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HYPERGRAPH CYCLE PARTITIONS

The main focus of this thesis is the study of monochromatic cycle partitions in uniform hyper-
graphs.

The �rst part deals with Berge-cycles. Extending a result of Rado to hypergraphs, we prove
that for all r ,k ∈ N with k ≥ 2, the vertices of every r (k − 1)-edge-coloured countably in�nite
complete k-uniform hypergraph can be core-partitioned into at most r monochromatic Berge-
cycles of di�erent colours. We further describe a construction showing that this result is best
possible.

The second part deals with `-cycles. We show that for all `,k,n ∈ N with ` ≤ k/2 the follo-
wing hypergraph-variant of Lehel’s conjecture is true. Every 2-edge-colouring of the k-uniform
complete graph on n vertices has at most two disjoint monochromatic `-cycles in di�erent colours
that together cover all but a constant number of vertices, where the constant depends on k and
`. Furthermore, we can cover all vertices with at most 4 (3 if ` ≤ k/3) disjoint monochromatic
`-cycles.

The third part deals with tight cycles in 2-edge-colourings of complete 3-uniform hypergraphs.
We show that for every η > 0 there exists an integer n0 such that every 2-edge-colouring of the
3-uniform complete hypergraph on n ≥ n0 vertices contains two disjoint monochromatic tight
cycles of distinct colours that together cover all but at most ηn vertices.

Finally, the fourth part deals with tight cycles in a more general setting. We prove that for
every k, r ∈ N, the vertices of every r -edge-coloured complete k-uniform hypergraph can be
partitioned into a bounded number (independent of the size of the hypergraph) of monochromatic
tight cycles, con�rming a conjecture of Gyárfás. We further prove that for every r ,p ∈ N, the
vertices of every r -edge-coloured complete graph can be partitioned into a bounded number of
p-th powers of cycles, settling a problem of Elekes, D. Soukup, L. Soukup and Szentmiklóssy. In
fact we prove a common generalisation of both theorems which further extends these results to
all host hypergraphs with bounded independence number.

iii



iv



TESIS PARA OPTAR AL GRADO DE DOCTOR
EN CIENCIAS DE LA INGENIERÍA,
MENCIÓN MODELACIÓN MATEMÁTICA
POR: SEBASTIÁN FELIPE BUSTAMANTE FRANCO
FECHA: 2018
PROFESOR GUÍA: MAYA STEIN

HYPERGRAPH CYCLE PARTITIONS

El principal foco de esta tesis es el estudio de particiones monocromáticas por ciclos en hiper-
grafos uniformes.

La primera parte trata sobre Berge-cycles. Extendiendo un resultado de Rado a hipergrafos,
probamos que para todo r ,k ∈ N con k ≥ 2, los vértices de todo r (k − 1)-arista-coloreo del hiper-
grafo completo k-uniforme de tamaño in�nito numerable pueden ser core-particionados en a lo
más r Berge-cycles monocromáticos en colores diferentes. También describimos una construcción
mostrando que este resultado es ajustado.

La segunda parte trata sobre `-cycles. Mostramos que para todo `,k,n ∈ N con ` ≤ k/2
es cierta la siguiente variante para hipergrafos de la conjetura de Lehel. Todo 2-arista-coloreo
del hipergrafo completo k uniforme en n vértices tiene a lo más dos `-cycles monocromáticos
disjuntos en colores diferentes, que juntos cubren todos salvo a lo más un número constante de
vértices, donde la constante depende de k y `. Más aún, podemos cubrir todos los vértices con a
lo más 4 (3 si ` ≤ k/3) `-cycles monocromáticos disjuntos.

La tercera parte trata sobre tight cycles en 2-arista-coloreos de hipergrafos completos 3-uniformes.
Mostramos que para todo η > 0 existe un entero n0 tal que todo 2-arista-coloreo del hipergrafo
completo 3-uniforme en n ≥ n0 vértices contiene dos tight cycles monocromáticos disjuntos en
colores distintos que juntos cubren todos salvo a lo más ηn vértices.

Finalmente, la cuarta parte trata sobre tight cycles en una con�guración más general. Probamos
que para todo k, r ∈ N, los vértices de todo r -arista-coloreo de un hipergrafo k-uniforme pueden
ser particionados en un número acotado (independiente del tamaño del hipergrafo) de tight cy-
cles monocromáticos, con�rmando una conjetura de Gyárfás. También probamos que para todo
r ,p ∈ N, los vértices de todo r -arista-coloreo de un grafo completo pueden ser particionados en un
número acotado de potencias p-ésimas de ciclos, respondiendo un problema de Elekes, D. Soukup,
L. Soukup y Szentmiklóssy. De hecho probamos una generalización común a ambos teoremas, que
extiende estos resultados a todos los hipergrafos base con número de independencia acotado.
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Introduction

In the foundational paper “On a problem of formal logic”, Frank Ramsey [Ram30] laid the guiding
philosophy of what is now known as Ramsey Theory. To better understand the kind of ques-
tions that Ramsey Theory aims to answer, we start with the well-known Theorem on friends and
strangers: in any group of six people we can always �nd three of them which are either mutual
acquaintances or mutual strangers. This apparent coincidence does not hold if we consider only
�ve people, so the appearance of this pattern can be explained as a consequence of considering
su�ciently many people. Ramsey’s Theorem [Ram30] states that a monochromatic copy of the
complete graph Kn on n vertices is guaranteed to appear in any r -edge-colouring of the complete
graph Km, provided that m is su�ciently large in terms of n and r . The least integer m for which
Ramsey’s Theorem holds is known as the r -colour Ramsey number of Kn, denoted by Rr (Kn). In
the Theorem on friends and strangers we have two colours (acquaintances and strangers) so the
theorem states that R2(K3) = 6. The focus of classical Ramsey theory is to study Ramsey numbers
in more general settings.

Of particular interest for this dissertation is a paper of 1967, where Gerencsér and Gyár-
fás [GG67] study the Ramsey numbers of paths. They observed, as a side-product, that every
2-edge-colouring of a complete graph (of any size) contains two vertex-disjoint monochromatic
paths in di�erent colours covering all the vertices. This statement captures a di�erent pattern,
that is, the existence of a partition of the vertices of Kn into few monochromatic subgraphs of a
�xed kind, in this case paths, starting the area of monochromatic partitions as a branch of Ramsey
Theory. Here we understand few monochromatic paths as a number of paths not depending on n.

Observe that the partition into two monochromatic paths from the previous paragraph pro-
vides an upper bound for the Ramsey number of the path Pn on n vertices, namely, it guarantees
that R2(Pn) ≤ 2n. Even if the best possible upper bound is approximately 3n/2 (see [GG67]), we
can see that monochromatic partitioning can help us to understand classical Ramsey problems.
We will see that this relation also appears in the opposite direction, that is, results from classical
Ramsey problems can help �nding partitions into few monochromatic pieces.

In 1979, Lehel (see [Aye79]) replaced the paths in the observation from [GG67] with cycles, and
conjectured that for alln ∈ N and every 2-edge-colouring of the complete graphKn it is possible to
partition its vertices into two monochromatic cycles of di�erent colours. Here we consider single
vertices and edges as (degenerate) cycles as well. This statement, known as Lehel’s conjecture,
turned out to be much harder to solve than the path version of Gerencsér and Gyárfás in [GG67].
It was proved to be true for all n ∈ N by Bessy and Thomassé [BT10] more than 30 years later,
after posititive results for su�ciently large n in [All08, ŁRS98].

A natural extension is to consider r > 2 colours and ask if we can still partition the vertices of
any r -edge-coloured complete graph Kn with few (independent of n) monochromatic cycles. This
question was answered positively by Erdös, Gyárfás and Pyber [EGP91] in 1991, who proved that
25r 2 log r monochromatic cycles su�ce to partition the vertex set of every r -edge-coloured com-
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plete graph (this number was improved in [GRSS06]). Since then, this problem has been gener-
alised in many directions, gradually giving shape to the area of monochromatic partitions. The cy-
cles have been replaced by paths [Gyá89, Pok14], trees [HK96, FFGT12], k-regular graphs [SSS13],
cycle powers [Sár17] and bounded-degree graphs [GS16]. The host graph Kn has also been re-
placed, allowing sparser graphs, such as complete balanced bipartite graphs [Hax97, Pok17] and
multipartite graphs [SS15, LSS17], graphs with large minimum degree [BBG+14, DN17, Let15]
and Ore-type conditions [BS16], bounded independence number [BBG+14, Sár11] or few missing
edges [GJS97]. We can also allow for the host graph to be random (Erdős-Rényi model) and ask for
the analogous versions of the questions already mentioned (see [BD17, KMN+17, KMS18, LL18]).
Also, in�nite versions have been considered by replacing Kn with the complete graph with ver-
tex set N [Rad78] or with countably in�nite balanced bipartite graphs [Sou15]. The colouring
itself has been relaxed, by allowing r -local-colourings [CS16, LS17]. Monochromatic partitions
in hypergraphs have also been studied [GS13, Sár14, GS14, ESSS17, FFGT12]. In particular, this
dissertation deals with monochromatic cycle partitions in hypergraphs.

It is worth to mention that there are analog results of many of the previous to monochromatic
coverings instead of partitions. A great selection of these problems and an overview of the state
of the art can be found in the surveys of Fujita, Liu and Magnant [FLM15], and Gyárfás [Gyá16].

0.1 Graph cycles
Lehel’s conjecture (now a theorem) states that, for all n ∈ N, every 2-edge-colouring of Kn admits
a partition of the vertex set of Kn into two monochromatic cycles of di�erent colours. This is best
possible in the following way. For all su�ciently large n, there exist 2-edge-colourings of Kn with
no monochromatic Hamiltonian cycle1. Moreover, there is no constant m ∈ N such that every
2-edge-colouring of a complete graph yields a monochromatic cycle covering all but m vertices,
as the following construction shows.

For n ∈ N, we consider K3n and a bipartition of its vertices into sets A1,A2 with |A1 | = n
and |A2 | = 2n. We colour every edge intersecting A1 with colour blue and every other edge with
colour red. On the one hand, every blue cycle contains at most 2|A1 | vertices. On the other hand,
the largest red cycle has at most |A2 | vertices. Therefore, the number of vertices of the largest
monochromatic cycle C is 2n, and C does not cover n vertices.

As already mentioned above, Erdős, Gyárfás and Pyber studied the monochromatic cycle par-
titioning problem for an arbitrary number of colours, proving the following result.

Theorem0.1.1 ([EGP91]). For every r ∈ N the following holds. Every r -edge-colouring of a complete
graph admits a partition of its vertices into at most 25r 2 log r monochromatic cycles.

The currently best known upper bound for cycle partitions, due to Gyárfás, Ruszinkó, Sárközy
and Szemerédi in [GRSS06], is the following.

Theorem 0.1.2 ([GRSS06]). For every r ∈ N the following holds. Every r -edge-colouring of a com-
plete graph admits a monochromatic cycle partition of size at most 100r log r .

Regarding lower bounds for the size of monochromatic cycle partitions, Erdős, Gyárfás and
Pyber proposed the following conjecture, that, even if is now disproved (see below), constitutes
the main reference for most of the subsequent development of monochromatic cycle partitions.

1A cycle C in a host graph G is said to be Hamiltonian if the vertex set of C is equal to the vertex set of G.
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Conjecture 0.1.3 ([EGP91]). For every r ,n ∈ N and every r -edge-colouring of Kn the following
holds. The vertex set of Kn can be partitioned into at most r monochromatic cycles.

Conjecture 0.1.3 would have been best possible in the same way as Lehel’s conjecture is best
possible: we can extend the construction for two colours to show that, for all c ∈ N and su�ciently
large n ∈ N , there exist r -edge-colourings of Kn such that every family of r − 1 vertex-disjoint
monochromatic cycles leaves at least c uncovered vertices, as proved in [EGP91] with very similar
arguments to the two colour case.

There are several results towards a positive answer to Conjecture 0.1.3. For instance, a result
preceding Conjecture 0.1.3 for the countably in�nite complete graph KN, due to Rado [Rad78],
implies that every r -edge-colouring of KN admits a partition into r monochromatic cycles in dis-
tinct colours. Here we de�ne in�nite cycles as two-way in�nite paths. As mentioned above, the
case r = 2 was answered positively in [BT10]. In [GRSS11] the case r = 3 was answered asymp-
totically, that is, for all η > 0 there exists n0 = n0(η) ∈ N such that every 3-edge-colouring of
Kn, with n ≥ n0, contains three vertex-disjoint monochromatic cycles covering all but at most
ηn vertices. Apart from these results, Conjecture 0.1.3 remained open for almost 25 years until it
was disproved for all r ≥ 3 by Pokrovskiy in [Pok14]. All of Pokrovskiy’s counterexamples are
r -edge-colourings of a complete graph with the property that there exist r monochromatic vertex-
disjoint cycles covering all but one vertex. This led him to propose a slightly relaxed version of
Conjecture 0.1.3.

Conjecture 0.1.4 ([Pok14]). Every r -edge-colouring of a complete graph contains r monochromatic
vertex-disjoint cycles covering all but cr vertices, where cr is a constant depending only on r .

Pokrovskiy con�rms his conjecture for r = 3 and c3 = 43000 in [Pok16].2 Furthermore, he
conjectures that c3 = 1 and that other counterexamples to Conjecture 0.1.3 for r = 3 should be
very similar to the constructions in [Pok14].

0.2 Hypergraph cycles
In order to generalise monochromatic partitioning problems to hypergraphs we �rst need to give
a precise de�nition of the sub-structures that we are looking for. More precisely, to discuss parti-
tions into monochromatic hypergraph cycles requires extending the notion of a graph cycle to the
hypergraph setting, and there is no unique way of doing this. Here we only deal with k-uniform
host hypergraphs, that is, hypergraphs in which every edge contains exactly k vertices.

The earliest extension of cycles to hypergraphs, due to Berge, is the following. LetH = (V , E)
be a k-uniform hypergraph. A Berge cycle in H is a pair (X , F ) where X , called the core of the
cycle, is a cyclically ordered subset of V and F ⊆ E is a subset of edges with |F | = |X |, such
that every pair of consecutive vertices is contained in exactly one edge of F . Dorbec, Gravier and
Sárközy [DGS08] extended this notion of hypergraph cycles to what we call t-tight Berge cycles,
by requiring that every set of t consecutive vertices in X , with 2 ≤ t ≤ k , is contained in exactly
one edge of F , instead of just every consecutive pair as in the Berge cycles. We will refer to 2-tight
Berge cycles simply as Berge cycles.

The other classic extension of cycles to hypergraphs consists of the families of `-cycles. For a
k-uniform hypergraphH = (V , E) and 1 ≤ ` ≤ k − 1, an `-cycle is a pair (X , F ) where X ⊆ V and
F ⊆ E are cyclically ordered sets such that every edge of F contains k consecutive vertices of

2An unpublished result of Letzter [Let18] improves c3 to 60.

3



X and consecutive edges of F intersect in exactly ` vertices, as shown in Figures 1b and 1c. We
also consider sets of exactly k − ` vertices, and two edges intersecting in 2` vertices (if 2` ≤ k),
as degenerate `-cycles.3 We will refer to k-uniform (k − 1)-cycles as tight cycles, and to 1-cycles
as loose cycles.

(a) A 4-uniform 2-tight Berge
cycle. Grey vertices correspond
to the core of the cycle.

(b) A 4-uniform 1-cycle or 4-
uniform loose cycle.

(c) A 3-uniform 2-cycle, 3-
uniform 3-tight Berge cycle or
3-uniform tight cycle.

Figure 1: Di�erent notions of hypergraph cycles.

Observe that all of these notions of hypergraph cycles coincide, as expected, with the de�nition
of graph cycles if we restrict to the case k = 2. It is worth mentioning that the family of k-tight
Berge cycles and the family of (k − 1)-cycles are the same family of hypergraphs, that is, tight
cycles (see Figure 1c).

0.2.1 Partitions into t-tight Berge cycles

In contrast to a graph cycleCG = (V , E), where the cyclic ordering ofV is an equivalent description
of CG , a t-tight Berge cycle CH = (X , F ) is not uniquely determined by the ordering of X . The
vertices of CH , that is, the union of its edges, are not necessarily members of X , so we need F to
fully characterise CH . We will say that a t-tight Berge cycle C = (X , F ) in a host hypergraphH
is Hamiltonian if X = V (H). Accordingly, we say that a family C1 = (X1, F1), . . . , Cm = (Xm, Fm)
of t-tight Berge cycles partitions the vertex set of a host hypergraphH if the sets Xi, i ∈ [m], are
pairwise disjoint and

⋃
i∈[m]Xi = V (H).

As mentioned in Section 0.1, there are 2-edge-colourings of complete graphs with no mono-
chromatic Hamiltonian cycle. The simplest example is to take any complete graph with at least
three vertices, choose a vertex v , colour every edge containing v with blue and every other edge
with red. However, if we consider a 3-uniform complete graph hypergraph K (3)n on n vertices,
colour blue every edge containing a �xed vertex and colour red all the other edges, then the
resulting edge-colouring will always contain a blue Hamiltonian (2-tight) Berge cycle. In fact,
as Gyárfás, Lehel, Sárközy and Schelp proved in [GLSS08], any procedure to obtain a 2-edge-
colouring of the complete 3-uniform hypergraph K (3)n on n vertices yields the same result.

Theorem 0.2.1 ([GLSS08]). Every 2-edge-colouring of K (3)n , with n ≥ 5, admits a monochromatic
Hamiltonian Berge cycle.

3We can also de�ne degenerate edges as single edges and their subsets, as in the graph case. However, our
arguments in Chapter 2 only consider sets of size k − ` as degenerate cycles.
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So now the problem of monochromatic partitions into Berge cycles reveals an additional fea-
ture which is not present in the graph case. It is possible for an r -edge-colouring ofK (k)n to contain
a Hamiltonian Berge cycle even if r > 1. Omidi [Omi14] (after partial results in [GSS10a, GSS10c,
MO17]) proved the following sharp result, which was stated as a conjecture in [GLSS08], and
extends Theorem 0.2.1 to every uniformity.

Theorem 0.2.2 ([Omi14]). For every integer k ≥ 2 there exists nk ∈ N such that the following
holds. Every (k − 1)-edge-colouring of K (k)n , with n ≥ nk , contains a monochromatic Hamiltonian
Berge cycle.

A generalisation of Theorem 0.2.2 to t-tight Berge cycles was conjectured by Dorbec, Gravier
and Sárközy.

Conjecture 0.2.3 ([DGS08]). For any �xed 2 ≤ t ≤ k there exists nk,t ∈ N such that the following
holds. Every (k−t+1)-edge-colouring ofK (k)n , with n ≥ nk,t , contains a monochromatic Hamiltonian
t-tight Berge cycle.

Conjecture 0.2.3 was con�rmed for k = 4 and t = 3 in [GSS10b]. If true, Conjecture 0.2.3 is
best possible, as shown in [DGS08]. Observe that Conjecture 0.2.3 addresses only Hamiltonian
Berge cycles.

In Chapter 1 we study monochromatic partitions into t-tight Berge cycles by considering the
countably in�nite k-uniform complete hypergraph K (k)N as the host combinatorial object. Here
we consider a two-way in�nite t-tight Berge path4 as the in�nite analogue of t-tight Berge cycles.
Our main result of Chapter 1, in joint work with Jan Corsten and Nóra Frankl, is the following
generalisation of Theorem 0.2.2.

Theorem 0.2.4. For every r ≥ 1 and k ≥ 2 the following holds. Every r (k − 1)-edge-colouring of
K
(k)
N admits a partition into at most r monochromatic Berge cycles.

In addition, we extend Conjecture 0.2.3 to an arbitrary number of colours in the following
way.

Conjecture 0.2.5. For any �xed r > 1 and 2 ≤ t ≤ k there exists nr ,k,t , cr ,k,t ∈ N such that the
following holds. Every r (k − t + 1)-edge-colouring of K (k)n , with n ≥ nr ,k,t , contains r core-disjoint
monochromatic t-tight Berge cycles covering all but at most cr ,k,t vertices.

We also prove that Conjecture 0.2.5 is best possible, that is, for every positive integers c, r > 1
and 2 ≤ t ≤ k there exist in�nitely many r -edge-colourings of complete k-uniform hypergraphs
such that the following holds. Every family of r − 1 core-disjoint monochromatic t-tight Berge
cycles leaves at least c vertices uncovered by the cores of the family (see Theorem 1.2.1 in Chap-
ter 1).

0.2.2 Partitions into `-cycles
We say that a family of C1, . . . , Cm of `-cycles partitions a host hypergraphH if the `-cycles are
vertex-disjoint and the union of the vertices of C1, . . . , Cm is the vertex set of H . Observe that,
unlike t-tight Berge cycles, it is much more natural to de�ne an `-cycle partition. However, if

4A t-tight Berge path is de�ned as its cycle counterpart but replacing the cyclic ordering of its core with a linear
ordering and removing the edge containing the �rst and the last vertices.
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we compare di�erent notions of hypergraph cycle partitioning in terms of the relation between
the number of necessary cycles and the number of colours, we strongly believe that k-uniform
`-cycles are harder than t-tight Berge cycles for all ` ≥ 1 and all 2 ≤ t < k . In fact, we will see
in Chapter 2 that for all r , ` ≥ 1 and k ≥ 2, k-uniform `-cycle partitions of r -coloured complete
k-uniform hypergraphs may require at least r pieces.

Up to now, most of the work on `-cycle partitions has focused on loose cycles (1-cycles). Such
questions were �rst studied by Gyárfás and Sárközy in [GS13], where they prove the following
result.

Theorem 0.2.6 ([GS13]). For every k, r ∈ N there is some c = c(k, r ) such that the vertices of every
r -edge-coloured complete k-uniform hypergraph can be partitioned into at most c monochromatic
loose cycles.

Later, Sárközy showed in [Sár14] that the constant c(k, r ) of Theorem 0.2.6 can be chosen
to be 50rk log(rk). An interesting generalisation of Theorem 0.2.6, due to Gyárfás and Sárközy
in [GS14], considers edge-colourings ofk-uniform hypergraphs with bounded independence num-
ber instead of complete k-uniform hypergraphs5.

Theorem 0.2.7 ([GS14]). For every k, r ,α ∈ N there is some c = c(k, r ,α) such that the vertices of
every r -edge-coloured k-uniform hypergraph with independence number α can be partitioned into at
most c monochromatic loose cycles.

In [Gyá16], Gyárfás conjectured that a result similar to Theorem 0.2.6 holds for tight cycles.

Conjecture 0.2.8 ([Gyá16]). For every k, r ∈ N there is c = c(k, r ) such that the vertices of every
r -edge-coloured complete k-uniform hypergraph can be partitioned into at most c monochromatic
tight cycles.

If true, Conjecture 0.2.8 is best possible, as showed by Gyárfás in [Gyá16]. A recent result
in [ESSS17] for countably in�nite uniform complete hypergraphs (due to Elekes, D. Soukup, L.
Soukup and Szentmiklóssy) can be seen as an in�nite analogue of Conjecture 0.2.8.

Theorem 0.2.9 ([ESSS17]). Every r -edge-colouring of the countably in�nite complete k-uniform
hypergraphK (k)N admits a partition into atmost r monochromatic tight cycles, where two-way in�nite
tight paths count as tight cycles as well.

In Chapters 2 and 3 we study monochromatic `-cycle partitions in 2-edge-colourings of uni-
form hypergraphs. Chapter 2 is joint work with Maya Stein and focuses on k-uniform `-cycles
with ` ≤ k/2. Our main result is the following.

Theorem 0.2.10. For every k ≥ 2 and ` ≤ k/2 the following holds. Every 2-edge-colouring of K (k)N
contains two vertex-disjoint `-cycles in di�erent colours covering all but at most 5(k − `) − 1 vertices.

We also improve the number of leftover vertices in the case ` ≤ k/3. In addition, we show
that Theorem 0.2.10 is best possible in the following sense: for every positive integers c, r > 1
and ` ≤ k/2 there are r -edge-colourings of k-uniform complete hypergraphs such that the largest
monochromatic `-cycle leaves at least c uncovered vertices. Observe that (k − `) divides the
number of vertices of every (non-degenerate) k-uniform `-cycle. Therefore, k − ` − 1 is a lower

5Theorem 0.2.7 also extends a previous result for graphs with bounded independence number in [Sár11]. We
provide details of the graph version of Theorem 0.2.7 in Chapter 4.
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bound for the constant c in Theorem 0.2.10. We conjecture (see Conjecture 2.1.2 in Chapter 2)
that, provided that (k − `) divides n, any 2-edge-colouring of K (k)n admits a monochromatic `-
cycle partition of size two, with cycles of di�erent colours.

Chapter 3 deals with tight cycles in 2-edge-colourings of 3-uniform complete graphs. In joint
work with Hiê.p Hàn and Maya Stein, we prove the following asymptotic result on monochromatic
tight cycle partitions.

Theorem 0.2.11. For every η > 0 there exists n0 ∈ N such that the following holds. Every 2-edge-
colouring of K (3)n , with n ≥ n0, admits two vertex-disjoint monochromatic tight cycles covering all
but at most ηn vertices.

For all su�ciently large n, there exist 2-edge-colourings of K (3)n with the following property:
the largest monochromatic tight cycle leaves roughly 4n/3 vertices uncovered (see [HŁP+09]).
Therefore, we cannot replace the two monochromatic tight cycles in Theorem 0.2.11 with just
one, so in this sense Theorem 0.2.11 is best possible.

Finally, in Chapter 4 we study monochromatic tight cycle in a more general setting, by con-
sidering r -edge-colourings of k-uniform hypergraphs with bounded independence number6 as
host hypergraph instead of k-uniform complete hypergraphs. In joint work with Jan Corsten,
Nóra Frankl, Jozef Skokan and Alexey Pokrovskiy, we prove the following result.

Theorem 0.2.12. For every k, r ,α ∈ N, the vertices of every r -edge-coloured hypergraph with in-
dependence number α can be partitioned into a constant (depending only on k, r and α ) number of
monochromatic tight cycles.

Theorem 0.2.12 generalises Theorem 0.2.7 and con�rms Conjecture 0.2.8 by taking α = 1. It
also answers a question of Grinshpun and Sárközy in [GS16], regarding monochromatic cycle
power7 partitions in 2-edge-colourings of complete graphs (see Chapter 4).

6The independence number of a hypergraphH is the size of largest set of vertices inducing an empty hypergraph.
7The p-th power of a cycle is obtained by adding all the edges joining vertices at distance at most p. A suitable

generalisation of tight cycle powers is provided in Chapter 4.
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Chapter 1

Partitioning countably in�nite complete
hypergraphs into few Berge cycles

Abstract
We prove that for all r ,k ∈ N with k ≥ 2, the vertices of every r (k − 1)-edge-coloured countably
in�nite complete k-uniform hypergraph can be core-partitioned into at most r monochromatic
Berge cycles of di�erent colours. We further describe a construction showing that this result is
best possible. This is joint work with Jan Corsten and Nóra Frankl.

1.1 Introduction
In 1978 Rado [Rad78] studies monochromatic partitions in r -edge-colourings of the countably
in�nite complete graph KN instead of �nite complete graphs. By considering a two-way in�nite
path as an analogue of the in�nite cycle, he proves that every r -edge-colouring of KN admits a
partition into at most r monochromatic �nite or in�nite cycles.1

The main focus of this chapter is an extension of Rado’s theorem to Berge cycles in countably
in�nite hypergraphs. Recall that Theorem 0.2.2 states that, for su�ciently large n, every (k − 1)-
edge-colouring of K (k)n contains a monochromatic Hamiltonian Berge cycle. This result is also
sharp, as shown in [GLSS08] and in Theorem 1.2.2 below.

A generalisation of Theorem 0.2.2 to t-tight Berge cycles was proposed as a conjecture (see
Conjecture 0.2.3 in the Introduction) by Dorbec, Gravier and Sárközy in [DGS08]. We now restate
Conjecture 0.2.3 to its original form.

Conjecture 1.1.1 ([DGS08]). For any �xed 2 ≤ c, t ≤ r satisfying c + t ≤ k + 1 and su�ciently
large n the following holds. Every c-edge-colouring of K (k)n admits a monochromatic Hamiltonian
t-tight Berge cycle.

We know that Conjecture 1.1.1 is true for t = 2 (see [Omi14]), and also for k = 5, t = 3 and
c = 2 (see [DGS08]). The following weaker result from [DGS08] replaces the sum c + t with the
product ct .

1In fact, Rado’s theorem answers the question for paths instead of cycles, where one-way in�nite paths are con-
sidered as the in�nite analogue of the �nite path. However, the cycle version of Rado’s Theorem can be proved by
considering a slight modi�cation of Rado’s original proof.
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Theorem 1.1.2 ([DGS08]). For any �xed 2 ≤ c, t ≤ r satisfying ct + 1 ≤ k and n ≥ 2(t + 1)kc2

the following holds. Every c-edge-colouring of K (k)n contains a monochromatic Hamiltonian t-tight
Berge cycle.

For more colours or in�nite hypergraphs not much is known in this direction. A recent result
from Elekes, D. Soukup, L. Soukup and Szentmiklóssy in [ESSS17] extends Rado’s Theorem to the
hypergraph setting (see Theorem 0.2.9), by considering edge-colourings of the countably in�nite
k-uniform hypergraph K (k)N and studying monochromatic tight cycle partitions. It is worth to
mention that every tight cycle is also a t-tight Berge cycle (for every 2 ≤ t ≤ k), so Theorem 0.2.9
provides an upper bound for the t-tight Berge cycle partition number of K (k)N . Our main result
shows that monochromatic Berge cycle partitions require, in general, fewer parts than their tight
cycle counterparts.

Theorem 1.1.3. For all r ,k ∈ N with k ≥ 2 and every r (k − 1)-edge-colouring ofK (k)N the following
holds. The vertices of K (k)N can be core-partitioned into at most r monochromatic Berge cycles of
di�erent colours.

We will prove this theorem in Section 1.3. We will rely on the existence of non-trivial ultra-
�lters and therefore on the axiom of choice. In Section 1.2 we describe a construction for t-tight
Berge-cycles showing that Theorem 1.1.3 is best possible. A slight modi�cation of this construc-
tion also shows a lower bound for the �nite case. We therefore believe that Theorem 1.1.3 should
hold in a similar form in the �nite case as well.

Conjecture 1.1.4. For all r ,k, t ∈ N with k ≥ t ≥ 2, there is some c = c(k, r , t) ∈ N such that
the following is true for all n ∈ N. In every r (k − t + 1)-edge-colouring of K (k)n , there are at most r
monochromatic t-tight Berge cycles, whose cores are disjoint and cover all but c vertices.

1.2 The constructions

We will prove that Theorem 1.1.3 is best possible, that is, r − 1 monochromatic Berge cycles do
not su�ce to partition all the vertices of certain r (k − 1)-edge-colourings ofK (k)N . This is done by
considering the case t = 2 of the following result on t-tight Berge cycles, generalising a previous
construction for the case r = 1 in [DGS08].

Theorem 1.2.1. For all r ,k, t ∈ N with k ≥ t ≥ 2, there is an edge-colouring of K (k)N with q =
r (k−t +1)+1 colours in which the vertices cannot be covered by the cores of r monochromatic t-tight
Berge cycles.

Proof. We denote the lexicographical ordering on
(
[q]
r

)
by ≺. Partition N into sets {BI : I ∈

(
[q]
r

)
}

so that |BI | > r ·
∑
J≺I |B J | for every I ∈

(
[q]
r

)
. Note that all BI ’s but Bq−r+1,...,q will be �nite.

For x ∈ N, let I (x) be the r -subset of [q] for which x ∈ BI (x). We de�ne a q-edge-colouring φ of
K
(k)
N as follows. For every e ∈ E(K (k)N )we consider an order x1

e, . . . , x
k
e of e satisfying I (x i

e) � I (x je)
for all 1 ≤ i < j ≤ k , and de�ne φ(e) as an arbitrary member of [q] \

⋃
i≤k−t+1 I (x

i
e).

Assume for contradiction that there are monochromatic t-tight Berge cycles C1, . . . ,Cr with
cores X1, . . . ,Xr so that

⋃
i Xi = N and let I ⊂ [q] be a set of size r which contains all colours used

by these t-tight Berge cycles.
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First observe that
��e ∩⋃

J≺I B J
�� ≥ k − t + 1 for every edge e with e ∩ BI , ∅ and φ(e) ∈ I .

Therefore, if e ∈ E(Ci) for some i ∈ [r ] then every t-subset of e containing an element of BI also
contains at least one vertex in

⋃
J≺I B J . We conclude that

|Xi ∩ BI | ≤
∑
J≺I

|BI | < |BI |/r

for every i ∈ [r ] and hence |BI | = |BI ∩ (
⋃

i Xi)| < |BI |, a contradiction. �

A simple modi�cation of the argument yields the following result which shows that Conjec-
ture 1.1.4 is best possible if it is true.

Theorem 1.2.2. For all c, r ,k ∈ N with k ≥ 2, there is some n0 = n0(c, r ,k) such that the following
is true for every natural number n ≥ n0. There is an edge-colouring ofK

(k)
N in which the cores of any

r monochromatic Berge cycles can cover at most n − c vertices.

Proof. If for the BI ’s instead of |BI | > r ·
∑
J<l I |B J | we require |BI | > c + r ·

∑
J<l I |B J |, we obtain

the desired construction. �

1.3 The upper bound
Our proof is based on the simple proof of Rado’s theorem given by Elekes, D. Soukup, L. Soukup
and Szentmiklóssy in [ESSS17].

An ultra�lter on a set X is a set-systemU ⊆ 2X satisfying the following properties:

(i) ∅ < U and X ∈ U,

(ii) A ∈ U and A ⊆ B ⊆ X =⇒ B ∈ U,

(iii) A,B ∈ U =⇒ A ∩ B ∈ U,

(iv) A ⊆ B for some B ∈ U =⇒ A ∈ U or B \A ∈ U.

An ultra�lterU onX is called trivial if there is some x ∈ X such thatU = {A ⊆ X : x ∈ A} and
non-trivial otherwise. A standard application of Zorn’s Lemma shows that there exist non-trivial
ultra�lters whenever X is in�nite. Note that we are assuming the axiom of choice here.

Proof of Theorem 1.1.3. Let q = r (k − 1) and let φ be the given q-edge-colouring of K (k)N . Let U
be a non-trivial ultra�lter on N and note that U contains all co-�nite sets. We de�ne an edge-
multicolouring φ2 : E(K (2)N ) → 2[q] by

φ2(uv) = {φ(e) : e ∈ E(K (k)N ) and u,v ∈ e}.

For a vertex v ∈ N and for a colour c ∈ [q], let N c
2 (v) := {u ∈ N : c ∈ φ2(uv)}. Now de�ne a

vertex-colouring χ : N→ 2[q] by

χ (v) = {c ∈ [q] : N c
2 (v) ∈ U}.

Partition [q] into sets A1, . . . ,Ak−1 of size r . We claim that there is some i0 ∈ [k − 1] such that
χ (v) ∩ Ai0 , ∅ for every v ∈ N. Assuming the contrary, there are vertices v1, . . . ,vk−1 ∈ N for
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which χ (vi) ∩ Ai = ∅ for every i ∈ [k − 1]. Let Ni be the set of vertices u ∈ N \ {v1, . . . ,vk−1}
for which φ(v1, . . . ,vk−1,u) ∈ Ai. By assumption we have Ni < U for every i ∈ [k − 1] and
consequently

⋃
i∈[k−1] Ni < U. This is a contradiction since

⋃
i∈[k−1] Ni = N \ {v1, . . . ,vk−1} is

co-�nite.
We may assume that Ai0 = [r ] and delete all other colours. Partition N into sets B1, . . . ,Br

such that i ∈ χ (v) for every v ∈ Bi. If Bi is �nite for some i ∈ [r ], we write Bi = {v
i
1, . . . ,v

i
ki
}. On

the other hand, for every i ∈ [r ] such that Bi is in�nite, we write Bi = {v
i
n : n ∈ N}∪ {w i

n : n ∈ N},
where v i

1 = w i
1 and {v i

n : n ∈ N} ∩ {w i
n : n ∈ N} = {v i

1}. For i ∈ [r ] and u,v ∈ N, let P i(u,v) be
the set of Berge paths in colour i of length2 at most three with endpoints u,v .

Our purpose is to build hypergraphs inductively in such a way that at every step of the process
we have that these hypergraphs are either Berge paths or Berge cycles. In order to �nd the right
edges (and vertices) to add at each of the steps, we will use the following claim.
Claim 1.3.1. If u,v ∈ Bi then P i(u,v) is in�nite.

Indeed, since N i
2(u) ∩ N i

2(v) ∈ U and for every w ∈ N i
2(u) ∩ N i

2(v) either {u,v,w} ⊆ e for
some edge e ∈ E(K (k)N ) with φ(e) = i, or there exist e1, e2 ∈ E(K

(k)
N ) such that u,w ∈ e1, v,w ∈ e2

and φ(e1) = φ(e2) = i. Therefore Claim 1.3.1 holds.

We start the inductive process as follows. For every i ∈ [r ], let P i
0 be the Berge path ({v i

1}, ∅).
If |Bi | ≤ 1 then we set Ci = (Bi, ∅) as the monochromatic Berge cycle in colour i, so we assume
that |Bi | ≥ 2 for all i ∈ [r ]. In what follows we consider as induction hypothesis that P i

j−1 is a
Berge path for every j ∈ N and i ∈ [r ].

At each step j ∈ N we will choose i ∈ [r ] such that Ci is not already de�ned and P i
j−1 has

minimum length.
If all the vertices of Bi are in the core of the Berge path P i

j−1 then we take the endpoints u,v of
P i
j−1 and choose (by Claim 1.3.1) Q ∈ P i(u,v) such that the core of Q has empty intersection with

the core of P i′
j−1 for all i′ , i, and intersects the core of P i

j−1 exactly in {u,v}. Now we can de�ne
Ci = P i

j−1 ∪Q as the desired Berge cycle in colour i.
If the core of P i

j−1 does not cover the vertices of Bi then we choose an endpoint v i ∈ Bi of P i
j−1

and the smallest positive integer z for which v i
z ∈ Bi (or w i

z ∈ Bi, if Bi is in�nite) is not in the core
P i
j−1. Then, by Claim 1.3.1 we can choose a Berge path Q ∈ P i(v i,v i

z) such that the core of Q has
empty intersection with the core of P i′

j−1 for all i′ , i, and intersects the core of P i
j−1 only inu. This

is possible since the Berge paths P i′
j−1 are �nite for all i′ ∈ [r ]. Now we set P i

j = Pj−1∪Q , P i′
j = P i′

j−1
for all i′ , i and proceed with step j + 1.

Observe that if Bi is �nite then the monochromatic Berge cycle in colour i will be de�ned at
some step j ∈ N. On the other hand, for all the in�nite sets Bi we can de�ne Ci as the two-way
in�nite Berge path

⋃
j∈N P

i
j . This gives us the desired Berge cycle core-partition of K (k)N . �

2The length of a Berge path is the size of its core.
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Chapter 2

Partitioning 2-edge-coloured complete
k-uniform hypergraphs into
monochromatic `-cycles

Abstract

We show that for all `,k,n ∈ N with ` ≤ k/2 and (k − `) dividing n the following hypergraph-
variant of Lehel’s conjecture is true. Every 2-edge-colouring of the k-uniform complete hyper-
graph on n vertices has at most two vertex-disjoint monochromatic `-cycles in di�erent colours
covering all but at most 4(k − `) vertices. If ` ≤ k/3, then at most two vertex-disjoint `-cycles
cover all but at most 2(k − `) vertices. Furthermore, we can cover all vertices with at most 4 (3 if
` ≤ k/3) vertex-disjoint monochromatic `-cycles. This is joint work with Maya Stein.

2.1 Introduction

This chapter focuses on monochromatic `-cycle partitions in 2-edge-colourings of complete uni-
form hypergraphs. Recall that `-cycles are k-uniform hypergraphs with at least three edges, a
cyclic ordering of their vertices and a cyclic ordering of their edges such that every edge containsk
consecutive vertices, consecutive edges intersect in exactly ` vertices, and non-consecutive edges
have empty intersection. We also consider two edges intersecting in 2` vertices and vertex sets
of size k − ` as degenerate `-cycles of length two and one, respectively. In general, the length of
an `-cycle is the size of its edge set.

It follows from work of Gyárfás and Sárközy [GS14] that the number of monochromatic loose
cycles needed to partition any 2-edge-colouredK (k)n is bounded by a function in k . 1 The same au-
thors conjectured [Gyá16, GS14] that any 2-edge-coloured K (k)n has two disjoint monochromatic
loose paths (a loose path is obtained from a loose cycle by deleting one edge), together covering
all but at most k − 2 vertices, and show this is best possible. This conjecture has recently been
con�rmed by Lu, Wang and Zhang [LWZ17].

Here we show that for arbitrary n,k ∈ N, and ` ≤ k/2, all but a constant number of vertices
of every 2-edge-colouring of K (k)n can be covered by two disjoint monochromatic `-cycles.

1The actual result in [GS14] is on cycle partitioning in r -coloured complete hypergraphs (for arbitrary r ≥ 2).
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Theorem 2.1.1. Let `,k,n ∈ N such that 0 < ` ≤ k/2 and k − ` divides n. Let any 2-edge-colouring
of K (k)n be given.

(a) There are two vertex-disjoint monochromatic `-cycles in di�erent colours together covering all
but at most 4(k − `) vertices.

(b) If ` ≤ k/3, the two `-cycles cover all but at most 2(k − `) vertices.

Our proof does not use Bessy and Thomassé’s theorem, nor does it rely on hypergraph regu-
larity.

We include in our results the condition thatk−` divides the order of the involved hypergraphs.
However, it is clear that by dropping this condition in Theorem 2.1.1 we can partition all but at
most 5(k−`)−1 with two monochromatic `-cycles in di�erent colours. We suspect that a partition
of all vertices into two cycles should always be possible. (It is not di�cult to construct colourings
which require at least two disjoint `-cycles for covering all the vertices, so this would be best
possible.)

Conjecture 2.1.2. If `,k,n ∈ N with n ≡ 0 (mod k − `), then every 2-edge-colouring of K (k)n

contains two vertex-disjoint monochromatic `-cycles in di�erent colours covering all vertices.

An easy argument shows that for ` = k/2 the conjecture is true. In order to see this, take
any partition P of the vertices of K (k)n into sets Si, i ∈ [2n/k], of size k/2. Consider an auxil-
iary 2-edge-colouring of the complete graph on P, giving {Si, Sj} the colour of Si ∪ Sj in K (k)n .
Bessy and Thomassé’s theorem [BT10] yields two graph cycles, which correspond to two disjoint
monochromatic `-cycles in di�erent colours in K (k)n .

Also, we can obtain the following corollary from Theorem 2.1.1.

Corollary 2.1.3. Let `,k,n ∈ N such that 0 < ` ≤ k/2 and k − ` divides n. Then for any 2-
edge-colouring ofK (k)n , one can cover all the vertices ofK (k)n with four vertex-disjoint monochromatic
`-cycles, and if ` ≤ k/3, it can be done with three cycles instead of four.

This follows directly from our main theorem together with the observation that the Ramsey
number2 of the k-uniform `-cycle of length two is 2(k−`). This can be seen by observing that any
2-edge-colouring of K := K (k)2(k−`) naturally de�nes a 2-edge-colouring of K∗ := K (k−2`)

2(k−`) by giving
any edge e∗ in K∗ the colour of V (K) \ e∗ in K . Then a monochromatic matching of size two in
K∗ corresponds to a monochromatic `-cycle of length two inK . Now, results of Alon, Frankl and
Lovász [AFL86] imply that the Ramsey number of a 2-edge matching of uniformity r is at most
2r + 1, which, since 2(k − 2`) + 1 < 2(k − `), is enough for our purposes.

2.2 Partition into a path and a cycle
We will identify a hypergraphH with its edge set, so when we write e ∈ H it refers to the edge
e ofH . Let us go through some necessary notation.

For an `-path or `-cycle X, we order the k vertices of each edge in such a way that the last
` vertices of an edge ei are the �rst ` vertices of the edge ei+1. For an edge e = {v1, . . . ,vk}, we

2The two colour Ramsey number of a k-uniform hypergraphH is the least integer R(H) for which every blue-red
colouring of K (k )R(H) contains a monochromatic copy ofH .
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writeVI (e) to denote the vertex set {vi ∈ e : i ∈ I }, let e− denote the vertex setV[`](e), let e+ denote
the vertex set V[k]\[k−`](e), and use e̊ for the set e \ (e− ∪ e+).

An `-path P of length m is a blue-red `-path if there is m0 ∈ [m], called turning point, such
that the `-paths {ei : i ∈ [m0]} and {ei : i ∈ [m] \ [m0]} are monochromatic and have di�erent
colours.

One of the �rst results in the �eld of monochromatic partitions was Gerenscér and Gyárfás’
observation [GG67] that every two-edge-coloured complete graph has a spanning blue-red path.
We extend this observation to `-paths in hypergraphs in the following lemma.

Lemma 2.2.1. Let `,k,n ∈ N such that 0 < ` ≤ k/2 and k−` dividesn. Then every 2-edge-colouring
of K (k)n contains a blue-red `-path P with |V (P)| = n − k + 2`.

Proof. Take a longest blue-red `-path P in K (k)n , with edges ei for i ∈ [m] and turning point m0.
Assume that all ei with i ∈ [m0] are blue and all later edges on P are red.

If the set Z of all vertices not covered by P has size k − 2`, we are done. So assume otherwise;
then Z contains at least 2k − 3` elements. Fix three disjoint sets Z0,Z1,Z2 ⊂ Z with |Z0 | = ` and
|Z1 | = |Z2 | = k − 2`. Since P is maximal, we know that eR = e−1 ∪Z1 ∪Z0 is red, eB = e+m ∪Z1 ∪Z0
is blue, andm0 ,m.

By colour symmetry, we can assume the edge e = e+m0∪Z2∪Z0 is red. Then (P\{em0})∪{e, eR}
is a blue-red `-path longer than P, which contradicts the maximality of P. �

Observe that the blue-red `-path P given by Lemma 2.2.1 is as large as possible, since |V (P)| ≡
` (mod k − `) and k − ` divides n.

Now we can show that there are a monochromatic `-path and a monochromatic `-cycle that
together cover almost all the vertices.

Lemma 2.2.2. Let `,k,n ∈ N such that 0 < ` ≤ k/2 and n = n0(k−`) for some integer n0 ≥ 3. Then
every 2-edge-colouring of K (k)n contains an `-cycle C and an `-path P with the following properties:

1. C and P are vertex-disjoint;

2. C and P are each monochromatic but use distinct colours;

3. C has at least two edges;

4. if P , ∅, then |V (C)| + |V (P)| ∈ {n − k + 2`,n − 2k + 3`}; and

5. if P = ∅, then |V (C)| = n − k + `.

Proof. By Lemma 2.2.1, there is a blue-red `-path with edges ei for i ∈ [m] and turning point
m0 that covers all but a set Z of k − 2` vertices of K (k)n . Among such `-paths, choose Pmax such
that max{m0,m −m0} is as large as possible (i.e. Pmax maximises the length of a monochromatic
sub-`-path). By symmetry, we can assume that max{m0,m −m0} =m0, that PB = {ei : i ∈ [m0]}
is blue and that PR = {ei : i ∈ [m] \ [m0]} is red. Since n ≥ 3(k − `), we know that m ≥ 2. If
m0 < m and the edge

e := e+m0 ∪ Z ∪ e+m
is blue, then

(
Pmax \ em0+1

)
∪ {e} is a blue-red `-path contradicting the choice of Pmax. Ifm0 < m

and the edge e is red, then the `-cycle CR = PR ∪ e together with the `-path PB \ {em0} are as
desired.
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So we can assume thatm0 =m, that is, Pmax is all blue. If also one of the two edges e+1 ∪ e̊1∪e+m,
e+1 ∪ Z ∪ e+m is blue, we can close Pmax, forming an `-cycle that covers all but e−1 ∪ Z , or all but
e−1 ∪ e̊1, respectively, which is as desired. So we can suppose both edges e+1 ∪ e̊1 ∪ e+m, e+1 ∪Z ∪ e+m
are red. They form an `-cycle with two edges, which together with Pmax \ {e1, e2, em} covers all
but e−1 ∪ e̊2 ∪ e̊m (note that possibly m = 2, in which case e2 coincides with em). So, we found an
`-cycle and an `-path which are as required (in particular, either they cover n − 2k + 3` vertices,
or the `-path is empty and the `-cycle covers n − k + ` vertices). �

2.3 Proof of Theorem 2.1.1 (a)
This section is devoted to the proof of Theorem 2.1.1 (a).

Consider a monochromatic `-cycle CB with at least two edges and a disjoint monochromatic
`-path PR as given by Lemma 2.2.2. Note that if PR has at most two edges, we are done, so assume
otherwise. By deleting at most two edges from PR , if necessary, we can assume that

|V (CB ∪ PR)| = n − 3k + 4`.

Among all such choices for CB and PR (including those where PR is empty), assume we chose
CB and PR such that

CB has as many edges as possible. (2.3.1)
By symmetry, we may assume that CB is blue and PR is red. Say CB has edges ei, i ∈ [mc] (and

thus lengthmc ≥ 2), while PR has edges fj, j ∈ [mp] (and thus lengthmp ≥ 0).
Assuming that Theorem 2.1.1 (a) does not hold, we will reach a contradiction by analysing

the connections from the �rst/last edge of PR to CB . If these cannot be used to close up PR to an
`-cycle, we �nd a red `-cycle on the same vertices as CB . In a last step, we will use this new red
`-cycle together with PR to form one large red `-cycle.

We start by making a couple of easy observations. First of all, note that

mp ≥ 2, (2.3.2)

as otherwise CB covers all but at most 4k − 4` vertices.
Let Z1,Z2,Z3 be mutually disjoint subsets of vertices not covered by CB ∪ PR such that |Z1 | =

|Z2 | = |Z3 | = k − 2`. Consider the edges

wt := f −1 ∪ Zt ∪ f +mp
,

for t = 1, 2, 3. If any of the edges wt is red, then CB together with PR ∪ {wt } are `-cycles as in the
theorem, covering all but 2k − 2` vertices. So,

wt := f −1 ∪ Zt ∪ f +mp
is blue, for t = 1, 2, 3. (2.3.3)

Consider the edges
vti := f +mp

∪ Zt ∪ e−i
for i ∈ [mc] and t, t ′ ∈ {1, 2, 3}. If for some triple i, t, t ′ with t , t ′, both edges vti , v

t ′

i+1 are blue,
then the `-cycle {vti ,v

t ′

i+1} ∪ (CB \ {ei}) together with the `-path PR \ { fmp } contradicts (2.3.1). So,
for each i ∈ [mc], and each pair and t, t ′ ∈ {1, 2, 3} with t , t ′,

one of the edges vti , v
t ′

i+1 is red. (2.3.4)
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Similary, for each i ∈ [mc], and each pair and t, t ′ ∈ {1, 2, 3} with t , t ′, setting

uti := f −1 ∪ Zt ∪ e−i ,

we observe that
one of the edges uti ,u

t ′

i+1 is red. (2.3.5)

We now establish that our `-cycle is a bit longer than our `-path.

Claim 2.3.1. It holds thatmc ≥ mp + 2.

Proof. Suppose to the contrary that mc < mp + 2. By (2.3.5), we can assume the edge u1
1 is red. If

the edge v2
1 is red, too, then PR ∪ {u1

1,v
2
1} and CB \ {e1, emc } contradict the choice of CB and PR

ful�lling (2.3.1). So the edge v2
1 is blue, and thus by (2.3.4), the edge v3

2 is red.
Now, if the edge u1

2 is red, then PR ∪ {v3
2,u

1
2} is a red `-cycle of length greater thanmc , which

together with the path CB \ {e1, e2} contradicts (2.3.1). Therefore, u1
2 is blue. But now, since

by (2.3.3), the edge w3 is blue, we found a blue `-cycle, namely {v2
1,w

3,u1
2} ∪ (CB \ {e1}), which

together with the red `-path PR \ { f1, fmp } contradicts (2.3.1). �

Note that Claim 2.3.1 together with (2.3.2) implies that

mc ≥ 4. (2.3.6)

Let us now consider the edges

дi := (ei \ e+i ) ∪ e+i+2 and hi := (ei \ e+i ) ∪ e+i+3,

for i ∈ [mc] (considering all indices modulo mc ). The advantage of these edges is that on the one
hand, each of these edges, if blue, provides a shortcut on CB (and the vertices left out of CB can
be used for closing up PR). On the other hand, if all these edges are red, then they form new red
`-cycles on the vertex set of CB .

Let us �rst show why any of the edges дi, hi would be useful in blue.

Claim 2.3.2. The edges дi are red for all i ∈ [mc], and ifmc > 4, then the edges hi are red for all
i ∈ [mc].

Proof. Suppose that one of these edges дi or hi is blue (the latter only in the case that mc > 4).
Then there is a blue cycle C′B obtained from CB by replacing the edges ei, ei+1, ei+2 with the edge
дi, or by replacing the edges e1, ei+1, ei+2, ei+3 with the edge hi.

Consider the edges u1
i+1 and v2

i+1. If both of these edges are red then the theorem holds, since
C′B together with PR ∪ {u1

i+1,v
2
i+1} either covers all but 3k − 3` vertices (if дi is blue); or cover all

but 4k − 4` vertices (if hi is blue). So by symmetry, we can assume that u1
i+1 is blue. Similarly, if

the edges u2
i+2 and v3

i+2 are both red then the theorem holds, so at least one of them is blue.
Since u1

i+1 is blue, (2.3.4) implies that u2
i+2 is red, and thusv3

i+2 is blue. Recall that by (2.3.3), the
edge w2 is blue, too, and so, the `-cycle {u1

i+1,w
2,v3

i+2} ∪ (CB \ {ei+1}) together with the `-path
PR \ { f1, fmp } contradicts (2.3.1). �

Finally, consider the edge sets

Rj := {дi : i ≡ j (mod 3)},

16



for j = 0, 1, 2. Notice that R0,R1,R2 are three `-cycles of length mc
3 ifmc ≡ 0 (mod 3), and together

form one `-cycle otherwise.
The remainder of the proof is split into several cases, depending on the value ofmc , and which

of the edges uti , v
t
i are red. Note that by (2.3.5) (and after possibly renaming the edges on CB , or

the sets Zt ), we may assume that u1
1 is red. Moreover, by (2.3.4), at least one of the edges v2

4 , v3
5 is

red (ifmc = 4, we take indices modulo 4, meaning that one of v2
4 , v3

1 is red).
In all the cases considered below we use thatmc ≥ 4 by (2.3.6).

Case 1. mc . 0 (mod 3) and v2
4 is red.

In this case, consider the red `-cycle formed by R0 ∪ R1 ∪ R2. We can substitute the edge д1
from this `-cycle with the path {u1

1} ∪ PR ∪ {v
2
4} to obtain one red `-cycle which covers all but

2(k − `) vertices.

Case 2. mc ≡ 0 (mod 3) and v2
4 is red.

Consider the auxiliary red `-cycle formed by

{h4} ∪ (R2 \ {д2,д5}) ∪ {h2} ∪ (R0 \ {д3})

∪ {h3} ∪ (R1 \ {д4}).

Similar as in the previous case, we can substitute the edge д1 from the auxiliary `-cycle with the
path {u1

1} ∪ PR ∪ {v
2
4} to obtain one red `-cycle which covers all but 3(k − `) vertices. (Note that

this works �ne even ifmc = 6.)

Case 3. mc . 1 (mod 3) and v3
5 is red.

Consider the auxiliary red `-cycle formed by

{h1} ∪ (R2 \ {д2}) ∪ {h2} ∪ (R0 \ {д3})

∪ {h3} ∪ (R1 \ {д1,д4})

and substitute its edge h1 with {u1
1} ∪ PR ∪ {v

3
5} to obtain one red `-cycle which covers all but

3(k − `) vertices. (Note that this works even ifmc = 5.)

Case 4. mc ≡ 1 (mod 3),mc , 4, and v3
5 is red.

If mc is odd, then we can use the cycle spanned by all edges hi except h1, and the path PR ,
together with edges u1

1 and v3
5 . This `-cycle covers all but 2(k − `) vertices. Otherwise, since

mc > 4 and mc ≡ 1 (mod 3), we know that mc ≥ 10. So we can use a similar approach as above,
using �ve edges hi instead of two. More precisely, the red `-path formed by

{h5} ∪ (R0 \ {д3,д6}) ∪ {h2,h6} ∪ (R1 \ {д1,д4,д7})

∪ {h3,h7} ∪ (R2 \ {д2,д5,д8})

and {u1
1} ∪ PR ∪ {v

3
5} covers all but 4(k − `) vertices.

Case 5. mc = 4, and v3
1 is red while v2

4 is blue.

Then by (2.3.4), the edge v1
3 is red, and we can close PR using the edges v3

1 , v1
3 , д1, д4. We

covered all but 3(k − `) vertices.
This �nishes the proof of the theorem.
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2.4 Proof of Theorem 2.1.1 (b)
In this section we give a proof of Theorem 2.1.1 (b), the �rst part of which follows very much
the lines of the proof of Theorem 2.1.1 (a), while the last part is a bit di�erent. In order to avoid
repetition, we only sketch the �rst part, but give all details for the last part. We remark that much
of the work can be avoided if we are only interested in two `-cycles covering all but 3(k − `)
vertices instead of the output of Theorem 2.1.1 (b).

For the �rst part of the proof, the main di�erence is that now, we use Lemma 2.2.2 to �nd a
monochromatic `-cycle CB of lengthmc ≥ 2 with edges ei, i ∈ [mc], and a disjoint monochromatic
`-path PR of lengthmp ≥ 0 with edges fj, j ∈ [mp] such that

|V (CB ∪ PR)| = n − 2k + 3`, (2.4.1)

choosing CB maximal under the these conditions. That is, now we leave only 2(k − `)+ ` vertices
uncovered in the beginning. Instead of de�ning Z1,Z2,Z3, we only de�ne Z1,Z2 as two disjoint
sets of vertices not covered by CB∪PR with |Z1 | = |Z2 | = k−2`. The idea is that now, consecutive
edges on CB only intersect in at most k/3 vertices, which means that the interior of such an edge
can be used in the same way as one of the sets Zt . With this we can overcome the di�culty due
to having only two sets Zt to operate with.

Again we easily show that mp ≥ 2 (using (2.4.1)), and that edges wt de�ned for t = 1, 2 and
i ∈ [mc], have the same properties as in the proof of Theorem 2.1.1 (a). Now we de�ne vti and uti
as in that proof for t = 1, 2, and set

v3
i := f +mp

∪ (ei \ e+i ) and u3
i := f −1 ∪ (ei \ e+i ).

It is easy to see that for each i ∈ [mc], and each pair and t, t ′ ∈ {1, 2, 3} with t , t ′ and t ′ , 3, at
least one of the edges vti , v

t ′

i+1 is red and at least one of the edges uti , u
t ′

i+1 is red.
For showing thatmc ≥ mp +2 (and thusmc ≥ 4), observe that in the proof of Claim 2.3.1 in the

proof of Theorem 2.1.1 (a), there is only one time where we need that all three sets Zt are present,
and that is at the very end, when we form the blue `-cycle {v2

1,w
3,u1

2} ∪ (CB \ {e1}). Instead, we
can use the `-cycle {v3

1,w
2,u1

2} ∪ (CB \ {e1}).
For the rest of the proof one might de�ne the edges дi, hi as in the proof of Theorem 2.1.1 (a),

show they are red, and then go through Cases 1-5.3 However, for establishing that edges hi are
red, we would have to content ourselves with the outcome of two `-cycles covering all but 3(k−`)
vertices. We can do a slightly better than that by arguing as follows.

Consider the edges
a := f −1 ∪ e̊3 ∪V[2`]\[`](e2)

and
a′ := V[2`]\[`](f1) ∪ e̊4 ∪V[k−`]\[k−2`](e5)

(note that these edges are symmetric with respect to e3 ∩ e4, as Figure 2.1 shows).
3To see this goes through we remark that �rst, near the end of the proof of Claim 2.3.2 of that theorem we used

to occupy the set Z3, by employing the edge v3
i+2. With the new de�nition of this edge, this works here too.

Second, when going through Cases 1-5, we cannot use the edges u1
1 ,v2

4 ,v3
5 as before. This problem is easily overcome

by �rst �nding out which of v2
4 , v1

5 is red. Say this is v1
5 (otherwise rename all edges). Now, if the edge u2

2 is red, then
we are in the same situation as in Case 1, 2 or 5 of the proof of Theorem 2.1.1 (a) (with indices augmented by one).
Otherwise, the edge u2

2 is blue, and thus the edge u3
1 is red, as otherwise we could augment CB using these two edges,

and destroying one edge of PR . Now we are in a situation that is very similar to Cases 3 and 4 of Theorem 2.1.1 (a).
As in these cases, neither of the edges д1, h1 was used, we have no problem �nding our red `-cycle using u3

1 instead
of u1

1 .
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f1

. . .

a a′

. .
.

e2

e3 e4

e5

. . .

Figure 2.1: Solid gray and solid white edges are blue and red edges, respectively.

If both a and a′ are blue then we can replace the edges e3, e4 ∈ CB with the edges a,a′,w1

and the blue4 edge V[2`]\[`](f1) ∪ Z2 ∪ f +mp
to obtain a blue cycle which together with the red path

PR \ { f1, fm} contradicts the maximality of CB . Therefore, we can assume that one of these edges
is red, without loss of generality say

a is red. (2.4.2)

Next, consider the edges
qi := V[2`]\[`](ei) ∪ e̊i+1 ∪ e+i+3,

for i ∈ [mc]. It is easy to see that the edges qi form an `-cycle, which we will call CR .

Claim 2.4.1. We may assume that qi is red, for all i ∈ [mc].

Proof. Suppose one of these edges, say q1, is blue. Obtain C′B from CB by replacing the edges
e2, e3, e4 with the edge q1.

First assume u3
3 is blue. Then u1

4 is red, by our analogue of (2.3.5). Also, v2
4 is red, as otherwise

we can replace e3 with the edges u3
3 , w1 and v2

4 , and thus contradicting the maximality of CB . But
now, PR ∪ {u1

4,v
2
4} is a red `-cycle, which, together with the blue `-cycle C′B is as desired for the

theorem.
So from now on, assume that u3

3 is red. Then, the edge v1
3 is blue or we found `-cycles PR ∪

{u3
3,v

1
3} and C′B which are as desired for the theorem. Now consider a set Z ′2 ⊆ Z2 of size k − 3`.

By the maximality of CB and taking into account that v1
3 is blue, we see that the edge

b := f +mp
∪ Z ′2 ∪V[2`]\[`](e3) ∪ e+3

has to be red (see Figure 2.2).
But then the `-cycles PR ∪ {u3

3,b} and C′B give the desired output of the theorem. �

We are now ready to prove Theorem 2.1.1 (b). For this, �rst assume that v1
4 is red. Then,

by (2.4.2) and by Claim 2.4.1, we know that (CR \ {q1,q2})∪PR ∪{a,v
1
4} is a red `-cycle, as desired

for the theorem.
4This edge is blue for the same reason for which w2 is blue.
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f1 fmp

. . .

q1

u3
3

. .
.

v1
3

b

. . .

Figure 2.2: Diagram of edges q1,u
3
3,v

1
3 and b. The dotted circles insidev1

3 and b are the sets Z1 and
Z ′2, respectively.

From now on assume v1
4 is blue. Then c := f +mp

∪ e̊4 ∪V[2`]\[`](e5) is red, as otherwise the cycle
obtained by replacing e4 ∈ CB with the edges v1

4, c yields a contradiction to the maximality of CB .
So, by (2.4.2), and since we chose c so that it meets q5 in exactly ` vertices,

C′R :=
(
CR \ {q2,q3,q4}

)
∪ PR ∪ {a, c}

is a red `-cycle covering all vertices, except the 3(k − `) vertices lying in

Z1 ∪ Z2 ∪W ∪ (e̊5 \ c) ∪ e+5 ∪ e+6 ∪ e+7 ,

whereW is a set of ` vertices outside CB ∪ PR disjoint from Z1 ∪ Z2.
Consider d := V[k−`]\[k−2`](fmp ) ∪ Z2 ∪ e+7 . Observe that either the `-cycle(

CR \ {q2,q3}
)
∪ PR ∪ {a, d}

is red, and then it covers all but 2(k − `) vertices, as desired for the theorem, or the edge d
is blue, which we will assume from now on. Then by the maximality of CB , the edge d′ :=
V[k−`]\[k−2`](fmp ) ∪ Z1 ∪ e+6 is red. Now consider the edge

e := e+6 ∪ Z2 ∪ e+7 .

If e is blue, consider the blue path e and the red cycle C′R to obtain a contradiction to the maximality
of CB in the choice of CB and PR .

So e is red. Then the `-cycle (
CR \ {q2,q3}

)
∪ PR ∪ {a, d′, e}

is red and covers all but k − ` vertices, as desired for the theorem.
This concludes the proof of Theorem 2.1.1 (b).
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Chapter 3

Almost partitioning 2-edge-coloured
complete 3-uniform hypergraphs into
two monochromatic tight-cycles

Abstract
We show that for every η > 0 there exists an integer n0 such that every 2-edge-colouring of the
3-uniform complete hypergraph on n ≥ n0 vertices contains two disjoint monochromatic tight
cycles of distinct colours that together cover all but at most ηn vertices. This is joint work with
Hiê.p Hàn and Maya Stein.

3.1 Introduction
Tight cycles are the most restrictive notion of hypergraph cycle and, up to now, the only known
result in tight cycle partitioning is Theorem 0.2.9, where the host hypergraphs are countably
in�nite uniform complete hypergraphs. In this chapter we study 2-edge-colourings of 3-uniform
complete hypergraphs. Inspired by Lehel’s conjecture, we show that two disjoint monochromatic
tight cycles su�ce to cover almost all the vertices of K (3)n . We will see in Chapter 4 that there
exists an absolute constant c such that 2 + c monochromatic tight cycles su�ce to partition the
vertices of every 2-edge-colouring of K (3)n (see Theorem 4.1.3 in Chapter 4).

Our main result in this chapter is an approximate result on monochromatic tight cycle parti-
tioning for 2-edge-colourings of complete k-uniform hypergraphs.
Theorem 3.1.1. For every η > 0 there exists n0 such that if n ≥ n0 then every two-coloring of the
edges of the complete 3-uniform hypergraph K (3)n admits two vertex-disjoint monochromatic tight
cycles, of distinct colours, which cover all but at most ηn vertices.
Moreover, we can choose the parity of the length of each of the cycles.

We might be interested in choosing the parity of the cycles for the following reason. If ` is
even, then any 3-uniform tight cycle on ` edges contains a loose cycle. Hence, we can deduce that
an analogue of Theorem 3.1.1 holds for loose cycles.
Corollary 3.1.2. For every η > 0 there exists n0 such that if n ≥ n0 then every two-coloring of the
edges of the complete 3-uniform hypergraph K (3)n admits two vertex-disjoint monochromatic loose
cycles, of distinct colours, which cover all but at most ηn vertices.
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As shown in Chapter 2 (see Theorem 2.1.1) in a more general way, the error term ηn in The-
orem 3.1.1 can be improved, so every 2-edge-colouring of the edges of a 3-uniform complete hy-
pergraph admits two disjoint monochromatic tight cycles which cover all but at most a constant
number c of vertices (for some c independent of n).

The proof of Theorem 3.1.1 is inspired by the work of Haxell et al. [HŁP+06, HŁP+09] and
relies on an application of the hypergraph regularity lemma [FR02]. This reduces the problem
at hand to that of �nding, in any two-colouring of the edges of an almost complete 3-uniform
hypergraph, two disjoint monochromatic connected matchings which cover almost all vertices.

Here, as usual, a matchingM in hypergraphH is a set of pairwise disjoint edges andM ⊂ H
is called connected if between every pair e, f ∈ M there is a pseudo-path in H connecting e
and f , that is, there is a sequence (e1, . . . , ep) of not necessarily distinct edges of H such that
e = e1, f = ep and |ei ∩ ei+1 | = 2 for each i ∈ [p − 1]. (Note that these pseudo-paths may use
vertices outside V (M).) Now, we call a connected matching M in a 2-coloured hypergraph a
monochromatic connected matching if all edges inM and all edges on the connecting paths have
the same colour.

So, our main contribution reduces to the following result, which might be of independent
interest.

Theorem 3.1.3. For every γ > 0 there is t0 such that the following holds for every 3-uniform hyper-
graphH with t > t0 vertices and (1 − γ )

(t
3
)
edges. Any two-colouring of the edges ofH admits two

disjoint monochromatic connected matchings covering at least (1 − 290γ 1
6 )t vertices ofH .

We prove Theorem 3.1.3 in Section 3.2. In Section 3.3, we introduce the regularity lemma for
hypergraphs and state an embedding result from [HŁP+09]. The proof of Theorem 3.1.1 will be
given in Section 3.4.

3.2 Monochromatic connected matchings
Before giving the proof of Theorem 3.1.3 we introduce some notation and auxiliary results.

Let H denote a k-uniform hypergraph, that is, a pair H = (V , E) with �nite vertex set V =
V (H) and edge set E = E(H) ⊂

(V
k

)
, where

(V
k

)
denotes the set of all k-element sets ofV . OftenH

will be identi�ed with its edges, that is,H ⊂
(V
k

)
and for an edge {x1, . . . , xk} ∈ H we often omit

brackets and write x1 . . . xk only. A k-uniform hypergraph C is called an `-cycle if there is a cyclic
ordering of the vertices of C such that every edge consists of k consecutive vertices, every vertex
is contained in an edge and two consecutive edges (where the ordering of the edges is inherited
by the ordering of the vertices) intersect in exactly ` vertices. For ` = 1 we call the cycle loose
whereas the cycle is called tight if ` = k − 1 (and we do not consider other values of `).

A tight path is a tight cycle from which one vertex and all incident edges are deleted. The
length of a path, a pseudo-path or a cycle is the number of edges it contains. As above, two edges
inH are connected if there is a pseudo-path connecting them. Connectedness is an equivalence
relation on the edge set ofH and the equivalence classes are called connected components.

All hypergraphsH considered from now on are 3-uniform. We will need the following result
concerning the existence of perfect matchings in 3-uniform hypergraphs with high minimum
vertex degree.

Theorem 3.2.1 ([HPS09]). For all η > 0 there is a n0 = n0(η) such that for all n > n0, n ∈ 3Z,
the following holds. Suppose H is a 3-uniform hypergraph on n vertices such that every vertex is
contained in at least

( 5
9 + η

) (n
2
)
edges. ThenH contains a perfect matching.
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Denote by ∂H the shadow ofH , that is, the set of all pairs xy for which there exists z such that
xyz ∈ H . For a vertex x in a hypergraphH , let NH (x) = {y : xy ∈ ∂H}. For two vertices x,y, let
NH (x,y) = {z : xyz ∈ H}. Note that if y ∈ NH (x) (equivalently, x ∈ NH (y)) then NH (x,y) , ∅.
We call all such pairs xy of vertices active.

Lemma 3.2.2 ([HŁP+06], Lemma 4.1). Let γ > 0 and let H be a 3-uniform hypergraph on tH
vertices and at least (1 −γ )

(tH
3
)
edges. ThenH contains a subhypergraph K on tK ≥ (1 − 10γ 1/6)tH

vertices such that every vertex x of K is in an active pair of K and for all active pairs xy we have
|NK(x,y)| ≥ (1 − 10γ 1/6)tK .

We are now ready to prove Theorem 3.1.3.

Proof of Theorem 3.1.3. For given γ > 0 let δ = 10γ 1/6 and apply Theorem 3.2.1 with η = 5/36 to
obtain n0. We choose t0 = max

{ 2
δ ,

n0
27δ

}
.

Suppose we are given a two-coloured 3-uniform hypergraph H = Hred ∪ Hblue on tH > t0
vertices and (1−γ )

(tH
3
)

edges. Apply Lemma 3.2.2 toH with parameterγ to obtainK , t := tK with
the properties stated in the lemma. Observe that at most δtH vertices ofH are not vertices of K .
We wish to �nd two monochromatic connected matchings covering all but at most 28δt ≤ 28δtH
vertices of K .

Since every vertex is in an active pair in K , we have

|NK(x)| ≥ (1 − δ )t for all x ∈ V (K). (3.2.1)

LetK = Kred∪Kblue be the colouring ofK inherited fromH . Then a monochromatic component
C of K is a connected component of Kred or Kblue.
Observation 3.2.3 ([HŁP+09], Observation 8.2). For every vertex x ∈ V (K) there exists a mono-
chromatic component Cx such that |NCx (x)| ≥ (1 − δ )t .

For each x ∈ V (K) choose arbitrarily one component Cx as in Observation 3.2.3. Let R = {x ∈
V (K) : Cx is red} and B = {x ∈ V (K) : Cx is blue}, and note that these two sets partition V (K).
Observation 3.2.4 ([HŁP+09], Observation 8.4). If |R | ≥ 6δt (or |B | ≥ 6δt , respectively), then
there is a red component R (a blue component B) such that Cx = R (Cx = B) for all but at most 2δt
vertices x ∈ R (x ∈ B).

Set Vred := {x ∈ R : Cx = R} if |Vred | ≥ 6δt , and set Vblue := {x ∈ B : Cx = B} if |B | ≥ 6δt .
Otherwise, de�ne Vred (or Vblue, respectively) as the empty set. Our aim is to �nd two di�erently
coloured disjoint connected matchings inK that together cover all but 16δt ≤ 28δt−12δt vertices
of Vred ∪Vblue.

We start by choosing a connected matching of maximal size in R ∪ B. This matching de-
composes into two disjoint monochromatic connected matchings, Mred ⊂ R and Mblue ⊂ B,
which together cover as many vertices as possible. Let V ′red = Vred \ V (Mred ∪ Mblue) and
V ′blue = Vblue \ V (Mred ∪ Mblue). We may assume that V ′red or V ′blue has at least 12δt vertices,
as otherwise we are done. By symmetry we may assume that

|V ′red | ≥ 8δt . (3.2.2)

Observe that there is no edge xy with x ∈ V ′red and y ∈ V ′blue such that xy ∈ ∂R ∩ ∂B. Indeed,
any such edge xy constitutes an active pair (by Lemma 3.2.2) and as |V ′red | > δt + 2, there must be
a vertex z ∈ V ′red such that xyz is an edge of K . This contradicts the maximality of the matching
Mred ∪Mblue.
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Next, we claim that
|V ′blue | ≤ 2δt . (3.2.3)

Assume otherwise. Then, Observation 3.2.3 and the choice of the set Vred implies that the
number of edges between V ′red and V ′blue that belong to ∂R is at least

|V ′red | · (|V
′
blue | − δt) ≥

1
2 |V

′
red | · |V

′
blue |.

Similarly, there are at least |V ′blue | · (|V
′
red | − δt) >

1
2 |V
′
red | · |V

′
blue | edges betweenV ′red andV ′blue that

belong to ∂B. As there is no edge xy with x ∈ V ′red and y ∈ V ′blue such that xy ∈ ∂R∩∂B, we have
more than |V ′red | · |V

′
blue | edges from V ′red to V ′blue. This yields a contradiction and (3.2.3) follows.

Because of the maximality ofMred ∪ Mblue, each edge having all its vertices in V ′red is blue.
Fix one such edge xyz, which exists because of (3.2.2). Obtain V ′′red from V ′red by deleting the at
most δt verticesw withwx < ∂R. Consider any edge x′y′z′ with x′,y′, z′ ∈ V ′′red, which also exists
because of (3.2.2). As the pairs xy, xx′, x′y′ are all active, and |V ′′red | > 3δt , there is a vertexv ∈ V ′′red
that forms an edge with each of the three pairs, thus giving a pseudo-path in K[V ′′red] from xyz
to x′y′z′. Denote by B′′ the blue component of K[V ′′red] that contains xyz, and let B′ be obtained
from B′′ by deleting at most 2 vertices and all incident edges, so that |V [B′]| is a multiple of 3.
Then, by (3.2.2), we have

|V [B′]| ≥ |V ′red | − δt − 2 ≥ 6δt . (3.2.4)
Let x ∈ V [B′] be given. At least |V [B′]| − δt vertices y ∈ V [B′] are such that xy ∈ ∂R, and,

for each such y there are at least |V [B′]| − δt vertices z ∈ V [B′] such that xyz ∈ B′. So, the total
number of hyperedges of B′ that contain x is at least

1
2 (|V [B

′]| − δt)2 ≥
25
36

(
|V [B′]|

2

)
.

Thus, Theorem 3.2.1 with η = 5
36 yields a perfect matchingM′blue of B′.

At this point, we have three disjoint monochromatic connected matchings, one in red (Mred ⊂
R) and two in blue (Mblue ⊂ B andM′blue ⊂ B

′). Together, these matchings cover all but at most
3δt + 2 vertices of Vred ∪Vblue (by (3.2.3) and by (3.2.4)).

Our aim is now to dissolve the blue matchingMblue, and cover its vertices by new red edges,
leaving at most 6δt vertices uncovered. In order to do so, let us �rst understand where the edges
ofMblue lie.

For convenience, let us call an edge in K good if two di�erent pairs of its vertices {a,b} and
{c, d} are such that ab ∈ ∂R and cd ∈ ∂B. Notice that every good red edge is contained in R and
every good blue edge is contained in B.

First, we claim that for every edge uvw ∈ Mblue,

|{u,v,w} ∩Vblue | ≤ 1. (3.2.5)

Indeed, otherwise there is an edge uvw ∈ Mblue with u,v ∈ Vblue. By the de�nition of B, and
by (3.2.2), there is an active edgeua ∈ ∂B with a ∈ V ′red. Asua is an active pair, as a has very large
degree in ∂R, and by (3.2.2), there is an edge uab ∈ K with b ∈ V ′red such that ab ∈ ∂R. Hence
uab is a good edge. Similarly, there is a good edge vcd, with c, d ∈ V ′red \ {a,b}. Remove the edge
uvw fromMblue and add edges uab and vcd to eitherMred orMblue, according to their colour.
The resulting matching covers more vertices than the matching MA∪Mblue, a contradiction. This
proves (3.2.5).
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Next, we claim that there is no edge uvw ∈ Mblue with

|{u,v,w} ∩Vblue | = 1. (3.2.6)

Assume otherwise. Then there is an edge uvw ∈ Mblue with u ∈ Vblue and v,w ∈ Vred. As in
the proof of (3.2.5), we can cover u with a good edge uab such that a,b ∈ V ′red. Moreover, since
vw is an active pair, and v has very large degree in ∂R, there is an edge vwc with c ∈ V ′red \ {a,b}
and cv ∈ ∂R. Since vw ∈ ∂B, the edge vwc is good. So we can remove uvw from Mblue and
add edges uab and vwc toMred ∪Mblue, thus covering three additional vertices. This gives the
desired contradiction to the choice ofMred ∪Mblue, and proves (3.2.6).

Putting (3.2.5) and (3.2.6) together, we know that for every edgeuvw ∈ Mblue we haveu,v,w ∈
Vred. We can assume thatMblue contains at least two hyperedges, as otherwise we can just forget
aboutMblue and we are done. Consider any two edges u1v1w1,u2v2w2 ∈ Mblue. As before, there
are vertices a,b ∈ V ′red such that edges v1w1a,v2w2b are good. Now, if there is a red edge u1u2c
with c ∈ V ′red and u1c ∈ ∂R then we can remove edges u1v1w1,u2v2w2 and add the red edge u1u2c
to Mred and edges v1w1a,v2w2b to Mred ∪ Mblue, according to their colour, contradicting the
choice ofMred ∪Mblue. Therefore, for any choice of u1v1w1,u2v2w2 ∈ Mblue, we have that

all edges u1u2c with c ∈ V ′red and u1c ∈ ∂R are blue. (3.2.7)

Moreover, if there is a blue edge u1u2x with x ∈ {v1,w1,v2,w2} then u1u2 is an active pair.
In that case, we can calculate as before that an edge u1u2c with c ∈ V ′red and u1c ∈ ∂R exists,
and by (3.2.7), this edge is blue. The existence of the blue edge u1u2x implies that we can link
u1u2c toMblue with a blue tight path. Thus, removing u1v1w1 and u2v2w2 fromMblue and adding
v1w1a,v2w2b,u1u2c toMred ∪ Mblue (where a,b are as above), we obtain a contradiction to the
choice ofMred ∪Mblue. So, for any choice of u1v1w1,u2v2w2 ∈ Mblue, we have that

all edges u1u2x with x ∈ {v1,w1,v2,w2} are red. (3.2.8)

We can now dissolve the edges of Mblue. For this, separate each hyperedge uvw in Mblue
into an edge uv and a single vertex w . Let X be the set of all edges uv , and let Y be the set of
all vertices w obtained in this way. Note that every uv ∈ X is an active pair in K , and therefore
forms a hyperedge uvw′ with all but at most δt of the vertices w′ ∈ Y . Moreover, all but at most
δt of these hyperedges uvw′ are such that uw′ ∈ ∂R, because of the large degree u has in ∂R.
Now we can greedily match all but at most 2δt edges uv in X with vertices w′ in Y such that for
every match uvw′ we have that uvw′ is an edge of K and uw ∈ ∂R.

In K , this corresponds to a matchingM′red covering all but at most 6δt vertices of V (Mblue).
By (3.2.8), all hyperedges ofM′red are red. Furthermore, since we ensured that every hyperedge
inM′red contains a pair uw′ that forms an edge of ∂R, we know thatMred andM′red belong to the
same red component of K . In other words,Mred ∪M

′
red andM′blue are the two monochromatic

connected matchings we had to �nd. �

3.3 Hypergraph regularity

In this section we introduce the regularity lemma for 3-uniform hypergraphs and state an embed-
ding result from [HŁP+09].
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Graph regularity. Let G be a graph and let X ,Y ⊆ V (G) be disjoint. The density of (X ,Y ) is
dG(X ,Y ) = eG (X ,Y )

|X | |Y | where eG(X ,Y ) denotes the number of edges of G between X and Y .
The bipartite graphG on the partition classesX andY is called (d, ε)-regular, if |dG(X ′,Y ′)−d| <

ε holds for all X ′ ⊆ X and Y ′ ⊆ Y of size |X ′| > ε |X | and |Y ′| > ε |Y |. If d = dG(X ,Y ) we say that
G is ε-regular.

Hypergraph regularity. Let H be a 3-uniform hypergraph. Let P = P12 ∪ P13 ∪ P23 with
V (P) ⊂ V (H) be a tripartite graph which we also refer to as triad. By T(P) denote the 3-uniform
hypergraph on V (P) whose edges are the triangles of P . The density ofH with respect to P is

dH (P) =
|H ∩ T (P)|

|T (P)|
.

Similarly, for a tuple ®Q = (Q1, . . . ,Qr ) of subgraphs of P , we de�ne the density ofH with respect
to ®Q as

dH ( ®Q) =
|H ∩

⋃
i∈[r ] T(Qi)|

|
⋃

i∈[r ] T(Qi)|
.

Let α, δ > 0 and let r > 0 be an integer. We say thatH is (α, δ , r )-regular with respect to P if,
for every r -tuple ®Q = (Q1, . . . ,Qr ) of subgraphs of P satisfying |

⋃
i∈[r ] T(Qi)| > δ |T (P)|, we have

|dH ( ®Q) − α | < δ . If α = dH (P) we say thatH is (δ , r )-regular with respect to P , and in the same
situation, we say P is (δ , r )-regular (with respect toH ).

If in addition the bipartite graphs P12, P13, P23 of an (α, δ , r )-regular P = P12 ∪ P13 ∪ P23 are
(1/`, ε)-regular then we say that the pair (H , P) is an (α, δ , `, r , ε)-regular complex.

Finally, a partition of V into V0 ∪V1 ∪ · · · ∪Vt is called an equipartition if |V0 | < t and |V1 | =
V2 | = · · · = |Vt |.

We state the regularity lemma for 3-uniform hypergraphs [FR02] as presented in [RRS06].

Theorem 3.3.1 (Regularity Lemma for 3-uniform Hypergraphs). For all δ , t0 > 0, all integer-
valued functions r = r (t, `), and all decreasing sequences ε(`) > 0 there exist constantsT0, L0 and N0
such that every 3-uniform hypergraphH with at least N0 vertices admits a vertex equipartition

V (H) = V0 ∪V1 ∪ · · · ∪Vt with t0 ≤ t < T0,

and, for each pair i, j, 1 ≤ i < j ≤ t, an edge partition of the complete bipartite graph

K(Vi,Vj) =
⋃
k∈[`]

P ij
k

with 1 ≤ ` < L0

such that

1. all graphs P ij
k
are (1/`, ε(`))-regular.

2. H is (δ , r )-regular with respect to all but at most δ`3t3 tripartite graphs Phi
a ∪ P

hj
b
∪ P ij

c .

Note that the same partitions satisfy the conclusions of Theorem 3.3.1 for the complement
of H as well. Further, as noted in [HŁP+09] by choosing a random index kij ∈ [`] for each pair
(Vi,Vj) Markov’s inequality yields that with positive probability there are less than 2δt3 chosen
triads which fail to be (δ , r )-regular. Hence one obtains the following.
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Observation 3.3.2. In the partition produced by Theorem 3.3.1 there is a familyP of bipartite graphs
P ij = P ij

kij
with vertex classes Vi,Vj , where 1 ≤ i < j ≤ t , such thatH is (δ , r )-regular with respect to

all but at most 2δt3 tripartite graphs Phi ∪ Phj ∪ P ij .

We end this section with a result from [PRRS06] and [HŁP+09] which allows embedding tight
paths in regular complexes. In the following, an S-avoiding tight path is one which does not con-
tain any vertex from S . (Note that although Lemma 4.6 from [HŁP+09] is stated slightly di�erently,
its proof actually yields the version below.)

Lemma 3.3.3 ([HŁP+09], Lemma 4.6). For each α ∈ (0, 1) there exist δ1 > 0 and sequences r (`),
ε(`), and n1(`), for ` ∈ N, with the following property.
For each ` ∈ N, and each δ ≤ δ1, if (H , P) is a (dH (P), δ , `, r (`), ε(`))-complex with dH (P) ≥ α and
all of the three vertex classes of P have the same size n > n1(`), then there is a subgraph P0 on at most
27
√
δn2/` edges of P such that, for all ordered pairs of disjoint edges (e, f ) ∈ (P \P0)×(P \P0) there is

m =m(e, f ) ∈ [3] such that the following holds. For every S ⊆ V (H) \ (e∪ f ) with |S | < n/(logn)2,
and for each ` with 3 ≤ ` ≤ (1−2δ 1

4 )n, there is an S-avoiding tight path from e to f of length 3`+m
inH .

3.4 Proof of Theorem 3.1.1
We follow a procedure suggested by Łuczak in [Łuc99] for graphs and used for tight cycles in
3-uniform hypergraphs in [HŁP+09].

Proof of Theorem 3.1.1. For given η > 0 we apply Lemma 3.1.3 with γ = (η/580)6 to obtain t0.
With foresight apply Lemma 3.3.3 with α = 1/2 to obtain δ1, and sequences r (`), ε(`), and n1(`).
Finally, apply Theorem 3.3.1 with t0, r (t, `) = r (`), ε(`), n1(`) and δ = min{δ1/2,γ/58, (η/16)4} to
obtain constants T0, L0 and N0.

Given a two-colouringKn = Hred∪Hblue of the 3-uniform complete hypergraphKn onn > N0
vertices. Apply Theorem 3.3.1 with the chosen constants toHred to obtain partitions

V (Kn) = V0 ∪V1 ∪ · · · ∪Vt and K(Vi,Vj) =
⋃
k∈[`]

P ij
k
, 1 ≤ i < j ≤ t

with t0 ≤ t < T0, and ` < L0 which satisfy the properties detailed in Theorem 3.3.1. The partitions
satisfy the same properties forHblue as it is the complement hypergraph ofHred.

Observation 3.3.2 then yields a family of (1/`, ε)-regular bipartite graphs P ij = P ij
kij

, one for
each pair (Vi,Vj), 1 ≤ i < j ≤ t , such that Hred (and thus also Hblue) is (δ , r )-regular with respect
to all but at most 2δt3 tripartite graphs P ijk = P ij ∪ P ik ∪ P jk . We use this family to construct the
reduced hypergraphR which has the vertex set [t] and the edge set consisting of all triples ijk such
that P ijk is (δ , r )-regular. Further, colour the edge ijk red if dHred(P

ijk) ≥ 1/2 and blue otherwise.
Then we have a two-colouring of R = Rred ∪ Rblue, where R has at least

(t
3
)
− 2δt3 > (1 − γ )

(t
3
)

edges.
Since t ≥ t0 Lemma 3.1.3 yields two disjoint monochromatic connected matchingsMred and

Mblue which cover all but at most 290γ 1
6 t ≤ ηt/2 vertices of R and in what follows we will turn

these connected matchings into disjoint monochromatic tight cycles in Kn.
We start by choosing a red pseudo-path Qred = (e1, . . . , ep) ⊂ Rred which contains the match-

ing Mred. This is possible since Mred is a connected matching, and so, consecutive matching
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edges дs,дs+1 ∈ Mred are connected by a red pseudo-path of length at most
(t
3
)
. The concatena-

tion of these paths then forms a Qred as desired. In the same manner, choose a blue pseudo-path
Qblue = (e′1, . . . , e′q) ⊂ Rblue containing the matchingMblue. Note that althoughMred andMblue
are disjoint, the two paths Qred and Qblue may have vertices in common.

The general idea is to �nd long tight cycles in di�erent colours is as follows. For each edge
{i, j,k} = es ∈ Qred let Ps denote the triad P ij ∪ P ik ∪ P jk on the partition classes Vi ∪ Vj ∪ Vk
and recall that Ps is (δ , r )-regular (with respect to Hred). Lemma 3.3.3 guarantees that one can
�nd long tight paths in the complex (Hred, P

s) for each matching edge es ∈ Mred ⊂ Qred which
exhaust almost all vertices of Vi ∪Vj ∪Vk . Using the connectedness of Qred and Lemma 3.3.3, we
then want to connect these long tight paths by short tight paths, hence obtain a tight cycle Cred
which covers almost all vertices of Kn spanned byMred. We wish to do the same with Qblue to
obtain a tight cycle Cblue which covers almost all vertices ofKn spanned byMblue. The two cycles
Cred and Cblue then exhaust most of the vertices of Kn.

To keep the two cycles disjoint, however, the strategy will be slightly less straightforward.
First, we will �nd two disjoint short tight cycles C′red and C′blue in Kn visiting all triads Ps corre-
sponding to edges es ∈ Mred and P ′s corresponding to e′s ∈ Mblue, respectively. Then, for each
edge es ∈ Mred, and each edge e′s ∈ Mblue, we will replace parts of the cycles C′red, and of C′blue,
i.e., paths corresponding to es and e′s by long tight paths as mentioned above. We now give the
details of this idea.

For each s = 1, . . . ,p, apply Lemma 3.3.3 to the complex (Hred, P
s) to obtain the subgraph

Ps0 ⊂ Ps of “prohibited” edges and let

Bs = (P
s \ Ps0) ∩ (P

s+1 \ Ps+1
0 )

which is a bipartite graph on the partition classes Vi ∪Vj where {i, j} = es ∩ es+1. We choose mu-
tually distinct edges fs,дs ∈ Bs , s ∈ [p−1]which is possible due to the restriction on |Ps0 | provided
n is su�ciently large. Using Lemma 3.3.3 we then �nd a short tight cycle C′red by concatenating
disjoint paths each of length at most 12 between f1 and f2, f2 and f3 . . . between fp−1 and дp−1
and backwards between дp−1 and дp−2 . . . and �nally between д1 and f1. Note that the lemma
allows the paths to be S-avoiding for any vertex set S of size |S | < n′/(logn′)2 where n′ is the size
of the partition classes. Therefore, to guarantee the disjointness of the paths, we simply choose S
to be the vertices of the paths constructed so far which has size at most 24p, i.e., independent of
n′ > n/2t . In the same way choose a short tight cycle C′blue disjoint from C′red by includingV (C′red)
to S in the applications of Lemma 3.3.3.

Let S′ = V (C′red) ∪ V (C
′
blue) which satis�es |S′| < n′/(logn′)2. It is easy to see that for each

es ∈ Mred there are two non-prohibited edges in Ps , connected by a subpath of C′red which is
entirely contained in (Hred, P

s). Hence, by Lemma 3.3.3 we can replace this short path by an S-
avoiding path in (Hred, P

s) which covers all but at most 4δ 1/4n′ vertices and having any desired
parity. Doing this for all es ∈ Mred and all e′s ∈ Mblue and noting that n′ ≤ n/t we obtain two
monochromatic disjoint tight cycles which cover all but at most(

|Mred | + |Mblue |
)
4δ 1/4n′+

(
|V (R)| − |Mred | + |Mblue |

)
n′ + |V0 |

≤
1
4ηn +

1
2ηn + t ≤ ηn

vertices of Kn, and have any desired parity. This �nishes the proof of the theorem. �
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Chapter 4

Partitioning k-uniform hypergraphs into
few monochromatic tight-cycles

Abstract
We prove that for every k, r ∈ N, the vertices of every r -edge-coloured complete k-uniform hy-
pergraph can be partitioned into a bounded number (independent of the size of the hypergraph)
of monochromatic tight cycles, con�rming a conjecture of Gyárfás. We further prove that for
every r ,p ∈ N, the vertices of every r -edge-coloured complete graph can be partitioned into a
bounded number of p-th powers of cycles, settling a problem of Elekes, D. Soukup, L. Soukup and
Szentmiklóssy. In fact we prove a common generalisation of both theorems which further extends
these results to all host hypergraphs with bounded independence number. This is joint work with
Jan Corsten, Nóra Frankl, Alexey Pokrovskiy and Jozef Skokan.

4.1 Introduction
In [EGP91], Erdős, Gyárfás and Pyber proved that the number of monochromatic cycles required
to partition the vertices of every r -edge-coloured complete graph on n vertices does not depend
on n. Similar problems have been considered for powers of cycles. Given a graph H and a natural
number p, the p-th power of H is the graph obtained from H by putting an edge between any two
vertices whose distance is at most p. Grinshpun and Sárközy [GS16] proved that the vertices of
every 2-edge-coloured complete graph can be partitioned into at most 2cp logp monochromaticp-th
powers of cycles, where c is an absolute constant. They conjectured that a much smaller number
of pieces should su�ce. For more than two colours not much is known. Elekes, D. Soukup, L.
Soukup and Szentmiklóssy [ESSS17] proved a similar result using r colours when the host graph
is in�nite and ask whether it is true for �nite graphs.

Problem 4.1.1 ([ESSS17, Problem 6.4]1). Prove that for every r ,p ∈ N, there is some c = c(r ,p) such
that the vertices of every r -edge-coloured complete graph can be partitioned into c monochromatic
p-th powers of cycles.

We prove a substantial generalisation of Problem 4.1.1 as a corollary of our main result (see
Corollary 4.1.4).

1The problem is phrased di�erently in [ESSS17] but this version is stronger, as Elekes et. al. explain below the
problem.
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In this chapter we consider similar questions for k-uniform hypergraphs. The k-uniform loose
cycle of length m is the k-uniform hypergraph consisting of m(k − 1) cyclically ordered vertices
and m edges, each consisting of k consecutive vertices, such that consecutive edges intersect in
exactly one vertex. The k-uniform tight cycle of lengthm is the k-uniform hypergraph consisting
ofm cyclically ordered vertices in which any k consecutive vertices form an edge. Loose and tight
paths are de�ned in a similar way.

Such questions were �rst studied by Gyárfás and Sárközy [GS13] who showed that for every
k, r ∈ N, there is some c = c(k, r ) so that the vertices of every r -edge-coloured complete k-
uniform hypergraph can be partitioned into at most c loose cycles. Later, Sárközy [Sár14] showed
that c(k, r ) can be be chosen to be 50rk log(rk).

In [Gyá16], Gyárfás conjectured that a similar result can be obtained for tight cycles.

Conjecture 4.1.2 ([Gyá16]). For every k, r ∈ N, there is some c = c(k, r ) so that the vertices of every
r -edge-coloured complete k-uniform hypergraph can be partitioned into at most c monochromatic
tight cycles.

We shall prove the following generalisation of Conjecture 4.1.2, allowing the host-graph to be
any k-uniform hypergraph with bounded independence number. A similar result for graphs was
obtained by Sárközy [Sár11], and for loose cycles in hypergraphs by Gyárfás and Sárközy [GS14].

Theorem 4.1.3. For every k, r ,α ∈ N, there is some c = c(k, r ,α) such that the vertices of every
r -edge-coloured k-uniform hypergraph G with α(G) ≤ α can be partitioned into c monochromatic
tight cycles.

The p-th power of a k-uniform tight cycle of lengthm is the k-uniform hypergraph consisting
of m cyclically ordered vertices, so that any k + p − 1 consecutive vertices form a clique. An
immediate corollary of Theorem 4.1.3 is the following strengthening.

Corollary 4.1.4. For every k, r ,p,α ∈ N, there is some c = c(k, r ,p,α) such that the vertices of every
r -edge-coloured k-uniform hypergraph G with α(G) ≤ α can be partitioned into c monochromatic
p-th powers of tight cycles.

Proof. Let f (k, r ,α) be the smallest c for which Theorem 4.1.3 is true and let д(k, r ,p,α) be the
smallest c for which Corollary 4.1.4 is true. We will show that д(k, r ,p,α) ≤ f (k, r , α̃), where
α̃ = R(k)r+1 (k + p − 1, . . . ,k + p − 1,α + 1) − 1. Suppose now we are given an r -edge-coloured k-
uniform hypergraphG with α(G) ≤ α . De�ne a (k +p − 1)-graph H on the same vertex-set whose
edges are the monochromatic cliques of size k + p − 1 in G. By construction we have α(H ) ≤ α̃
and thus, by Theorem 4.1.3, there are f (k, r , α̃)monochromatic tight cycles partitioningV (H ). To
conclude, note that a tight cycle in H naturally corresponds to a p-th power of a tight cycle in
G. �

4.2 Notation
In this section we will introduce some basic notation about hypergraphs. Fix a set of vertices V
of size n and a natural number k ≥ 2 for the rest of this section.

Given a k-uniform hypergraph H (k) and a partition P = {V1, . . . ,Vt } of V we say that H (k) is
P-partite if |e ∩ Vi | ≤ 1 for every e ∈ E(H (k)) and every i ∈ [t]. H is s-partite if it is P-partite
for some partition P of V with s parts. We denote by K (k)(P) the complete P-partite k-uniform
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hypergraph. Furthermore, given some 2 ≤ j ≤ k − 1 and a j-uniform hypergraph H (j), we de�ne
K (k)(H (j)) to be the set of all k-cliques in H (j), seen as a k-uniform hypergraph on V .

Given a k-uniform hypergraphH (k) and ` ≤ k distinct verticesv1, . . . ,v` ∈ V (H
(k)), we denote

by LkH (k )(v1, . . . ,v`) the (k − `)-graph on V (H (k)) \ {v1, . . . ,v`} with edges {e ∈
(V (H (k ))

k−`

)
: e ∪

{v1, . . . ,vl } ∈ E(H
(k))}. If, in addition, disjoint sets V1, . . . ,V` ⊂ V (H (k)) \ {v1, . . . ,v`} are given,

we denote by LkH (k )(v1, . . . ,v`;V1, . . . ,Vk−`) the (k−`)-partite (k−`)-graph with partsV1, . . . ,Vk−`
and edges {e ∈ K (k−`)(V1, . . . ,Vk−`) : e ∪ {v1, . . . ,v`} ∈ E(H (k))}. If H (k) is understood, we drop
the subscript.

4.3 The proof

The proof idea follows an absorption method introduced in [EGP91]. For complete k-uniform
hypergraphs as hosts, the proof can be summarised as follows. First, we �nd a special mono-
chromatic k-uniform hypergraph H0 with the following special property. There is some B ⊂
V (H0), such that for every B′ ⊆ B there is a tight cycle in H0 with vertices V (H0) \ B

′. This is
explained in section 4.3.2. We then greedily remove vertex-disjoint monochromatic cycles until
the set of leftover vertices R is very small in comparison to B.

Finally, we show that the leftover vertices can be absorbed by H0. More precisely, we show
that there are constantly many vertex-disjoint tight cycles with vertices in R ∪ B which cover all
of R. This is the main di�culty of the paper and will be done in section 4.3.3. Here, we will need
basic tools from hypergraph regularity (see section 4.3.1) to build tight cycles in well behaved
sub-hypergraphs by concatenation of short tight paths.

In order to prove the main theorem for k-uniform hypergraphs with bounded independence
number as hosts, we need to iterate this process a few times. Here the main di�culty is to show
that this iteration stops after constantly many steps. This will be done in section 4.3.4.

4.3.1 Finding short paths

The goal of this section is to prove the following lemma, which allows us to �nd in any dense k-
uniform hypergraphG, a dense sub-k-uniform hypergraph H ⊂ G in which any two non-isolated
(k − 1)-sets are connected by a short tight path of a given prescribed length. For this, we need to
use basic tools from hypergraph regularity, but the reader may use Lemma 4.3.1 as a black box if
she would like to avoid it.

Before stating the lemma, we need to introduce some notation. Fix some k ≥ 2 and a par-
tition P = {V1, . . . ,Vk}. We call a tight path in K (k)(P) positively oriented if its vertex sequence
(u1, . . . ,um) travels through P in cyclic order, i.e. there is some j ∈ [k] such that ui ∈ Vi+j for
every i ∈ [m], where we identify k + 1 with 1. In this subsection, we will only consider positively
oriented tight cycles. In particular, given some e ∈ K (k−1)(P), the ordering of e in a tight path
starting at e is uniquely determined.

Lemma 4.3.1. For every d > 0, there are constants δ = δ (d) > 0 and σ = σ (d) > 0, such that the
following is true for every partition P = {V1, . . . ,Vk} and every P-partite k-uniform hypergraph G
of density at least d. There is a P-partite sub-k-uniform hypergraphH ⊂ G of density at least δ such
that for every set S = S1 ∪ . . .∪Sk with Si ⊂ Vi and |Si | ≤ σ |Vi | and any two e, f ∈ K (k−1)(P) which
are disjoint from S and have positive co-degree, there is a positively oriented tight path of length
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` ∈ {k + 2, . . . , 2k + 1} in H which starts at e, ends at f and avoids S . 2

Note that the length of the tight path in Lemma 4.3.1 is uniquely determined by the types
of e and f . The type of e ∈ K (k−1)(P), denoted by tp (e), is the unique index i ∈ [k] such that
e ∩ Vi = ∅. Given two (k − 1)-sets e, f ∈ K (k−1)(P), the type of (e, f ) is given by tp (e, f ) :=
tp (f ) − tp (e) (mod k). It is easy to see that every tight path in K (k)(P) which starts at e and ends
at f has length `k + tp (e, f ) for some ` ≥ 0. In particular, in lemma 4.3.1, we have ` = k + tp (e, f )
if tp (e, f ) ≥ 2 and ` = 2k + tp (e, f ) otherwise.

4.3.1.1 Hypergraph regularity

We will now introduce the basic concepts of hypergraph regularity in order to state a simple con-
sequence of the strong hypergraph regularity lemma which guarantees a dense regular complex
in every large enough k-uniform hypergraph.

For technical reasons, we want to see a 1-uniform hypergraph on some vertex set V as a
partition of V in what follows. We call H (k) = (H (1), . . . ,H (k)) a k-complex if H (j) is a j-uniform
hypergraph for every j ∈ [k] and H (j) underlies H (j+1), i.e. H (j+1) ⊂ K (k)(H (j)) for every j ∈ [k − 1].
Note that, in particular, H (j) is H (1)-partite for every j ∈ [k]. We callH (k) s-partite if H (1) consists
of s parts.

Now, given some j-uniform hypergraph H (j) and some underlying (j −1)-uniform hypergraph
H (j−1), we de�ne the density of H (j) with respect to H (j−1) by

d
(
H (j) |H (j−1)

)
=

��H (j) ∩ K (j)(H (j−1))
����K (j)(H (j−1))

�� .

We are now ready to de�ne regularity.

De�nition 4.3.2. • Let r , j ∈ N with j ≥ 2; ε, dj > 0, and H (j) be a j-partite j-uniform
hypergraph and H (j−1) be an underlying (j-partite) (j − 1)-uniform hypergraph. We call H (j)
(ε, dj, r )-regular with respect to H (j−1) if for all Q (j−1)

1 , . . . ,Q (j−1)
r ⊂ E(H (j−1)), we have������⋃i∈[r ]K (j)

(
Q (j−1)

i

)������ ≥ ε ���K (j) (H (j−1)
)��� =⇒ ������d ©«H (j)

������⋃i∈[r ]Q (j−1)
i

ª®¬ − dj

������ ≤ ε .
For short, we say (ε, ∗, r )-regular for (ε, d

(
H (j) |H (j−1)

)
, r )-regular, and (e, d)-regular for (ε, d, 1)-

regular.

• Let j, s ∈ N with s ≥ j ≥ 2, ε, dj > 0, and H (j) be an s-partite j-uniform hypergraph and
H (j−1) be an underlying (s-partite) (j − 1)-uniform hypergraph. We call H (j) (ε, dj)-regular
with respect toH (j−1) ifH (j)[V1, . . . ,Vj] is (ε, d)-regular with respect toH (j−1)[Vi1, . . . ,Vij ] for
all 1 ≤ i1 < . . . < ij ≤ s , where {V1, . . . ,Vs} is the vertex partition of V (H (j)).

• Let k, r ∈ N, ε, εk, d2, . . . , dk > 0, and H (k) = (H1, . . . ,Hk) be a k-partite k-complex. We
callH (k) (d2, . . . , dk, ε, εk, r )-regular, if H (j) is (ε, dj)-regular with respect to H (j−1) for every
j = 2, . . . ,k − 1 and H (k) is (εk, dk, r )-regular with respect to H (k−1).

2More precisely, ` = k + tp (e, f ) if tp (e, f ) ≥ 2 and ` = 2k + tp (e, f ) otherwise.
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The following theorem is a direct consequence of the strong hypergraph regularity as stated
in [RS07] (with the exception that we allow for an initial partition of not necessarily equal sizes).

Theorem 4.3.3. For all integers k ≥ 2, constants εk > 0, and functions ε : (0, 1) → (0, 1) and
r : (0, 1) → N, there exists some δ = δ (k, ε, εk, r ) > 0 such that the following is true. For every
partition P = {V1, . . . ,Vk} of some set V and every P-partite k-uniform hypergraph G(k), there
are sets Ui ⊂ Vi with |Ui | ≥ δ |Vi | for every i ∈ [k] and constants d2, . . . , dk ≥ δ for which there
exists some (d2, . . . , dk, ε(d), εk, r (d))-regular k-complex H (k), so that H (k) = G(k)[U1, . . . ,Uk] and
H (1) = {U1, . . . ,Uk}.

We will use the following special case of the extension lemma in [CFKO09, Lemma 5] to �nd
short tight paths between almost any two (k−1)-sets in a regular complex. Fix a (d2, . . . , dk, ε, εk)-
regular complex H (k) = (P,H (2), . . . ,H (k)), where P = {V1, . . . ,Vk}. Let H (k−1)

i ⊂ H (k−1) denote
the edges of type i and note that the dense counting lemma for complexes [CFKO09, Lemma 6]
implies that, for all i0 ∈ [k], ���H (k−1)

i0

��� = (1 ± ε) k−1∏
j=2

d(
k−1
j )

j

∏
i∈[k]\i0

|Vi | .

Given some β > 0, we call a pair (e, f ) ∈ H (k−1)
i1 × H (k−1)

i2 β-typical for H (k) if the number of
tight paths of length ` := k + tp (i1, i2) in H (k) which start at e and end at f is

(1 ± β)
k∏
j=2

d
`(kj )−2(k−1

j )
j

∏
i∈{i1,...,i2}

|Vi | ,

where {i1, . . . , i2} is understood in cyclic ordering.

Lemma 4.3.4. Let k, r ,n0 ∈ N, β, d2, . . . , dk, ε, εk > 0 and suppose that

1/n0 � 1/r , ε � min{εk, d2, . . . , dk−1} ≤ εk � β, dk, 1/k .

Then the following is true for all positive integers n ≥ n0, for all indices i1, i2 ∈ [k] and every
(d2, . . . , dk, ε, εk, r )-regular complex H (k) =

(
H (1), . . . ,H (k)

)
with |Vi | ≥ n0 for all i ∈ [k], where

H (1) = {V1, . . . ,Vk}. All but at most β
���H (k−1)

i1

��� ���H (k−1)
i2

��� pairs (e, f ) ∈ H (k−1)
i1 ×H (k−1)

i2 are β-typical for

H (k).

Combining Theorem 4.3.3 and Lemma 4.3.4 gives Lemma 4.3.1.

Proof-sketch of lemma 4.3.1. Apply Theorem 4.3.3 with suitable constants and delete all e ∈ H (k−1)

of small co-degree. Let e ∈ H (k−1)
i1 and f ∈ H (k−1)

i2 for some i1, i2 ∈ [k] and de�ne

X =
{
д(k−1) ∈ H (k−1)

i1+1 : e ∪ д(k−1) ∈ H (k)
}

and

Y =
{
д(k−1) ∈ H (k−1)

i2−1 : f ∪ д(k−1) ∈ H (k)
}
.

Let X̃ ⊂ X and Ỹ ⊂ Y be the sets of all those edges in X and Y avoiding S . By Lemma 4.3.4 at least
one pair in X̃ × Ỹ must be typical and by a counting argument not all of the promised paths can
touch S . �
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4.3.2 Absorption Method

The absorption method was introduced in [EGP91] and has been successfully applied to answer
several questions involving partitions of graphs and hypergraphs. A good reference can be found
in [Zha16], where Zhao surveys methods that helped to develop Dirac-type problems for hyper-
graphs. In what follows we present a suitable generalisation for tight cycles of the absorbing
structure introduced in [EGP91].

De�nition 4.3.5. Let H be an edge-coloured hypergraph and A,B ⊂ V (H ) disjoint subsets. A
is called an absorber for B if there is a monochromatic tight cycle with vertices A ∪ B′ for every
B′ ⊆ B.

Lemma 4.3.6. For every k, r ,α ∈ N, there is some β = β(k, r ,α) > 0 such that the following is true
for every k-uniform hypergraph H with α(H ) ≤ α . In every r -colouring of E(H ) there are disjoint
sets A,B ⊂ V (H ) with |B | ≥ β |V (H )| such that A absorbs B.

The following hypergraph (see Figure 4.1) will function as our absorber. A very similar hy-
pergraph was used by Gyárfás and Sárközy to absorb loose cycles [GS13, GS14].

De�nition 4.3.7. The (k-uniform) crown of order t ,T (k)t , is a tight cycle with n = t(k −1) vertices
v0, . . . ,vn−1 (the base) and additional vertices u0, . . . ,ut−1 (the rim). Furthermore, for each i =
0, . . . , t − 1, we add the k edges {ui,v(k−1)i+j, . . . ,v(k−1)i+j+k−2}, j = 0, . . . ,k − 1.

Figure 4.1: The 3-uniform crown of order 6. White vertices are the base of the crown, where the
gray edges form the required tight cycle on the base vertices. Black vertices are the rim of T (3)6 .

It is easy to see that the base of a crown is an absorber for the rim. To prove Lemma 4.3.6, we
therefore only need to show that we can always �nd monochromatic crowns of linear size. This
is a consequence of the following theorem of Conlon, Fox and Sudakov [CFS09].

Theorem 4.3.8. For every r ,k,∆ ∈ N, there is some C = C(r ,k,∆) > 0 so that the following is
true for all k-graphs H1, . . . ,Hr with at most n vertices and maximum degree at most ∆, and every
N ≥ Cn. In every edge-colouring of K (k)N with colours c1, . . . , cr , there is some i ∈ [r ] for which there
is a ci-monochromatic copy of Hi.

34



Proof of Lemma 4.3.6. Suppose k, r ,α and H are given as in the theorem and that E(H ) is coloured
with r colours. Let n = |V (H )|, ∆ := max

{
2k,

( α
k−1

)}
and c = 1/C , whereC = C(r +1,k,∆) is given

by Theorem 4.3.8. Consider now the (r + 1)-colouring of the edges of K (k)n in which every edge in
E(H ) receives the same colour as in H and every other edge receives colour r + 1. Let Hr+1 = K (k)α+1
and Hi = T

(k)
cn for all i ∈ [t], and note that ∆(Hi) ≤ ∆ for all i ∈ [r + 1]. By choice of ∆, there is no

monochromatic Hr+1 in colour r+1 and hence, by choice of c , there is a monochromatic copy of
Hi for some i ∈ [r ]. �

4.3.3 Absorption Lemma
In this section we prove a suitable absorption lemma for our approach.

Lemma 4.3.9. For every ε > 0 and k, r ∈ N, there is some γ = γ (k, r , ε) > 0 and some c = c(k, r , ε)
such that the following is true. LetH be a k-partite k-uniform hypergraph with parts B1, . . . ,Bk such
that |B1 | ≥ . . . ≥ |Bk−1 | ≥ |Bk |/γ and | Lk(v ;B1, . . . ,Bk−1)| ≥ ε |B1 | · · · · |Bk−1 | for every v ∈ Bk .
Then, in every r -colouring of E(H ), there are c vertex-disjoint tight cycles covering Bk .

In the proof, we will need the following simple but slightly technical lemma.

Lemma 4.3.10. For every ε > 0 there is some δ = δ (ε) > 0 and some C = C(ε) > 0 such that the
following is true for everym ∈ N. Let X be set of sizem and F ⊂ 2X be a family of subsets such that
|F | ≥ εm for every F ∈ F . Then there is some G ⊂ F of size |G| ≤ C and a partition P of F \ G
into sets of size 4 such that |

⋂
B| ≥ δm for every B ∈ P.

We will prove Lemma 4.3.10 with δ (ε) = ε4/26 and C(ε) = 8/ε2 + 2/ε .

Proof. De�ne a graph G on F by {F1, F2} ∈ E(G) if and only if |F1 ∩ F2 | ≥ (ε/2)2m. We claim that
α(G) ≤ 2/ε . Suppose for contradiction that there is an independent set I of size 2/ε + 1. Then we
have |F0 \

⋃
F∈I\{F0} F | ≥ εm/2 for every F0 ∈ I and hence |

⋃
F∈I F | > m, a contradiction. Hence

we �nd a matching P1 of all but at most 2/ε vertices. Let G1 = F \ V (P1) and note that P1 is a
partition of F \ G1 into sets of size 2. Let F1 = {F1 ∩ F2 : {F1, F2} ∈ P1} and iterate the process
once more. �

Proof of Lemma 4.3.9. It su�ces to prove the lemma for r = 1. Indeed, for each v ∈ Bk , delete
all edges containing v which are not in its majority colour and apply the one-colour result (with
ε′ = ε/r ) for each ‘colour class’.

Fix ε > 0, k ≥ 2 and ak-partitek-uniform hypergraph with parts B1, . . . ,Bk as in the statement
of the lemma. Choose constants γ , δ1, δ2, δ3 > 0 so that 0 < γ � δ3 � δ2 � δ1 � ε . We begin
with a simple but important observation.
Observation 4.3.11. Letv1, . . . ,vt ∈ Bk be distinct vertices andC be a tight cycle in the hypergraph
K (k−1) (B1, . . . ,Bk−1) with vertex-sequence (u1,1, . . . ,u1,k−1, . . . ,ut,1, . . . ,ut,k−1). Denote by es,i the
edge in C starting at us,i and suppose that

(i) es,i ∈ Lk (vs ;B1, . . . ,Bk−1) for every s ∈ [t] and every i ∈ [k − 1] and

(ii) es,1 ∈ Lk (vs−1;B1, . . . ,Bk−1) for every s ∈ [t] (here v0 := vt ).

Then, (v1,u1,1, . . . ,u1,k−1, . . . ,vt ,ut,1, . . . ,ut,k−1) is the vertex-sequence of a tight cycle in H .

We will proceed in three steps.
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Step 1 (Divide into blocks). By Lemma 4.3.10, there is some C = C(ε) ∈ N and a partition
P of all but C (k − 1)-graphs from { Lk(v ;B1, . . . ,Bk−1) : v ∈ Bk} into blocks of size 4 with
e(H) := |

⋂
H∈H E(H )| ≥ δ1 |B1 | · · · |Bk−1 | for every H ∈ P. Remove the C leftover vertices from

Bk .
Step 2 (Cover blocks by paths). Think of every block H now as a graph with edges E(H) :=⋂

H∈H E(H ). By Lemma 4.3.1, for each H ∈ P, there is a subgraph H ′ ⊂ H such that e(H ′) ≥
δ2 |B1 | · · · |Bk−1 | with the same property as in Lemma 4.3.1. By deleting all the edges H \ H ′
we may assume that H itself has this property. De�ne an auxiliary graph G with V (G) = P
and {H1,H2} ∈ E(G) if and only if e(H1 ∩ H2) ≥ δ3 |B1 | · · · |Bk−1 |. Similarly as in the proof of
Lemma 4.3.10, we conclude that α(G) ≤ 2/δ2, and hence V (G) can be covered by 2/δ1 vertex-
disjoint paths (by Pósa’s theorem3).

e0 et

P1

Q1

e1

e′1

P2

Q2

e2

e′2

. . .

. . .

. . .

et−2

e′t−2

Pt−1

Qt−1

et−1

e′t−1

Pt

Qt

Figure 4.2: Finding cycles in a path of blocks.

Step 3 (Lift to tight cycles). We will lift each of these paths of blocks to a tight cycle in the hy-
pergraph K (k−1)(B1, . . . ,Bk−1) of the desired form. Let P = (H1, . . . ,Ht ) be one of the paths.
Refer to Figure 4.2 for a helpful picture of the following proof. Choose disjoint edges e0 ={
x (0)1 , . . . , x

(0)
k−1

}
∈ E(H1) and et =

{
x (t)1 , . . . , x

(t)
k−1

}
∈ E(Ht ). For each s ∈ [t − 1], further choose

two edges es =
{
x (s)1 , . . . , x

(s)
k−1

}
∈ E(Hs) ∩ E(Hs+1) and e′s =

{
y(s)1 , . . . ,y

(s)
k−1

}
∈ E(Hs) ∩ E(Hs+1)

so that all chosen edges are pairwise disjoint. We identify x (0)i = y(0)i and x (s)i = y(s)i for every
i ∈ [k − 1], and e0 = e′0 and et = e′t . Assume without loss of generality, that x (s)i ∈ Bi for every
i ∈ [k − 1] and all s = 0, . . . , t .

By construction, there is for every s ∈ [t] a tight path Ps ⊂ Hs of length 2k − 3 which starts at
and (x (s−1)

2 , . . . , x (s−1)
k−1 ), ends at (x (s)1 , . . . , x

(s)
k−2) and (internally) avoids all previously used vertices.

Similarly, there is for every s ∈ [t] a tight path Qs ⊂ Hs of length 2k − 3 which starts at and
(y(s)1 , . . . ,y

(s)
k−2), ends at (y(s−1)

2 , . . . ,y(s−1)
k−1 ) and (internally) avoids all previously used vertices. It is

now easy to check that the tight cycle in Kk−1 (B1, . . . ,Bk−1) with edge sequence

e′0 = e0, P1, e1, P2, e2, . . . , Pt , et = e′t ,Qt , . . . , e1,Q1, e′0 = e0

has the desired properties to apply observation 4.3.11.
�

3Pósa’s theorem actually allows cycles, but for technical reasons we need to work with paths.
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4.3.4 Proof of Theorem 4.1.3.

Fix α, r ,n ∈ N and a k-uniform hypergraph G with α(G) ≤ α . Choose constants 0 < β,γ , ε �
max{α, r ,k}−1 such that γ = γ (k, r , ε) works for Lemma 4.3.9 and β = β(k, r ,α) works for
Lemma 4.3.6. The proof proceeds in α steps, where the initial step does k − 1 steps at once.

Step 1, . . . , k-1. By Lemma 4.3.6, there is some B ⊂ [n] of size βn with an absorber Ak−1 ⊂ [n].
Partition B into k − 1 sets B(k−1)

1 , . . . ,B(k−1)
k−1 of equal sizes. Remove monochromatic tight cycles of

maximal lengths from [n]\(Ak−1∪B) until the setRk−1 of uncovered vertices in [n]\(A∪B) satis�es
|Rk−1 | ≤ γ |B

(k−1)
1 |. This is possible, since the Ramsey number of the tight cycle is linear (see sec-

tion 4.3.2 for more details). LetR′
k−1 ⊂ Rk−1 be the set of verticesv with |Lk(v ;B(k−1)

1 , . . . ,B(k−1)
k−1 )| <

ε |B(k−1)
1 | · · · |B(k−1)

k−1 | and let R′′
k−1 = Rk−1 \ R

′
k−1. By Lemma 4.3.9 we can �nd ck−1 vertex-disjoint

tight cycles in B(k−1)
1 ∪ B(k−1)

k−1 ∪R
′′
k−1 covering R′′

k−1. Remove them and let B(k)i ⊂ B(k−1)
i , i ∈ [k − 1],

be the set of leftover vertices.

Step j (j = k, . . . ,α). Suppose we have built, during the previous j − 1 steps, disjoint sets
B(j)1 , . . . ,B

(j)
j−1,R

′
j−1 and absorbers Ak−1, . . . ,Aj−1. By lemma 4.3.6 there is some B(j)j ⊂ R′j−1 of size

β |R′j | with an absorber Aj ⊂ R′j−1. Remove monochromatic tight cycles of maximal lengths from
R′j−1 \ (Aj ∪B

(j)
j ) until the set Rj of uncovered vertices in R′j−1 \ (Aj ∪B

(j)
j ) satis�es |Rj | ≤ γ |B

(j)
j |. Let

R′j ⊂ Rj be the set of verticesv with | Lk(v ;B(j)t1 , . . . ,B
(j)
tk−1
)| < ε

���B(j)t1 ��� · · · ���B(j)tk−1

��� for all 1 ≤ t1 < . . . <

tk−1 ≤ j and let R′′j = Rj \ R
′
j . By (

( j
k

)
applications of) Lemma 4.3.9 we can �nd cj vertex-disjoint

cycles in B(j)1 ∪ . . . ∪ B
(j)
j ∪ R

′′
j covering R′′j . Remove them and let B(j+1)

i ⊂ B(j)i , i ∈ [j], be the set of
leftover vertices.

In the end we are left with disjoint sets B1 := B(α+1)
1 , . . . ,Bα := B(α+1)

α ,Bα+1 := R′α and corre-
sponding absorbers Ak−1, . . . ,Aα (Ak−1 absorbs B(α+1)

1 , . . . ,B(α+1)
k−1 ). All other vertices are covered

by constantly many cycles.
We will show now that R′α+1 = ∅ �nishing the proof. In order to so, we assume the contrary

and �nd an independent set of size α + 1. Note that
��Bj

�� ≥ (1−γ ) ���B(i)j ��� for every 1 ≤ j ≤ i ≤ α and
hence �� Lk

(
v ;Bi1, . . . ,Bik−1

) �� ≤ ε ���B(i−1)
i1

��� · · · ���B(i−1)
ik−1

���
≤ ε(1 − γ )−(k−1) ��Bi1

�� · · · ��Bik−1

��
≤ 2ε

��Bi1
�� · · · ��Bik−1

��
for every i ∈ {k, . . . ,α + 1}, 1 ≤ i1 < . . . < ik−1 < i and v ∈ Bi. By the following lemma, there is
an independent set of size α + 1, a contradiction. �

Lemma 4.3.12. For all k, r ∈ N there is some ε = ε(k, r ) > 0 such that the following is true for every
k-uniform hypergraphH and all non-empty, disjoint sets B1, . . . ,Br ⊂ V (H ). If

�� Lk(v ;Bi1, . . . ,Bik−1)
��

is at most ε
��Bi1

�� · · · ��Bik−1

�� for all i ∈ {k, . . . , r }, 1 ≤ i1 < . . . < ik−1 < i and v ∈ Bi, then there is an
independent transversal, i.e. an independent set {v1, . . . ,vr } with vi ∈ Bi for all i ∈ [r ].

We will prove the lemma for ε(k, r ) = r−(k−1)2 .
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Proof. Let δ = r−(k−1) and ε = δk−1. Choose vr ∈ Br arbitrarily and assume now that vr , . . . ,vj+1
are chosen for some j ∈ [r − 1]. Given s ∈ {2, . . . ,k − 1} and i = (i1, . . . , ik) with 1 ≤ i1 < . . . <
is−1 < is = j < is+1 < . . . < ik ≤ r , de�ne

Bj(s, i) :=
{
u ∈ Bj :

�� Lk
(
vik , . . . ,vis+1,u;Bis−1, . . . ,Bi1

) �� ≥ ε/δk−s ��Bi1
�� · · · ��Bis−1

��} .
Furthermore, given i = (i1, . . . , ik) with j < i2 < . . . < ik ≤ r , de�ne

Bj(1, i) := N
(
vik , . . . ,vi2 ;Bi1

)
,

the neighbourhood of {vi2, . . . ,vik } in Bi1 . Note that, by choice of vr , . . . ,vj+1, we have
���Bj(s, i)

��� <
δ
��Bj

�� for every s ∈ {2, . . . ,k − 1} and
���Bj(1, i)

��� < ε/δk−2 ��Bj

�� = δ
��Bj

��. Since there are at most(r−1
k−1

)
< 1/δ choices for (s, i), we can choose some vj ∈ Bj \

⋃
s,i Bj(s, i). Clearly, at the end of this

process, {v1, . . . ,vr } will be independent. �
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