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CONVOLUTIONAL RECURRENT NEURAL NETWORKS FOR REMAINING USEFUL LIFE
PREDICTION IN MECHANICAL SYSTEMS

La determinación de la vida útil remanente (RUL del inglés "Remaining Useful Life") de
una máquina, equipo, dispositivo o elemento mecánico, es algo en lo que se ha estado
trabajando en los últimos años y que es crucial para el futuro de cualquier industria que
así lo requiera. El continuo monitoreo de máquinas junto a una buena predicción de la
RUL permite la minimización de costos de mantención y menor exposición a fallas. Sin
embargo, los datos obtenidos del monitoreo son variados, tienen ruido, poseen un ca-
rácter secuencial y no siempre guardan estricta relación con la RUL, por lo que su esti-
mación es un problema difícil. Es por ello que en la actualidad se utilizan distintas clases
de Redes Neuronales y en particular, cuando se quiere modelar problemas de carácter
secuencial, se utilizan las Redes Neuronales Recurrentes o RNN (del inglés "Recurrent
Neural Network") como LSTM (del inglés "Long Short Term Memory") o JANET (del in-
glés "Just Another NETwork"), por su capacidad para identificar de forma autónoma pa-
trones en secuencias temporales, pero también junto a estas últimas redes, también se
utilizan alternativas que incorporan la Convolución como operación para cada célula de
las RNN y que se conocen como ConvRNN (del inglés "Convolutional Recurrent Neural
Network"). Estas últimas redes son mejores que sus pares convolucional y recurrentes
en ciertos casos que requieren procesar secuencias de imágenes, y en el caso particular
de este trabajo, series de tiempo de datos de monitoreo que son suavizados por la Con-
volución y procesados por la Recurrencia.

El objetivo general de este trabajo es determinar la mejor opción de ConvRNN para la
determinación de la RUL de un turbofan a partir de series de tiempo de la base de datos
C-MAPSS. También se estudia cómo editar la base de datos para mejorar la precisión de
una ConvRNN y la aplicación de la Convolución como una operación primaria en una
serie de tiempo cuyos parámetros muestran el comportamiento de un turbofan. Para ello
se programa una LSTM Convolucional, LSTM Convolucional Codificador-Decodificador,
JANET Convolucional y JANET Convolucional Codificador-Decodificador. A partir de es-
to se encuentra que el modelo JANET Convolucional Codificador-Decodificador da los
mejores resultados en cuanto a exactitud promedio y cantidad de parámetros necesa-
rios (entre menos mejor pues se necesita menos memoria) para la red, siendo además
capaz de asimilar la totalidad de las bases de datos C-MAPSS. Por otro lado, también
se encuentra que la RUL de la base de datos puede ser modificada para datos antes de
la falla. Para la programación y puesta en marcha de las diferentes redes, se utilizan los
computadores del laboratorio de Integración de Confiabilidad y Mantenimiento Inteli-
gente (ICMI) del Departamento de Ingeniería Mecánica de la Universidad de Chile.
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Abstract

The determination of the Remaining Useful Life (RUL) of a machine, equipment, device
or mechanical element, is a crucial issue for the future of the industry and the optimiza-
tion of processes as in the case of maintenance. The continuous monitoring of machines
along with a good prediction of the RUL, allows the minimization of maintenance costs
and lower exposure to catastrophic faults. On the other hand, it is also known that data
obtained from monitoring is varied, has a sequential nature and do not always has a
strict relationship with RUL, so their estimation is difficult problem.

Nowadays in this class of problems, different kinds of Neural Networks are used. In par-
ticular when it is wanted to model problems with sequential data, Recurrent Neural Net-
work (RNN) are preferred for its capacity to autonomously identify patterns in temporal
sequences and recently, there are also alternatives that incorporate the Convolution as
an operation in each cell of these Networks. Therefore these Networks in some cases are
better than their convolutional and recurrent pairs, since they are capable of processing
sequences of images, and in the particular case of this work, time series of monitoring
data that are softened by convolution and processed by recurrence.

The general objective of this work is to obtain the best alternative based on Convolu-
tional Recurrent Neural Network (ConvRNN) for determining the RUL of a turbofan from
the time series of C-MAPSS dataset. It is also studied how to modify the database to im-
prove the accuracy of a ConvRNN and the application of Convolution as a primary oper-
ation in a time series whose parameters show the behavior of a turbofan. For this, a Con-
volutional LSTM, Convolutional LSTM Encoder-Decoder, Convolutional JANET and Con-
volutional JANET Encoder-Decoder are programmed. Then, it is proven that the model
that obtains the best results in terms of average accuracy and number of parameters
necessary (less is better because less memory is needed) for the Network is the Convo-
lutional JANET Encoder-Decoder that is also able to successfully assimilate the totality of
the C-MAPSS databases. Moreover, it is also found as in other works, that the RUL from
the database can be modified for data before failure.

For the start-up of Neural Networks, computers from the SRMI laboratory of the Me-
chanical Engineering Department of the University of Chile are used.
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1 | Introduction

1.1. Motivation

The Remaining Useful Life (RUL) of a machine is a subjective estimation of the time re-
maining until a machine, component or system can continue working before warranting
replacement. Being a subjective measure, depends on what is expected from the opera-
tion of the machine or system’s component. Is for this reason, that the quantity and com-
plexity of the parameters (such as temperature, pressure, vibration level, etc.) that show
machine’s behavior, always change case by case. Some of the possible complex aspects of
these parameters could be:

• Different operating conditions.

• Various failure modes.

• White noise over the data.

• Variable amounts of data available.

If a machine, component or system is reached the end of its useful life, the parameters
that measure the behavior of a machine also show the effect of the failure or faults in its
magnitudes. Therefore, it is necessary to ask whether the magnitudes of parameters in
a given time (within useful life) can be related to a possible future failure or faults and, if
a time series made from these parameters can contain enough information for the esti-
mation of time remaining until the failure. (it is discussed these two questions in section
8.1).

From these two questions it is considered the existence of a non-linear function that is
capable of processing machine’s parameters for RUL estimation. An analytic function
would be complex and costly to do, and it would also change case by case depending on
each problem. Then, the option that can be understood as enough generalist, robust, fast
and reason for this work, is to approximate a maximum value of a conditional probabil-
ity, between RUL and the parameters related to a particular time cycle, with a probabilis-
tic approach of Convolutional Recurrent Neural Network (ConvRNN).
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1.2. General objectives

Determine the best option of Convolutional Recurrent Neural Network (ConvRNN) for
estimate the Remaining Useful Life (RUL) of a turbofan from the time series of measured
data of its sensors.

1.3. Specific objectives

• Programming and start-up of varieties of ConvRNN

• Determine how to edit the database to improve the accuracy of a ConvRNN.

• Study the application of Convolution as a primary operation in a series of time
whose parameters show the behavior of a turbofan.

• Determine the architecture of ConvRNN that presents the highest precision and
score.

1.4. Scope

• Programming Convolutional Long Short Term Memory (ConvLSTM) that achieves
high precision.

• Programming ConvLSTM Encoder-Decoder network that achieves high precision.

• Programming Convolutional Just Another NETwork (ConvJANET) programming
that achieves high precision.

• Programming ConvJANET Encoder-Decoder network programming that achieves
high precision.

1.5. Outline

It is started with Chapter 2 showing the related work that allows to see the development
of the research in Prognosis and Health Management (PHM). Then, in Chapter 3 a com-
plete introduction to the theory of Neural Networks is shown. In Chapter 4 it is shown the
C-MAPSS database, mentioning its main characteristics and justification. In Chapter 5
it is formally introduced the problem of using Neural Networks for the approximation of
RULs of a machine. The methodology and experiments done in this work are described
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in Chapter 6 and then the results are shown in Chapter 7. The results are discussed in
Chapter 8 and finally this work concludes with Chapter 9.

3



2 | Related Work

In this chapter it is reviewed the data-driven algorithmic methods used for solve Diag-
nosis and Prognosis problems in the context of faults in mechanical systems. It is started
with a bibliographic review carried out as proposed [Saxena et al., 2008], and then pro-
ceeds to the explanation of the most recent methods in which deep learning algorithms
are used, making relevant observations about these works.

According to [Saxena et al., 2008], the problem of Diagnosis can be solved from an ap-
proach that does not consider the materials from which a mechanical system is made
but using the data corresponding to the operation of this system. These data reflect the
health state of a given component or mechanical system.

The methods for the resolution of problems of Diagnosis and Prognosis from the ap-
proach of using operational data, can be divided among those that consider the physics
of the system in which it is interested, i.e, analytic methods in which a function is ob-
tained for the extraction of characteristics and subsequent prediction of a pseudo-parameter.
And by other hand, it is also had methods of unknown physical foundations but based on
the statistics in which a function is determined.

2.1. Diagnosis and Prognosis problems

The problem of Diagnosis can be defined as the problem of determining whether or not
a component or mechanical system is failing, while the problem of Prognosis can be un-
derstood as the problem of determining how many useful life a mechanical component
or system has. Both problems are closely related possessing unique peculiarities due to
the nature of the faults in mechanical systems, one of these peculiarities is that before
a failure of a mechanical system, this shows parameters close to "nominal" magnitudes
[Ramasso, 2014], [Goebel et al., 2007] which do not have much variability if similar op-
erating conditions are taken into account, however at the moment of a failure occur im-
mediately that some system parameters are different from the nominal ones. Therefore,
it can be seen that particularly in these problems it is had an extensive amount of time
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where data is little variable while, since the moment of failure, the data provides useful
information to solve the problems of Diagnosis and Prognosis.

For the reasons mentioned above, trying to solve the problem of Prognosis before failure
is a complicated process if data-driven methods are used and many times, they are4 not
more successful than the extensive statistical methods [Rausand and Høyland, 2013] or
empirical applications as described in [Neubauer, 1984].

However it is noteworthy that the complexity of Diagnosis and Prognosis problems not
only lies on the physics or behavior of the systems, but also on the uncertainty of other
external variables such as noise on sensors or operational conditions.

2.2. Use of operational data for the study of faults

2.2.1. Analytic Methods

The study of faults in systems and mechanical components together with development
of useful algorithms, have been closely related to the use of databases of different types.
The use of databases that represent historical data of a mechanical system does not focus
on the initial conditions of materials and applications.

The proposal to use the operational data for the study of faults is given in the seventies
by [Urban, 1973] in which is proposed the usefulness of algorithms that using opera-
tional data (found in control systems) are able to determine when a component or sys-
tem fails. This work was followed by [Doel, 2002] and [Kurosaki, 2003]. [Urban, 1973]
and [Doel, 2002] use a weighted-least squares approach looking for the solution -fault
Diagnosis- that further reduces the error, meanwhile in [Kurosaki, 2003], the approach
uses average magnitudes of pseudo-parameters so that the fixed variable that minimizes
error is the one that indicates the fault.

These solutions not only take into account the behavior of the data as random variables
from which it is sought to determine a state or failure, but also take into account the
physical relationship between different variables and that are reflected in the thermody-
namic formulas of a turbine. Also noteworthy is the fact that the solutions given by their
algorithms always allude to the case that minimizes a system from physical equations,
using them for the previous extraction of characteristics and subsequent resolution of an
optimization problem.

The approaches given at the beginning by Urban and Doel explicitly point out the stochas-
tic nature of the problem to be solved with notable quotes about their model as “the so-
lution providing the greatest reduction to the residual error is used in place of the base
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solution if the fault solution probability is sufficiently large”, and as it was seen in the past
Chapter 2, is the way in which the training of Neural Networks is also considered.

2.2.2. Datasets and machine learning methods

The study of either Diagnosis or Prognosis for mechanical systems, with evidence also
requires the creation and disposal of large databases that are not always available. That
is why, in the context of the 2008 International Conference on Prognostics and Health
Management, the PHM-2008 database is made available [Saxena et al., 2008] and later
also the C-MAPSS database. Both are generated from the software Comertial Modular
Aero-Propulsion System Simulation (C-MAPSS) in which turbofans are modeled for the
generation of databases. For more details about these 2 databases see Chapter 3.

From the aforementioned databases, as [Ramasso and Saxena, 2014] say, there are more
than 70 publications on different study possibilities, these studies do not necessarily
deal with the problem of Prognosis but also address issues of machine learning and deep
learning as supervised classification, unsupervised classification and partially supervised
classification.

2.2.3. Deep learning and Data-driven prognostic algorithms

For the understanding of the usefulness of the machine learning and deep learning mod-
els on the study of faults, it can be first mentioned what these models are capable of
modeling and if the problem is feasible to be modeled.

As it was seen earlier in the case of Diagnosis at the beginning of the fault study, there
are often relationships between the measured parameters that are already known and
given in some cases by the same equations that govern the physics of the machines to be
studied. Moreover, it is also true that from these relationships the first studies were able
to solve the diagnostic problem with a certain range of success. So then, it can be said
that there are functions that with a certain range of success are capable of solving the Di-
agnosis problem. However, together with the physics given in the operating parameters
of the mechanical systems, the characteristics that allow the problems of Diagnosis and
Prognosis to be stochastic problems must also be taken into account, either because they
are considered uncertain operation conditions, fails or the same noise over the data as
mentioned above.

Therefore, it should be understood that the use of Neural Networks on prognostic prob-
lems is justified because it is not only a deterministic problem but also stochastic, that
Neural Networks reproduce a conditional probability distribution [Goodfellow et al., 2016],
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[Bishop, 2006], [Murphy, 2013] and that, if the problem is of Prognosis, what the Neural
Network delivers is the argument that is most likely to be real. Details on the modeling of
the problem of Prognosis using Neural Networks can be seen in Chapter 2 of this work.

2008 PHM Data Challenge Competition

After this small but necessary introduction to the usefulness of Neural Networks on the
study of faults it can be found several models of Neural Networks applied to the databases
PHM-2008 challenge and C-MAPSS.

The winner of PHM-2008 Challenge was the model proposed in [Peel, 2008]. This model
considers an ensemble of Neural Networks from a Kalman filter. The Kalman filter pro-
vides a mechanism for merging predictions of multiple Neural Network models over
time. The models of Neural Networks used are a Multi-Layer Perceptron (MLP) and radial
basis function. This work indicates the importance of taking into account the operational
settings. Finally shows that their initial predictions could tend to the mean or expected
useful life of a unit. Another work is the second place of PHM-2008 Challenge proposed
by [Wang et al., 2008], who uses a similarity-based approach, considering the extraction
of features and a useful Health Indicator to see how much degradation there is before a
failure. [Heimes, 2008] in third place, uses a recurrent Neural Network also taking into
account the edition of the training database in the RUL, fixing it in a constant value but
only mentions that this change improves the predictions without more details.

The 2008 PHM Data Challenge Competition is still an open competition and, together
with the appearance of another set of C-MAPSS data, other models of Neural Networks
and deep learning also appear to address the problem of Prognosis. In [Zheng et al., 2017]
uses a Long Short Term Memory (LSTM) for the PHM-2008 challenge and C-MAPSS dat-
sets, considering an edition of the training and test databases in the moment before the
failure, fixing a constant RUL, determining the moment of failure with another Neural
Network. It also indicates that the RUL estimation close to the zero RUL provides the best
results. [Malhotra et al., 2016] uses an LSTM Encoder-Decoder architecture in only the
first C-MAPSS dataset obtaining an unsupervised health index to determine RUL.

[Sateesh Babu et al., 2016] proposes the use of Convolutional Neural Network (CNN),
typically used in images, but for Prognosis and Health Management (PHM) has the pecu-
liarity that the application of convolutional filters is over time using padding at the start
and ends of the time series. [Li et al., 2017] uses a Deep CNN in which dropout is also ap-
plied during its training, achieving the best results so far. Both works of CNN consider
setting the RUL as constant in the database of training and testing.

The 2008 PHM Data Challenge Competition and C-MAPSS datasets are particularly com-
plex because it is not specified exactly what is each parameter (sensor) given in each
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column of the database to predict the RUL, therefore some physical approach to the
variables is not possible. Moreover the problem to be considered can be understood as
a stochastic problem [Wang et al., 2012] or, more specifically, it can be considered as a
problem of statistical pattern recognition [Bishop, 2006], [Murphy, 2013] but through
time, if it is seen aspects of the turbofan as 6 operating conditions, failure modes or noise,
which operate changing a sequence of events.

The most successful Neural Networks models today are those that allow an modification
on the RUL in the training and test data. This modification consists in that the values of
the RULs greater than a particular RUL, are changed in their value by this particular RUL.
This modification is justified by [Li et al., 2017] and [Ramasso, 2014], being that the last
one indicates that the Health Index 1 does not show greater variation in this part of the
time series. On the other hand, the convolution on series of time extract characteristics
on the data with noise together with reduce the amount of parameters that the model
considers, while recurrent models show good results similar those achieved by convolu-
tional models, however recurrent models are typically used in problems of time series.

Finally, it is pertinent to ask whether perhaps it is not only that convolutional operation
serves to assimilate data with noise and avoiding redundant parameters, but that they
are also capable of reconstructing characteristics of the time series that the fault repre-
sents. For example, the nature of the faults allows them to be events that deliver infor-
mation and do not manifest themselves for a long time, and that the application of the
convolution as a linear combination over the data in the time series, may be reconstruct-
ing the information about past. This information would not be manifested in that time
but in future data. So then, it can be thought that maybe in some cases (such as applying
the convolution over time) the convolution can help the recurrent processes.

1Health Index is one of assessment method on asset or equipment. The result describes the overall
health condition of an asset. Additionally Health Index is a tool to manage the assets and identifier for
investment needs, such as prioritizing capital investment and maintenance programs. The purpose of
Health Index assessment is to measure the condition of the equipment based on various criteria related
condition factors of long-term degradation that cumulatively resulted in the end of the age of the operating
assets. Extracted of [Satriyadi Hernanda et al., 2014]
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3 | Fundamentals

In what form is information
stored, or remembered ?

How does information contained
in storage, or in memory, influence
recognition and behavior ?

F. Rosenblatt, The Perceptron, 1958.

To these two questions F. Rosenblatt in 1958 tries to answer with his probabilistic model
for the storage of information in the brain. However, despite their antiquity, these ques-
tions still define most of what is known as Neural Network and deep learning. The first
question raises a possible coding of information, while the second raises that this type
of coding affects the properties of a Neural Network. This can be seen for example from
the different types of Neural Network (encoders) and their usual application (their per-
formance). A Convolutional Neuronal Network can process a feature map with great ef-
fectiveness, while a Recurrent Neural Network can model with success time series. Both
types of networks have a unique dynamic (behavior) given by the equations that deter-
mine them. In this way, it can be seen that this field of studies continues in the same
spirit as its pioneers who actually looked for clues about what defines how people be-
have.

In this chapter it is described in a general way the theory of Neural Network emphasizing
the particular use of they for this work.

9



3.1. Fundamentals

3.1.1. Tensors

Definition 3.1 A tensor T ∈ T0,n of rank "n" in a "d" dimensional space is an object with
the following properties:

• It has components labeled by n indices, with each index assigned values from 1 through
d, and therefore having a total of dn components;

• The components transform in a specified manner under coordinate transformations.

Extracted from the tensor definition of [B.Arfken and Weber, 2001].

Some authors [Goodfellow et al., 2016] simply consider a tensor T as a n-array where
Ti1,...,in are its elements with i1, ..., in its indices. It is prefered to take the previous physi-
cal definition because it makes it clearer what a tensor is and what relationship it has with
a scalar, a vector, a matrix or a multilinear function

Definition 3.2 A scalar α ∈R is a single number and can be considered as a tensor of rank
0.

Definition 3.3 A vector v ∈ Rd is an array of scalars where vi are its elements, can be
considered as a tensor of rank 1.

Definition 3.4 A matrix M is a rectangular array composed for scalars defined by the
number of rows and columns that it contains where Mij are its elements. A matrix can
be considered as a tensor of rank 2.

Definition 3.5 Let A and B tensors of rank n in d dimensional space. The Hadamard
product of A and B is defined by

(A◦B)i1,...,in = Ai1,...,in Bi1,...,in (3.1)

3.1.2. Neural Network and Deep Neural Network

Definition 3.6 An activation function θ is defined by:

θ : Ω⊂R→Λ ∈R (3.2)

this function in general operate element-wise on an output of a layer in a Neural Network
being part of the nonlinear function between layers, allows controlling the form of the out-
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put marking its threshold of the magnitude of the output.To this function it can also be
added a parameter known as temperature T, θ(a/T) where a is the input of the activation
function.

Definition 3.7 An activation function θ is considered saturated iff:

∀z ∈R ||∀θ(z) ∈R ||∃s ∈R || t q |l imn→∞θ(z)| ≤ s

Some popular examples are:

Logistic sigmoid activation function.

θ(z) =σ(z) = 1

1+e−z
(3.3)

with σ(z) ∈ (0,1).

Hyperbolic tangent activation function.

θ(z) = tanh(z) = ez −e−z

ez +e−z
(3.4)

with tanh(z) ∈ (−1,1).

−4 −2 0 2 4
0

0.5

1

z

σ
(z

)

Figure 3.1: Sigmoid or logistic function. It is had σ(∞) = 0, σ(0) = 0.5, and σ(∞) = 1.
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Figure 3.2: Hyperbolic tangent activation function.

Definition 3.8 An activation function θ is considered non satured iff:

∀z ∈R ∣∣l imn→∞ f (z)
∣∣→+∞

Some popular examples are:

ReLU activation function.

θ(z) =
{

0 f or z < 0
z f or z ≥ 0

(3.5)

con θ(z) ∈ (0,∞).

ELU activation function.

θ(z) =
{
α(e−z −1) f or z < 0

z f or z ≥ 0
(3.6)

with θ(z) ∈ (−α,∞) y α ∈R a certain parameter.
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Figure 3.3: ReLU
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Figure 3.4: ELU

Definition 3.9 Let Ω ⊆ Rd and Λ ⊆ Rd′
. A Neural Network is a nonlinear function defined

by:
f :Ω⊂Rd →Λ⊂Rd′

(3.7)

whose goal is to approximate some function f ∗ : Ω′ ⊂ Rm → Λ′ ⊂ Rn . This function is
usually composed for an input ai in which an activation function θ(ai) is applied. Then it
can be established that (ai) has the following form:

ai = Xd ®W (3.8)

where Xd is an input, W is a weight´s matrix and ® is a multilineal application.

Definition 3.10 Let Ω ⊂ Rm , Λ1 ⊂ Rk1 , ..., Λh ⊂ Rkh , open sets and f1 : Ω→ Λ1, ..., fh :
Λh−1 →Λh nonlinear functions. A Deep Neural Network is defined as:

f1 ◦ · · · ◦ fh : Ω⊂ Rm →Λh ⊂ Rkh (3.9)

where f1◦···◦ fh is a composition of functions with the same form as the previous definition
that approximates another function f ∗ :Ω′ ⊂Rm →Λ′ ⊂Rkh .
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3.2. Feedforward Neural Network

A Feedforward Neural Network is a Neural Network whose directed graph is acyclical, i.e,
there are no feedback connections in which outputs of the model are fed back into itself.

3.2.1. Perceptron

A Perceptron is a logistic regression (classifier) or linear regression [Bishop, 2006] whose
model has a data entry x ∈ Rm , weights wT ∈ Rm , biases b ∈ R and depending of the
case, a Sigmoid activation function. When the Perceptron has a Sigmoid activation func-
tion is called Logistic Regression. Given its activation function, the domain of its output
y ∈ (0,1). In this way, a Perceptron is only constituted by one layer.

y =σ(
m∑

i=1
wi · xi +b) (3.10)

where y is the output, the input layer has m neurons i, the weights that unite both layers
is denoted as wi , b is the bias of a neuron and σ is the Sigmoid or Logistic function.

Input layer

∑
σ

Output

Figure 3.5: Inner structure of a Perceptron.(Own elaboration).
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3.2.2. Multilayer Perceptron

A Multilayer Perceptron is a stack of layers of Neural Network, which for the first hidden
layer can be written as follows :

y1
j =σ(

m∑
i=1

wi j · xi +b j ) (3.11)

meanwhile for any other k hidden layer :

yk+1
j =σ(

n∑
i=1

wi j · yk
i +b j ) (3.12)

where the first input is x ∈ Rm , yk+1 ∈ Rn is the output of the hidden layer k +1 since a
layer k, the hidden layer k has n neurons i, the weights that unite both layers is denoted
as w k

i j , bk ∈Rm is the bias of a layer k and σ is the Sigmoid function.

This configuration is part of the known as Deep Learning and allows to achieve better
results. The number of neurons and layers can vary according to the case addressed and
as the Perceptron it is capable of addressing both regression and classification problems.
It can be had a better idea from the figure 3.6:

Input layer

First hidden layer Second hidden

layer

Output layer

Feature extraction Logistic regression

Figure 3.6: Multilayer Perceptron of 2 hidden layers.(Modified from: http://blog.
robfelty.com/2007/02/14/pgf-gallery,last time consulted 06-09-2018)
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3.2.3. Convolutional Neural Network

Convolutional Neural Network are introduced by Yann LeCun in 1990 [LeCun et al., 1990]
to solve image recognition problems. Unlike the fully connected layers mentioned in
before, this type of Networks does not have a total connection with the neurons of pre-
vious layer, instead uses a stack of filters of certain size that are convolved in the whole
input image to generate a stack of feature maps (Figure 6.1). In this way, this kind of Neu-
ral Network can have dispersed interactions between the different points of the image,
shared parameters and equivalent representations. While all redundant parameters are
reduced, and with this the assimilation of noise and irrelevant information also reduced,
and therefore a more generalist model is obtained without losing computational power.

Input image
Output

feature maps

Fully
conected

layer

Figure 3.7: Example of CNN structure with one convolutional layer for image classifica-
tion. (Based on [LeC+98, p. 2284], own elaboration).

Definition 3.11 Discrete convolution:

s(t ) = (x ∗w)(t ) =
∞∑

a=−∞
x(a)w(t −a) (3.13)

Definition 3.12 Convolucion in Neural Network:

S(i, j ) = (K∗ I)(i, j ) =
H∑

m=1

W∑
n=1

I(i−m, j −n)K(m,n) (3.14)

where I is the input image of size W, H and K is the kernel or filter used.
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Convolutional layer

A convolutional layer applies different filters or kernels on an input image, these filters
slide along and across the image with certain steps known as strides. This input image is
represented by a tensor in Red, Green and Blue (RGB) representation system, in a single
channel in grayscale or one matrix as in the case of this work.

As a result of the application of the convolution, between a K kernel and an I image, fea-
ture maps with a size smaller than the size of the input image are obtained according to
the following relationship:

Dout put = Dinput −Dker nel +1 (3.15)

where Douput is the dimension of feature maps (height or weight), Dinput is the dimen-
sion of the input image (height or weight) and Dker nel is the kernel’s dimension (height
or weight).

zero-padding technique

When it is wanted to maintain the size of the image, zeros can be added at the ends, this
technique is known as zero-padding . The number of rows of zeros added is determined
by the following:

p =


k/2 f or (Dinput −Dker nel ) even.

k/2+1 f or (Dinput −Dker nel ) odd.
(3.16)

where p is the number of rows of zeros that are added at one end and k is the size of the
kernel in a dimension.
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Can be understood better the zero-padding technique in the figure 3.8:

48 32 4 54 84 10 67 99 110

86 43 74 70 34 66 75 43 77

99 0 15 98 45 55 53 92 88

233 144 11 13 78 91 21 4 85

210 187 44 77 89 25 88 65 44

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

Figure 3.8: Zero padding in a sequential matrix in which kernels of size (Dker nel ,1) are
applied. (Own elaboration).

Fully conected layer

When it is wanted to make a prediction or classification from the application of convolu-
tional layers, the so called Fully-conected layer is used. As its name implies, it is a layer
whose neurons are completely connected to the points of the previous layer. This ar-
rangement allows to extract other characteristics that require more information between
points not necessarily linked spatially and that allows finally to make the regression or
classification.
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3.3. Recurrent Neural Network

A recurrent Neural Network is a network capable of processing sequential data ([Graves, 2013],
[Mikolov et al., 2010]) to extract characteristics linked to a certain sequence of events
that are temporally ordered(the data is ordered not necessarily according to a temporal
metrical unit, although consecutively among them to achieve an output that can also be
sequential). This type of Neural Network, like the Convolutional Neural Network, share
parameters but, unlike the latter, the shared parameters are for the different positions of
the temporal sequence.

To characterize an Recurrent Neural Network (RNN), this can be separate in 2 functions
that characterize a hidden state and an output. Being that for each case it is appreciable
different hidden states and outputs for the different times of the sequence (Figure 3.9).

Definition 3.13 Let a sequential input x ∈ RI×T , a Recurrent Neural Network is a cyclical
graph that has H hidden units h(t )

j that allows to process data with a temporal order of an

input x(t )
i in a time t for get an output y (t )

i in time t.

h(t )
j =ϕ(

H∑
h=1

w h′
h j h(t−1)

h +
I∑

i=1
w x

i j x(t )
i +b j ) (3.17)

y (t )
i =

H∑
j=1

w o
j ih

(t )
j +bo

j (3.18)

Depending of the problem, different configurations of inputs and outputs can be con-
sidered for cells in one layer. For example, in the case of Figure 3.10 it can be seen a con-
figuration of 3 RNN cells, of which only one receives an input meanwhile all generate
outputs. In the case of Figure 3.11 a configuration is shown where all the cells receive an
input although only one generates an output. While the case of Figure 3.12 2 cells receive
inputs and 2 generates an outputs. In general it can be built any other kind of configura-
tion and this depends on the particular problem to solve.

Despite being a good Neural Network to model sequential data, during its training (more
details about the training process of a RNN in Section 3.4.3) it can present problems
when the derivative is on the hyperbolic tangent (typical in RNN cases) whose output
values are close to 1, obviously the values of the derivative approximate infinity since this
point, meanwhile for values close to 5 its derivative is zero, so it does not contribute to
the training process either. This is known as Vanishing-Exploding problem [Pascanu et al., 2013].
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Figure 3.9: Recurrent network cell. Typical cyclic graph (a) that can be unrolled into (b)
as an acyclic graph.(Own elaboration).

Figure 3.10: Recurrent Neural Network with sequence input-output one to many.(Own
elaboration).
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Figure 3.11: Recurrent Neural Network with sequence input-output many to one.(Own
elaboration).

Figure 3.12: Recurrent Neural Network with sequence input-output many to many.(Own
elaboration).
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3.3.1. Long Short Term Memory

The Long Short Term Memory (LSTM) appear from the vanishing-exploding problem
aforementioned usually seen in training traditional RNNs, LSTM models use some gates
that allow to maintain the information of a previous state if the vanishing-exploding
problem occurs. The expression long-short term refers to the fact that LSTM is a model
for short-term memory that can last a long period of time. An LSTM is suitable for classi-
fying, processing and predicting time series with unknown time and size delays between
important events. The relative insensitivity to the aforementioned problem is that which
gives the LSTM advantage over common RNNs.

A common LSTM unit consists of a cell with an input gate, an output gate, a forget gate
and a memory cell. The memory cell is responsible for remembering the values in ar-
bitrary time intervals. Each of the gates can be considered as a conventional artificial
neuron, i.e, an activation function is used on a weighted sum of the inputs.

1. An input xt arrives and forgets gates f j
t , inputs gates i j

t and a new memory cell c j
t

are obtained:
i j
t =σ(Wi ·xt +Ui ·ht−1 +Vi · ct−1 +bi)

j (3.19)

f j
t =σ(W f · xt +U f ·ht−1 +V f · ct−1 +b f ) j (3.20)

c̄ j
t = tanh(Wc ·xt +Uc ·ht−1 +bc ) j (3.21)

2. The new memory is created partially forgetting the previous memory c j
t−1 and

adding the new memory c̄ j
t

c j
t = f j

t · c j
t + i j

t · c̄ j
t (3.22)

3. Output gate o j
t is computed

o j
t =σ(Wo · xt +Uo ·ht−1 +Vo · ct−1 +bo) j (3.23)

4. Hidden state h j
t is obtained

h j
t = o j

t · tanh(c j
t ) (3.24)

For a better understanding of the information flux in this kind of recurrent cell it can
seen the next figure in which hidden states and memory cell share information between
times, together with an output in each time:
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Figure 3.13: Flux of information in LSTM cells. Similar to RNNs, LSTMs have output and
hidden states. (Own elaboration).

3.3.2. JANET

This kind of Networks appear answering the questions of if all the gates of an LSTM are
strictly necessary, fact already refuted with the proposal of the Gated Recurrent Unit
(GRU) 1. In this way a new network called JANET [van der Westhuizen and Lasenby, 2018]
that only keeps the forget gate and the memory cell obtaining a network that requires
less computing power and is more general model.

Therefore the following equations that govern this type of networks.

1. An input xt arrives and forgets gates f j
t is obtained:

f j
t =σ(W f ∗xt +U f ∗ht−1 +b f ) j (3.25)

2. The new memory is created partially forgetting the previous memory c j
t−1 and

adding the new memory c̄ j
t

c j
t = f j

t ¯ c j
t + (1− f j

t )¯ tanh(Wc · xt +Uc ·ht−1 +bc ) j ) (3.26)

3. Hidden state h j
t is equal to new memory c j

t

h j
t = c j

t (3.27)
1This type of Recurrent Neural Network is not studied in this work because this work tries to eval-

uate the most extreme cases in all order, in this case the Networks with higher (ConvLSTM) and mi-
nor (ConvJANET) number of existing gates are evaluated, taking into account the results obtained by
[van der Westhuizen and Lasenby, 2018] that indicate that a smaller amount of gates improves the results.
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For a better understanding of the information flux in this kind of recurrent cell it can
seen the next figure in which just the hidden states share information:

Figure 3.14: Flux of information in JANET cells. Different from RNN or LSTM cells, Janet
cells don’t have an output but only a hidden state. (Own elaboration).
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3.3.3. Encoder-Decoder Recurrent Architectures

A recurrent encoder-decoder model was introduced independently from each other in
[Chung et al., 2014] and [Sutskever et al., 2014]. Perhaps in the context of this work the
application for images giving by [Srivastava et al., 2015] and [Shi et al., 2015] is interest-
ing. The Encoder-Decoder idea could be understanding by the figure 3.15.

Figure 3.15: Structure of an unconditional recurrent Encoder-Decoder. The inputs are
processed in the encoder cells and unfolded in the decoder cells which initial state (IS) is
equal to the last hidden state of the encoder. (Own elaboration).

In the first part of the Encoder-Decoder architecture, a representation of the sequential
inputs is learned in the last hidden state of the encoder and then it is used as Initial State
(IS) for the first hidden state of the decoder. The decoder is capable of extract more spe-
cific features for generate an output. It is also possible to increase the number of layers
both in the Encoder and in the decoder and even make them bidirectional.

In general at least 2 ways of making the decoder are known, forms given by the networks
known so far. The first is to make an unconditional decoder, i.e, that the recurrent cell at
a time t does not receive the output of the same cell at time t − 1. And the other way of
making the decoder is that the recurrent cell in a time t receives the output of the same
cell in time t −1, which would be a conditional decoder. The use of each type of decoder
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depends on the type of recurrent network and the output that is to be generated. For ex-
ample, an output that in turn is also sequential probably require a conditional decoder,
whereas if a non-sequential output is required in the case of photo tagging, it might be
better to use an unconditional Decoder.

These forms are used mainly for the cases RNN, LSTM and GRUs, along with their con-
volutional counterparts but in the case of the recurrent model Just Another NETwork
(JANET), since there is no output and the hidden state is equal to the memory cell, there
is a model whose conditional only is given by its hidden state, i.e, it is strictly uncondi-
tional.

3.3.4. Convolutional LSTM

The Convolutional Long Short Term Memory (ConvLSTM) appear with the purpose that
an LSTM network may be able to take into account nearby data spatially-temporally as it
happens in the case of pixels in a video, i.e, take attention. This is then achieved by using
convolutional structures in each cell with it can be built a stack of ConvLSTM (Figure
3.16). This is an encoding-forecasting structure (Figure 3.17) capable of solving problems
of space-time prediction.

The big difference respect to memory selection cell of a common LSTM is that the Con-
vLSTM incorporate the calculation of the convolution on the inputs Xt , the states of the
neuron Ht and the memory cell Ct

j . This is seen in the following equations that also show
the order in which a new state is selected Ht :

1. An input Xt arrives and forgets gates f j
t , inputs gates i j

t and a new memory cell C j
t

are obtained:
i j
t =σ(Wi ∗Xt +Ui∗Ht−1 +Vi ◦Ct−1 +bi)

j (3.28)

f j
t =σ(W f ∗Xt +U f ∗Ht−1 +V f ◦Ct−1 +b f ) j (3.29)

C̄ j
t = tanh(Wc ∗xt +Uc ∗ht−1 +bC) j (3.30)

2. The new memory cell is created partially forgetting the previous memory C j
t−1 and

adding the new memory C̄ j
t

C j
t = f j

t ◦C j
t + i j

t ◦ Č j
t (3.31)

3. Output gate o j
t is computed

o j
t =σ(Wo ∗Xt +Uo ∗Ht−1 +Vo ◦Ct−1 +bo) j (3.32)

4. Hidden state h j
t is obtained

H j
t = o j

t · tanh(C j
t ) (3.33)
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For the case of this work, are interesting models with a fully connected layer, both in the
normal case and in the Encoder-Decoder case that have a only one output or prediction.
Then, it can be seen this kind of models in the next figures:

Figure 3.16: Structure of a fully-connected ConvLSTM for time window input. (Own elab-
oration).
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Figure 3.17: Encoder-Decoder structure of ConvLSTM for time series input. (Own elabo-
ration).

3.3.5. Convolutional JANET

In the same way that the ConvLSTM has been proposed, the Convolutional Just Another
NETwork (ConvJANET) is proposed, which in this work is used to assimilate temporal
relationships in a group of time series. The way in which a ConvJANET can operate can
be seen in the following equations:

1. An input Xt arrives and forgets gates f j
t is obtained:

f j
t =σ(W f ∗Xt +U f ∗Ht−1 +b f ) j ) (3.34)

2. The new memory is created partially forgetting the previous memory C j
t−1 and

adding the new memory C̄ j
t

C j
t = f j

t ¯C j
t + (1− f j

t )¯ tanh(Wc ∗Xt +Uc ∗Ht−1 +bc ) j (3.35)
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3. The state of the hidden neuron is obtained H j
t

H j
t = C j

t (3.36)

As it was seen in the figures 3.16 and 3.17, a prediction can be made from a fully-connected
JANET or Fully connected JANET Encoder-Decoder being basically the same application
as for ConvLSTM cases..
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3.4. Training and Optimizers

The training process of any Neural Network or deep Neural Network consists basically in
determining the weights and biases of a network such that the model to train (or func-
tion f ) can approximate a function f ∗ with a certain error range. Weights and biases are
obtained from the maximum likelihood, i.e, the weights and biases that minimized the
network error. For this purpose, an algorithm called optimizer is used meanwhile the er-
ror associated to a particular weight is obtained by the another algorithm knew as back-
propagation.

3.4.1. Loss function

For problem 2.1, it is determined a function l (θ) that maximizes the likelihood. As it can
be seen from this function l (θ), there are values can be considered or assumed as con-
stants, in particular the variance 2, which is linked to noise on the data. Then the error
function that allows to maximize the likelihood remains as:

En =
B∑

i=1
(yi −µ(xi))2 (3.37)

This function is commonly known as Residual sum of squares, where B is the number of
examples of a batch of size B with a certain pattern n. However, in order to modify each
of the weights and biases given a certain example, the error associated with a certain
weight value W and bias b it must be had. Then this is accomplished using the procedure
known as Back-propagation.

L1 regularization

To the aforementioned cost function, a term is added that considers the sum of the weights
of the Full-connected layer. This technique is known as L1 regularization and allows the
algorithms that train the networks, to better distribute the magnitudes of the weights of a
particular hidden layer. So then:

En =
B∑

i=1
(yi −µ(xi))2 +∑‖W‖ (3.38)

2In this work it is taken as a good approximation that the variance is constant, although as it was seen
in the chapter on Related work, some authors suggest that the error is not constant in all the predictions
and therefore the variation of the error does not necessarily either.
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3.4.2. Back-propagation

Back-propagation is proposed by [Rumelhart et al., 1988] and have for objective give the
error associated to a particular weight. This algorithm is based on the chain rule for com-
puting the derivative in which each weight is a variable. Therefore, if a weight wi j weighs
an output zi and previously there are other functions that are derivable, the following
nomenclature is used:

∂En

∂wi j
= δ j · zi (3.39)

where δ j represents the multiplication of all derivative functions prior to wi j .

3.4.3. Back-propagation Through-Time

The back-propagation through time algorithm [Werbos, 1990], like the previous one,
seeks to determine errors associated to the weights and biases of a recurrent Neural Net-
work. This is done by first unfolding the recurrence, i.e, taking the recurrence as simply a
composition of k functions for k times. Then the standard back-propagation is applied.
To understand the process of unfolding a bit better it can be considered the following:

s t = f (s t−1,θ) (3.40)

given a t = 2 the recurrent can be unfolded as:

s2 = f (( f (s0,θ))1,θ) (3.41)

where s0 is the input in time zero. In this way it can be applied back-propagation as in a
feed-forward Neural Network.

3.4.4. Optimization

Gradient

From the previous back-propagation algorithms, the derivatives of the cost function that
determine whether or not to increase a weight wi j are determined. As is well known,
∂En
∂wi j

> 0 implies that increasing the weight wi j increase the cost En , while ∂En
∂wi j

<0 implies

that increasing the weight wi j decreases the cost En . But it must also be considered how
much this weight wi j is increased so that En is decreased, this can be done by multiply-

ing ∂En
∂wi j

by a small quantity given by the hiperparameter, Learning rate (η) that denotes

the amount that varies wi j to decrease the cost En . In this way a mechanism to update
(learn) a weight wi j is established.
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Therefore weights variation is written as,

4wi j =−η ∂En

∂wi j
(3.42)

Definition 3.14 The learning process in a Neural Network consists in updating the weights
wi j such that the value given by the cost function is reduced. In this way the weights wi j

are updated in the following:
wi j = wi j +4wi j (3.43)

ADAM Optimizer

From this definition, many options have been sought [Li et al., 2009], [Duchi et al., 2011],
[N. Dauphin et al., 2015] and [Kingma and Ba, 2014] that improve more and more the
learning process in a Neural Network and controlling specific problems. For example, a
problem can be that in each step of training there are large oscillations product of non-
stationary objectives and very noisy problems.

In this work the ADAM optimizer is used because of the good results indicated by [Kingma and Ba, 2014]
that, for the aforementioned gradient, adapt a learning rate.

3.4.5. Initializators

Although the continuous advance of optimizers for Neural Network and the fact that they
actually converge to a minimum, some works such as [Glorot and Bengio, 2010], shows
that in many times when a saturated activation function (the case of this work) and a
random initialization of parameters are had, saturation can occur. Then the saturation
decreases the adjustment that the network can have on the database and in consequence
decreasing the accuracy of the results.

In this way, with the idea of avoiding this kind of problems, to initialize the weights on
all networks it is used Xavier initializer[Glorot and Bengio, 2010] (also it can be used a
variant of this initializer to initialize the filters of the convolutions). While in the case of
initializing the biases in the recurrent part, it can be used the one known as Chrono ini-
tializer [Tallec and Ollivier, 2018].
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4 | Turbofan RUL Estimation

4.1. Dataset’s

As was mentioned in the previous chapter, the study of PHM has the need of large num-
ber of databases which is according to the number of problems studied, however these
databases are not always available for all problems. That is why in 2008, in the context of
the "Prognosis and Health Management Competition", a database of turbofan units with
different types of faults and operating conditions was proposed [Saxena et al., 2008]. In
addition, other databases with different characteristics appear and allow a broad com-
parison respect to aspects related with the difficulty of generating a predictor model.

In this work, the models of Neural Networks were evaluated only in the C-MAPSS database
because of the variety of data that it presents and that allow to analyze the large number
of models to test and discard, and consequently it allow a better understanding the gen-
eralization that has a certain model. But also, this dataset let the edition of the RUL is the
test sets, issue that is discussed later.

4.1.1. C-MAPSS dataset’s

C-MAPSS database is made from the software C-MAPSS 1 created by NASA Army Re-
search Lab [DeCastro et al., 2008]. The tool C-MAPSS is capable of simulating a turbofan
(Figure 4.1) in different operating conditions and different types of failure modes, adding
different noise levels in each simulation. In the software this is done through the varia-
tion of specific parameters of operating conditions, controllers or environmental speci-
fications. In addition, it is also noteworthy that efficiency’s parameters can be modified
randomly in order to simulate various levels of degradation in the different components
of turbofans.

1More information about this software in https://www.grc.nasa.gov/www/cdtb/software/
mapss.html (last time consulted 06-09-2018)
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Figure 4.1: Example and description of a turbofan. A model of Pratt Whitney F100, man-
ufactured in 1970 and propeller of fighters F-15 Eagle and F-16 Fighting Falcon. (image
taken from https://www.grc.nasa.gov/www/k-12/Missions/Jim/Project2_act.
htm, last time consulted 06-09-2018)

Then, four databases composed for different time series and increasing complexity are
generated. In each time series the behavior of the turbofan is shown for 21 parameters
of sensors of the system and also too, other 3 parameters that show turbofan’s operating
conditions. The number of failure modes and operating conditions are summarized in
the following table:

Dataset Operating conditions Fault modes train examples test examples

FD001 1 1 100 100
FD002 1 2 259 260
FD003 6 1 100 100
FD003 6 2 248 249

Table 4.1: C-MAPSS dataset’s specifications.

Each turbofan begins with different degrees of initial use and unknown manufacturing
conditions although this initial use and manufacturing conditions are considered nor-
mal, i.e, it is not considered a failure condition [Saxena et al., 2008].

Therefore, turbofan’s sequences shown normal or nominal behavior at the beginning of
each time series and in some point begins to degrade until predefined limit in which it is
considered that the turbofan can no longer be used.

In this work it can be considered the approach of leaving as constant those RUL which
are greater than a certain number of cycles. This is justified because the parameters that
show the behavior of the turbofan show normal operating conditions in those points, i.e,
the data show a little variation that decreases the feasibility of making different accurate
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predictions for each point.

In contrast, the data since the fault show a lot of information and allow obtaining the
best results. Then it is considered that there is a time from the beginning of the operation
such that with a 99% probability the turbofan working fine.

4.1.2. C-MAPSS dataset evaluation formulas

In order to compare different types of Neural Networks proposed by the researchers, the
following formulas are proposed in [Saxena et al., 2008]:

• Root mean square difference (RMSD)√∑n
i=1(d)2

n
(4.1)

• Score

s =
{∑n

i=1 e−( d
a1

) −1 f or d < 0∑n
i=1 e( d

a2
) −1 f or d Ê 0

(4.2)

where,

s is the score achieved.

n is the number of units in the test set.

d = t̂RUL (RUL estimated - RUL real)

a1 = 10, a1 = 13, constant parameters given.
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5 | Problem Statement

RUL is a subjective measure that depends on what is understood as failure and good con-
ditions of use of a mechanical system. For example, is not the same criteria for use of
an aircraft turbine that for a motorcycle engine, despite being completely different ma-
chines the truth is that aviation standards are more stricter than a common user may
have for a vehicle. Then, it can be defined RUL as time difference between a given time of
a machine in good conditions of use and the time in which the machine, due to its faults,
can no longer operate.

Therefore, returning to the case of the problem of determining the RUL of a turbofan
from a certain set of historical time series, the assigned data in each case can be seen in
the following way:

Ω= {(x t j
i , yi)}N

i=1} (5.1)

where Ω is knowed as the dataset, N is the number of training examples, x t j
i ∈ RT×D is a

window of a time series with D features and T times, and yi ∈ R is the RUL corresponding

to a particular x t j
i since the last time of itself.

Moreover, aspects such as noise, operating conditions and multiple failure modes, re-

duce the feasibility of creating a map that assigns a certain ỹ predicted to a certain x t j
i .

Consequently, what it is looking for is a non-linear function that fulfills the following:

yi =µ(xi)+ε(xi) (5.2)

where µ(x) is a Neural Network model with multilineal operations and particular activa-
tion functions , meanwhile ε(x) is the residual error or noise that the Neural Network has
and that depends of x, as can be understood from the observation of several authors as
[Sateesh Babu et al., 2016], [Li et al., 2017] or [Zheng et al., 2017]. Can also assume that
ε(x) has a normal distribution. So then:

ε(xi) ∼N (µ(xi), σ2(xi))

Therefore, it can be written the model in the following way:

P(y | x,θ) =N (µ(x), σ2(x)) (5.3)
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where as stated before µ(x) = E(y | x) is the Neural Network model and σ2(x) the variance
of the error.

Maximum likelihood estimation

One way to look at the determination of Neural Network parameters is the maximum
likelihood defined as:

θ̂= ar g max l og P(Ω | θ)
θ

(5.4)

In this case it is also assumed that the N training examples are independent of each other
and that they are identically distributed for a large part of the cases, i.e, they are iid 1.
Then it can be rewritten "ar g max l og P(Ω | θ)" as "ar g min − log P(Ω | θ)", so then:

l (θ) =−l og P(Ω | θ) =−
N∑

i=1
log P(yi | xi,θ) (5.5)

And inserting the definition of the Gaussian:

l (θ) =−
N∑

i=1
log

(
1

2πσ2

) 1
2

exp

(
1

2πσ2( yi −µ(xi) )2
) (5.6)

l (θ) = −1

2σ2(x)

N∑
i=1

(yi −µ(xi))2 − N

2
log (2πσ2(x)) (5.7)

Finally it can be raised the problem of predicting the RUL of a mechanical system by
problem 5.1:

Problem 5.1 Given a dataset Ω = {(xi, yi)}N
i=1} where xi is a matrix of time series with

maximum time T and D features, and yi is the RUL. It is wanted to learn a mapping xi ∈
RT×D 7→ yi ∈ R such that yi − y∗

i = ε(xi), where there are a real RUL y∗
i and an error ε(xi)

which is the noise in the prediction

It is used the dataset Ω to train the models µm(xi) which are the convolutional recur-
rent models ConvLSTM, ConvJANET, ConvLSTM Encoder-Decoder and ConvJANET
Encoder-Decoder. As it is said before, the problem of finding the parameters for a model
µm(xi) can be formulated as maximum likelihood problem over a space of parameters

1In the Chapter of Results, it can be seen that these assumptions are not always necessarily true, espe-
cially when the data are supposed to be distributed identically. Even so, these assumptions help to solve
the problem with a certain margin of error.
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θ = {w1, ..., wn ,b1, ...,bn}. So then can be interpreted yi ∈ R, xi ∈ RT×D, εi ∈ R as random
variables, and y∗

i the real RUL for xi. Then, Ω is used to learn a prior model P(y | x,θ) and
train a model µ(x) = E(y | x) that learn the mapping:

xi 7→ y∗
i +εi = ar g max l og P(yi | xi,µ(xi),σ2(xi)) (5.8)

This is known as the probabilistic or Bayesian approach [Murphy, 2013], [Bishop, 2006]
that let understand properly the problem of use a Neural Network for predict the RUL
of a mechanical system in any time. In this way, can be observed that the problem is in
principle deterministic, because it is seeked to know a certain value with a certain error
that comes from not knowing with certainty what are the operative adjustments, future
failure modes or even noise, i.e, aspects that affect the input data.
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6 | Methodology and Experiments

In this chapter it is presented the methodology used to determine the best model of Con-
vRNN for the prediction of RUL in a mechanical system. In particular, the database pre-
viously described in chapter 4 (C-MAPSS) is used, to which the models to be evaluated
are adapted. The search limits of hyperparameters are also specified and delimited for
the number of points that the smallest training-set (FD001) has. From the this search,
4 models are determined that correspond to the best model found in each type of Con-
vRNN.

These models are trained taking the union of some related training-sets to also demon-
strate the capacity of generalization of the proposed models. Finally the models are tested
with each test-set of C-MAPSS.

6.1. Neural Networks design

It is compared the performances of 2 cell types of ConvRNN using their cells in a normal
case and in Encoder-Decoder case. In a normal case it is basically had a layer where an
input enters and an output comes out as it normally happens in any Neural Network,
while in a Encoder-Decoder case there are 2 layer blocks. The first block is the Encoder
that receives an input and a zero initial state that denotes the lack of information about
the past. The Encoder encodes the information received in a hidden state, which is copied
and given as an initial state to the second block that is capable of unfolding the previous
hidden state and emitting an output.

6.1.1. Application of convolution

For the use of ConvRNN, the time window approach is taken, in which the window size
considered is adjusted to the lowest temporal sequence given in an example of the train-
ing database. This configuration allows a wide generation of possibilities for learning and
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also the application of filters over a sequence of time. However, the convolution in Con-
vRNN has only been used to extract spatial characteristics.

As it was explained in the previous chapter, ConvRNN cells are capable of extracting
spatio-temporal characteristics in a data entry, but in the case of this work there are no
spatial characteristics to analyze although data in different dimensions of the state of a
turbofan (sensor measurements). Perhaps, a set of specific measurements of sensors can
show the status of a certain component of the turbofan, but in the case of the database
C-MAPSS, each measured dimension is put in random order so inferences directly from a
group of these dimensions can not be made.

Therefore, if it is wanted to apply the convolution with the idea of obtaining the best re-
sults, it should be taken that the proximity between columns (measured sensors or di-
mensions of the turbofan’s state) does not necessarily show information or characteris-
tics to be extracted. Consequently, the convolution in this work is only applied over time
as is also done in [Sateesh Babu et al., 2016] and [Li et al., 2017] as it was said earlier. In
this way each part of the time series where the convolution is applied, generates a data
for a certain output time.

It is also wanted to keep the size of the tensor that leaves the ConvRNN layer, the zero-
padding technique is used (see Subsection 3.2.3). For a better understanding of the con-
volution application on the input and subsequent generation of a feature map it can seen
the following figure:

Input image
Output

feature maps

Figure 6.1: Application of convolution between a time series and a kernel of a network
that operates with convolution. The filter is only applied in the time dimension to which
zero-padding is added (dotted in blue) at its start and end ends of the series. (own elabo-
ration)

The map of characteristics obtained is made from a time series that is generated with the
output (ConvLSTM) or hidden state (ConvJANET) of each convolutional recurrent cell in
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each time, maintaining the independence between the original dimensions of the input
but obviously combining the data in time.

6.1.2. Number of parameters and size of datasets

In this work the dropout method usually used in Convolutional Neuronal Networks 1 is
not used. Instead, this work seeks to justify the use of a particular model of Network that
in a future work can be improved by the dropout method. Consequently, all models to be
evaluated must satisfy the condition that their number of parameters should be less than
the number of existing points in the database for avoid overfitting [Murphy, 2013].

6.2. Use of C-MAPSS database

6.2.1. Joining train-sets

For the use of C-MAPSS databases, must be observed that FD001, FD002 and FD003 are
particular cases of FD004 [Ramasso and Saxena, 2014]. As has been explained in Chapter
4, these databases have an increasing order of complexity, with FD001 the simplest and
FD004 the most complex.

In this way, it can also be used the union of the simplest databases with the most com-
plex ones with the idea of increasing the sizes of the databases for the most complex
cases, obtaining better results and demonstrating the generalization capacity that Neural
Networks have. However, test sets are not joined because the idea of this work is to com-
pare the Neural Networks separately with the previous results of other works, even so, as
it has to FD004 covers the greatest amount of possibilities, it is also that its results show
in a consistent way the generalization that a model has when it has been trained with the
set with all the datasets. Therefore, the training datasets for each testing dataset are as
follows:

1This method allows to put a large number of neurons that finally condense as an assembly automati-
cally [Hinton et al., 2012].
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Dataset Operating conditions Fault modes train examples test examples

FD00 1 1 1 100 100
FD00 1,2,3 y 4 6 2 707 260
FD00 1 y 3 6 1 200 100
FD00 1,2,3 y 4 6 2 707 249

Table 6.1: C-MAPSS dataset’s unions.

However, despite the fact that in the cases FD001 and FD003 have the same amount of
training examples, the truth is when the time window approach is applied to each of
these examples of time series of a turbofan, the least amount of temporary windows
generated, ie, examples, is in the dataset FD001. Then the number of parameters that
networks should have can not be greater than the number of points in this dataset, in
otherwise it would occur over-fitting.

In this way, the training-set size of FD001 is maintained in only 100 examples of units
since this is also useful to test the generalization capacity of the models in the simplest
and smallest case of training-set. Moreover, the models must also be able to generalize
the more complex cases such as FD002 and FD004 in which all the datasets are used for
their training and where the biggest obstacle lies in the number of faults that the Neural
Network must assimilate. It is also had that in the particular case of the dataset FD004,
there are units with time series smaller than those of the rest, these time series are simply
omitted for the training of FD002 because in the testing of this dataset the minimum is
21 and it is simply considered that they are examples that do not contribute to that par-
ticular test.

For training of FD003, it is not considered FD002 or FD004 but FD001, because it is
wanted to see the capacity of the models to assimilate different quantities of operat-
ing settings, and not if this particular simple case can be integrated into the training of
FD002 or FD004.

In conclusion, with FD001 it bis seen the feasibility of the size of the networks when
training is with a small dataset and if they are able to generalize well in that case. With
FD003 it is seen the capacity of the networks to assimilate the operating settings. Finally,
the ability to integrate more than one failure mode is measured with FD002 and FD004
datasets as well as they are the largest of all datasets.

6.2.2. Data preprocesing

An analysis is made on the database C-MAPSS for the verification of the existence of data
with little change and its subsequent extraction from the database so that finally the data
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can be normalized using feature scaling.

Data selection

For the optimal working of Neural Networks, redundant data should be avoided since do
not provide significant information for prediction, but that also consumes memory, in-
crease training times and in many cases, decrease the accuracy of the model by providing
this data noise and uncertainty to the training process. It should be noted that although
authors of some studies point out that LSTM are capable of adapting to the noise or char-
acteristics of each database, the truth is that noise reduction is always better.

From the above, the dimensions of the databases used in FD001 and FD003 are: Cycles,
Sensor Measurement 2, Sensor Measurement 3, Sensor Measurement 4, Sensor Measure-
ment 7, Sensor Measurement 8, Sensor Measurement 9, Sensor Measurement 11, Sensor
Measurement 12, Sensor Measurement 13, Sensor Measurement 14, Sensor Measurement
15, Sensor Measurement 17, Sensor Measurement 20, Sensor Measurement 21. While in
FD002 and FD004 cases, in addition to the previous dimensions, the 3 operating settings
given are also used.

RUL edition on databases

The RULs of the databases are modified by setting them to a particular value found from
the histograms of the RULs without modifying. This can be understood if it is taken into
account that the data representing the behavior of the turbofan after the fault should
show RULs with a frequency of constant appearance. Then it is modified the RULs that
are inside the data set before the failure (data that in turn show a nominal behavior) set-
ting them to a particular value found from the histograms of the RULs without modifying
and that denotes the largest RUL with greater frequency of appearance..

Finally, It can be quickly compared if the editing of the RULs improves the predictions
taking any dataset and comparing its results with respect to the case without editing.

Normalization

The data is normalized using feature scaling, for which the following normalization ap-
plies:

x ′ = x −xmin

x −xmax
(6.1)
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Finally, all training datasets are divided into training set and validation set. The valida-
tion set represents 15 % of the original training set and serves to adjust the hyperparame-
ters of the Neural Networks.

44



6.3. Programming and start-up of a ConvRNN

The programming of all the networks is done in Python 2.7, using the complementary
libraries Tensorflow gpu 1.8 [Abadi et al., 2015], Scikit Learn and Numpy. On the other
hand, the code for the ConvLSTM and ConvJANET cells are elaborated from the modifi-
cation of the cell code of a ConvLSTM found in the Tensorflow library 2, while Chrono
initializer to initialize biases of the ConvRNN is modified from the work [Jos van der
Westhuizen and Joan Lasenby, 2018] code 3 so in this case the kernels bias for convolu-
tions are initialized.

Finally, all Neural Network models are executed in a GPU Nvidia GeForce GTX 1080, us-
ing an Nvidia graphics card driver CUDA Toolkit 9.0, in the operating system Linux ver-
sion 16.4 of the Smart Reliability and Maintenance Integration Laboratory (SRMI) of the
Mechanical engineering Department of the faculty of physical and mathematical sci-
ences from the University of Chile.

One extra argument per edition of RULs

In addition to the cost function presented in Section 3.4.1, it is considered an extra weight
to avoid predictions greater than the number to which the RULs are fixed before failure.

Then the cost function used in the experiments is:

En =
B∑

i=1
(yi −µ(xi))2 +∑‖W‖+λ

B∑
i=1

(ReLU(µ(xi)−RULedit ion))2 (6.2)

6.4. Hiperparameters setting

The search for models is done manually using only FD001 in the first instance. For search,
it is taken a maximum number of filters of 100, a maximum number of ConvRNN layers
of 10, a maximum number of hidden neurons in the full-connected part of 2000 and a
maximum number of 3 layers in the same part. In the meantime, there are tested as acti-
vation functions ReLU, ELU, sigmoid and Tanh.

The models that present a number of parameters greater than the number of points in
the dataset FD001, are immediately discarded, while the best 10 models that present the

2https://www.tensorflow.org/api_docs/python/tf/contrib/rnn/ConvLSTMCell
3https://github.com/JosvanderWesthuizen/janet
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best Root Mean Square Error (RMSE), the shorter training time and fewer parameters are
selected in validation.

Based in all before, the models founded are tested in the rest of the datasets , choosing 1
of each category taking into account the same standards used in FD001.

Finally, to achieve better generalizations, it is considered the technique of L1 regular-
ization for the hidden layer of the Full-connected layer in the four selected models, i.e,
a ConvLSTM model, a ConvJANET model, a ConvLSTM Encoder-Decoder model and
a ConvJANET Encoder-Decoder model, that are tested 20 times getting 20 RMSE, 20
Scores, 20 training times, a graph showing the network setting on the dataset and an-
other graph comparing RMSE over time in the cross validation and in the training-set.

This evaluation of 20 times is done to reduce the variance found in the process of train-
ing a Neural Network and thus make a good comparison with the rest of Neural Net-
works, whether it is considered only those of this work, or if it is considered other pre-
viously published and discussed in the Chapter Related Work.
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7 | Results

This chapter shows the results obtained from the evaluation of the proposed Neural Net-
works in 4 datasets (FD001, FD002, FD003, FD004) from their training using ADAM Op-
timizer and evaluation in 3 datasets ({FD001 }, {FD001, FD003 }, {FD001, FD002, FD003,
FD004 }), as mentioned in the previous chapter. In this case it is looked for models that
have a number of parameters less than the training set FD001 to avoid overfitting in that
case (the smallest training set of all) besides the search of the models with the minimum
amount of parameters such that they achieve good results.

A manual search of most hyperparameters is done in the training set FD001, selecting
from the validation in the same training set. Other more specific hyperparameters of
each data set, such as steps, batch size or learning rate, are found from the validation in
each particular set.
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7.1. Dataset Histograms

Figure 7.1: Histogram of FD001 dataset when its RULs have not been edited.

Figure 7.2: Histogram of FD002 dataset when its RULs have not been edited.
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Figure 7.3: Histogram of FD003 dataset when its RULs have not been edited.

Figure 7.4: Histogram of FD004 dataset when its RULs have not been edited.
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7.2. Training settings

It is found that in spite of being different datasets, the same Learning rate of 0.001 can
be used, there being no significant difference with respect to a lower Learning rate. A
smaller Learning rate increases the number of steps necessary for the network to be
trained and evaluated. Batch size of 1024 is used for all cases.

The number of examples used in FD002 and FD004 are close to triple and double what
they would be if only their respective datasets are used.

Moreover, it can be compared 2 parallel cases such as FD001 and FD004, the first being
a simple and small size set (10 % of the size of FD004), and the second a complex and
large set. In this way, it can be seen the feasibility of the models for the particular use of
Prognosis.

FD001 FD002 FD003 FD004
Examples for Training 15071 111738 33618 111738
Examples for validation 2659 19718 5932 19718
Window size 30x15 21x18 30x15 19x18
Batch size 1024
Learning rate 0.001
λ(w ithinLoss f unct ion) 100
Steps 2000 30000 20000 30000

Table 7.1: Overview of the training parameters proposed and obtained from validation.
It is joined some datasets for the evaluation of the networks in the four dataset but with
three datasets for training. More details in section 6.2.1

7.3. Recurrent convolutional Neural Network models and their
variations Encoder-Decoder.

From validation different proposals of network models are obtained, being of special in-
terest those configurations with a small amount of parameters, i.e, less memory usage.

A particularly remarkable case is when 2 layers ConvRNN of 10 filters each are used. A
filter size of (15,1) is used in the first layer, a filter size of (4, 1) and 100 hidden neurons
in a Full-connected layer. It is discovered that replacing the first ConvRNN with a simple
CNN and using the same network parameters (same number of filters and filter size), it
can be obtained similar results to 2 ConvRNN.
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Again, it is also found that 100 hidden neurons in the Full-connected layer is enough for
the four models studied.

The architectures obtained for the four cases studied are summarized in Table 7.3, where
boxes show information separated by a comma where the first digit indicates the number
of layers and the second the number of neurons or convolutional filters.

Architecture CNN ConvLSTM ConvJANET Full-conected

Deep ConvLSTM 1,10 1,10 - 1,100
Deep ConvJANET 1,10 - 1,10 1,100
Deep ConvLSTM E-D 1,2 2,2 - 1,100
Deep ConvJANET E-D 1,2 - 2,2 1,100

Activation function

Tanh No (only in cell) (only in cell) Yes
Temperature - 3 3 3

Table 7.2: Models found for ConvLSTM, ConvJANET, ConvLSTM Encoder-Decoder, Con-
vJANET Encoder-Decoder cases.

Each of these models is trained using each of the training sets mentioned in Table 7.2,
thus giving 16 evaluation possibilities. The measurement parameters used to evaluate
each model in each dataset are: RMSE, score and training time.

7.4. Testing results

All the models are trained and tested 20 times in order to decrease the variance given
by the stochastic training process (batch components chosen randomly) because de-
spite the process itself, also in each training case the dataset is selected from a randomly
85% of the training database for training, while 15% for validation. Therefore, the training
data domain is always different.

Below are the results of the four models when are tested 20 times in FD001, FD002, FD003
and FD004. Then a total of 16 cases of RMSE, score and training time are evaluated 20
times.
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Model
FD001

RMSE Score Training time

ConvJANET 12.84 ± 0.37 321.25 ± 26.9 18.28 +- 0.14
ConvJANET E-D 12.67 +- 0.27 262.71 +- 18.93 40.02 ± 0.25

ConvLSTM 12.92 +- 0.20 336.64 +- 20.93 18.72 ± 0.07
ConvLSTM E-D 12.84 ± 0.23 285.43 ± 19.37 50.73 +- 1.23

Table 7.3: ConvLSTM, ConvJANET and their varieties Encoder-Decoder evaluated in
FD001.

Model
FD002

RMSE Score Training time

ConvJANET 16.66 ± 0.6 1542.49 ± 238.6 267.42 +- 0.98
ConvJANET E-D 16.19 +- 0.23 1401.95 +- 251.11 527.43 ± 0.52

ConvLSTM 17.59 +- 0.55 1645.9 +- 198.28 277.33 ± 1.6
ConvLSTM E-D 16.33 ± 0.38 1532.9 ± 243.1 659.83 +- 0.69

Table 7.4: ConvLSTM, ConvJANET and their varieties Encoder-Decoder evaluated in
FD002.

Model
FD003

RMSE Score Training time

ConvJANET 11.79 +- 0.48 246.97 +- 27.12 189.49 +- 0.81
ConvJANET E-D 12.8 +- 0.45 333.79 ± 60.79 395.84 ± 0.34

ConvLSTM 12.39 ± 0.45 288.99 ± 54.33 190.27 ± 0.94
ConvLSTM E-D 12.54 ± 0.33 298.64 +- 39.16 502.36 +- 0.72

Table 7.5: ConvLSTM, ConvJANET and their varieties Encoder-Decoder evaluated in
FD003.

Model
FD004

RMSE Score Training time

ConvJANET 19.55 ± 0.3 2259.53 +- 185.71 255.40 +- 0.51
ConvJANET E-D 19.15 ± 0.28 2282.23 ± 226.58 490.95 ± 0.63

ConvLSTM 20.75 +- 0.81 2513.57 +- 287.81 266.11 ± 1.51
ConvLSTM E-D 19.53 ± 0.23 2316.28 ± 180.84 615.03 +- 0.65

Table 7.6: ConvLSTM, ConvJANET and their varieties Encoder-Decoder evaluated in
FD004.
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7.5. Behavior of the models in databases.

To see that the networks are able to fit each particular dataset is to measure the results
of RMSE every 200 steps in the training using a batch of training and another batch of
validation.

The prediction of RULs made by the models with respect to the real RULs are also shown.
Each case represents a turbofan unit whose results are sorted in descending order for
easier understanding. As according to [Saxena et al., 2008] the models can be considered
as equivalents in the same dataset and it can interpreted the results of the predictions
ordered in a decreasing way as the predictions that the models would have during the life
of a turbofan .

As explained in Section 3.4.4 and has been repeated previously, it is used ADAM Opti-
mizer for training, so it is not necessary to evaluate multiple Learning rates as this tech-
nique allows the automatic adjustment of the Learning rate in every step.

However, when it is used Neural Networks with few parameters together with regulariz-
ing all the models for sparsity in the Full-connected layer weight matrix, it is expected
that the evaluated networks present great generality in their results and with this the dif-
ference of RMSE among evaluated data in the training set and validation, low.

Finally, since a temperature of 3 is used in all Tanh activation functions (including those
found in ConvRNN cells), it is expected to obtain more scattered and less conservative
results that in this particular case is useful. It is wanted that the models can deal with the
uncertainty given by the operating setting together with the failure modes. The random-
ness of these processes prevents that there is an exact prediction of any model, then it
can not been conservative regarding the possibilities of RUL to predict.
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7.5.1. Adjustment and predictions of ConvLSTM in FD00 1, 2, 3 and 4.
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Figure 7.5: Accuracy of validation and training sets vs training steps for ConvLSTM in
FD001.
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Figure 7.6: RUL predicted for ConvLSTM in FD001.
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Figure 7.7: Accuracy of validation and training sets vs training steps for ConvLSTM in
FD002.
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Figure 7.8: RUL predicted for ConvLSTM in FD002.
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Figure 7.9: Accuracy of validation and training sets vs training steps for ConvLSTM in
FD003.
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Figure 7.10: RUL predicted for ConvLSTM in FD003.
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Figure 7.11: Accuracy of validation and training sets vs training steps for ConvLSTM in
FD004.
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Figure 7.12: RUL predicted for ConvLSTM in FD004.
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7.5.2. Adjustment and predictions of ConvJANET in FD00 1, 2, 3 and 4.
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Figure 7.13: Accuracy of validation and training sets vs training steps for ConvJANET in
FD001.
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Figure 7.14: RUL predicted for ConvJANET in FD001.
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Figure 7.15: Accuracy of validation and training sets vs training steps for ConvJANET in
FD002.
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Figure 7.16: RUL predicted for ConvJANET in FD002.
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Figure 7.17: Accuracy of validation and training sets vs training steps for ConvJANET in
FD003.
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Figure 7.18: RUL predicted for ConvJANET in FD003.
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Figure 7.19: Accuracy of validation and training sets vs training steps for ConvJANET in
FD004.
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Figure 7.20: RUL predicted for ConvJANET in FD004.
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7.5.3. Adjustment and predictions of ConvLSTM Encoder-Decoder in FD00
1, 2, 3 and 4.
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Figure 7.21: Accuracy of validation and training sets vs training steps for ConvLSTM
Encoder-Decoder in FD001.
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Figure 7.22: RUL predicted for ConvLSTM Encoder-Decoder in FD001.
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Figure 7.23: Accuracy of validation and training sets vs training steps for ConvLSTM
Encoder-Decoder in FD002.
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Figure 7.24: RUL predicted for ConvLSTM Encoder-Decoder in FD002.
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Figure 7.25: Accuracy of validation and training sets vs training steps for ConvLSTM
Encoder-Decoder in FD003.
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Figure 7.26: RUL predicted for ConvLSTM Encoder-Decoder in FD003.
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Figure 7.27: Accuracy of validation and training sets vs training steps for ConvLSTM
Encoder-Decoder in FD004.
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Figure 7.28: RUL predicted for ConvLSTM Encoder-Decoder in FD004.
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7.5.4. Adjustment and predictions of ConvJANET Encoder-Decoder in FD00
1, 2, 3 and 4.
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Figure 7.29: Accuracy of validation and training sets vs training steps for ConvJANET
Encoder-Decoder in FD001.
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Figure 7.30: RUL predicted for ConvJANET Encoder-Decoder in FD001.

66



0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90

100

110

120

Step (1:100 scale)

R
M

SE

Training set

Validation set

Figure 7.31: Accuracy of validation and training sets vs training steps for ConvJANET
Encoder-Decoder in FD002.
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Figure 7.32: RUL predicted for ConvJANET Encoder-Decoder in FD002.
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Figure 7.33: Accuracy of validation and training sets vs training steps for ConvJANET
Encoder-Decoder in FD003.
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Figure 7.34: RUL predicted for ConvJANET Encoder-Decoder in FD003.
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Figure 7.35: Accuracy of validation and training sets vs training steps for ConvJANET
Encoder-Decoder in FD004.
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Figure 7.36: RUL predicted for ConvJANET Encoder-Decoder in FD004.
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8 | Discussion

For this work it is tried to use a probabilistic approach about the use of Neural Networks
for the RULs prediction in a mechanical system with the idea of trying to obtain the best
Neural Network model and having a better understanding about the Neural Network
model that presents the best results, ie, to understand that the best Neural Network model
represents a function that approximates the maximum value of a conditional probability
distribution in which a RULs is associated to an array or window of a vector of data in a
time interval.

As the problem is presented in Chapter 5, the problem to be solved can be considered de-
terministic since it is wanted to determine a RULs with uncertainty (error σ) associated
with the variable to be determined. Therefore, it is proposed Deep Convolutional Recur-
rent Neural Networks that given a Ω database can be adjusted such that its maximum
likelihood is maximized. According to the latter, it is used as a cost function to minimize
Residual sum of squares.

8.1. Problem feasibility

As it was seen in chapter 2, 3 authors [Kurosaki, 2003], [Urban, 1973] and [Doel, 2002]
propose the use of operational data for the Diagnosis of faults, while [Goebel et al., 2007]
proposes to solve the problem of Prognosis also using the operational data of a machine.
However, [Ramasso, 2014] and [Goebel et al., 2007] also pointed out that trying to solve
a problem of Prognosis before the failure can be a complicated problem since the data
should be shown not too far away of the nominal behavior.

Therefore, in this work RULs greater than 125 are fixed to that same value, this value can
be interpreted as the RUL when the reliability is greater than 90%. This value is obtained
by simple inspection of the histograms (Figures 7.1, 7.2, 7.3 and 7.4) of the training data,
in which it can be seen that in general the values lower than 125 have a similar frequency
(they always happen), which together with knowing that the distribution that minimizes
entropy is that where the frequency is the same for each event [Murphy, 2013], makes
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believe that the data relative to the RULs between 0 and 125 show a lower entropy than
those greater than 125 since the frequencies of occurrence of a RULs between 0 and 125
is closer to a constant and are associated with the values of the operational data after a
fault (more information).

The proposed value to fix RULs, is a simple approximation also obtained in other works
[Sateesh Babu et al., 2016] and [Li et al., 2017], but as it is proposed here, the value of the
RULs when the reliability is greater than 90% serves as a more general method to im-
prove the results of Prognosis in other possible mechanical systems using precisely the
reliability values to fix the values of RULs to predict.

Then, for first instance, the performance of the networks is evaluated in 2 cases. The first
case is to not fix RULs greater than 125, while the second RULs edited and fixed to 125.
The performances are compared and note that the difference of RULs in some cases are
greater than 20.

A possible explanation of this fact is that the proposed models are not able to differenti-
ate between the data given before the moment of failure, since these data is similar and
close to the nominal ones. Therefore, the Networks could tend to give the values that are
probably the most repeated in the dataset within an interval.

In any case, establishing a constant value for the RULs of the data before the failure could
help the predictions since a constant value is being associated to a group of values that
also vary little . Particularly in the context of PHM, this constant value evidently should
be the lowest value of RULs before the failure and could be determined in future in-
stances from the reliability given in mechanical system.

8.2. Performance of Neural Networks and related aspects

From Table 7.2 it can seen that the same Learning rate is used for all cases of database
and Neural Networks, obtaining the same results as when it is used a lower Learning
rate but better than when it is used a higher Learning rate. In addition, the Learning rate
used, 0.001, allows to use a smaller number of steps than a lower Learning rate, decreas-
ing the training times and finally evaluation in this work.

Probably, this apparent insensibility of the Learning rate between the values 0.001 and
0.0001, can be due to the same mechanism of in which Learning rate varies in each step,
the value may is 0.001 a good start value.

Again, it is interesting to note that a ConvRNN layer can be replaced by a CNN as can
be seen from the models exposed in Table 7.3. Probably in this part of the extraction of
characteristics, convolution has more weight than recurrence.

71



Moreover, product of the convolution use in the second layer, i.e, in the ConvRNN layer, a
linear combination is obtained that includes, for the half of the series of time, all times of
the window. Then, it can be believed that this allows a greater amount of information for
recurrence, which also allows a better extraction of temporal characteristics. It is should
also remember [Saxena et al., 2008] that during failures, the efficiency of the component
that is failing presents a random and decreasing character over time, in such a way that,
although there is a clear trend in time, the truth is that at each point of time there is not
clearly defined values for the operational data. Then, the application of convolution can
be understood as a way of smoothing the dispersion between the data of different times.

From the results previously explained in Tables 7.4, 7.4, 7.4 and 7.4, it can be seen that
the Network that generally obtains better results regardless of whether it is used normally
or as Encoder-Decoder architecture, is the ConvJANET type. If it is measured RMSE,
Score or Training time,ConvJANET is the one that gets the best results. This probably
has to do with the smaller number of parameters that it uses and that decrease the en-
tropy of the model because in general it should have a smaller amount of redundant
parameters. However, in the same line, it is also possible to see a good performance of
Encoder-Decoder models that in all cases, with exception of FD003, achieve the best re-
sults regarding RMSE and Score, then it can be thought that they obtain better results
because these models are able to process the entered data with greater property. There-
fore, using a smaller number of parameters, the Encoder-Decoder models are capable of
even obtaining better results than normal cases that have a greater number of parame-
ters. Moreover, it is also notable that the Encoder-Decoder models take a longer time to
train, this possibly has to do with the fact that their number of parameters is also lower
than in normal cases 1.

In this way, it can be thought that the Encoder-Decoder models are more efficient than
their normal pairs.

In the case of testing in the dataset FD003, it can be seen that the best and worst value
are given in the types ConvJANET, of which the normal case stands out as the best with a
RMSE of 11.79±0.48, while the model Encoder-Decoder is the worst case with a RMSE of
12.8±0.45. It can be believed that in this particular case the number of convolutional fil-
ters takes precedence over the processing that a Decoder can give, and the lack of param-
eters in the model ConvJANET Encoder-Decoder may be the cause of this discrepancy.
In spite of this, it is also observed that in 3 of 4 cases the model ConvJANET Encoder-
Decoder presents the best results in terms of RMSE and in 2 of 4 with respect to Score.

So, it can be thought that the model ConvJANET Encoder-Decoder maybe is the best
proposed model since in most cases it presents the best results both when evaluating
RMSE and evaluating Score. It can also be thought that this model can be improved by

1In general, note that this occurs when the models with a low number of parameters in large databases
are made.
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increasing the number of convolutional filters along with using the regularization tech-
nique Dropout.

Below in the Figure 8.1 it can be seen the possible best proposed model. In it can be no-
ticed a first CNN layer with 2 size kernels (15,1), then a second layer, which is the En-
coder, ConvJANET with 2 size kernels (15,1), of which hidden states are copied and given
as Initial State to the Decoder with 2 size kernels (15,1) for the prediction to be made in a
Full-connected layer with 100 hidden neurons and Tahn as activation function.

Figure 8.1: Fully-connected ConvJANET Encoder-Decoder that presents the minor RM-
SEs and Scores. The model consists of a first CNN layer of 2 size filters (15,1), then a
ConvJANET Encoder from which hidden states are copied and given to the ConvJANET
Decoder as initial states. Finally a fully-connected layer, with Tahn activation function,
make a prediction. (Own elaboration).

8.3. Models convergence

In Section 7.5, figures are shown regarding the convergence of the models during their
training as when they are tested. In general, it can be seen that all the models evaluated
converge well, since Encoder-Decoder cases are the ones that converge in the best way.
If it is seen Figures 7.3, 7.11, 7.19 and 7.27, it can be noticed that when Encoder-Decoder
models are trained and tested in the dataset FD002, they have a less erratic convergence
than the normal models. In all figures of Accuracy of validation and training set vs train-

73



ing steps, it can be observed a little difference between the RMSEs given for the training
batch and the validation batch. It can be explained by the fact that the Networks are of
few parameters and a regularizer is also used for the Full-connected layer. Then, all mod-
els are able to generalize very well as well as the fact that the batch size is 1024.

When it is verified the dispersion of the predictions made by the models respect to the
real RULs, it can be noted that models tested in FD001 dataset tend to establish a RULs
less than 125, and close to 115. This type of dispersion in this particular set is similar to
the one seen in the results of [Zheng et al., 2017].

While in the rest of datasets, it can be seen in general a dispersion that shows networks
that are not very conservative and with a random error because there is no clear predic-
tion direction, i.e., the prediction can be larger or smaller without a clear preference. Dif-
ferent is the case of the predictions made for values of 125. In them it can be seen a clear
predilection of the models by values equal to or less than 125, an issue that can be ex-
plained by the extra argument that it is given to the Loss function in Equation 6.2.

Finally, one can observe a large dispersion of the predictions in relation to real RULs,
noting that it decreases when approaching zero. This last result, is also shared by other
works mentioned in section 2.2.3, and that probably has to do with the decrease in un-
certainty given by the data in a shorter period of time to forecast but also implies that the
error variance is different of a constant value.
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9 | Conclusion

The study of the Prognosis problem in mechanical systems is an interesting problem
nowadays because a good Prognosis allows to lower costs, to diminish the risks of catas-
trophic failure and to grant an extra time of use if is necessary in components or systems
that already present failure or failures.

In this work a probabilistic approach is taken to raise the problem of Prognosis in a me-
chanical system by Deep Convolutional Recurrent Neural Networks. From this, 4 mod-
els of ConvRNN are studied on the 4 databases C-MAPSS. These 4 databases have differ-
ent levels of complexity, while those of minor complexity are subsets of the most com-
plex datasets.

Therefore, first the 4 models are trained and tested with the data of the simplest case (1
failure mode and 1 operating setting). Then, for the case of medium complexity, it is
joined the 2 simplest databases to train the models and then they are tested in the sec-
ond simplest case (1 failure mode and 6 operating settings). Finally, all the databases are
combined to train the models and then they are tested in the test sets of the 2 most com-
plex cases (both with 2 failure modes, one with 1 operating setting and another with 6
operating settings). It is noteworthy that the simplest database is remained intact as it
represents the smaller database that allows to establish the least amount of parameters.

So, in this way all models are tested in an easy, medium and difficult cases, the latter be-
ing extensively tested.

It is found that modifying the RUL greater than 125 and adjusting them to this same
value, helps Neural Networks to better assimilate databases. In fact, that corresponds
with assigning a constant and convenient value to data entries that represent nominal
operational values of a mechanical system. On the other hand, the frequencies of occur-
rence of RUL between 0 and 125, tend to a distribution that minimizes the entropy of the
information. This fact explains why the models in general assimilate well this part of the
database understood as that from the moment of failure.

Analyzing the results obtained from the metrics in the test sets, it is seen that in general
ConvJANET types are those that present a slightly best RMSE, Score and training time.
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While in general the type varieties Encoder-Decoder are the most efficient and slightly
accurate because using 40% of the parameters given in the normal cases, they are able to
achieve similar results.

Moreover, if more than 1 ConvRNN layer are used, it is possible to replace the first layer
with exactly the same parameters for the convolutional kernels and not affect the results,
which has to do with the ability of the Convolution to smooth data with high noise or
uncertainty, and that in this case it takes greater relevance in the first layer.

Finally, it is possible to train and test the 4 models successfully and it is determined that
the best model found is ConvJANET Encoder-Decoder because of its a slightly best per-
formance in the metrics RMSE and Score , and efficiency of their parameters. But also
too, it is suggested that this model could be improved by increasing the number of con-
volutional kernels and hidden neurons of the Full-connected part and using the tech-
nique of Dropout.
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Acronyms

C-MAPSS Comertial Modular Aero-Propulsion System Simulation. 6, 39, 40

CNN Convolutional Neural Network. 7, 50, 71

ConvJANET Convolutional Just Another NETwork. 2, 28, 37, 72

ConvLSTM Convolutional Long Short Term Memory. 2, 26, 37

ConvRNN Convolutional Recurrent Neural Network. iii, 1, 2

JANET Just Another NETwork. 26

LSTM Long Short Term Memory. 7, 22, 26, 43

MLP Multi-Layer Perceptron. 7

PHM Prognosis and Health Management. 7, 33, 71

RGB Red, Green and Blue. 17

RMSE Root Mean Square Error. 46, 53, 76

RNN Recurrent Neural Network. iii, 19, 26

RUL Remaining Useful Life. iii, 1, 2, 7, 8, 34, 36–38, 75

SRMI Smart Reliability and Maintenance Integration Laboratory. 45
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Nomenclature

α Scalar

v Vector

M Matrix

T Tensor

σ Sigmoid activation function

tanh Hyperbolic Tangent activation function

® Multilineal application

η Learning rate

δ j Functions derived by Back-propagation before a weighted input.

c j
t Memory cell

f j
t Forget gate

h j
t Hidden state

i j
t Input gate

o j
t Output

zi Input up to which the Back-propagation algorithm arrives.
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Appendix

1 import tensorflow as t f
2 from ConvReccurrentCells import ConvReccurrentCell
3

4

5 def convrecurrent2d ( channels , num_input , time_step , f i l ter_channels , kernel_x ,name,
kind , batch_size , x=None, i n i t i a l _ s t a t e =None, skip_conection=False ) :

6

7 with t f . variable_scope ( name_or_scope=name, reuse= t f .AUTO_REUSE) :
8 convlstm = ConvReccurrentCell (
9

10 conv_ndims=2 ,
11 input_shape =[ time_step , num_input , channels ] ,
12 output_channels=f i l ter_channels ,
13 kernel_shape =[ kernel_x , 1 ] ,
14 use_bias=True ,
15 kind=kind ,
16 t_max=time_step ,
17 skip_connection=skip_conection )
18 i f i n i t i a l _ s t a t e == None :
19 hidden = convlstm . zero_state ( batch_size , t f . f l o a t 3 2 )
20 else :
21 hidden = i n i t i a l _ s t a t e
22

23 i f x == None :
24 x = t f . zeros ( [ batch_size , time_step , num_input , f i l t e r _ c h a n n e l s ] , t f . f l o a t 3 2

)
25 else :
26 x = t f . convert_to_tensor ( x )
27 y_1 , hidden = convlstm ( x , hidden )
28 return y_1 , hidden
29

30 def conv2d ( x ,W, b , s t r i d e s =1) :
31 x = t f . nn . conv2d ( x ,W, s t r i d e s =[1 , str ides , s tr id es , 1 ] , padding= ’SAME’ )
32 x = t f . nn . bias_add ( x , b)
33 return x
34

35

36

37 def ConvRecurrent ( x , arq , f i l ter_channels , kind , num_inputs , time_steps , batch_size ,
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kernel , B_kernel ,WF, BF , Wout, Bout ) :
38

39

40 conv0 = conv2d ( x , kernel , B_kernel , s t r i d e s =1)
41 convlstm0 , i n i t 0 = convrecurrent2d ( channels= f i l ter_channels , num_input=num_inputs ,

time_step=time_steps , f i l t e r _ c h a n n e l s =f i l ter_channels ,
42 kernel_x =4 ,name= ’ convlstm0 ’ , x=conv0 , kind=kind , batch_size=

batch_size )
43 i f arq ==1:
44 conv0 = conv2d ( x , kernel , B_kernel , s t r i d e s =1)
45 convlstm0 , i n i t 0 = convrecurrent2d ( channels=f i l ter_channels , num_input=

num_inputs , time_step=time_steps ,
46 f i l t e r _ c h a n n e l s = f i l ter_channels ,
47 kernel_x =4 , name= ’ convlstm0 ’ , x=conv0 , kind

=kind , batch_size=batch_size )
48 convlstm2 , _ = convrecurrent2d ( channels= f i l ter_channels , num_input=num_inputs ,

time_step=time_steps ,
49 f i l t e r _ c h a n n e l s = f i l ter_channels ,
50 kernel_x =4 , name= ’ convlstm2 ’ , i n i t i a l _ s t a t e =

i n i t 0 , kind=kind , batch_size=batch_size )
51 fc1 = t f . reshape ( convlstm2 , [ batch_size , f i l t e r _ c h a n n e l s * time_steps *

num_inputs ] )
52 e l i f arq ==0:
53 conv0 = conv2d ( x , kernel , B_kernel , s t r i d e s =1)
54 convlstm0 , i n i t 0 = convrecurrent2d ( channels=f i l ter_channels , num_input=

num_inputs , time_step=time_steps ,
55 f i l t e r _ c h a n n e l s = f i l ter_channels ,
56 kernel_x =4 , name= ’ convlstm0 ’ , x=conv0 , kind

=kind , batch_size=batch_size )
57 fc1 = t f . reshape ( convlstm0 , [ batch_size , f i l t e r _ c h a n n e l s * time_steps *

num_inputs ] )
58

59 fc1 = t f . add ( t f . matmul( fc1 , WF) , BF)
60 fc1 = t f . tanh ( fc1 /3)
61 out1 = t f . add( t f . matmul( fc1 , Wout) , Bout )
62

63 return t f . abs ( out1 )
64

65 def Scoring ( Y_true , Y_pred ) :
66 h = Y_pred − Y_true
67 g = (−(h−t f . abs (h) ) / 2 . 0 )
68 f = ( ( t f . abs (h) +h) / 2 . 0 )
69 return t f . reduce_sum ( t f . exp ( g /13.0)− t f . ones (h . shape ) ) + t f . reduce_sum ( t f . exp ( f /10.0)

− t f . ones (h . shape ) )
70

71

72 def RMSE( Y_true , Y_pred ) :
73 return t f . sqrt ( t f . reduce_sum ( t f . square ( Y_pred −Y_true ) ) / len ( Y_true ) )

1 import tensorflow as t f
2 from get_data_CMAPSS import *
3 from model import *
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4 import time
5 import os
6

7

8 c l a s s model :
9 def _ _ i n i t _ _ ( s e l f , X_train , Y_train ,

10 X_val , Y_val ,
11 X_test , Y_test ,
12 X_test_b , Y_test_b ,
13 model_path ,
14 learning_rate , training_epoch ,
15 batch_size_train , batch_size_test , batch_size_test_b ,
16 display_step ,
17 num_inputs , time_steps ,
18 num_hidden , num_outputs ,
19 f i l ter_channels , arq ,
20 kind ,name) :
21 s e l f . _X_train = X_train
22 s e l f . _Y_train = Y_train
23 s e l f . _X_val = X_val
24 s e l f . _Y_val = Y_val
25 s e l f . _X_test = X_test
26 s e l f . _Y_test = Y_test
27 s e l f . _X_test_b = X_test_b
28 s e l f . _Y_test_b = Y_test_b
29 s e l f . _model_path = model_path
30 s e l f . _learning_rate = learning_rate
31 s e l f . _training_epoch = training_epoch
32 s e l f . _batch_size_train = batch_size_train
33 s e l f . _batch_size_test = batch_size_test
34 s e l f . _batch_size_test_b = batch_size_test_b
35 s e l f . _display_step = display_step
36 s e l f . _num_inputs = num_inputs
37 s e l f . _time_steps = time_steps
38 s e l f . _num_hidden = num_hidden
39 s e l f . _num_outputs = num_outputs
40 s e l f . _ f i l t e r _ c h a n n e l s = f i l t e r _ c h a n n e l s
41 s e l f . _arq = arq
42 s e l f . _kind = kind
43 s e l f . _name = name
44

45 def t r a i n ( s e l f ) :
46 t f . reset_default_graph ( )
47

48 kernel = t f . get_variable ( " kernel_c " , shape =[15 , 1 , 1 , s e l f . _ f i l t e r _ c h a n n e l s
] ,

49 i n i t i a l i z e r = t f . contrib . l a y e r s .
x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )

50 B_kernel = t f . get_variable ( " B_kernel " , shape =[ s e l f . _ f i l t e r _ c h a n n e l s ] ,
51 i n i t i a l i z e r = t f . contrib . l a y e r s .

x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )
52
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53 WF = t f . get_variable ( ’WF’ , shape =[ s e l f . _ f i l t e r _ c h a n n e l s * s e l f . _time_steps *
s e l f . _num_inputs , s e l f . _num_hidden ] ,

54 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
55 BF = t f . get_variable ( ’BF ’ , shape =[ s e l f . _num_hidden ] ,
56 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
57

58 Wout = t f . get_variable ( ’Wout ’ , shape =[ s e l f . _num_hidden , s e l f . _num_outputs ] ,
59 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
60 Bout = t f . get_variable ( ’ Bout ’ , shape =[ s e l f . _num_outputs ] ,
61 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
62

63 X = t f . placeholder ( " f l o a t " , [ s e l f . _batch_size_train , s e l f . _time_steps , s e l f .
_num_inputs , 1 ] )

64 Y = t f . placeholder ( " f l o a t " , [ s e l f . _batch_size_train , s e l f . _num_outputs ] )
65

66 pred1 = ConvRecurrent (X , s e l f . _arq , s e l f . _ f i l ter_channels , s e l f . _kind ,
67 s e l f . _num_inputs , s e l f . _time_steps , s e l f .

_batch_size_train ,
68 kernel , B_kernel , WF,
69 BF , Wout, Bout )
70 # score = Scoring ( Y_true=Y_test , Y_pred=pred )
71 # rmse = RMSE( Y_true=Y_test , Y_pred=pred )
72

73 loss_op = t f . reduce_sum ( t f . square (Y − pred1 ) ) + t f . reduce_sum ( t f . abs (WF) ) +
\

74 100 * t f . reduce_sum ( t f . square ( t f . nn . relu ( pred1 − 125) ) )
75

76 optimizer = t f . t r a i n . AdamOptimizer ( s e l f . _learning_rate )
77 # optimize for training
78 train_op = optimizer . minimize ( loss_op )
79

80 # evaluate model
81 accuracy = t f . sqrt ( t f . reduce_mean ( t f . square (Y − pred1 ) ) )
82

83 # i n i t i a l i z a t e variables
84 i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( )
85 # ’ Saver ’ op to save and restore a l l the variables
86 saver = t f . t r a i n . Saver ( )
87 print ( " training . . . " )
88

89 with t f . Session ( ) as sess :
90 sess . run ( i n i t )
91 # saver . restore ( sess , model_path )
92 s t a r t = time . time ( )
93

94 for step in range ( 1 , s e l f . _training_epoch + 1) :
95

96 batch_x , batch_y = Next_Batch3 ( s e l f . _X_train , s e l f . _Y_train , s e l f .
_batch_size_train )

97 batch_x = batch_x . reshape ( ( s e l f . _batch_size_train , s e l f . _time_steps ,
s e l f . _num_inputs , 1) )

98 batch_x_val , batch_y_val = Next_Batch3 ( s e l f . _X_val , s e l f . _Y_val ,
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s e l f . _batch_size_train )
99 batch_x_val = batch_x_val . reshape ( ( s e l f . _batch_size_train , s e l f .

_time_steps , s e l f . _num_inputs , 1) )
100

101 # pred = sess . run ( accuracy , feed_dict ={X : batch_x_val , Y :
batch_y_val , keep_prob : 1 . 0 } )

102 # Run optimization op ( backprop )
103 sess . run ( train_op , feed_dict ={X : batch_x , Y : batch_y } )
104

105 i f step % s e l f . _display_step == 0 or step == 1 :
106 # Calculate batch l o s s and accuracy
107 _ , acc_train = sess . run ( [ loss_op , accuracy ] , feed_dict ={X :

batch_x , Y : batch_y } )
108 print ( " \n" + " Step " + s t r ( step ) )
109 # print ( " Training : Loss = " + \
110 # " { : . 4 f } " . format ( l o s s _ t r a i n ) + " , Accuracy= " + \
111 # " { : . 3 f } " . format ( acc_train ) )
112 _ , acc_val = sess . run ( [ loss_op , accuracy ] ,
113 feed_dict ={X : batch_x_val , Y :

batch_y_val } )
114 # print ( " \n" + " Step " + s t r ( step ) )
115 # print ( " val : Loss = " + \
116 # " { : . 4 f } " . format ( l o s s _ v a l ) + " , Accuracy= " + \
117 # " { : . 3 f } " . format ( acc_val ) )
118

119 i f s e l f . _arq ==0:
120 a c c _ f i l e 1 = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) +" /

RMSE_hist/ACC_train . t x t / "
121 a c c _ f i l e 2 = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " /

RMSE_hist/ACC_val . t x t / "
122

123 else :
124 a c c _ f i l e 1 = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " /

RMSE_hist/ACC_train . t x t / "
125 a c c _ f i l e 2 = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) +"_ED

/RMSE_hist/ACC_val . t x t / "
126

127 f i l e 1 = open( acc_f i le1 , "a+" )
128 f i l e 2 = open( acc_f i le2 , "a+" )
129 f i l e 1 . write ( " { : . 3 f } " . format ( acc_train ) + " \n" )
130 f i l e 2 . write ( " { : . 4 f } " . format ( acc_val ) + " \n" )
131 f i l e 1 . close ( )
132 f i l e 2 . close ( )
133 i f step == s e l f . _training_epoch :
134 pred = sess . run ( pred1 , feed_dict ={X : batch_x , Y : batch_y } )
135 i f s e l f . _arq == 0 :
136 predicciones = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) +

" / ajuste . t x t / "
137

138 else :
139 predicciones = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) +

" / ajuste . t x t / "
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140

141 f i l e = open( predicciones , "a+" )
142 f i l e . write ( pred )
143 f i l e . close ( )
144

145

146

147

148 print ( " Optimization Finished ! " )
149

150 stop = time . time ( )
151 t = stop − s t a r t
152 print ( ’ \n Tiempo t o t a l de entrenamiento = %g [ s ] \n ’ % t )
153 # Save model weights to disk
154

155 save_path = saver . save ( sess , s e l f . _model_path )
156 print ( "Model saved in f i l e : %s " % save_path )
157

158 def t e s t ( s e l f ) :
159 t f . reset_default_graph ( )
160

161 kernel = t f . get_variable ( " kernel_c " , shape =[15 , 1 , 1 , s e l f . _ f i l t e r _ c h a n n e l s
] ,

162 i n i t i a l i z e r = t f . contrib . l a y e r s .
x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )

163 B_kernel = t f . get_variable ( " B_kernel " , shape =[ s e l f . _ f i l t e r _ c h a n n e l s ] ,
164 i n i t i a l i z e r = t f . contrib . l a y e r s .

x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )
165

166 WF = t f . get_variable ( ’WF’ , shape =[ s e l f . _ f i l t e r _ c h a n n e l s * s e l f . _time_steps *
s e l f . _num_inputs , s e l f . _num_hidden ] ,

167 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
168 BF = t f . get_variable ( ’BF ’ , shape =[ s e l f . _num_hidden ] ,
169 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
170

171 Wout = t f . get_variable ( ’Wout ’ , shape =[ s e l f . _num_hidden , s e l f . _num_outputs ] ,
172 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
173 Bout = t f . get_variable ( ’ Bout ’ , shape =[ s e l f . _num_outputs ] ,
174 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
175

176 X = t f . placeholder ( " f l o a t " , [ s e l f . _batch_size_test , s e l f . _time_steps , s e l f .
_num_inputs , 1 ] )

177 Y = t f . placeholder ( " f l o a t " , [ s e l f . _batch_size_test , s e l f . _num_outputs ] )
178

179 pred1 = ConvRecurrent (X , s e l f . _arq , s e l f . _ f i l ter_channels , s e l f . _kind ,
180 s e l f . _num_inputs , s e l f . _time_steps , s e l f .

_batch_size_test ,
181 kernel , B_kernel , WF,
182 BF , Wout, Bout )
183

184 # rmse = RMSE( Y_true=Y_test , Y_pred=pred )
185
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186 loss_op = t f . reduce_sum ( t f . square (Y − pred1 ) ) + t f . reduce_sum ( t f . abs (WF) ) +
\

187 100 * t f . reduce_sum ( t f . square ( t f . nn . relu ( pred1 − 125) ) )
188

189 optimizer = t f . t r a i n . AdamOptimizer ( s e l f . _learning_rate )
190 # optimize for training
191 train_op = optimizer . minimize ( loss_op )
192

193 # evaluate model
194 accuracy = t f . sqrt ( t f . reduce_mean ( t f . square (Y − pred1 ) ) )
195 score = Scoring ( Y_true=Y , Y_pred=pred1 )
196

197

198 # i n i t i a l i z a t e variables
199 i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( )
200 # ’ Saver ’ op to save and restore a l l the variables
201 saver = t f . t r a i n . Saver ( )
202 print ( " t e s t i n g a l l data . . . " )
203

204 with t f . Session ( ) as sess :
205 sess . run ( i n i t )
206 saver . restore ( sess , s e l f . _model_path )
207 s e l f . _X_test = s e l f . _X_test . reshape ( ( s e l f . _batch_size_test , s e l f .

_time_steps , s e l f . _num_inputs , 1) )
208 # s t a r t = time . time ( )
209 #pred = sess . run ( pred1 , feed_dict ={X : s e l f . _X_test , Y : s e l f . _Y_test } )
210 # print ( " Testing a l l data Accuracy : " , \
211 # sess . run ( accuracy , feed_dict ={X : s e l f . _X_test , Y : s e l f . _Y_test } ) )
212 #stop = time . time ( )
213 # t = stop − s t a r t
214 # print ( ’ \n Tiempo t o t a l de t e s t i n g = %g [ s ] \n ’ % t )
215 # print ( " Testing a l l data Score : " , \
216 # sess . run ( score , feed_dict ={X : s e l f . _X_test , Y : s e l f . _Y_test } ) )
217

218

219

220 def test_b ( s e l f ) :
221 t f . reset_default_graph ( )
222

223 kernel = t f . get_variable ( " kernel_c " , shape =[15 , 1 , 1 , s e l f . _ f i l t e r _ c h a n n e l s
] ,

224 i n i t i a l i z e r = t f . contrib . l a y e r s .
x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )

225 B_kernel = t f . get_variable ( " B_kernel " , shape =[ s e l f . _ f i l t e r _ c h a n n e l s ] ,
226 i n i t i a l i z e r = t f . contrib . l a y e r s .

x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )
227

228 WF = t f . get_variable ( ’WF’ , shape =[ s e l f . _ f i l t e r _ c h a n n e l s * s e l f . _time_steps *
s e l f . _num_inputs , s e l f . _num_hidden ] ,

229 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
230 BF = t f . get_variable ( ’BF ’ , shape =[ s e l f . _num_hidden ] ,
231 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
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232

233 Wout = t f . get_variable ( ’Wout ’ , shape =[ s e l f . _num_hidden , s e l f . _num_outputs ] ,
234 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
235 Bout = t f . get_variable ( ’ Bout ’ , shape =[ s e l f . _num_outputs ] ,
236 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
237

238 X = t f . placeholder ( " f l o a t " , [ s e l f . _batch_size_test_b , s e l f . _time_steps , s e l f
. _num_inputs , 1 ] )

239 Y = t f . placeholder ( " f l o a t " , [ s e l f . _batch_size_test_b , s e l f . _num_outputs ] )
240

241 pred1 = ConvRecurrent (X , s e l f . _arq , s e l f . _ f i l ter_channels , s e l f . _kind ,
242 s e l f . _num_inputs , s e l f . _time_steps , s e l f .

_batch_size_test_b ,
243 kernel , B_kernel , WF,
244 BF , Wout, Bout )
245 # score = Scoring ( Y_true=Y_test , Y_pred=pred )
246 # rmse = RMSE( Y_true=Y_test , Y_pred=pred )
247

248 loss_op = t f . reduce_sum ( t f . square (Y − pred1 ) ) + t f . reduce_sum ( t f . abs (WF) ) +
\

249 100 * t f . reduce_sum ( t f . square ( t f . nn . relu ( pred1 − 125) ) )
250

251 optimizer = t f . t r a i n . AdamOptimizer ( s e l f . _learning_rate )
252 # optimize for training
253 train_op = optimizer . minimize ( loss_op )
254

255 # evaluate model
256 accuracy = t f . sqrt ( t f . reduce_mean ( t f . square (Y − pred1 ) ) )
257 score = Scoring ( Y_true=Y , Y_pred=pred1 )
258

259 # i n i t i a l i z a t e variables
260 i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( )
261 # ’ Saver ’ op to save and restore a l l the variables
262 saver = t f . t r a i n . Saver ( )
263 print ( " t e s t i n g . . . " )
264

265 with t f . Session ( ) as sess :
266 sess . run ( i n i t )
267 saver . restore ( sess , s e l f . _model_path )
268 s e l f . _X_test_b = s e l f . _X_test_b . reshape ( ( s e l f . _batch_size_test_b , s e l f .

_time_steps , s e l f . _num_inputs , 1) )
269 # s t a r t = time . time ( )
270 #pred = sess . run ( pred1 , feed_dict ={X : s e l f . _X_test , Y : s e l f . _Y_test } )
271 # print ( " Testing Accuracy : " , \
272 # sess . run ( accuracy , feed_dict ={X : s e l f . _X_test_b , Y : s e l f .

_Y_test_b } ) )
273 #stop = time . time ( )
274 # t = stop − s t a r t
275 # print ( ’ \n Tiempo t o t a l de t e s t i n g = %g [ s ] \n ’ % t )
276 # print ( " Testing Score : " , \
277 # sess . run ( score , feed_dict ={X : s e l f . _X_test_b , Y : s e l f . _Y_test_b } )

)
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278 pred = sess . run ( pred1 , feed_dict ={X : s e l f . _X_test_b , Y : s e l f . _Y_test_b } )
279 i f s e l f . _arq == 0 :
280 predicciones = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " /

predicciones . t x t / "
281 score = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " / score . t x t / "
282 rmse = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " /RMSE. t x t / "
283

284

285 else :
286 predicciones = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " /

predicciones . t x t / "
287 score = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " / score . t x t / "
288 rmse = s e l f . _model_path + "Conv" + s t r ( s e l f . _kind ) + " /RMSE. t x t / "
289

290 f i l e = open( predicciones , "W" )
291 f i l e 1 = open( score , "a+" )
292 f i l e 2 = open( rmse , "a+" )
293 f i l e 1 . write ( sess . run ( score , feed_dict ={X : s e l f . _X_test_b , Y : s e l f .

_Y_test_b } ) + " \n" )
294 f i l e 2 . write ( sess . run ( accuracy , feed_dict ={X : s e l f . _X_test_b , Y : s e l f .

_Y_test_b } ) + " \n" )
295 f i l e . write ( sess . run ( pred , feed_dict ={X : s e l f . _X_test_b , Y : s e l f .

_Y_test_b } ) + " \n" )
296 f i l e . close ( )
297 f i l e 1 . close ( )
298 f i l e 2 . close ( )
299

300 def val ( s e l f ) :
301 t f . reset_default_graph ( )
302

303 kernel = t f . get_variable ( " kernel_c " , shape =[15 , 1 , 1 , s e l f . _ f i l t e r _ c h a n n e l s
] ,

304 i n i t i a l i z e r = t f . contrib . l a y e r s .
x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )

305 B_kernel = t f . get_variable ( " B_kernel " , shape =[ s e l f . _ f i l t e r _ c h a n n e l s ] ,
306 i n i t i a l i z e r = t f . contrib . l a y e r s .

x a v i e r _ i n i t i a l i z e r _ c o n v 2 d ( ) )
307

308 WF = t f . get_variable ( ’WF’ , shape =[ s e l f . _ f i l t e r _ c h a n n e l s * s e l f . _time_steps *
s e l f . _num_inputs , s e l f . _num_hidden ] ,

309 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
310 BF = t f . get_variable ( ’BF ’ , shape =[ s e l f . _num_hidden ] ,
311 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
312

313 Wout = t f . get_variable ( ’Wout ’ , shape =[ s e l f . _num_hidden , s e l f . _num_outputs ] ,
314 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
315 Bout = t f . get_variable ( ’ Bout ’ , shape =[ s e l f . _num_outputs ] ,
316 i n i t i a l i z e r = t f . contrib . l a y e r s . x a v i e r _ i n i t i a l i z e r ( ) )
317

318 X = t f . placeholder ( " f l o a t " , [2048 , s e l f . _time_steps , s e l f . _num_inputs , 1 ] )
319 Y = t f . placeholder ( " f l o a t " , [2048 , s e l f . _num_outputs ] ) #2048 batch s i z e val
320
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321 pred1 = ConvRecurrent (X , s e l f . _arq , s e l f . _ f i l ter_channels , s e l f . _kind ,
322 s e l f . _num_inputs , s e l f . _time_steps , 2048 ,
323 kernel , B_kernel , WF,
324 BF , Wout, Bout )
325 # score = Scoring ( Y_true=Y_test , Y_pred=pred )
326 # rmse = RMSE( Y_true=Y_test , Y_pred=pred )
327

328 loss_op = t f . reduce_sum ( t f . square (Y − pred1 ) ) + t f . reduce_sum ( t f . abs (WF) ) +
\

329 100 * t f . reduce_sum ( t f . square ( t f . nn . relu ( pred1 − 125) ) )
330

331 optimizer = t f . t r a i n . AdamOptimizer ( s e l f . _learning_rate )
332 # optimize for training
333 train_op = optimizer . minimize ( loss_op )
334

335 # evaluate model
336 accuracy = t f . sqrt ( t f . reduce_mean ( t f . square (Y − pred1 ) ) )
337

338 # i n i t i a l i z a t e variables
339 i n i t = t f . g l o b a l _ v a r i a b l e s _ i n i t i a l i z e r ( )
340 # ’ Saver ’ op to save and restore a l l the variables
341 saver = t f . t r a i n . Saver ( )
342 print ( " t e s t i n g . . . " )
343

344 with t f . Session ( ) as sess :
345 sess . run ( i n i t )
346 saver . restore ( sess , s e l f . _model_path )
347 batch_x_val , batch_y_val = Next_Batch3 ( s e l f . _X_val , s e l f . _Y_val , 2048)
348 batch_x_val = batch_x_val . reshape ((2048 , s e l f . _time_steps , s e l f .

_num_inputs , 1) )
349 s t a r t = time . time ( )
350 #pred = sess . run ( pred1 , feed_dict ={X : s e l f . _X_test , Y : s e l f . _Y_test } )
351 print ( " Testing Accuracy : " , \
352 sess . run ( accuracy , feed_dict ={X : batch_x_val , Y : batch_y_val } ) )
353 stop = time . time ( )
354 t = stop − s t a r t
355 print ( ’ \n Tiempo t o t a l de t e s t i n g val= %g [ s ] \n ’ % t )

1 import numpy as np
2 import pandas as pd
3 from sklearn . model_selection import t r a i n _ t e s t _ s p l i t
4 from sklearn . preprocessing import MinMaxScaler
5

6

7

8 def TrainImages ( n_set , n _ f l i g h t s , f i l t e r _ t , f_modes ) :
9 # Data should be a pandas dataframe of the o r i g i n a l raw data , e . g . FD001 . t x t

10 # RUL i s a pandas col with the corresponding RUL value of every time step
11 # n _ f l i g h t s i s the number of f l i g h t s found for t h i s dataset e . g . FD001 has 100

f l i g h t s
12 images = [ ]
13 rul = [ ]
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14 set = ’ /home/ nicolas /Desktop/C−MAPSS/ train_FD00 ’+ s t r ( n_set ) + ’ . t x t ’
15 data = pd . read_csv ( set , delim_whitespace=True , header=None)
16 vuelos = np . linspace ( 1 , n _ f l i g h t s , n _ f l i g h t s )
17 data . columns = [ ’ Unit Number ’ , ’ Cycles ’ , ’ Operational Sett ing 1 ’ , ’ Operational

Sett ing 2 ’ , ’ Operational Sett ing 3 ’ ,
18 ’ Sensor Measurement 1 ’ , ’ Sensor Measurement 2 ’ , ’ Sensor

Measurement 3 ’ , ’ Sensor Measurement 4 ’ ,
19 ’ Sensor Measurement 5 ’ , ’ Sensor Measurement 6 ’ , ’ Sensor

Measurement 7 ’ , ’ Sensor Measurement 8 ’ ,
20 ’ Sensor Measurement 9 ’ , ’ Sensor Measurement 10 ’ , ’ Sensor

Measurement 11 ’ ,
21 ’ Sensor Measurement 12 ’ , ’ Sensor Measurement 13 ’ , ’ Sensor

Measurement 14 ’ ,
22 ’ Sensor Measurement 15 ’ , ’ Sensor Measurement 16 ’ , ’ Sensor

Measurement 17 ’ ,
23 ’ Sensor Measurement 18 ’ , ’ Sensor Measurement 19 ’ , ’ Sensor

Measurement 20 ’ ,
24 ’ Sensor Measurement 21 ’ ]
25 data [ ’RUL ’ ] = pd . Series (np . zeros ( len ( data ) ) , index=data . index )
26 for vuelo in vuelos :
27 a = data [ data [ ’ Unit Number ’ ] == vuelo ]
28 tiempo = len ( a )
29 RUL = np . linspace ( tiempo , 0 , tiempo )
30 for n in range ( 0 , len (RUL) ) :
31 i f RUL[n] > 125:#RUL edition for 99.99% r e l i a b i l i t y
32 RUL[n] = 125
33 data . loc [ a . index , ’RUL ’ ] = pd . Series (RUL, index=a . index )
34

35 for i in range ( 1 , n _ f l i g h t s + 1) : # I t e r a t e over each f l i g h t in the dataset
36 f l i g h t = data [ data [ ’ Unit Number ’ ] == i ] # Take a l l data e n t r i e s for the

current f l i g h t
37 RUL = f l i g h t [ ’RUL ’ ] . to_frame ( ) # Extract the RUL l a b e l s contained for t h i s
38 i f f_modes :
39 X = f l i g h t . drop (
40 [ ’ Unit Number ’ , # ’ Operational Sett ing 1 ’ , ’ Operational Sett ing 2 ’ , ’

Operational Sett ing 3 ’ ,
41 ’ Sensor Measurement 1 ’ , ’ Sensor Measurement 5 ’ , ’ Sensor Measurement

6 ’ , ’ Sensor Measurement 10 ’ ,
42 ’ Sensor Measurement 16 ’ , ’ Sensor Measurement 18 ’ , ’ Sensor

Measurement 19 ’ , ’RUL ’ ] , axi s =1)
43 else :
44 X = f l i g h t . drop (
45 [ ’ Unit Number ’ , ’ Operational Sett ing 1 ’ , ’ Operational Sett ing 2 ’ , ’

Operational Sett ing 3 ’ ,
46 ’ Sensor Measurement 1 ’ , ’ Sensor Measurement 5 ’ , ’ Sensor Measurement

6 ’ , ’ Sensor Measurement 10 ’ ,
47 ’ Sensor Measurement 16 ’ , ’ Sensor Measurement 18 ’ , ’ Sensor

Measurement 19 ’ , ’RUL ’ ] , axi s =1)
48

49 length = len (X)
50 i f f i l t e r _ t > length :
51 continue
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52

53 n_images = length − f i l t e r _ t + 1 # Num of possible images for each f l i g h t
54 X = np . array (X)
55 RUL = np . array (RUL)
56 for j in range ( n_images ) :
57 image = X[ j : j + f i l t e r _ t , : ]
58 images . append( image )
59 rul . append(RUL[ j + f i l t e r _ t −1])
60

61 images = np . asarray ( images )
62 images = np . reshape ( images , ( images . shape [ 0 ] , images . shape [ 1 ] * images . shape [ 2 ] ) )
63 rul = np . asarray ( ru l )
64

65

66 return images , rul
67

68 def TestImages ( n_set , n _ f l i g h t s , f i l t e r _ t , f_modes ) :
69 # Obtain only the l a s t image of each f l i g h t in the dataset
70 # In t h i s case , we do not e x t r a c t the RUL, since i s given in a separate f i l e
71 images = [ ]
72 set_images = ’ /home/ nicolas /Desktop/C−MAPSS/ test_FD00 ’+ s t r ( n_set ) + ’ . t x t ’
73 s e t _ r u l = ’ /home/ nicolas /Desktop/C−MAPSS/RUL_FD00 ’+ s t r ( n_set ) + ’ . t x t ’
74 Test_data = pd . read_csv ( set_images , delim_whitespace=True , header=None)
75 Test_data . columns = [ ’ Unit Number ’ , ’ Cycles ’ , ’ Operational Sett ing 1 ’ , ’

Operational Sett ing 2 ’ ,
76 ’ Operational Sett ing 3 ’ ,
77 ’ Sensor Measurement 1 ’ , ’ Sensor Measurement 2 ’ , ’ Sensor

Measurement 3 ’ ,
78 ’ Sensor Measurement 4 ’ ,
79 ’ Sensor Measurement 5 ’ , ’ Sensor Measurement 6 ’ , ’ Sensor

Measurement 7 ’ ,
80 ’ Sensor Measurement 8 ’ ,
81 ’ Sensor Measurement 9 ’ , ’ Sensor Measurement 10 ’ , ’ Sensor

Measurement 11 ’ ,
82 ’ Sensor Measurement 12 ’ ,
83 ’ Sensor Measurement 13 ’ , ’ Sensor Measurement 14 ’ , ’ Sensor

Measurement 15 ’ ,
84 ’ Sensor Measurement 16 ’ ,
85 ’ Sensor Measurement 17 ’ , ’ Sensor Measurement 18 ’ , ’ Sensor

Measurement 19 ’ ,
86 ’ Sensor Measurement 20 ’ ,
87 ’ Sensor Measurement 21 ’ ]
88

89 for i in range ( 1 , n _ f l i g h t s + 1) :
90 f l i g h t = Test_data [ Test_data [ ’ Unit Number ’ ] == i ]
91 i f f_modes :
92 X = f l i g h t . drop (
93 [ ’ Unit Number ’ , # ’ Operational Sett ing 1 ’ , ’ Operational Sett ing 2 ’ , ’

Operational Sett ing 3 ’ ,
94 ’ Sensor Measurement 1 ’ , ’ Sensor Measurement 5 ’ , ’ Sensor Measurement

6 ’ , ’ Sensor Measurement 10 ’ ,
95 ’ Sensor Measurement 16 ’ , ’ Sensor Measurement 18 ’ , ’ Sensor
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Measurement 19 ’ ] , ax is =1)
96 else :
97 X = f l i g h t . drop (
98 [ ’ Unit Number ’ , ’ Operational Sett ing 1 ’ , ’ Operational Sett ing 2 ’ , ’

Operational Sett ing 3 ’ ,
99 ’ Sensor Measurement 1 ’ , ’ Sensor Measurement 5 ’ , ’ Sensor Measurement

6 ’ , ’ Sensor Measurement 10 ’ ,
100 ’ Sensor Measurement 16 ’ , ’ Sensor Measurement 18 ’ , ’ Sensor

Measurement 19 ’ ] , ax is =1)
101

102 length = len (X)
103 # i f f i l t e r _ t > length :
104 # continue
105

106 X = np . array (X)
107 image = X [ ( length − f i l t e r _ t ) : length , : ]
108 images . append( image )
109

110 images = np . asarray ( images )
111 images = np . reshape ( images , ( images . shape [ 0 ] , images . shape [ 1 ] * images . shape [ 2 ] ) )
112 rul = np . array (pd . read_csv ( set_rul , delim_whitespace=True , header=None) ) #RUL l a b e l s

for the t e s t set
113

114 i f n _ f l i g h t s == 100:
115 n_units=100
116 e l i f n _ f l i g h t s == 248:
117 n_units = 248
118 else :
119 n_units = 259
120 for i in range ( n_units ) :
121 i f rul [ i ] > 125:
122 rul [ i ] = 125
123

124 return images , rul
125

126

127 def get_data (window, f_modes=True , data1=False ) :
128 i f f_modes :
129 X1 , Y1 = TrainImages ( 1 , 100 , window, f_modes=f_modes )
130 X_test1 , Y_test1 = TestImages ( 1 , 100 , window, f_modes=f_modes )
131 X2 , Y2 = TrainImages ( 2 , 259 , window, f_modes=f_modes )
132 X_test2 , Y_test2 = TestImages ( 2 , 259 , window, f_modes=f_modes )
133

134 X1 , X_val1 , Y1 , Y_val1 = t r a i n _ t e s t _ s p l i t (X1 , Y1 , t e s t _ s i z e =0.15 ,
random_state=48)

135 X2 , X_val2 , Y2 , Y_val2 = t r a i n _ t e s t _ s p l i t (X2 , Y2 , t e s t _ s i z e =0.15 ,
random_state=48)

136

137 X = np . concatenate ( [ X1 , X2 ] , 0)
138 Y = np . concatenate ( [ Y1 , Y2 ] , 0)
139 X_val = np . concatenate ( [ X_val1 , X_val2 ] , 0)
140 Y_val = np . concatenate ( [ Y_val1 , Y_val2 ] , 0)
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141 X_test = np . concatenate ( [ X_test1 , X_test2 ] , 0)
142 Y_test = np . concatenate ( [ Y_test1 , Y_test2 ] , 0)
143

144 X3 , Y3 = TrainImages ( 3 , 100 , window, f_modes=f_modes )
145 X_test3 , Y_test3 = TestImages ( 3 , 100 , window, f_modes=f_modes )
146

147 X3 , X_val3 , Y3 , Y_val3 = t r a i n _ t e s t _ s p l i t (X3 , Y3 , t e s t _ s i z e =0.15 ,
random_state=48)

148

149 X = np . concatenate ( [ X , X3 ] , 0)
150 Y = np . concatenate ( [ Y , Y3 ] , 0)
151 X_val = np . concatenate ( [ X_val , X_val3 ] , 0)
152 Y_val = np . concatenate ( [ Y_val , Y_val3 ] , 0)
153 X_test = np . concatenate ( [ X_test , X_test3 ] , 0)
154 Y_test = np . concatenate ( [ Y_test , Y_test3 ] , 0)
155

156 X4 , Y4 = TrainImages ( 4 , 248 , window, f_modes=f_modes )
157 X_test4 , Y_test4 = TestImages ( 4 , 248 , window, f_modes=f_modes )
158

159 X4 , X_val4 , Y4 , Y_val4 = t r a i n _ t e s t _ s p l i t (X4 , Y4 , t e s t _ s i z e =0.15 ,
random_state=48)

160

161 X_train = np . concatenate ( [ X , X4 ] , 0)
162 Y_train = np . concatenate ( [ Y , Y4 ] , 0)
163 X_val = np . concatenate ( [ X_val , X_val4 ] , 0)
164 Y_val = np . concatenate ( [ Y_val , Y_val4 ] , 0)
165 X_test = np . concatenate ( [ X_test , X_test4 ] , 0)
166 Y_test = np . concatenate ( [ Y_test , Y_test4 ] , 0)
167

168 sc_X = MinMaxScaler ( feature_range =(−1, 1) )
169 X_train = sc_X . f i t_transform ( X_train ) # Only transform the trainning set
170 X_val = sc_X . transform ( X_val )
171 X_test = sc_X . transform ( X_test )
172 X_test2 = sc_X . transform ( X_test2 )
173 X_test4 = sc_X . transform ( X_test4 )
174

175 return X_train , Y_train , X_val , Y_val , X_test , Y_test , X_test2 , Y_test2 ,
X_test4 , Y_test4

176

177 e l i f f_modes==False and data1==True :
178 X1 , Y1 = TrainImages ( 1 , 100 , window, f_modes=f_modes )
179 X_test1 , Y_test1 = TestImages ( 1 , 100 , window, f_modes=f_modes )
180

181 X_train1 , X_val1 , Y_train1 , Y_val1 = t r a i n _ t e s t _ s p l i t (X1 , Y1 , t e s t _ s i z e
=0.15 , random_state=48)

182

183 sc_X = MinMaxScaler ( feature_range =(−1, 1) )
184 X_train1 = sc_X . f i t_transform ( X_train1 ) # Only transform the trainning set
185 X_val1 = sc_X . transform ( X_val1 )
186 X_test1 = sc_X . transform ( X_test1 )
187

188 return X_train1 , Y_train1 , X_val1 , Y_val1 , X_test1 , Y_test1
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189

190

191 else :
192 X1 , Y1 = TrainImages ( 1 , 100 , window, f_modes=f_modes )
193 X_test1 , Y_test1 = TestImages ( 1 , 100 , window, f_modes=f_modes )
194 X3 , Y3 = TrainImages ( 3 , 100 , window, f_modes=f_modes )
195 X_test3 , Y_test3 = TestImages ( 3 , 100 , window, f_modes=f_modes )
196

197 X1 , X_val1 , Y1 , Y_val1 = t r a i n _ t e s t _ s p l i t (X1 , Y1 , t e s t _ s i z e =0.15 ,
random_state=48)

198 X3 , X_val3 , Y3 , Y_val3 = t r a i n _ t e s t _ s p l i t (X3 , Y3 , t e s t _ s i z e =0.15 ,
random_state=48)

199

200 X_train = np . concatenate ( [ X1 , X3 ] , 0)
201 Y_train = np . concatenate ( [ Y1 , Y3 ] , 0)
202 X_val = np . concatenate ( [ X_val1 , X_val3 ] , 0)
203 Y_val = np . concatenate ( [ Y_val1 , Y_val3 ] , 0)
204 X_test = np . concatenate ( [ X_test1 , X_test3 ] , 0)
205 Y_test = np . concatenate ( [ Y_test1 , Y_test3 ] , 0)
206

207 sc_X = MinMaxScaler ( feature_range =(−1, 1) )
208 X_train = sc_X . f i t_transform ( X_train ) # Only transform the trainning set
209 X_val = sc_X . transform ( X_val )
210 X_test = sc_X . transform ( X_test )
211 X_test1 = sc_X . transform ( X_test1 )
212 X_test3 = sc_X . transform ( X_test3 )
213

214 return X_train , Y_train , X_val , Y_val , X_test , Y_test , X_test1 , Y_test1 ,
X_test3 , Y_test3

215

216

217 def Next_Batch3 (X , y , batch_size ) :
218 batch_x = [ ]
219 batch_y = [ ]
220 for j in range ( 1 , batch_size + 1) :
221 i = np . random . randint ( 1 , len (X) )
222 image = X[ i , : ]
223 rul = y [ i ]
224 batch_x . append( image )
225 batch_y . append( rul )
226 batch_x = np . asarray ( batch_x )
227 batch_y = np . asarray ( batch_y )
228 return batch_x , batch_y

1 import tensorflow as t f
2 from train_models import *
3

4

5 X_train , Y_train , X_val , Y_val , X_test , Y_test , X_test_b , Y_test_b , X_test_b2 ,
Y_test_b2 = get_data (window=19 ,f_modes=True )

6

7 #donde se guardaran los pesos
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8 model_path = " /home/ nicolas /Desktop/C−MAPSS/PRUEBA_FINAL/ "
9 # Training Parameters

10 learning_rate = 0.001
11 #training_epoch_pretrain = 2
12 training_epoch = 25 #2200 optimo hasta ahora
13 batch_size_train = 10
14 display_step = 10
15

16

17

18 # Network Parameters
19 num_inputs = 18 # MNIST data input ( img shape : 28*28)
20 time_steps = 19 # timesteps
21 num_hidden = 100# num hidden units
22 num_outputs = 1 # Only one output
23 f i l t e r _ c h a n n e l s = 10
24 arq = 0
25 kind = "JANET"
26 name = "Model"
27

28 modelos = { "JANET" : [ 0 , 1 ] ,
29 "LSTM" : [ 0 , 1 ] }
30

31

32

33 for j in range ( 3 ) :
34

35 modelx = model( X_train , Y_train ,
36 X_val , Y_val ,
37 X_test , Y_test ,
38 X_test_b , Y_test_b ,
39 model_path ,
40 learning_rate , training_epoch ,
41 batch_size_train , X_test . shape [ 0 ] , 2 5 9 ,
42 display_step ,
43 num_inputs , time_steps ,
44 num_hidden , num_outputs ,
45 f i l ter_channels , arq ,
46 kind , name)
47 for i in range ( 2 ) :
48 print ( " intento " , j , i )
49 modelx . t r a i n ( )
50 modelx . t e s t ( )
51 modelx . test_b ( )
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