction. Hence
we find a matching #; of all but at most 2/¢ vertices. Let G; = ¥ \ V(#;) and note that ; is a
partition of ¥ \ G into sets of size 2. Let 1 = {F; N F, : {F}, F,} € P1} and iterate the process
once more. O

Proof of Lemma(4.3.9 Tt suffices to prove the lemma for r = 1. Indeed, for each v € By, delete
all edges containing v which are not in its majority colour and apply the one-colour result (with
¢ = ¢/r) for each ‘colour class’.

Fixe > 0,k > 2 and a k-partite k-uniform hypergraph with parts By, . . ., By as in the statement
of the lemma. Choose constants y, d;, 92,93 > 0 sothat 0 < y < §35 < §, < §; < €. We begin
with a simple but important observation.

Observation 4.3.11. Letvy, ..., v; € By be distinct vertices and C be a tight cycle in the hypergraph
K&V (By,...,Bi_1) with vertex-sequence (U1 1, ..., U k—1»-- -5 U1, - -, Urk—1). Denote by es; the
edge in C starting at us; and suppose that

(i) esi € Lk(vg; By, ...,Bk_1) for everys € [t] and everyi € [k — 1] and
(ii) es1 € Lk(vs—1; By, ..., Bk—1) for every s € [t] (here vy := v;).
Then, (U1, Ug 1y -« s Ulf—1s -« -» U Up1s - - - Up k—1) IS the vertex-sequence of a tight cycle in H.

We will proceed in three steps.

35



Step 1 (Divide into blocks). By Lemma there is some C = C(¢) € N and a partition
P of all but C (k — 1)-graphs from { Lk(v; By, ...,Bk-1) : v € By} into blocks of size 4 with
e(H) := | Ngew E(H)| = 61|B1]| - - - |Bk—1]| for every H € P. Remove the C leftover vertices from
By.

Step 2 (Cover blocks by paths). Think of every block H now as a graph with edges E(H) :=
Npex E(H). By Lemma [4.3.1] for each H € P, there is a subgraph H’ C H such that e(H’) >
02 |B1| - - - |Bg-1| with the same property as in Lemma By deleting all the edges H \ H’
we may assume that H itself has this property. Define an auxiliary graph G with V(G) = P
and {H;, H,} € E(G) if and only if e(H; N H,) > 83|By| - - - |Bx—1|. Similarly as in the proof of
Lemma we conclude that a(G) < 2/8,, and hence V(G) can be covered by 2/§; vertex-
disjoint paths (by Pdsa’s theore.

Figure 4.2: Finding cycles in a path of blocks.

Step 3 (Lift to tight cycles). We will lift each of these paths of blocks to a tight cycle in the hy-
pergraph K*=U(By,...,Br_;) of the desired form. Let P = (Hi,...,H,;) be one of the paths.
Refer to Figure for a helpful picture of the following proof. Choose disjoint edges ey =

{xio), .. "xl(co—)1} € E(H,) and e; = {xgt), .. .,x,(:_)l} € E(H;). For each s € [t — 1], further choose

two edges e; = {xis), W } € E(H;) N E(Hs41) and e, = {ygs), e y](f_)l} € E(H;) N E(Hsi1)

k-1
) _ (0 (s)

so that all chosen edges are pairwise disjoint. We identify x,” =y, and x;” = yi(s) for every

i€[k-1],and ey = ej and e; = e;. Assume without loss of generality, that xi(s) € B; for every
ielk—1]andalls=0,...,t.
By construction, there is for every s € [t] a tight path P; ¢ H; of length 2k — 3 which starts at

(s=1)
2

and (x; 7,..., x,(:__ll) ), ends at (xgs), ey x,(:_)z) and (internally) avoids all previously used vertices.

Similarly, there is for every s € [t] a tight path Q; € H; of length 2k — 3 which starts at and
(ygs), cees y](:_)z), ends at (ygs_l), cees y,(:__ll)) and (internally) avoids all previously used vertices. It is

now easy to check that the tight cycle in K¥~! (By, ..., Br_1) with edge sequence
66 = eOaplaelsP29eZ9' . '9Pt9et = e;aQta'~ .,e1,Q1,66 =€y

has the desired properties to apply observation 4.3.11

3Pésa’s theorem actually allows cycles, but for technical reasons we need to work with paths.
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4.3.4 Proof of Theorem [4.1.3

Fix a,r,n € N and a k-uniform hypergraph G with a(G) < a. Choose constants 0 < f,y,¢ <
max{a,r,k}~! such that y = y(k,r,e) works for Lemma and f = B(k,r,a) works for
Lemma The proof proceeds in « steps, where the initial step does k — 1 steps at once.

Step 1, ..., k-1. By Lemma[4.3.6] there is some B C [n] of size fn with an absorber Ay_; C [n].
Partition B into k — 1 sets B(lk_l) B(k Y of equal sizes. Remove monochromatic tight cycles of
maximal lengths from [n]\ (Ax_1 UB) unt11 the set Ri._; of uncovered vertices in [n]\ (AU B) satisfies
|Rk—1| < y|B§k_1)|. This is possible, since the Ramsey number of the tight cycle is linear (see sec-
tion(4.3.2{for more details). Let R, C Ri- be the set of vertices v with |Lk(v; ng_l), . (k 1))| <
£|B( _1)| |B(k_1)| and let RY | = Rg-1 \ R _,. By Lemma 4.3.9 we can find ¢, vertex- dls]omt

tight cycles in B(k Yy B(k 1) U R" | covering R/ . Remove them and let Bi(k) C Bi(k_l), ielk-1],
be the set of leftover Vertlces

Stepj (j = k,...,a). Suppose we have built, during the previous j — 1 steps, disjoint sets
B?), .. B(J_)l,R’ , and absorbers Ay_y, ..., A;_;. By lemma |4.3.6|there is some BJ(’) C R;._l of size
AIR]| W1th an absorber Aj C Ri_,. Remove monochromatic tight cycles of maximal lengths from

R;._l \(4;U B](.j)) until the set R; of uncovered vertices in R;._l \(AjU B]g)) satisfies |R;| < le](.j)l. Let
R;. C R; be the set of vertices v with | Lk(v; Bg), .. B(’) )| <€

-1

. <

tr—1 < jand let R;.’ = R; \ R;.. By ((i) applications of) Lemma [4.3.9 we can find c; vertex-disjoint

cycles in B(lj) U...U BJ(.j) U R}' covering R;.’. Remove them and let ngﬂ) C Bi(j) ,1 € [j], be the set of
leftover vertices.

In the end we are left with disjoint sets B; := B&aﬂ) By := BU™ B, = R!, and corre-
sponding absorbers Ay_1, ..., Ay (Ax—1 absorbs B(laH) B(aﬂ)) All other vertices are covered
by constantly many cycles.

We will show now that R’

"+1 = 0 finishing the proof. In order to so, we assume the contrary

and find an independent set of size « + 1. Note that |Bj| >(1-y) ‘B](i)| forevery1 < j <i< aand

hence
i-1) (i-1)
| Lk (v:By,.....B;_,)| < ¢|B! ‘ B~
—(k—

<e(1-y) PV |By|- - |By |

< 2 |Bil| T |Bik—1|
foreveryie {k,...,a+1},1<1i; < ... <i;-; <iandv € B;. By the following lemma, there is
an independent set of size & + 1, a contradiction. m]

Lemma 4.3.12. Forallk,r € N there is some ¢ = e(k,r) > 0 such that the following is true for every
k-uniform hypergraph H and all non-empty, disjoint sets By, . . ., B, C V(H). If| Lk(v; By, . . ., Bi,H)l
is at most£|Bil| e |Bik71|for allie{k,...,r},1<i; <...<ipq <iandv € Bj, then there is an
independent transversal, i.e. an independent set {vy, ..., v, } withv; € B; for alli € [r].

We will prove the lemma for e(k, r) = p= k=17,
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Proof. Let § = r~®=1) and ¢ = §¥~1. Choose v, € B, arbitrarily and assume now that v,, ..

are chosen for some j € [r — 1]. Givens € {2,...,k—1}andi= (i,...,ify) with1 <i; < ...

Is1 <ig=j <igp1 <...<lig <r, define

Ej(s, i) := {u € Bj: | Lk (Uik, ce Vi W By, .,Bil)| > £/5k_s |B11| . e |B

}.

is—1
Furthermore, given i = (iy,...,ix) with j < iy < ... < iy < r, define

Ej(l, i) =N (Uik, ey Ui2§Bi1) .

] 'Uj+1
<

the neighbourhood of {v;,, ..., v; } in B;,. Note that, by choice of v,, ..., vj,1, we have ‘Ej(s, i)‘ <

5|Bj| for every s € {2,...,k—1} and

Ej(l, i)‘ < ¢k |Bj| = 5|Bj|. Since there are at most

(]Zj) < 1/6 choices for (s, i), we can choose some v; € B; \ [ I_Sj(s, i). Clearly, at the end of this

process, {v1, . .., v, } will be independent.
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