

UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE GEOLOGÍA

GENERACIÓN DE ESTIMADOR DEL PARÁMETRO DE CONMINUCIÓN SAG POWER INDEX A PARTIR DE LA MINERALOGÍA MODAL EN EL YACIMIENTO LOS SULFATOS, REGIÓN METROPOLITANA, CHILE.

MEMORIA PARA OPTAR AL TÍTULO DE GEÓLOGO

VICTOR IGNACIO MARDONES TORRES

PROFESOR GUÍA: BRIAN TOWNLEY CALLEJAS

MIEMBROS DE LA COMISIÓN: IVÁN VELA ROBERTS KATJA DECKART

Este trabajo ha sido financiado por Anglo American

SANTIAGO DE CHILE

RESUMEN DE LA MEMORIA PARA OPTAR EL TÍTULO DE: Geólogo POR: Victor Ignacio Mardones Torres FECHA: 15/10/2018 PROFESOR GUÍA: Brian Townley Callejas

GENERACIÓN DE ESTIMADOR DEL PARÁMETRO DE CONMINUCIÓN SAG POWER INDEX A PARTIR DE LA MINERALOGÍA MODAL EN EL YACIMIENTO LOS SULFATOS, REGIÓN METROPOLITANA, CHILE.

El yacimiento Los Sulfatos corresponde a un depósito de tipo pórfido cuprífero emplazado en rocas volcánicas del Mioceno tardío-Plioceno temprano, aproximadamente a 69 km al NE de Santiago, Chile. Corresponde a un sistema hidrotermal de brechas con mineralización de calcopirita y bornita en matriz, diseminada y en vetillas.

El proceso de concentración corresponde a la etapa de mayor consumo eléctrico en la minería del cobre, por lo que una cuantificación de los subprocesos que lo componen es de vital importancia para la disminución de costos (Comisión Chilena del Cobre, 2018). Dentro de la etapa de concentración pueden identificarse diferentes subprocesos tales como: conminución y flotación.

El SPI (SAG Power Index) corresponde a un índice que cuantifica el rendimiento de los molinos semiautógenos SAG en etapa de conminución. Este mide el tiempo en minutos, que demora el 80% de una roca en pasar de una granulometría de 12,7 mm a una granulometría de 1,7 mm.

En el presente estudio se cuantificó la mineralogía modal de las rocas por medio de un análisis de roca total y XRD, aplicando una transformación de elementos a minerales por medio de la estequiometría de los minerales y la concentración de elementos químicos en la roca. Luego de identificados los minerales predominantes se aplicaron técnicas estadísticas para correlacionar la mineralogía con el SPI.

El principal problema que se presentó en la etapa de cuantificación corresponde a que, minerales como las micas blancas y los feldespatos potásicos, poseen en su estructura los mismos elementos químicos con proporciones estequiométricas diferentes, por lo que la forma de abordar la problemática se basó en identificar las muestras que tuvieran mica blanca o feldespato potásico, generando una regresión lineal con 26 muestras que se ajusta de buena forma el comportamiento de las muestras respecto a la composición mineral de esta.

Luego de realizada la regresión lineal se interpoló la razón mica blanca/feldespato potásico para un total de 44 muestras. Una vez obtenida la razón Mb/Fk para un total de 70 muestras se realizó un modelo numérico en el software de modelamiento geológico Leapfrog, con el que se validaron el total de 30 muestras restantes.

Los resultados obtenidos muestran que, los minerales que tendrían mayor incidencia en la dureza geometalúrgica SPI de las rocas, corresponden a los filosilicatos y a los tectosilicatos. Los primeros, influirían respecto a su comportamiento elástico y plástico en la etapa de molienda, por lo que a una mayor proporción de filosilicatos aumentaría la dureza geometalúrgica de las rocas. Caso contrario a lo que pasa con los tectosilicatos, los cuales, al poseer un comportamiento frágil, disminuyen el SPI a mayores proporciones.

Se concluye que el parámetro geometalúrgico SPI estaría relacionado con la mineralogía de las rocas de yacimiento Los Sulfatos, en particular, con la relación entre filosilicatos y tectosilicatos.

A mis padres Alejandra y Victor

AGRADECIMIENTOS

Agradezco a la empresa Anglo American por brindarme la confianza, las herramientas y la oportunidad de formar parte de su equipo y realizar mi memoria de título en el proyecto.

Gracias a toda la gente que estuvo brindándome cariño y alegrías en este proceso, en especial a mis amigos de carrera, los mantitos.

Tabla de contenido

1 INTRODUCCIÓN 1
1.1 FORMULACIÓN DEL PROBLEMA 1
1.2 HIPÓTESIS DE TRABAJO
1.3 OBJETIVOS
1.3.1 OBJETIVO GENERAL
1.3.2 OBJETIVOS ESPECÍFICOS
1.4 UBICACIÓN Y VÍAS DE ACCESO 2
1.5 ALCANCES DEL TRABAJO
1.6 METODOLOGÍA
1.6.1 INVESTIGACIÓN BIBLIOGRÁFICA
1.6.2 SELECCIÓN DE SONDAJES 3
1.6.3 SELECCIÓN DE PERFILES 4
1.6.4 SELECCIÓN Y PROCESAMIENTO DE RESPALDOS DE PRUEBAS GEOMETALÚRGICAS
1.6.5 ANÁLISIS GEOQUÍMICO ROCA TOTAL Y CARACTERIZACIÓN LITOLÓGICA
1.6.6 ANÁLISIS DE DIFRACCIÓN DE RAYOS X 11
1.6.7 CONVERSIÓN ELEMENTOS A MINERALES 12
1.6.8 CORRELACIÓN SPI - MINERALOGÍA MODAL
1.6.9 INTERPOLACIÓN VARIABLE MICA BLANCA – FELDESPATO POTÁSICO
1.6.10 VALIDACIÓN DEL MÉTODO MEDIANTE MODELAMIENTO GEOLÓGICO15
1.6.11 MAPEO DE SONDAJES
1.6.12 CORTES TRANSPARENTES Y ESTUDIOS PETROGRÁFICOS Y CALCOGRÁFICOS17
1.7 ESTADO DEL ARTE
2 MARCO TEÓRICO

2.1	GEOMETALURGIA						
2.1.1	ENSAYOS DE CONMINUCIÓN 19						
2.2	GEOQUÍMICA ROCA TOTAL						
2.3	DIFRACCIÓN DE RAYOS X						
2.4	MODELAMIENTO DE YACIMIENTOS						
2.4.1	LEAPFROG GEO	. 24					
3 MA	RCO GEOLÓGICO	. 24					
3.1	GEOLOGÍA REGIONAL	. 24					
3.2	GEOLOGÍA DISTRITAL	. 26					
3.2.1	FRANJA ORTIGA-LOS PICHES (14,8-12.3 Ma)	. 27					
3.2.2	FRANJA SAN MANUEL-EL PLOMO (10,8-7,7 Ma)	. 27					
3.2.3	FRANJA RÍO BLANCO-LOS BRONCES-LOS SULFATOS (8,2-4,3 Ma)	. 27					
3.3	GEOLOGÍA DE LOS SULFATOS (Zamorano y Pablo 2013; Pablo, 2017)	. 28					
3.3.1	ROCAS ESTRATIFICADAS	. 28					
3.3.2	ROCAS INTRUSIVAS	. 29					
3.3.3	BRECHAS	. 31					
3.3.4	ALTERACIÓN HIDROTERMAL	. 35					
3.3.5	TECHO DE SULFATOS (Vela, 2014)	. 37					
3.3.6	EVOLUCIÓN Y PARAGÉNESIS (Pablo, 2017)	. 37					
4 RES	SULTADOS	. 39					
4.1	INTEGRACIÓN DEL MAPEO GEOLÓGICO, MINERALOGÍA Y SPI	. 41					
4.2	GEOQUÍMICA ROCA TOTAL	. 45					
4.2.1	CORRELACIÓN DE SPI Y ANÁLISIS DE ROCA TOTAL	. 46					
4.3	DIFRACCIÓN DE RAYOS X	. 46					
4.4	CONVERSIÓN ELEMENTOS A MINERALES	. 47					
4.5 POTÁ	MODELAMIENTO DE LA VARIABLE MICA BLANCA/FELDESPA SICO	ато . 51					
4.6	VALIDACIÓN	. 55					

4.7	MAPEO DE SONDAJES Y CORTES TRANSPARENTES 57
4.7.1	COMPORTAMIENTO GEOMETALÚRGICO DE ANDESITAS 58
4.7.2 TURM	COMPORTAMIENTO GEOMETALÚRGICO DE BRECHAS DE IALINA
4.7.3	COMPORTAMIENTO GEOMETALÚRGICO DE BRECHAS MAGMÁTICAS 62
5 DIS	CUSIONES
5.1	CORRELACIÓN CON MAPEO GEOLÓGICO
5.2	GEOQUÍMICA ROCA TOTAL
5.2.1	RELACIÓN CON EL SPI
5.2.2 DURE	CONCENTRACIÓN DE SILICIO Y BRECHAS DE TURMALINA DE BAJA ZA
5.3 GEOL	CONVERSIÓN DE ELEMENTOS A MINERALES, MODELAMIENTO ÓGICO Y VALIDACIÓN
5.4	REOLOGÍA DE SILICATOS Y SPI
5.5	DESARROLLO DEL MÉTODO EN EL YACIMIENTO 69
6 COI	NCLUSIONES
7 REC	COMENDACIONES
8 BIB	LIOGRAFÍA
9 ANI	EXOS
9.1	ANEXO A)
9.2	ANEXO B)
9.3	ANEXO C)
9.4	ANEXO D)
9.5	ANEXO E)
9.6	ANEXO F)

ÍNDICE DE TABLAS

 Tabla 2.1: Procedimiento para análisis geoquímico roca total. (Bureau Veritas Minerals, 2016

 (a))
 22

Tabla 4.1: Estadística descriptiva del parámetro geometalúrgico SPI sin distinguir litologías.

 Tabla 4.9: Fórmula química de los minerales evidenciados por XRD y distribución de elementos en los minerales.
 48

Tabla 4.13: Litología y alteración de los tramos seleccionados para el mapeo geológico. SET (sericita-turmalina), K (potásica), Se (sericita), BT (biotita), BXANH (brecha de anhidrita)..... 57

Tabla 4.16: Descripción litológica de las rocas caracterizadas como brechas de turmalina o polvo de roca en el mapeo del yacimiento. La muestra LBUG17_17 se caracterizó como una brecha de anhidrita, debido al alto porcentaje de anhidrita que tiene en la matriz. La mayor parte de los clastos de estas rocas de baja dureza son de origen intrusivo y poseen bajo porcentaje de matriz.

 Tabla 8.1: Abreviaciones minerales
 72

Tabla 8.2: Abreviaciones generales, conceptos de geometalurgia y litologías en el proyecto.

Tabla 9.1: Mineralogía principal dada por QEMSCAN en tramos para flotación...... 184

ÍNDICE DE FIGURAS

Figura 1.8: Diagrama de flujo, etapa de calibración, correlación entre la mineralogía de las muestras con mica blanca o feldespato potásico con respecto al SPI de las rocas del yacimiento.

Figura 1.9: Diagrama de flujo, etapa de interpolación. Cálculo de la razón mica blanca/feldespato potásico para muestras con ambos minerales, evidenciado por XRD...... 15

Figura 3.1: Franjas metalogénicas entre las latitudes 17° y 34°, Chile. Ubicación del Distrito					
Rio Blanco-Los Bronces (Deckart et al., 2014)					
Figura 3.2:Ubicación del Distrito Rio Blanco-Los Bronces y distinción de dominios geológicos (Toro et al., 2012)					
Figura 3.3: Andesita perteneciente al sondaje LBUG16_05 desde 365.6 m a 367.65 m 29					

Figura 3.5:A) Litología BXM perteneciente al sondaje LBUG16_05 desde 349.35 a 351.43 m; B) Litología BXB perteneciente al sondaje LBUG16_10 desde 331.60 a 333.55 m...... 32

Figura 4.7: Modelo numérico. Proporción de mica blanca respecto al total entre mica blanca y feldespato potásico. Se observan 2 centros predominantes, uno en el sector de brechas de turmalina en las cercanías de la estación 7 y hacia el sur, en los alrededores de las brechas magmáticas con mayor mineralización. Vista con respecto a la traza del Túnel Los Sulfatos..... 52

Figura 4.8: Perfil A-A' y modelo de mica blanca estándar...... 52

Figura 4.13: SPI respecto a la razón de filosilicatos/tectosilicatos para las muestras validadas. Se puede observar que gran cantidad de las muestras (80%) se validan con un error absoluto menor al 30% (líneas rojas)
Figura 4.14: MeT_LBUG_17_184. LBUG17_18 desde 315 hasta 328 m. Andesita de baja dureza perteneciente a la roca caja del yacimiento con SPI=83
Figura 4.15: LBUG15_02 desde 245 hasta 260 m. Andesita de alta dureza con un grado de alteración sericítico alto con SPI=233
Figura 4.16: Andesita de baja dureza SPO (83 min) con alteración biotítica perteneciente al sondaje LBUG17_18 desde 315 hasta 328 m. Se observa el bajo nivel de alteración secundaria que presentan los feldespatos, los cuales se presentan euhedrales
Figura 4.17: Andesita de alta dureza SPI (233 min) con alteración sericítica perteneciente al sondaje LBUG15_02 desde 245 hasta 260 m. Se observa una masa fundamental totalmente recristalizada a sericita y un cristal de albita subhedral
Figura 5.1: Sondaje LBUG16_17. Puede observarse que en el sondaje perteneciente a la estación 9 se tienen 3 muestras consecutivas la cuales difieren de gran manera en su dureza SPI. Las muestras que poseen altas índices se utilizaron para la creación del modelo numérico, por lo que al validar la muestra central esta se asociaría a una alta dureza
Figura 5.2: Tramos pertenecientes al sondaje LBUG16_17. A) 200 a 215 m; B) 345 a 360 m; C) 460 a 475 m
Figura 5.3: Cristal de anhidrita inmerso en una masa microcristalina de sericita-anhidrita perteneciente al sondaje LBUG17_01
Figura 9.1: Elementos medidos por digestión litio borato con ICP-ES e ICP-MS
Figura 9.2: Elementos medidos por digestión 4 ácidos y agua regia con medición por ICP- ES e ICP-MS
Figura 9.3: Geoquímica roca total de elementos mayores de las muestras ensayadas para geometalurgia del Yacimiento Los Sulfatos
Figura 9.4: Box Plots del total de pruebas geometalúrgicas (2017) del Yacimiento Los Sulfatos
Figura 9.5: LBUG17_12, prueba geometalúrgica MeT_LBUG_17_133 101
Figura 9.6 LBUG17_12, prueba geometalúrgica MeT_LBUG_17_134 101
Figura 9.7: LBUG16_17, prueba geometalúrgica MeT_LBUG_17_86 102
Figura 9.8: LBUG17_18, prueba geometalúrgica MeT_LBUG_17_150 103
Figura 9.9: LBUG17_14, prueba geometalúrgica MeT_LBUG_17_180 103
Figura 9.10: LBUG15_01, prueba geometalúrgica MeT_LBUG_17_85 104
Figura 9.11: LBUG16_05, prueba geometalúrgica MeT_LBUG_17_78 104
Figura 9.12: LBUG16_03, prueba geometalúrgica MeT_LBUG_17_31 105
Figura 9.13: Coeficientes de correlación del análisis de química roca total con respecto a los resultados SPI para las pruebas geometalúrgicas en el Yacimiento Los Sulfatos
Figura 9.14: Mineralogía dada por análisis QEMSCAN
Figura 9.15: Sector con fenocristales de plagioclasa inmersos en una matriz obliterada compuesta por sericita y anhidrita
Figura 9.16: Masa fundamental cristalina con fenocristales de plagioclasa y feldespatos subhedrales de aprox. 3 mm

Figura 9.17: Diseminación de calcopirita inmersos en una masa silicatada	7
Figura 9.18: Fenocristal obliterado con sercitia-biotita en la parte inferior y masa cristalin	a
granular de cuarzo y feldespatos	8
Figura 9.19: Cúmulos de alunita euhedral en la matriz de la brecha. Se observan sectores co anhidrita en la parte baja del corte	n 9
Figura 9.20: Agregado granular cristalino de cuarzo y feldespato con sericita intersticia 19	1. 0
Figura 9.21: Cristal de calcopirita de aproximadamente 1,5mm.	1
Figura 9.22: Masa fundamental sericitizada y vetilla de cuarzo y feldespatos 19	2
Figura 9.23: Cristal de bornita y calcopirita	3
Figura 9.24: Agregados granulares de cuarzo y feldespatos con sericita intersticial fenocristales de feldespato potásico con una leve alteración a sericita	у 4
Figura 9.25: Cúmulos de plagioclasas euhedrales y feldespato potásico 194	4
Figura 9.26: Cristal de anhidrita inmerso en la matriz granular de cuarzo y feldespatos. 19	5
Figura 9.27: Cristal de calcopirita con reemplazo de bornita y digenita	5
Figura 9.28: Intercrecimiento de cristales de biotita, sericita y anhidrita en matriz cristalin de plagioclasa y feldespato potásico	а 6
Figura 9.29: Alteración sericítica y biotítica en menor proporción en el sector derecho Agregado microcristalino de feldespatos y cuarzo en el sector izquierdo, con poca mineralización). 1. 7
Figura 9.30: Bornita con reemplazo de calcopirita y digenita	8
Figura 9.31: Matriz de turmalina, cuarzo y opacos y clastos sericitizados	9
Figura 9.32: Clasto obliterado alterado a sericita	9
Figura 9.33: Cristal de anhidrita inmerso en una masa microcristalina de sericita-anhidrita 20	a. 0
Figura 9.34: Clastos silicificados y matriz con alunita	1
Figura 9.35: Clastos silicificados y fenocristales con alteración a sericita	1
Figura 9.36: Cristal de calcopirita diseminado en una matriz de ganga	2
Figura 9.37: En la esquina superior izquierda se observa un clasto con alteración sericític	a
sobreimpuesta a la silicificación. En la esquina inferior derecha se observa la matriz con cuarzo alunita	у 3
Figura 9.38: Clasto con fenocristal sericitizado inmerso en una masa fundamenta silicificada	ıl 3
Figura 9.39: Fenocristales de plagioclasa y biotita intersticial reemplazando la mas fundamental vítrea. Se observa un cristal aislado de anhidrita a la derecha del corte	a 5
Figura 9.40: Vetilla de anhidrita, cuarzo y opacos de aproximadamente 0,1 mm 20.	5
Figura 9.41: Cristal de calcopirita con reemplazo de bornita	6
Figura 9.42: Alunita con crecimiento radial desde un mineral opaco y cristal de turmalin	a
con colores de interferencia altos	7

1 INTRODUCCIÓN

El presente estudio analiza la incidencia directa de la mineralogía de las rocas, en la etapa de concentración del molino semiautógeno (SAG), en el yacimiento Los Sulfatos. Estudios de la Comisión Chilena del Cobre indican que al año 2017, el 57% de la energía eléctrica ocupada en una mina, se destina a la etapa de concentración (molienda y flotación), mientras que en total, esta equivale a un 23% de la energía ocupada en Chile con fines residenciales, comerciales y públicos (Comisión Chilena del Cobre, 2018).

Dentro de la etapa de concentración puede identificarse una fase de flotación y una fase de molienda. En esta última, pueden identificarse 2 índices para la cuantificación de la resistencia de la roca a la fractura, el SPI (SAG Power Index) para molinos semiautógenos y el BWI (Bond Work Index) para molinos de bolas. El SPI corresponde a un índice el cual cuantifica el tiempo que demora una roca en pasar de una granulometría de entrada a una granulometría de salida, por lo que tiene una relación directa con el consumo energético en la etapa de concentración. La necesidad de encontrar relaciones que permitan su estimación en base a la mineralogía de la roca, es de vital importancia para la planificación minera.

1.1 FORMULACIÓN DEL PROBLEMA

Dentro del negocio minero, en la cadena de producción, uno de los desafíos que se presentan a la hora de procesar minerales viene dado por la heterogeneidad de los parámetros de conminución de las rocas. Entre los parámetros que pueden utilizarse para medir la dureza de estas, durante las etapas de molienda, se encuentra el SPI, el cual representa una medida de la resistencia a la fractura y se cuantifica como el tiempo, en minutos, que se requiere para reducir un material desde un tamaño de 12,7 mm a un tamaño en el cual pase el 80% del material por la malla de los 1.7 mm (Starkey, 1994).

La importancia de parametrizar el SPI de las rocas, radica en la cantidad de energía que se requiere para tratarlas, pues, una roca "A", con una menor dureza geometalúrgica y con una cierta ley de cobre, puede resultar más rentable de tratar que una roca "B", con una mayor dureza geometalúrgica y una ley un tanto superior.

Una de las principales limitaciones que se presentan a la hora de determinar estadísticamente la dureza geometalúrgica de una roca, se genera, debido a que son variados los factores que influyen en la moliendabilidad, entre ellos la litología, la alteración, la densidad de estructuras y fracturas que pueda presentar la roca, el grado de meteorización, entre otros.

Trabajos anteriores han demostrado que es posible correlacionar el Sag Power Índex con la mineralogía de la roca, a partir de regresiones multivariables, dentro de configuraciones litológicas similares. En el presente trabajo, se propone correlacionar las características de las rocas del yacimiento Los Sulfatos, con los valores de SPI obtenidos por las pruebas geometalúrgicas realizadas, validando un estimador que permita evaluar nuevos parámetros de dureza a partir de la

composición química y mineralógica, utilizando la geoquímica obtenida por ensayes de roca total y la mineralogía obtenida por XRD.

Dentro de los principales problemas que se presentan al relacionar la mineralogía con la moliendabilidad de las rocas, se encuentra, que podría haber otros factores que afecten de igual o menor manera al SPI, tales como la textura, entre otros.

Este trabajo busca correlacionar la composición mineralógica de las rocas con la dureza geometalúrgica obtenida con ensayes de conminución.

1.2 HIPÓTESIS DE TRABAJO

Los parámetros geometalúrgicos de las rocas, en el yacimiento Los Sulfatos, están directamente relacionados con la mineralogía de esta, por lo que un análisis mineralógico en conjunto con técnicas estadísticas, permitiría una buena estimación del parámetro SPI de las rocas.

1.3 OBJETIVOS

1.3.1 OBJETIVO GENERAL

Discernir la dureza geometalúrgica SPI de las rocas del yacimiento Los Sulfatos, a partir de la caracterización mineralógica dada por la conversión de elementos a minerales.

1.3.2 OBJETIVOS ESPECÍFICOS

- Evaluar la distribución y densidad espacial de datos geometalúrgicos existentes en el yacimiento utilizando el software LeapFrog.
- Enviar y analizar mediante geoquímica roca total y XRD las muestras pulverizadas de los respaldos de pruebas geometalúrgicas.
- Caracterizar mineralógicamente mediante análisis XRD y geoquímica roca total, las muestras de conminución.
- Correlacionar los resultados mineralógicos con los resultados de SAG Power Index y evaluar la posibilidad de generar un estimador.
- Modelar con el software LeapFrog los resultados obtenidos y validar el estimador.

1.4 UBICACIÓN Y VÍAS DE ACCESO

El yacimiento Los Sulfatos perteneciente al distrito Río Blanco-Los Bronces corresponde a un depósito de pórfido cuprífero ubicado en la Región Metropolitana de Chile central, aproximadamente a 69 km al NE de Santiago, en el flanco oeste de la Cordillera de Los Andes (Warnnars, 1978).

La única vía terrestre habilitada para vehículos motorizados para aproximarse al yacimiento Los Sulfatos corresponde a la ruta G21, la cual surge como una bifurcación de la ruta "Camino Farellones". Una vez en las inmediaciones del yacimiento Los Bronces, la forma de llegar al yacimiento Los Sulfatos corresponde al túnel Los Sulfatos, ubicado dentro de las dependencias del yacimiento Los Bronces.

1.5 ALCANCES DEL TRABAJO

El presente estudio pretende relacionar la dureza geometalúrgica de las rocas del yacimiento Los Sulfatos con variables minerales estimadas por análisis por difracción de rayos X y geoquímica roca total. Con las relaciones estadísticas se buscarán minerales que afecten de manera directa o indirecta a la variable de conminución SPI, para así tener un mayor conocimiento sobre el comportamiento de ciertas unidades geológicas en la etapa de molienda.

1.6 METODOLOGÍA

1.6.1 INVESTIGACIÓN BIBLIOGRÁFICA

Búsqueda de información relevante para el estudio, metodologías, mapeo, ensayos geometalúrgicos, análisis roca total, análisis de difracción de rayos X, balance de minerales y cortes transparentes.

1.6.2 SELECCIÓN DE SONDAJES

La selección de sondajes se basó en la base de datos de pruebas geometalúrgicas del yacimiento Los Sulfatos. Esta base de datos comenzó a generarse a principios del año 2017 para la confección de un modelo geometalúrgico basado en las características de conminución de las rocas (Figura 1.1).

Las pruebas geometalúrgicas de la campaña 2017 fueron llevadas a cabo idealmente dentro de las mismas configuraciones de unidades geológicas (a excepción de casos aislados en los que se encontró una intercalación de litologías o alteraciones) para así poder generar una buena correlación de los parámetros de conminución de las rocas respecto a características como litología y alteración.

De esta forma se escogieron 35 sondajes con pruebas geometalúrgicas.

Figura 1.1: Distribución de ensayos geometalúrgicos 2017 en el yacimiento Los Sulfatos. Puede observarse que la mayor densidad de pruebas geometalúrgicas se sitúa en las inmediaciones de la estación de sondajes 7 y bajo las estaciones de sondajes 8, 9 y 10. Estos ensayes se realizan con el propósito de caracterizar geometalúrgicamente las rocas, por lo que se realizan en lugares estratégicos donde se desarrollará minería.

1.6.3 SELECCIÓN DE PERFILES

Dada la distribución de las pruebas geometalúrgicas se escogieron 3 perfiles transversales al túnel Los Sulfatos, con la finalidad de observar variaciones litológicas y geometalúrgicas. Estas secciones presentan aproximadamente 30 pruebas de conminución, lo que las hace óptimas para trabajar y caracterizar las rocas. Los perfiles se construyeron abarcando influencias de 200 metros a cada lado de la traza para contener un mayor número de ensayes. La distribución de los perfiles geológicos en planta puede observarse en la Figura 1.2.

Figura 1.2: Distribución de perfiles y modelo litológico en profundidad a una altura de 3740 msnm. Los perfiles se trazaron de forma perpendicular a la dirección del túnel. Puede observarse la tendencia que siguen las brechas, las cuales se disponen en sentido NW-SE. AND (andesita), BXM (brecha magmática), BXT (brecha de turmalina), PIP (pórfido intermineral principal), PIT (pórfido intermineral tardío), PPM (pórfido post mineral), SOB (sobrecarga).

El perfil A-A' se trazó en las inmediaciones de la estación de sondajes 7, ya que existe una alta densidad de pruebas geometalúrgicas en este sector debido al alto nivel de mineralización que posee. Este abarcó desde las coordenadas 382531 m E y 6325293 m S a 385439 m E y 6327111 m S (Figura 1.3).

Figura 1.3: Perfil sección A-A'. Estación de sondajes 7. Gran parte de las pruebas geometalúrgicas expuestas en el perfil pertenecen a las unidades BXT y BXM, donde se concentra principalmente la mineralización de la zona.

Los sondajes elegidos para representar este perfil se listan a continuación (Tabla 1.1). Aquí se observa que gran cantidad de los ensayes geometalúrgicos se realizan dentro de la unidad de brechas de turmalina, seguido por la unidad de brechas magmáticas.

PERFIL A-A'								
CÓDIGO SONDAJE	TRAMO					CONMINUCIÓN		
	DESDE (m)	HASTA (m)	SOPORTE	LITOLOGÍA	ALTERACIÓN	BWI	SPI	CI
LBUG15_01	30	45	15	PIP	SV	15	142	14.1
	270	285	15	BXT	SET	14	155	15
LBUG16_02	120	135	15	BXT	SET	13	82	16.7
	405	420	15	BXM	K	18	192	12.5
LBUG17_06	115	130	15	BXT	SET	17	84	16.9
	255	270	15	AND	BT	21	221	13
LBUG17_14	200	215	15	PIP	K	17	122	11.6
LBUG17_17	295	310	15	BXT	SET	13	42	11.4

Tabla 1.1: Pruebas geometalúrgicas para la caracterización del perfil A-A'. Se observa una gran variación de durezas geometalúrgicas, donde se tienen valores de SPI desde 42 minutos para una brecha de turmalina con alteración sericita-turmalina, hasta 221 minutos para una brecha magmática con alteración biotítica.

El perfil B-B' se trazó en las inmediaciones de la estación de sondajes 8 debido a la gran cantidad de pruebas geometalúrgicas en este sector, abarcando entre las coordenadas 382491 m E y 6324674 m S a 385339 m E y 6326492 m S (Figura 1.4). Puede observarse en el perfil una mayor distribución espacial de los ensayes comparado con el perfil A-A', los cuales se ubican preferentemente dentro de la unidad de brechas magmáticas, la que posee las mayores leyes de cobre en el sector.

Figura 1.4: Perfil B-B'. Estación de sondajes 8. Gran parte de las pruebas geometalúrgicas expuestas en el perfil pertenecen a la unidad BXM, donde se concentra predominantemente la mineralización de cobre de la zona.

Los sondajes elegidos para representar este perfil se listan a continuación (Tabla 1.2). Aquí se observa que gran cantidad de los ensayes se realizaron dentro de la litología de brechas de biotita, perteneciente a la unidad de brechas magmáticas del modelo geológico. La alteración predominante de esta zona corresponde a biotítica, como puede observarse en la Tabla 1.2.

Tabla 1.2: Pruebas geometalúrgicas para la caracterización del perfil B-B'. Se observa que la mayor parte de los ensayes se realizaron dentro de la litología BXB y poseen variaciones de SPI entre 91 minutos para una andesita con alteración biotítica y 299 minutos para una brecha de biotita con alteración biotítica.

PERFIL B-B'								
CÓDIGO SONDAJE	TRAMO					PARÁMETROS CONMINUCIÓN		
	DESDE (m)	HASTA (m)	SOPORTE	LITOLOGIA	ALTERACION	BWI	SPI	CI
	170	185	15	-	SET	15	210	15.6
LBUG16_05	385	400	15	-	SE	15	171	15.8
	546	561	15	BXM	BT	19	254	9.6
	345	360	15	AND	BT	15	153	9.9
LBUG10_11	485	500	15	BXB	BT	15	218	12.1
LBUG16_16	125	140	15	BXB	BT	19	299	15.4
	375	390	15	BXB	BT	14	155	15.3
IDUCIA 17	460	475	15	BXB	BT	13	290	22.8
LBUGI0_17	645	660	15	AND	BT	13	91	13.6
LBUG17_12	60	75	15	BXT	BT	16	142	14.7
	225	240	15	BXT	SET	18	208	12.6
LBUG17_14	485	506.92	21.92	BXH	BT	17	164	10.5

El perfil C-C' se trazó en las inmediaciones de la estación de sondajes 9 debido a la gran cantidad de pruebas geometalúrgicas realizadas en esta zona y abarcó desde las coordenadas 382929 m E y 6324515 m S a 385837 m E y 6326333 m S (Figura 1.5). Puede observarse en este perfil una configuración similar al perfil B-B', con pruebas geometalúrgicas distanciadas cubriendo gran cantidad del cuerpo de brechas magmáticas bajo la estación de sondajes 9. Espacialmente los ensayes se ubican en el cuerpo de brecha magmática, debido a que aquí ocurre la mayor mineralización de cobre de la zona.

Figura 1.5: Perfil C-C'. Estación de sondajes 9. Gran parte de las pruebas geometalúrgicas expuestas en el perfil pertenecen a la unidad BXM, en la parte inferior a la estación se sondajes, donde se concentra predominantemente la mineralización de cobre de la zona.

Los sondajes elegidos para representar este perfil se listan a continuación (Tabla 1.3). Aquí se observa que gran cantidad de los ensayes se realizaron dentro de cuerpos de brechas, ya sea tempranas (BXB (brecha de biotita) y BXI (brecha ígnea) o tardías (BXT).

Tabla 1.3: Pruebas geometalúrgicas para la caracterización del perfil C-C'. Se observa que la distribución de litologías para estos ensayos es variada y que posee una alteración biotítica predominantemente. La mayor variación de SPI se puede observar entre una litología de andesita con alteración biotítica con SPI de 82 minutos y una brecha de biotita con alteración biotítica de 349 minutos de SPI.

PERFIL C-C'								
CÓDIGO SONDAJE	TRAMO					CONMINUCIÓN		
	DESDE (m)	HASTA (m)	SOPORTE	LITOLOGÍA	ALTERACIÓN	BWI	SPI	CI
LBUG16_03	55	70	15	BXT	SE	13	240	17
I DUC16 11	570	585	15	BXB	BT	15	349	15.7
LBUGI0_11	740	755	15	AND	BT	13	243	13.5
LBUG16_13	105	120	15	BXI	BT	13	157	16.2
LBUG16_14	625	640	15	-	BT	13	220	17.5
LBUG17_05	215	230	15	-	K	14	111	14
	775	790	15	QMF	BT	14	96	6.8
LBUG17_07	200	230	30	BXB	SE	18	278	6.2
LBUG17_11	375	390	15	AND	SE	16	127	15.3
	595	615.4	20.4	BXB	BT	16	98	22.6
LBUG17_18	395	408.05	13.05	AND	BT	12	82	27.9

1.6.4 SELECCIÓN Y PROCESAMIENTO DE RESPALDOS DE PRUEBAS GEOMETALÚRGICAS

Para el análisis de geoquímica roca total y XRD, se utilizaron los respaldos de las pruebas geometalúrgicas realizadas en la campaña 2017 del proyecto Los Bronces Subterráneo. Estas, las cuales se componen de un total de 300 gr con una granulometría de 3 mm en promedio, malla 8, se enviaron a división y pulverización para la obtención de muestras equivalentes homogéneamente distribuidas. Para esto se dividió las muestras en 12 capachos, luego de ser redistribuidas con un divisor rotatorio, para favorecer la homogeneidad y equiprobabilidad de las distribuciones finales. Los ensayes enviados a pruebas de conminución poseen un soporte de 15 m.

Luego, se compositó de a 4 capachos para cada muestra final. Una vez obtenidas las 3 distribuciones se procede a pulverizar dos de tres muestras, de manera de que el producto tenga nominal 95% a -150# Ty (equivalente a 85% a -200#). Una vez finalizado el proceso se embazan y se rotulan las muestras según el código predeterminado.

1.6.5 ANÁLISIS GEOQUÍMICO ROCA TOTAL Y CARACTERIZACIÓN LITOLÓGICA

El análisis geoquímico roca total se realizó en 100 muestras de pulverizado obtenidas de los respaldos de pruebas geometalúrgicas, en el laboratorio de Bureau Veritas en Vancouver, Canadá (Figura 1.6). Las muestras se subdividieron y disolvieron en una serie de ácidos de forma progresiva con la finalidad de obtener una medición cuantitativa de alta resolución.

Lo primero en realizarse corresponde una fusión Li-Borato más digestión de la muestra para la medición de elementos mayores por ICP-ES y una medición de trazas por ICP-MS. Luego, en una nueva submuestra, se genera una digestión por agua regia para la medición de elementos tales como el As, Bi, Cd entre otros, con ICP-MS. A continuación, con 4 ácidos se digiere otra submuestra para la medición de metales tales como el Cu, Mo con ICP-ES. Por último, para la medición de metales nobles, se realiza un ensayo fuego a otra submuestra con el objetivo de extraer minerales refractarios como el Au, Pd o Pt, midiéndolos con ICP-MS.

Figura 1.6: Distribución de ensayes geoquímicos roca total. La selección de muestras se basó en la base de datos de pruebas geometalúrgicas realizadas.

1.6.6 ANÁLISIS DE DIFRACCIÓN DE RAYOS X

Para el análisis XRD se escogió un total de 70 muestras representativas que cubrieran el espectro litológico del yacimiento (Figura 1.7). Este se realizó sobre los pulverizados de respaldos de pruebas geometalúrgicas con una granulometría de 80% bajo malla 200# en el Laboratorio de Cristalografía y Difracción de Rayos-X en las dependencias del Departamento de Física de la Facultad de Ciencias Físicas y Matemáticas de la Universidad de Chile, con el equipo D8 ADVANCE. Posterior al análisis, los resultados se analizaron con el software EVA, obteniéndose la mineralogía cualitativa predominante de las rocas muestreadas.

Figura 1.7: Distribución de análisis XRD. La selección de muestras para análisis XRD se basó en la base de datos de pruebas geometalúrgicas para así poseer la caracterización mineralógica de las rocas ensayadas.

1.6.7 CONVERSIÓN ELEMENTOS A MINERALES

Respecto a los resultados obtenidos mediante el análisis XRD y utilizando la geoquímica roca total de las rocas del yacimiento, se realizó una conversión de elementos a minerales (balance de minerales) para identificación de mineralogía modal. Esto consiste en la creación de matrices de la forma A * x = b, igualándose la proporción del elemento en el mineral (A) con la concentración del mineral en la roca (x) e igualándola con la composición geoquímica de la muestra, para un determinado elemento (b) (Lamberg *et al.*, 1997).

A continuación, se puede observar un ejemplo de lo anteriormente expuesto:

$$A = \begin{bmatrix} Cpy & Py & Anh \\ S & 0.349 & 0.535 & 0.444 \\ Fe & 0.304 & 0.465 & 0 \\ Cu & 0.346 & 0 & 0 \end{bmatrix}$$
$$x = \begin{bmatrix} Cpy & [] Cpy \\ Py & [] Py \\ Anh & [] Anh \end{bmatrix}$$
$$b = \begin{bmatrix} S & 0.43 \\ Fe & 0.15 \\ Cu & 0.09 \end{bmatrix}$$

En este caso, se tiene una muestra la cual se compone de 3 minerales: calcopirita, pirita y anhidrita. Así pues, se puede calcular la proporción de estos mediante su composición química y la geoquímica de la muestra.

El primer paso comprende calcular la proporción de calcopirita, el cual es el único mineral que depende únicamente del contenido de Cu en la muestra. Para esto se debe tomar en cuenta la cantidad de átomos del elemento en la molécula mineral y el peso atómico de este elemento, con el objetivo de calcular la concentración de cobre en calcopirita:

[]Cu en Cpy = $\frac{Peso \ atómico \ Cu * ext{Atomos} \ de \ Cu \ en \ molécula \ de \ Cpy}{Peso \ Atómico \ Cpy}$

Así, se tiene que:

%
$$Cpy = \frac{[]Cu \ en \ la \ muestra}{[]Cu \ en \ Cpy} = \frac{0.09}{0.346} = 26\%$$

El siguiente paso para la cuantificación corresponde a calcular la proporción de pirita en la muestra, utilizando la concentración de Fe en la muestra y sustrayendo la proporción de Fe en calcopirita mediante el porcentaje de calcopirita y el porcentaje de Fe en el mineral. Por último, se debe calcular la proporción de anhidrita, mediante la concentración de S en los minerales anteriormente cuantificados. La solución de la matriz "x" se observa a continuación:

[] Cpy
$$26.0\%$$
x =[] Py 15.2% [] Anh 58.7%

De esta forma se obtuvo una composición mineralógica semi-cuantitativa de las muestras (debido a que existen minerales de baja concentración que el análisis XRD podrían no identificar con claridad). Esta mineralogía es la que posteriormente sería destinada a buscar estimadores minerales para el SPI.

Dentro de los minerales que presentaron las mayores dificultades para su estimación en el yacimiento se encuentra la clorita y la biotita, las cuales debido a su solución sólida ferromagnesiana resultan difíciles de cuantificar. Debido a esto, la forma de proceder se basó en el extremo de la solución sólida identificado por el análisis XRD.

El principal obstáculo del análisis lo presentaron los minerales potásicos "mica blanca" y "feldespato potásico", los cuales contienen elementos equivalentes en proporciones distintas en su estructura (Tabla 1.4). Sumado a esto, se tiene que el elemento Al en silicatos se comporta como

un sustituyente del Si, por lo que al cuantificar la proporción de los minerales anteriormente nombrados no puede asignarse la totalidad de Al a uno u otro mineral.

	Mineral				
Elementes	Feldespato potásico	Mica blanca			
Elementos	KAlSi ₃ O ₈	$KAl_2Si_3AlO_{10}(OH)_2$			
Si	0.56	0.41			
K	0.26	0.19			
Al	0.18	0.40			

 Tabla 1.4: Proporción de elementos en feldespato potásico y mica blanca para análisis de elementos a minerales. Se observa que los 2 minerales poseen elementos equivalentes y solo difieren en la proporción de estos en la estructura química.

Para la determinación de la razón entre mica blanca y feldespato potásico se realizó el cálculo de elementos a minerales para las muestras que presentaran solo uno de los minerales controversiales (26 muestras). De esta forma se aislaron las muestras que solo presentaran mica blanca de las muestras con solo feldespato potásico.

1.6.8 CORRELACIÓN SPI - MINERALOGÍA MODAL

Una vez obtenida la mineralogía modal de las rocas del yacimiento proveniente de los análisis XRD y geoquímica roca total, y utilizando estadísticas básicas, se correlacionó el SPI de las rocas con su mineralogía modal (Figura 1.8).

Con el objetivo de encontrar minerales que pudieran generar un cambio en la respuesta geometalúrgica de las rocas se analizaron los coeficientes de correlación entre la mineralogía y el SPI, generando agrupamientos de minerales con características semejantes tales como tectosilicatos, filosilicatos, ciclosilicatos, sulfatos, sulfatos, sulfatos.

Figura 1.8: Diagrama de flujo, etapa de calibración, correlación entre la mineralogía de las muestras con mica blanca o feldespato potásico con respecto al SPI de las rocas del yacimiento.

1.6.9 INTERPOLACIÓN VARIABLE MICA BLANCA – FELDESPATO POTÁSICO

Utilizando la relación encontrada de acuerdo a los minerales identificados, se interpolaron las razones mica blanca/feldespato potásico para un total de 44 muestras, dejando 30 para una etapa de validación. De este modo, utilizando el comportamiento SPI de las rocas se calculó la razón de mica blanca/feldespato potásico que ajustaría la regresión lineal obtenida (Figura 1.9).

Figura 1.9: Diagrama de flujo, etapa de interpolación. Cálculo de la razón mica blanca/feldespato potásico para muestras con ambos minerales, evidenciado por XRD.

Para llevar a cabo este procedimiento se ajustaron los porcentajes de mica blanca y feldespato potásico que reprodujeran el SPI correspondiente a la muestra, consumiendo la totalidad de K de la roca. Este supuesto se basa en los resultados de XRD, los cuales no mostraron dentro de la mineralogía predominante de las rocas, minerales como illita, jarosita o alunita.

1.6.10 VALIDACIÓN DEL MÉTODO MEDIANTE MODELAMIENTO GEOLÓGICO

Para la validación del estimador encontrado se procedió a generar un modelo numérico el cual estimara espacialmente los valores de la razón de mica blanca/feldespato potásico en el yacimiento.

El modelo numérico se realizó con el software de modelamiento geológico implícito LeapFrog. Para evaluar tendencias espaciales se realizó una variografía, no obteniéndose tendencias claras, por lo que la forma de modelar las variables se realizó utilizando un volumen elipsoidal isométrico. La principal razón a la que se adjudicaría la falta de tendencias sería la heterogeneidad de litologías y alteraciones en el yacimiento, en el cual se sobreponen brechas tardías a brechas tempranas y brechas tempranas a roca caja e intrusivos, sumado a la gran distancia que existe entre las pruebas geometalúrgicas. Finalmente, para la etapa de validación se utilizaron los datos interpolados (razón mica blanca/feldespato potásico) en conjunto con un modelamiento geológico de las variables buscadas (Figura 1.10).

Figura 1.10: Diagrama de flujo, etapa de validación. Creación del modelo numérico y estimación espacial de la razón mica blanca/feldespato potásico, para el cálculo del SPI de las rocas con la conversión de elementos a minerales.

1.6.11 MAPEO DE SONDAJES

El mapeo de sondajes se realizó en aquellos tramos que resultaron con grandes diferencias entre el SPI estimado por el método y el SPI de laboratorio, además de en tramos donde la estimación fue buena con un error absoluto menor al 10%. De este modo se escogieron 12 segmentos de en promedio 15 metros (Tabla 1.5).

Tabla 1.5:Intervalos mapeados. La selección de estos se basó en aquellos tramos con una amplia diferencia entre el SPI estimado por la mineralogía y el SPI medido en laboratorio. Además, se escogieron tramos colindantes a los anteriormente descritos para evidenciar diferencias mineralógicas que pudieran existir y que explicaran la diferencia de SPI.

HOLE-ID	DESDE	HASTA	SOPORTE
LBUG15_02	245	260	15
LBUG16_02	175	190	15
LBUG16_09	245	260	15
LBUG16_11	405	420	15
LBUG16_17	200	215	15
LBUG16_17	345	360	15
LBUG16_17	460	475	15
LBUG17_01	90	105	15
LBUG17_17	80	103	23
LBUG17_17	295	310	15
LBUG17_18	315	328	13
LBUG17_22	140	160	20

Para la descripción de los tramos se utilizó el formulario de mapeo geológico de Los Sulfatos. Este contempla secciones tales como Collar, Litología, Alteración, Mineralización, Estructuras, Techo, Perfil Redox e Id Geólogo. El detalle del mapeo se basó en la finalidad de este, o sea, describir las características litológicas y de alteración de las rocas, para poder concluir respecto a las características que estas poseen y así a su asociación con el SPI y la hipótesis de trabajo.

1.6.12 CORTES TRANSPARENTES Y ESTUDIOS PETROGRÁFICOS Y CALCOGRÁFICOS

Para un mayor entendimiento de la mineralogía de los tramos mapeados se extrajeron 11 muestras representativas para la confección de cortes transparentes y pulidos. La ubicación espacial de estos puede observarse a continuación (Figura 1.11).

Figura 1.11: Ubicación de cortes transparentes y pulidos en el yacimiento. La selección de muestras para cortes transparentes y pulidos se basó en aquellos tramos con una diferencia absoluta de SPI mayor al 30%, y tramos colindantes a estos últimos descritos, para evidenciar diferencias mineralógicas que podrían generar cambios en la dureza geometalúrgica SPI.

1.7 ESTADO DEL ARTE

Gamal (2012) correlacionó el BWI (Bond Work Index) con propiedades mecánicas de rocas provenientes de orógenos de Arabia Saudita. Bauxitas, caolinitas, granodioritas, magnetitas, granitos, feldespatos y cuarzos fueron analizados para módulos de dureza, abrasión, esfuerzo compresivo y módulo de elasticidad, encontrándose correlaciones logarítmicas del orden de más del 75% entre la dureza geometalúrgica y parámetros geotécnicos. A su vez se midió la dureza geometalúrgica por litología, obteniéndose un BWI de 10.8 kWh/t para la bauxita, 11.6 kWh/t para la caolinita, 12.7 kWh/t para la granodiorita, 14.75 kWh/t para la magnetita, 17.06 kWh/t para el feldespato, 20.4 kWh/t para el granito y 16.6 kWh/t para el cuarzo.

Como resultados principales del trabajo se tiene que el BWI aumenta a medida que se incrementa la dureza de la roca, la resistencia al esfuerzo compresivo uniaxial y el módulo de elasticidad, mientras baja a medida que aumenta la abrasión. La alta dureza se asocia a la baja porosidad de las rocas y escasa fuerza de cohesión lo que permitiría una mayor disipación de energía a la hora de fracturarse. A su vez, si los materiales que cementan y la matriz, están poco cohesionados, la dureza será menor. También, litologías con cristales muy grandes poseen un BWI menor.

Bilal (2017) utilizó la mineralogía modal de las rocas del yacimiento Aitik, pórfido cuprífero ubicado al norte de Suecia, para correlacionar la dureza geometalúrgica y la mineralogía modal a través de regresiones lineales múltiples. Este llegó a la conclusión de que utilizando minerales tales como cuarzo, feldespato potásico, actinolita, ilmenita y "otros minerales" podría inferirse el BWI con un coeficiente de correlación alto, distinguiéndolo por tipo de litología.

Barr (2017) explica que es posible correlacionar la mineralogía obtenida por FTIR/Hylogger, en conjunto con técnicas estadísticas avanzadas, para estimar variables geometalúrgicas de las rocas. Esto en base a un estudio realizado en el yacimiento Los Bronces, Región Metropolitana, Chile.

2 MARCO TEÓRICO

2.1 GEOMETALURGIA

La geometalurgia busca mejorar la eficiencia de los procesos, reducir el riesgo operacional y ayudar a optimizar la producción, mejorando la sustentabilidad y los factores socioeconómicos de una mina (Gomes *et al.*, 2015). Esta combina la información geológica y metalúrgica para así poder crear un modelo predictivo para las plantas procesadoras de minerales (Lamberg, 2011). Dentro de los principales problemas que se presentan en la geometalurgia se encuentra la baja representatividad de las muestras, las cuales, si no son propias de la unidad geológica que caracterizan, generarán modelos errados debido la baja densidad de ensayes realizados, los cuales terminan representando grandes tonelajes en el modelo geometalúrgico. Este problema se soluciona mediante el ensayo de una mayor cantidad de muestras, mas esto también representa un problema para el negocio minero, pues las pruebas geometalúrgicas no suelen presentar importancia hasta etapas avanzadas de minería en un yacimiento (Lamberg, 2011). Por último, los ensayes geometalúrgicos presentan altos costos.

2.1.1 ENSAYOS DE CONMINUCIÓN

Se conoce como conminución al proceso por el cual se reduce progresivamente el tamaño de una roca con el objetivo de "liberar" el mineral de interés y así pueda ser extraído. De acuerdo a la etapa de extracción de las rocas que se sigue en el yacimiento Los Bronces, se pueden identificar 3 indicadores para estimar el consumo de energía en las etapas de chancado y molienda. El Crusher Index (CI) parámetro que indica la resistencia a la fractura por compresión, asociado al chancado primario; SAG Power Index (SPI) que indica la resistencia a la fractura por mecanismos de impacto y abrasión, asociado al proceso de molienda SAG y el Bond Ball Work Index (BWI) asociado al proceso de reducción de tamaño por mecanismos de abrasión en molinos de bolas. Estos hacen alusión a la energía que toma reducir una muestra desde cierta granulometría hasta un tamaño dado en función de los mecanismos de fractura asociados a cada proceso.

A continuación, se detallan los parámetros relevantes para este trabajo.

2.1.1.1 BOND BALL WORK INDEX

El Work index es un parámetro de conminución el cual expresa la resistencia de un material a la fractura o la abrasión (Wills & Napier-Munn, 2006). Se mide en kWh por tonelada corta requeridos para reducir el material desde un tamaño de en promedio 1,7 mm a un tamaño tal que el 80% de las partículas del producto pase por una malla de 100 micrones (Wills & Napier-Munn, 2006). Dentro de la ecuación para estimar el índice BWI se tiene el diámetro en micrones de la malla por la cual pasa el 80% del producto, el cual se denomina "P", mientras que el diámetro de la malla por el cual pasa el 80% de la muestra se denomina "F". El parámetro W que utiliza la fórmula corresponde a la energía utilizada en el molino para la reducción del tamaño de las partículas (Bond, 1961). El Work index puede calcularse de la siguiente forma:

$$W = \frac{10Wi}{P^{\frac{1}{2}}} - \frac{10Wi}{F^{\frac{1}{2}}}$$

Este índice se calculó originalmente con los siguientes parámetros estándar (Bond, 1961):

- Un molino de laboratorio de tamaño 30.48 cm de diámetro por 30,48 cm de largo.
- Velocidad de molino de 70 rpm.
- 21,125 kg de bolas de distintos tamaños y cantidades
- 10 kg de roca de tamaño promedio 3.35 mm
- El P80 debe ser en promedio entre 0.053 mm y 0.23 mm.

En la actualidad este método aún es realizado en molinos de laboratorio. Al introducir la muestra se procede a activar el molino, lo cual genera el fracturamiento y la abrasión de las

partículas, las cuales dentro de cierta cantidad de tiempo son extraídas, comparando la cantidad de material fino proveniente del proceso versus la cantidad de material grueso. Este proceso se repite hasta que la proporción de material fino versus el material grueso es relativamente constante, obteniéndose el índice BWI.

2.1.1.2 SAG POWER INDEX

El ensayo SAG Power Index (SPI) corresponde a un ensayo de moliendabilidad, realizado en un molino de trituración pequeño de laboratorio. Consiste en la medición del tiempo que demora la reducción de una roca de un tamaño de 12,7 mm a un tamaño de en promedio 1,7 mm. El ensayo SAG Power index, también llamado Starkey index, fue desarrollado por Starkey en 1994, con el objetivo de poder estimar un índice que permitiese discernir sobre las rocas que tomasen un mayor tiempo de moliendabilidad versus otras que tomasen un menor tiempo de moliendabilidad en el proceso minero (Starkey, 1994)

La molienda semiautógena SAG debe su nombre al mecanismo de reducción de tamaño de las partículas, el cual pasa de ser un sistema que produce la reducción del tamaño de partículas desde solo las rocas, a rocas con bolas de acero de tamaños variables, las cuales representan entre un 4 a un 15 % del volumen total del molino. Por lo anterior, la reducción del tamaño de las partículas se debe al impacto de grandes fragmentos de rocas y de bolas de acero, impactando y friccionando rocas de menor tamaño.

Los molinos semiautógenos SAG producen la reducción del tamaño de la roca mediante 2 mecanismos:

- Molienda por impacto: esta se produce cuando los fragmentos de rocas gruesas o bolas gruesas, mediante el giro del molino, son lanzadas sobre las rocas al pie de este, impactando con gran energía y produciendo un gran fraccionamiento de las rocas de menor tamaño al ser sometidas a energías mucho mayores que las soportadas por las rocas.
- Molienda por abrasión: esta se produce cuando la energía no es suficiente para fracturar la
 roca, sino que se producen fracturas localizadas, comúnmente en zonas de menor energía
 de cohesión como son las esquinas de las rocas. Este proceso para fragmentos grandes
 continua hasta que las rocas son lo suficientemente pequeñas como para ser sometidas a
 otro tipo de molienda.

Para la realización de esta prueba se necesitan muestras de 2 kg las cuales se introducen en un molino de aproximadamente 30 cm de diámetro por 10 cm de largo. Luego se mide el tiempo que tardan las muestras en reducirse de tamaño desde una muestra que pasa el 80% por la malla de 12.7 mm hasta que pasa el 80% por la malla de 1.7 mm. Debido a esto se tiene que mientras más tiempo demore el 80% de la muestra en pasar por la malla de tamaño 1.7 mm mayor será la resistencia del mineral a la fractura y la abrasión, por lo que el índice SPI será mayor.

Para la realización de esta prueba deben considerarse los siguientes parámetros (Starkey, 1997):

- Molino SAG de diámetro 30.5 cm y largo 10.2 cm.

- Bolas de 2.5 cm de diámetro
- Muestra secas de 2 kg con una granulometría la cual pase el 80% por un tamaño de malla 12.7 mm
- El material resultante debe pasar el 80% por la malla de 1.7 mm

Finalmente, el resultado obtenido por este ensayo corresponde a una cantidad en minutos, la cual representa la moliendabilidad de la roca del ensayo, esta cantidad en minutos es transformada a energía mediante una serie de ecuaciones y relaciones, como se observa en la (Figura 2.1). Aquí, mediante la correlación entre el SPI, una constante de ajuste (C), el tamaño de transferencia desde el molino SAG a molino de bolas (T₈₀), el factor de ajuste (n) y el factor de ajuste en función de los parámetros operacionales del molino industrial (f_{SAG}), se logra estimar un valor de energía requerida por los molinos semiautógenos para la operación.

Figura 2.1: Simulador CEET de energía requerida para el proceso. Fases por las que debe pasar una muestra en el proceso de conminución del yacimiento y cálculo de la energía requerida por fase.

Cabe destacar que la gran importancia de esta prueba reside en su representatividad a gran escala, esto debido a que contempla los mecanismos de reducción de tamaño que se presentan en el molino SAG.

2.2 GEOQUÍMICA ROCA TOTAL

La geoquímica roca total corresponde a un análisis cuantitativo de la química de la roca. Dentro de las ventajas que posee, se puede identificar que involucra una disolución total de la muestra, realizada por diferentes metodologías para una medición cuantitativa de los elementos que la componen.

El ensayo realizado en este estudio comprende un análisis de roca total, el cual incluye elementos mayores y trazas (incluyendo tierras raras) mediante ICP-ES e ICP-MS. Un análisis de ultra trazas con ICP-MS para metales de interés, metales preciosos y trazadores; digestión por 4 ácidos para la medición de metales de interés, tales como Ag, Cu, Mo con ICP-ES. Finalmente, se realiza un ensayo de fuego para el análisis de ultra trazas metálicas tales como Au, Pt y Pd con ICP-MS (Bureau Veritas Minerals, 2016 (a))

A continuación, se puede observar un resumen de lo anteriormente descrito (Tabla 2.1):

Method	Digestion	Analysis	Description
LF302 (formerly 4A02)	Li borate fusion	ICP-ES	Sample is fused with Li-meta/tetraborate flux then digested in dilute Nitric acid. ICP-ES reports major elements as oxides. Leco C&S (TC003) is included
LF100 (formerly 4B03)	Li borate fusion	ICP-MS	Solution from LF302 above is analysed by ICP-MS to report trace and ultra-trace concentrations of lithophile elements including the REEs.
AQ252-EXT (formerly 1F06)	Aqua Regia	ICP-MS	A 30 g sample is digested in modified aqua regia in a hot bath. Solution is made to volume with dilute HCl and analysed by ICP-MS.
MA370 (formerly 7TD2)	4-Acid	ICP-ES	Total determination by the ore-grade assay method using a 4-acid digestion on a 0.5 g sample with ICP-ES analysis.
FA130 (formerly 3B03)	Fire Assay fusion	ICP-MS	Au, Pt or Pd overlimit samples are re-analysed for these elements by Pb collection Fire Assay on a 30 g sample with an ICP-ES determination.

Tabla 2.1: Procedimiento para análisis geoquímico roca total. (Bureau Veritas Minerals, 2016 (a))

Los elementos que se miden en el ensayo, el método y el límite inferior de detección, pueden observarse a continuación (Tabla 2.2):

Element / Parameter	Det. Lim. Unit	Element / Parameter	Det. Lim. Unit	Element / Parameter	Det. Lim. Unit	Element / Parameter	Det. Lim. Unit	Element / Parameter	Det. Lim. Unit
SiO ₂	0.01 %	Ag	2 ppb	Hg	5 ppb	Re	1 ppb	Zr	0.1 ppm
Al ₂ O ₃	0.01 %	Ag	2 ppm	In	0.02 ppm	Sb	0.02 ppm	La	0.1 ppm
Fe ₂ O ₃	0.04 %	As	0.1 ppm	Li*	0.1 ppm	Sc	0.1 ppm	Ce	0.1 ppm
CaO	0.01 %	B *	1 ppm	Mn*	1 ppm	Se	0.1 ppm	Pr	0.02 ppm
MgO	0.01 %	Ва	1 ppm	Мо	0.01 ppm	Sn	1 ppm	Nd	0.3 ppm
Na ₂ O	0.01 %	Be*	0.1 ppm	Мо	10 ppm	Sr	0.5 ppm	Sm	0.05 ppm
K ₂ O	0.01 %	Bi	0.02 ppm	Nb	0.1 ppm	Та	0.1 ppm	Eu	0.02 ppm
MnO	0.01 %	Cd	0.01 ppm	Ni*	0.1 ppm	Те	0.02 ppm	Gd	0.05 ppm
TiO ₂	0.01 %	Со	0.1 ppm	Ni	10 ppm	Th	0.2 ppm	Tb	0.01 ppm
P ₂ O ₅	0.01 %	Cr*	0.5 ppm	Pb	0.01 ppm	TI	0.02 ppm	Dy	0.05 ppm
Cr ₂ O ₃	0.002 %	Cs	0.1 ppm	Pb	200 ppm	U	0.1 ppm	Но	0.02 ppm
LOI	0.1 %	Cu	0.01 ppm	Pd*	10 ppb	V	8 ppm	Er	0.03 ppm
С	0.01 %	Cu	10 ppm	Pd	0.5 ppb	W	0.5 ppm	Tm	0.01 ppm
S	0.02 %	Ga	0.5 ppm	Pt*	2 ppb	Y	0.1 ppm	Yb	0.05 ppm
Au	0.2 ppb	Ge*	0.1 ppm	Pt	0.1 ppb	Zn	0.1 ppm	Lu	0.01 ppm
Au	1 ppb	Hf	0.1 ppm	Rb	0.1 ppm	Zn	100 ppm		

Tabla 2.2 Elementos, método y límites de detección para los elementos muestreados por el ensayo químico roca total (Bureau Veritas Minerals, 2016 (a)).

2.3 DIFRACCIÓN DE RAYOS X

La difracción de rayos X corresponde a un método de identificación mineral cualitativa. Este se basa en la interferencia constructiva de rayos X monocromáticos y una muestra cristalina. Los rayos son producidos por un tubo de rayos catódicos tras calentar un filamento, acelerando los electrones al aplicar voltaje, el cual se filtra para producir radiación colimada, la cual pasa directamente a través de la muestra (Bunaciu *et al.*, 2005).

En geología, la difracción de rayos X es una herramienta importante en exploración, esto debido a que cada mineral presenta su propia estructura cristalina, por lo que adquiere un único patrón de difracción de rayos X, el cual al ser identificado permite su fácil reconocimiento (Bunaciu *et al.*, 2005).

Este análisis es ampliamente utilizado en muestras de suelo, debido a que permite una identificación de los tipos de arcillas presentes en estos

Entre las ventajas que posee esta técnica se puede identificar (Bunaciu et al., 2005):

- Rápida, de fácil preparación de muestras y no destructiva (por lo general)
- Alta precisión
- Puede ser realizada in situ
- Permite la caracterización de cristales individuales, polimorfos y materiales amorfos
- Existen estándares para cientos de materiales ya identificados
2.4 MODELAMIENTO DE YACIMIENTOS

2.4.1 LEAPFROG GEO

El Software LeapFrog 3D permite la generación de modelos tridimensionales, los cuales pueden representar distintas características tales como litología, alteración, mineralización, parámetros geometalúrgicos, entre otros.

Este cuenta con un motor (FastRBFTM) de modelamiento implícito lo cual permite la creación de superficies de manera más rápida, utilizando los datos importados, sin necesidad de un modelamiento manual. El software es capaz de trabajar con más de un millón de puntos de datos siendo ágil y flexible (Aranz Geo Limited, 2014).

3 MARCO GEOLÓGICO

3.1 GEOLOGÍA REGIONAL

El distrito Rio Blanco-Los Bronces se ubica entre la Región Metropolitana y la Región de Valparaíso, Chile, aproximadamente a 69 km al noreste de Santiago. Este posee elevaciones de entre los 3000 a 4800 metros sobre el nivel del mar emplazado en la franja metalogénica del Mioceno tardío-Plioceno temprano. Dentro de las formaciones previas a la mineralización que pueden encontrarse en las inmediaciones del área del distrito se encuentran Los Pelambres, Abanico, Coya Machalí y Farellones, las cuales estarían representadas por un volcanismo, durante el Eoceno tardío y el Mioceno temprano (~36-20 Ma) toleítico a calco-alcalino continental, en una cuenca extensional de intra-arco N-S (Charrier *et al.*, 2003; Sillitoe y Perelló, 2005; Perelló *et al.*, 2009).

Figura 3.1: Franjas metalogénicas entre las latitudes 17° y 34°, Chile. Ubicación del distrito Rio Blanco-Los Bronces (Deckart et al., 2014)

La actividad magmática contemporánea a la mineralización en el área puede subdividirse en dos. (1) Durante el Mioceno temprano al tardío, ocurren lavas dacíticas a riolíticas terciarias de origen continental pertenecientes a la Formación Farellones, e intrusivos basálticos toleíticos a calcoalcalinos de edades entre ~18-15 Ma. También ocurre el emplazamiento de plutones granodioríticos y pórfidos de cobre entre los ~12 a 8 Ma; (2) Durante el Mioceno tardío-Plioceno temprano, ocurre la formación de los pórfidos del distrito Rio Blanco-Los Bronces seguido de la intrusión de diques lamprófidos postminerales (4-3 Ma). (Maksaev *et al.*, 2003; Deckart *et al.*, 2005).

El distrito Rio Blanco-Los Bronces se emplaza al este de la zona de subducción del ridge de Juan Fernández y su génesis se asocia a la transición de la subducción desde un régimen de subducción normal tipo chilena a un flat-slab, lo cual habría sido provocado por la subducción del ridge, generando la ausencia del volcanismo, la mineralización y los mayores eventos de mineralización en el distrito (Stern, 1989; Skewes y Holmgren, 1993; Serrano *et al.*, 1996). Estos cambios habrían sido los gatillantes de la mineralización que formó el distrito Rio Blanco-Los Bronces (Skewes & Stern, 1994). Existen autores que se oponen a esta hipótesis basándose en que a la edad de mineralización del distrito Rio Blanco-Los Bronces, el ridge de Juan Fernández se encontraría subductando aproximadamente a los 30°S, por lo que los pórfidos cupríferos contemporáneos a esta edad entre los 32° y 34°S no se asociarían a este evento geológico (Deckart *et al.*, 2013).

3.2 GEOLOGÍA DISTRITAL

Dentro de la litología observable en el área del distrito pueden observarse las formaciones Farellones (23,1-16,5 Ma con U-Pb en circón) y Abanico, dentro de las cuales se aloja la mineralización (Deckart *et al.*, 2005; Toro *et al.*, 2012).

Debido a características temporales, estructurales y litológicas pueden diferenciarse tres dominios dentro del distrito Rio Blanco-Los Bronces. La existencia de cuerpos mineralizados de Cu-Mo se asocia a etapas tardías de diferenciación del Batolito San Francisco, el cual posee una edad de 16,6-8,2 Ma con U-Pb en circón (Toro *et al.*, 2012). Estas franjas se habrían generado por una migración del arco y de la actividad magmática hacia el sur-este, contemporáneos a la subducción del ridge de Juan Fernández.

Figura 3.2: Ubicación del distrito Rio Blanco-Los Bronces y distinción de dominios geológicos (Toro et al., 2012)

3.2.1 FRANJA ORTIGA-LOS PICHES (14,8-12.3 Ma)

La edad de esta franja se obtuvo mediante ⁴⁰Ar/³⁹Ar en biotita perteneciente a una unidad cuarzo monzonita en el área de Los Piches, obteniéndose la edad máxima de 14,8 Ma, y en alunita hipógena parte del litocap en el área de Ortiga, obteniéndose una edad de 12,3 Ma (Serrano *et al.*, 1996; Eggers, 2009). Esta contiene las primeras evidencias de actividad hidrotermal del distrito, con una disposición N-S y 16 km² en superficie. Adquiere una alteración hidrotermal potásica y biotítica en el sector oeste con vetillas A en rocas cuarzo-monzoníticas del Batolito San Francisco. Además, una alteración argílica avanzada local ocurre en el sector oeste del área de Ortiga, sobre un graben estructural. Por último, posee un gran metasomatismo de Na-Ca-Fe con pirita y calcopirita localmente en el sector suroeste afectando rocas volcánicas, intrusivas y brechas magmáticas tardías. Se asocia que la actividad hidrotermal de este sector no habría producido el alto nivel de mineralización de cobre, sino vetillas de plata asociadas a un proceso de actividad hidrotermal de alta sulfuración (Toro *et al.*, 2012).

3.2.2 FRANJA SAN MANUEL-EL PLOMO (10,8-7,7 Ma)

La edad máxima de esta franja se obtuvo con el método U-Pb en zircón en un cuerpo de pórfido cuarzo monzonítico perteneciente al dominio, arrojando una edad de 10,8 Ma (Berntens *et al.*, 2010), mientras que la edad mínima se obtuvo por 40 Ar/ 39 Ar en biotita, arrojando una edad de 7,7 Ma (Deckart *et al.*, 2013). Esta franja posee una disposición NW-SE con aproximadamente 18 km² en superficie. Las rocas encajantes (Formación Abanico y Farellones) poseen un metamorfismo de contacto al estar en contacto con pulsos porfídicos de cuarzo monzonita pertenecientes al Batolito San Francisco. Se han identificado 2 centros hidrotermales en el dominio que afectan a rocas andesíticas, el Centro San Manuel el cual posee una alteración biotítica a feldespato potásica con calcopirita y bornita diseminada; y el Centro El Plomo el cual posee alteración de biotita hidrotermal con poca mineralización. Ambos poseen litologías de brechas de turmalina-sericita con orientación N-NW, cortando a intrusiones porfídicas y rocas volcánicas y volcaniclásticas (Toro *et al.*, 2012).

3.2.3 FRANJA RÍO BLANCO-LOS BRONCES-LOS SULFATOS (8,2-4,3 Ma)

La edad máxima de esta franja se obtuvo con el método U-Pb en zircón, arrojando una edad de 8,2 Ma (Deckart, *et al.*, 2005). Esta sección comprende el sistema magmático hidrotermal principal, y contiene casi toda la mineralización económica del distrito. Posee una orientación N-NW y una superficie de aproximadamente 20 km². Los cuerpos que componen la franja poseen una disposición N-NW lo cual indicaría un sistema estructural favorable en esa dirección el cual estaría evidenciado por una foliación de los fenocristales de plagioclasa y biotita hidrotermal, vetas subparalelas de cuarzo y anhidrita sigmoidal reflejando el carácter sintectónico de la actividad magmática e hidrotermal. Alrededor del 20 al 30% del cobre está asociado con brechas ígneas e

hidrotermales (Toro *et al.*, 2012). El cemento que compone principalmente a las brechas posee una gradación vertical la cual en la parte somera está compuesto de cuarzo-turmalina-especularitasericita-caolinita-pirita-calcopirita y en la parte profunda de cuarzo-biotita-feldespato potásicomagnetita-calcopirita-bornita (Vargas *et al.*, 1999). Estas asociaciones habrían sido producidas debido a diques multifásicos de diorita, cuarzo monzonita y dacita. Características entrecruzadas permiten sugerir que el colapso de la actividad hidrotermal coincide con el emplazamiento de varios cuerpos subvolcánicos y el desarrollo de una veta de diatrema. Dentro de las actividades tardías se encuentran diques dacíticos y andesíticos, brechas locales con cuarzo-turmalina-piritacalcopirita emplazados junto con la diatrema. Por último, eventos tardíos generalmente asociados con actividad extensional NE comprende el desarrollo de vetas de cuarzo-pirita-tennantita-enargita, galena, esfalerita, pirita-calcopirita, yeso-anhidrita, ankerita y dolomita, con halos de sericita, illita, caolinita o clorita-epidota (Toro *et al.*, 2012).

3.3 GEOLOGÍA DE LOS SULFATOS (Zamorano y Pablo 2013; Pablo, 2017)

3.3.1 ROCAS ESTRATIFICADAS

3.3.1.1 ANDESITA (AND)

Corresponde a una roca volcánica de composición básica a intermedia de textura porfídica con fenocristales de plagioclasa orientados a afanítica de color gris negro a pardo oscuro la cual pertenece preferentemente a la Formación Farellones. En sectores se encuentra metamorfizada debido a la intrusión de pulsos del Batolito San Francisco. Entre las alteraciones hidrotermales que afectan a esta roca se encuentra una alteración potásica a potásica biotítica, sericita verde, sericita arcilla y sericita-arcilla-turmalina. Además, en ciertos sectores posee una alteración argílica avanzada. Posee todo el espectro de vetillas, desde EB a E (Figura 3.3).

Figura 3.3: Andesita perteneciente al sondaje LBUG16_05 desde 365.6 m a 367.65 m.

3.3.2 ROCAS INTRUSIVAS

3.3.2.1 PÓRFIDO INTERMINAL PRINCIPAL (PIP)

Roca ígnea intrusiva con composición monzodiorítica a granodiorítica y textura porfídica a inequigranular con color leucocrático (Figura 3.4A). Entre las alteraciones que afectan a esta roca se encuentra una alteración potásica sobreimpuesta. A su vez se encuentra una alteración de sericita-arcillas, sericita-arcillas-turmalina y argílica avanzada. Posee diseminación, vetillas tempranas, transicionales y tardías con mineralización de calcopirita y bornita. A este cuerpo se le atribuye el mayor aporte de cobre del sistema.

3.3.2.2 PÓRFIDO INTERMINAL TARDÍO (PIT)

Roca ígnea intrusiva con composición dacítica y textura inequigranular a porfídica con color leucocrático y fenocristales de plagioclasa, biotita y hornblenda (Figura 3.4B). A su vez posee una matriz de cuarzo, feldespato y biotita con mineralización de calcopirita diseminada. Entre las alteraciones que afectan a esta roca se encuentra una alteración de sericita verde, sericita arcillas, sericita-arcillas-turmalina y argílica avanzada. No posee vetillas tempranas, sino transicionales y tardías (C2, D, Anh+Bn> y Anh+Cpy y DT y/o E). Por último, esta unidad cortaría a las litologías estratificadas e intrusivas anteriormente descritas y a la unidad de Brecha Magmática.

3.3.2.3 PÓRFIDO POSTMINERAL (PPM)

Roca ígnea intrusiva hipabisal con composición dacítica y textura porfídica de color leucocrático y fenocristales de plagioclasa, biotita primaria y cuarzo (Figura 3.4C). Entre las alteraciones que afectan a esta roca se encuentra una alteración sericita-arcilla y sericita-arcilla-turmalina mayormente. La temporalidad de esta unidad radica en la ausencia de mineralización y vetillas, presentando predominantemente vetillas tardías. Por último, esta unidad intruye las litologías estratificadas e ígneas intrusivas. Además, cortaría a las brechas magmáticas (BXM) y de biotita (BXB).

3.3.2.4 CUARZO MONZONITA FINA (QMF)

Roca huésped la cual se ubica en profundidad. Posee una composición intermedia a ácida con textura fanerítica equigranular a hipidiomórfica inequigranular, de grano fino a grueso compuesta de minerales como plagioclasa, cuarzo, feldespato potásico, anfíbol, biotita, con variedades porfídicas locales (Figura 3.4D). Entre las alteraciones que afectan a esta roca se encuentra una alteración potásica, potásica de fondo, sericita verde, sericita-arcillas, sericita-arcillas-turmalina y argílica en menor medida. Posee vetillas tempranas, transicionales y tardías con variaciones locales en el contenido de calcopirita.

Las rocas intrusivas del yacimiento pueden verse a continuación (Figura 3.4):

Figura 3.4: Litologías intrusivas del yacimiento Los Sulfatos. A) PIP; B) PIT; C) PPM; D) QMDG.

3.3.3 BRECHAS

3.3.3.1 BRECHA MAGMÁTICA (BXM)

Roca con clastos de AND, QMDG, BXI, BXB, PIP y BXPR envueltos en una matriz de albita, feldespato potásico, cuarzo, polvo de roca (Figura 3.5A). Entre las alteraciones que posee esta unidad se encuentra una alteración potásica, sericita verde, sericita-arcilla, sericita-arcillaturmalina sobreimpuestas y argílica avanzada. Contiene vetillas desde tempranas a tardías y mineralización diseminada de Cpy dentro de los clastos y matriz. Generalmente posee Bn>Cpy.

3.3.3.2 BRECHA DE BIOTITA (BXB)

Roca con clastos polimícticos subredondeados a subangulosos los cuales comprenden AND, QMDG, BXI y BXPR temprana. También en ciertos sectores puede encontrarse PIP. Entre las alteraciones que afectan a esta roca se encuentra una alteración potásica de fondo, sericita verde, sericita-arcillas, sericita-arcillas-turmalina y argílica avanzada. Posee vetillas desde tempranas a tardías y se reconoce mineralización en los clastos y en la matriz con bornita predominantemente (Figura 3.5B).

Figura 3.5:A) Litología BXM perteneciente al sondaje LBUG16_05 desde 349.35 a 351.43 m; B) Litología BXB perteneciente al sondaje LBUG16_10 desde 331.60 a 333.55 m.

3.3.3.3 BRECHA ÍGNEA (BXI)

Roca con clastos polimícticos subredondeados y matriz ígnea predominantemente de QMDG, PIP, PIT la cual puede ser acompañada de biotita, turmalina y/o anhidrita (Figura 3.6A). Entre las alteraciones que posee esta unidad se encuentra una alteración potásica biotítica predominantemente. Posee mineralización en vetillas tempranas de Cpy y Bn, en vetillas transicionales de Cpy y en vetillas tardías de Cpy y Py.

3.3.3.4 BRECHA HIDROTERMAL (BXH)

Roca con clastos angulosos a subangulosos con matriz hidrotermal (no contempla turmalina y biotita) (Figura 3.6B). Los clastos son polimícticos (AND, QMDG, BXI, BXB, PIP, PIT, BXT). Posee sectores con una intensa mineralización de sulfuros de cobre y sectores estériles. Se ubica en la zona de transición entre brechas tempranas y tardías por lo que podría tener un comportamiento geometalúrgico dual.

Figura 3.6: A) Litología BXI perteneciente al sondaje LBUG17_14 desde 374.25 a 365.75 m; B) Litología BXH perteneciente al sondaje LBUG17_14 desde 495.95 a 496.60 m.

3.3.3.5 BRECHA DE TURMALINA (BXT)

Roca con clastos angulosos a subredondeados polimícticos. La matriz de la roca está compuesta principalmente por turmalina. Entre las alteraciones que se reconocen en la roca puede observarse una alteración sericita-arcilla, sericita-arcilla-turmalina y argílica avanzada. Posee mineralización de sulfuros de cobre (Cpy y Bn). Debido a que esta unidad es la última generada posee clastos ya mineralizados los cuales provocan un aumento de las leyes (Figura 3.7A). No suele poseer vetillas tempranas.

3.3.3.6 BRECHA POLVO DE ROCA (BXPR)

Roca con clastos subredondeados, polimíctica predominantemente. La matriz está compuesta principalmente por polvo de roca sobre minerales hidrotermales. Puede presentar alteración de sericita verde, sericita-arcillas, sericita-arcillas-turmalina y argílica avanzada. Presenta una escasa mineralización de sulfuros de cobre (Figura 3.7B).

Figura 3.7: A) Litología BXT perteneciente al sondaje LBUG17_12 desde 436.49 a 438.58 m; B) Litología BXPR perteneciente al sondaje LBUG16_15 desde 187.80 a 189.77 m.

3.3.4 ALTERACIÓN HIDROTERMAL

3.3.4.1 ALTERACIONES TEMPRANAS

3.3.4.1.1 POTÁSICA FELDESPÁTICA (K)

Se compone de feldespato potásico, albita, cuarzo y anhidrita, biotita secundaria, turmalina. En sectores la alteración es pervasiva y dificulta la distinción del protolito de la roca. Dentro de las vetillas que pueden observarse en esta alteración se reconocen vetillas tempranas a tardías. Posee un bajo nivel de mineralización de sulfuros y se reconoce mayoritariamente en stocks porfídicos.

3.3.4.1.2 BIOTÍTICA (BT)

Se compone de biotita hidrotermal alterando a minerales máficos, predominante frente al feldespato potásico, cuarzo, anhidrita, magnetita, albita y muscovita. Según el grado de alteración que tenga la roca se reconocen sectores de menor grado con mayor cantidad de minerales primarios. Esta alteración posee una baja cantidad de calcopirita y se encuentra mayormente en la roca caja del yacimiento, alterando a minerales ferromagnesianos.

3.3.4.2 ALTERACIONES TRANSICIONALES

3.3.4.2.1 SERICITA VERDE (SV)

La mineralogía principal de esta alteración está compuesta por sericita verde, muscovita, cuarzo, illita y calcopirita y representa el primer episodio hidrotermal ácido del área. Dentro de esta pueden ocurrir vetas tempranas EB, A, B y transicionales (C-C2). Existe poca ocurrencia de vetas D, DT y E. Espacialmente se puede reconocer en la periferia de la alteración potásica en forma de conductos de vetas con halo de alteración y contienen gran cantidad de mineralización de sulfuros de cobre debido a la removilización de este elemento dada la disolución de bornita principalmente y posterior precipitación como calcopirita.

3.3.4.3 ALTERACIONES TARDÍAS

3.3.4.3.1 ARGÍLICA AVANZADA (AR)

Dentro de los minerales de alteración se encuentran arcillas, sericita blanca, sericitamuscovita, ankerita/siderita \pm sulfuros, sulfatos, sulfosales de arsénico. Típicamente está acompañada de vetillas tardías D y DT. Está asociada a un episodio epitermal de mediana a alta sulfuración.

3.3.4.3.2 SERICITA TURMALINA (SET)

Presencia de minerales tales como sericita, arcillas, turmalina, carbonatos especularita con menor cantidad de sulfuros, sulfatos y albita. Se reconocen vetillas tardías D y DT o E. Principalmente se presenta en la Brecha de Turmalina y en sus alrededores. La turmalina ocurre en parte de la matriz, rellenando vetillas, en zonas craqueladas o diseminada. Ocurre con poca mineralización y se asume que en sectores en que la presencia de cobre es mayor se asocia a eventos posteriores.

3.3.4.3.3 CUARZO-SERICITA (QSER)

Dentro de los minerales de alteración se presenta cuarzo con sericita blanca, arcillas, illitacaolín, clorita, yeso y sulfuros predominantemente. Puede estar acompañado con la presencia de vetas D en stockwork con halos incoloros compuestos de cuarzo, sericita y sulfuros.

3.3.4.4 EVENTO PRÓGRADO/RETRÓGRADO

3.3.4.4.1 ALTERACIÓN CLORÍTICA (CL)

Dentro de los minerales de alteración que pueden observarse en esta alteración se encuentra clorita como monomineral predominante, biotita secundaria y primaria, feldespato potásico, sericita gris, magnetita, anhidrita, albita y turmalina.

3.3.4.4.2 ALTERACIÓN PROPILÍTICA (PRO)

Dentro de los minerales de alteración que pueden observarse en esta alteración se encuentran clorita, biotita, epidota, albita, hematita, sericita gris, anhidrita, albita, turmalina y carbonatos. Corresponde a una alteración que no conlleva mineralización y se encuentra en los alrededores del cuerpo mineralizado, afectando mayoritariamente a la roca caja del yacimiento.

3.3.5 TECHO DE SULFATOS (Vela, 2014)

El techo de sulfatos es un fenómeno que se ha observado en gran parte de los depósitos de alteración hidrotermal con contenidos de anhidrita. La anhidrita es un componente fundamental de la zona de alteración potásica en pórfidos cupríferos, corresponde a un sulfato de calcio anhidro y tiende a sufrir hidratación en ambientes supérgenos.

3.3.5.1 PROCESOS SUPÉRGENOS

Estos ocurren al someter a condiciones superficiales las rocas del yacimiento. Aquí ocurre la oxidación de los minerales produciéndose una mineralogía supérgena en la cual los sulfuros de los yacimientos de pórfidos se oxidan, generándose óxidos y sulfatos mayoritariamente compuestos por Ca, Fe y Cu. Esta zona de minerales se denomina zona de enriquecimiento secundario.

Dentro de Los Sulfatos que pueden generarse en este proceso se encuentra la anhidrita. Esta originalmente se forma en los alrededores de sulfuros primarios en la alteración potásica. Al removilizarse, debido a aguas meteóricas que percolan en las rocas, se infiltra y precipita en niveles inferiores, disminuyendo la porosidad del sistema. La removilización ocurre por dos etapas de desequilibrio químico:

- **Etapa1:** Hidratación de la anhidrita para formar una cubierta secundaria de yeso
- **Etapa2:** Posterior disolución del yeso por el agua

El rol del techo de sulfatos permite discernir entre la zona donde percolan aguas meteóricas superficiales, por lo que da una primera idea de volúmenes de aguas que puedan existir en subsuperficie y de la estructuralidad e integridad de las rocas superficiales, esto debido a que la hidratación de la anhidrita produce un aumento de volumen, el cual genera la fractura de rocas adyacentes.

3.3.6 EVOLUCIÓN Y PARAGÉNESIS (Pablo, 2017)

La formación del yacimiento Los Sulfatos comienza desde sus inicios con la depositación de las formaciones Abanico y Farellones (AND), estas corresponderían a facies volcanosedimentarias compuestas principalmente por lavas andesíticas y/o dioríticas las cuales fueron intruidas por cuerpos plutónicos de composición cuarzo-diorita, cuarzo-monzodiorita, cuarzo-monzodiorita (QMF) pertenecientes al Batolito San Francisco. Posteriormente y produciendo la reapertura del sistema hidrotermal, intruyen cuerpos hipabisales andesíticos y/o cuarzo-dioríticos, los cuales son considerados dentro de la unidad de andesita (AND) en el modelo geológico del yacimiento.

Luego, 3 pulsos de alteración hidrotermal potásica se generan mayoritariamente en las rocas andesíticas, aportando mineralización de sulfuros de cobre-hierro tales como calcopirita-bornita y pirita subordinada. Las vetillas A y EB son características de la alteración potásica.

Debido a la intrusión también comienzan a generarse los primeros cuerpos de brechas desde el W-NW al E-SE. Aquí, debido al exceso de presión de fluidos, se generan las primeras litologías de brechas. Brechas ígneas, brechas polvo de roca, brechas de biotita y en menor medida, brechas magmáticas son formadas en esta etapa, las que son acompañadas por mineralización de calcopirita diseminada > magnetita. A su vez también se genera bornita diseminada subordinada.

Luego, y en forma local, ocurren brechas de turmalina con bajo aporte en mineralización diseminada en la matriz. Estas contienen su mayor contenido de sulfuros en los clastos heredados. También, contemporáneo a este evento ocurre un evento de anhidrita cristalina a traslúcida, con bajo aporte de mineralización.

Posterior al brechizamiento, comienza el emplazamiento del Pórfido Intermineral Principal-(PIP) de composición intermedia a ácida, preferentemente en el sector SE del yacimiento, provocando un evento de alteración sericita verde (SV) acompañado de mineralización diseminada intensa de cobre, considerado el segundo en importancia. A este evento se le asocia la primera hidrólisis del sistema.

Una vez terminado el episodio de sericita verde ocurrió un episodio de brechizamiento intenso, en el cual se generaron diversos cuerpos de brechas las cuales se sobreimponen a medida que evoluciona el sistema. Las primeras en generarse poseen una mayor dimensión mientras las últimas poseen una extensión menor. A su vez, varía la componente hidrotermal, generando que las primeras en formarse posean mayores contenidos de turmalina mientras las últimas poseen mayores proporciones de polvo de roca. Singenético a este evento de brechización, ocurre un segundo evento de anhidrita, el cual rellena espacios formando parte de la matriz de algunas brechas o craquelando parte de la roca caja, formando pseudo-brechas.

Por último, se tiene que posterior a los eventos de brechizamiento comienza un episodio hidrotermal de alta sulfuración el cual grada a baja sulfuración, esto se observa debido a la configuración mineral asociada. El primero, presenta vetas de anhidrita-ankerita-siderita-yeso-calcopirita-especularita y pirita, el cual está asociado a un gran nivel de mineralización de cobre, considerado el tercer evento de mineralización en importancia.

Finalmente se ha registrado un último evento de brechización el cual constituiría el principal medio de mineralización debido a la temporalidad y altas leyes asociadas. Este habría brechizado todas las rocas previamente formadas del yacimiento y corresponde a una brechización de anhidrita y calcopirita masiva. A su vez este coexiste espacialmente al evento con mayores cantidades de As.

Figura 3.8: Paragénesis de mineralización, alteraciones y litologías del yacimiento Los Sulfatos. Se observa que el evento mayoritario de bornita ocurre en etapas tempranas y el calcopirítico ocurre a lo largo de la formación del yacimiento (Modificado de Zamorano y Pablo, 2013).

4 RESULTADOS

Para una primera aproximación del comportamiento geometalúrgico de las litologías del yacimiento, se realizó una estadística descriptiva la cual considera los índices de conminución de las rocas medidos en el yacimiento Los Sulfatos. Esto se realizó teniendo en cuenta los resultados de pruebas geometalúrgicas campaña 2017 (Tabla 4.1). Cabe destacar que, para la estadística se consideraron como datos válidos aquellos que poseyeran una única litología presente en más del 80% de la muestra, esto debido a que por definición, el SPI y el BWI, consideran el tiempo o la energía, respectivamente, en el cual pasa el 80% de la muestra por la malla final del proceso. Puede observarse en la Tabla 4.2 la estadística descriptiva de los datos analizados por tipo de litología:

SPI (minutos)							
Promedio	149.8						
Error típico	6.3						
Mediana	133.5						
Moda	95						
Desviación estándar	63.26						
Varianza de la muestra	4001.41						
Curtosis	0.09						
Coeficiente de asimetría	0.79						
Rango	307						
Mínimo	42						
Máximo	349						
Cuenta	100						

Tabla 4.1: Estadística descriptiva del parámetro geometalúrgico SPI sin distinguir litologías.

Puede observarse en la tabla anteriormente expuesta que existe una amplia diferencia entre los valores mínimos de SPI (42 min en brechas de turmalina) y máximos de SPI (349 min para una brecha de biotita). A su vez se tiene un promedio de 150 min mientras que la mediana y la moda son menores (134 y 95 min respectivamente). Esto permite inferir que existen diferentes poblaciones en datos, debido a que estas últimas dos estadísticas son considerablemente menores, también reconocible por el coeficiente de asimetría de 0.8. La curtosis de 0.09 indica una amplia dispersión de los datos.

Tabla 4.2: Parámetro SPI de conminución analizado en el yacimiento Los Sulfatos para pruebas realizadas en el año 2017. Se puede observar que las litologías que presentan mayores durezas geometalúrgicas corresponden a la AND, BXB, BXPR, BXH y BXM, mientras que litologías intrusivas y BXT presentarían bajas durezas SPI.

Litología	Promedio de SPI	Desviación Estándar de SPI	Cuenta de SPI
-	159.4	66.23	20
AND	166.0	69.71	15
BXB	175.0	73.91	17
BXH	164.0	-	1
BXI	142.5	26.66	4
BXM	177.0	49.11	11
BXPR	171.0	-	1
BXT	110.3	50.01	24
PIP	123.0	28.16	5
PPM	118.0	-	1
QMF	96.0	-	1
Total general	149.8	63.26	100

Se puede observar en la tabla anteriormente expuesta que al analizar por litología, existen diferencias notorias entre la dureza geometalúrgica de brechas tempranas magmáticas, como lo son las BXM, BXB y BXI y brechas tardías como la BXT (las litologías BXPR y BXH también se subdividen como brechas tardías, pero al presentar 1 muestra cada una no se considera su resultado como representativo).

4.1 INTEGRACIÓN DEL MAPEO GEOLÓGICO, MINERALOGÍA Y SPI

Con la base de datos de mapeo realizados por geólogos del yacimiento, se procedió a analizar los componentes que podrían provocar un cambio en la dureza geometalúrgica de las rocas. Esto arrojó que factores como la cantidad de matriz de las brechas, porcentaje de anhidrita, biotita, turmalina, sericita verde o sericita, como minerales de alteración, podrían llegar a relacionarse con la dureza geometalúrgica. Este análisis, al realizarse en base al mapeo geológico, posee una gran incertidumbre (Tabla 4.3).

Tabla 4.3: Porcentaje de minerales de alteración y dureza geometalúrgica de las rocas del yacimiento. Este porcentaje se calcula en base a los minerales de alteración de las rocas y no es un porcentaje absoluto en la muestra. Puede observarse que para litologías con altos valores de SPI se tiene una predominancia de biotita secundaria

Litalacía	SPI	Bt	Fk	Tm	Anh	Se	SV	Chl	Qz	Gp	Ab	Cal
Litologia	(minutos)	%	%	%	%	%	%	%	%	%	%	%
AND	166.0	42.6	1.1	2.1	10.0	9.4	12.5	4.8	4.2	0.5	2.3	1.6
BXB	175.0	32.5	2.1	6.7	11.3	12.5	11.3	3.4	6.8	0.9	6.9	1.8
BXH	164.0	42.0	15.0	5.0	11.0	6.0	3.0	2.0	0.0	0.0	9.0	0.0
BXI	142.5	22.9	16.9	2.7	10.6	10.9	6.8	4.6	9.5	0.7	7.2	1.5
BXM	177.0	12.9	11.0	2.8	12.0	13.5	20.1	1.9	10.9	0.2	12.8	0.9
BXPR	171.0	5.2	1.8	0.0	10.8	35.8	20.9	5.8	7.3	0.0	8.0	4.5
BXT	110.3	4.7	2.5	18.4	9.0	24.4	12.5	2.5	5.6	0.5	5.0	2.7
PIP	123.0	0.1	21.3	4.9	10.8	9.9	18.6	3.2	6.1	0.5	20.1	1.0
PPM	118.0	0.0	0.0	2.0	1.8	38.0	0.0	6.2	6.1	5.4	20.0	5.0
QMF	96.0	25.0	8.0	0.0	10.0	4.0	14.0	2.0	12.0	0.0	25.0	0.0

Puede observarse en la Tabla 4.3 que para rocas de alta dureza se tienen altos niveles de biotita, así como de sericita verde y clorita, en promedio. También puede observarse que por lo general las litologías intrusivas poseen bajas durezas.

Minerales de alteración presentes en las litologías de brechas tempranas v andesíta

Figura 4.1: Log de minerales de alteración para las litologías de brechas tempranas y andesita. Puede observarse que la litología que presenta las mayores proporciones de biotita como mineral de alteración corresponde a la andesita, seguido de la brecha de biotita. También se tiene que las brechas magmáticas poseen altos niveles de sericita verde.

Minerales de alteración presentes en las litologías de brechas tardías

Figura 4.2: Log de minerales de alteración para las litologías de brechas tardías. Puede observarse que la litología de BXT posee altos niveles de sericita, acompañados por turmalina y sericita verde. También se observan cantidades de anhidrita que pueden llegar hasta un 20% en BXT.

Otras de las variables que podrían afectar en el comportamiento geometalúrgico corresponde a la cantidad de matriz que poseen las brechas del yacimiento, debido a que de esto depende si el ensaye se rige por el tipo de litología o por el tipo de clastos, a causa de la definición del SPI. Se puede observar en la Tabla 4.4 y en la Figura 4.3 el comportamiento del SPI respecto al porcentaje de matriz que presentan las brechas.

Rango porcentaje de matriz	SPI Promedio	Número de datos
[10-20[117	15
[20-30[161	11
[30-40[128	12
[40-50[146	5
[50-60[183	11
[60-70[184	2
[70-80[114	1

Tabla 4.4: SPI promedio respecto al rango de matriz de las rocas del yacimiento Los Sulfatos. Se observa que el SPI sube en promedio respecto aumenta el porcentaje de matriz. Este análisis no distingue por el tipo de matriz de las brechas.

Como puede observarse en la tabla anterior, se tiene que en promedio el SPI de las rocas del yacimiento aumenta respecto aumenta el porcentaje de matriz de estas. En el rango [70%-80%[de matriz se tiene que la dureza geometalúrgica SPI disminuye considerablemente, lo que sería atribuido a la petrología que presenta la muestra, la cual corresponde a BXI, por lo que al poseer mayor cantidad de matriz ígnea, adquiere un comportamiento de roca intrusiva, las cuales son en promedio de bajas durezas.

Figura 4.3: Se observa un ajuste el cual refleja que, a mayor porcentaje de matriz, mayor es la dureza SPI de las rocas. El dato aislado que puede observarse, si bien contradice la tendencia mostrada, se correlaciona muy bien por las tendencias mostradas por brechas (gneas, las cuales al poseer una matriz (gnea disminuyen su dureza SPI.

Además del porcentaje de matriz de las brechas, pueden buscarse correlaciones entre la composición de los clastos y el SPI (Tabla 4.5 y Figura 4.4).

Porcentaje	S	PI (minutos	3)		
[%]	BX	AND	INTR		
(0-10]	146.0	111.4	178.7		
(10-20]	176.4	148.0	153.7		
(20-30]	144.7	153.1	89.7		
(30-40]	127.5	190.4	97.5		
(40-50]	106.0	147.0	122.5		
(50-60]	135.3	113.0	42.0		
(60-70]	194.1	118.0	169.0		
(70-80]	161.0	195.3	89.0		
(80-90]	-	216.0	122.0		
(90-100]	164.0	-	76.0		

Tabla 4.5: SPI respecto al porcentaje de clastos de brechas, andesita e intrusivos. Por lo general la dureza geometalúrgica aumenta respecto al porcentaje de clastos de BX y AND y disminuye respecto al porcentaje de clastos de INTR.

En la Tabla 4.5 puede observarse la composición clástica de las brechas respecto al porcentaje de clastos brechizados (BX), andesíticos (AND) e intrusivos (INTR). Puede observarse que, por lo general, a medida que las brechas poseen mayores proporciones de clastos andesíticos y brechosos, la dureza SPI tiende a aumentar, mientras que a medida que poseen mayores proporciones de clastos intrusivos, la dureza SPI tiende a disminuir.

Figura 4.4: Variaciones composicionales de los clastos respecto a los valores SPI promedios de las litologías de brechas presentes en el yacimiento.

4.2 GEOQUÍMICA ROCA TOTAL

Una vez obtenidos los análisis de geoquímica se procedió a filtrar la base de datos a partir de los resultados. Se evaluaron los límites de detección de los métodos, los resultados con poca variabilidad y aquellos outliers para determinar su veracidad.

Dentro de los elementos que poseen más del 50% de concentración bajo el límite de detección de los métodos se encuentra el Pb, Zn, Ge, Pd y Pt (Tabla 4.6).

Flemento		Mátada	Análicic	Límite inferior de	Valores en el límite	
	Elemento	Metodo	Analisis	detección (ppm)	de detección	
	Pb	MA370	ICP-ES	200	100	
	Zn	MA370	ICP-ES	100	93	
	Ge	AQ252	ICP-MS	0.1	88	
	Pd	AQ252	ICP-MS	0.01	99	
	Pt	AQ252	ICP-MS	0.002	98	

Tabla 4.6: Cantidad de datos en el límite de detección para los elementos Pb, Zn, Ge, Pd, Pt. El método MA370 corresponde a 4 ácidos con ICP-ES y el método AQ252 corresponde a agua regia con ICP-MS.

A su vez, se tiene que para la medición de Cu por agua regia existen 83 datos que se encuentran por sobre el nivel de detección de 10.000 ppm o 1% (Anexos A, Figura 10.2).

De la estadística se encontraron datos Outliers para elementos tales como el Na, Mn, Hf, Nb, Sn, Th, U, W, Zr, La, Ce, Pr, Mo, Pb, Zn, Co, Au, Cd, Sb, Bi, Tl, Hg, Se, Te, Re. La cantidad de datos fuera del rango estadístico de, promedio ± 3.5 desviación estándar, no sobrepasó en ningún caso los 3 datos y, al tratarse de muestras aisladas espacialmente, se considerarán de todas formas en la estadística de las rocas.

Una vez filtrados los resultados se procede a analizar la composición geoquímica de las rocas del yacimiento, esto con la finalidad de evaluar la distribución de elementos y discriminar posibles disparidades con el mapeo geológico, las cuales luego serían evaluadas con el programa de adquisición de imágenes "imago" y, en caso de no ser evidente el cambio de categoría, se procedería a mapear las rocas en la testigoteca del proyecto (Anexos A, 10.1.6).

Para el control de calidad se realizaron 4 duplicados para la medición de la precisión y el error de precisión de las muestras, calculando el cociente entre el valor del error absoluto y el valor "verdadero". Los duplicados se subdividieron por tipo de análisis (Anexos A, 10.1.2):

Para la precisión del análisis de digestión litio borato por ICP-ES el error de precisión fue de 1,1%, mientras que el análisis por ICP-MS para trazas y ultratrazas fue de 6,6%. El error de precisión para el análisis de roca total por 4 ácidos con ICP-ES fue de 6,4%, mientras que el error de precisión del análisis de agua regia fue de 5,4%.

A su vez se realizaron 4 blancos con el objetivo de detectar contaminación en las muestras. Estos mostraron bajos niveles de medición, imperceptibles para los métodos en la gran mayoría de los casos. Los resultados de blancos no indican contaminación importante del laboratorio.

Por último, se realizaron estándares para evaluar el error de certeza. Estos confirman que todos los valores están dentro del rango de error. El análisis de roca total por 4 ácidos con ICP-ES mostró que los valores poseen un margen de error inferior al 5%, Para el análisis de S y C identificaron valores con un margen de error menor al 5% (Bureau Veritas Minerals, 2018)

4.2.1 CORRELACIÓN DE SPI Y ANÁLISIS DE ROCA TOTAL

Una vez filtrada la base de datos de geoquímica roca total se procede a analizar correlaciones entre la composición química por roca total y el SPI. Se puede observar que dentro de los elementos mayores, existen correlaciones sobre 0.5 (Tabla 4.7). Las litologías del yacimiento se agruparon tal como se realiza en el modelo geológico, de esta forma las litologías tempranas tales como BXM, BXB y BXI se agruparon en la unidad BXM y las litologías de brechas tardías tales como BXT, BXH y BXPR se agruparon en la unidad BXT. A su vez las rocas intrusivas se agruparon en la unidad INTR.

Tabla 4.7: Coeficiente de correlación de elementos mayores respecto al valor promedio de SPI de las rocas del yacimiento. Por lo general se tienen coeficientes de correlación elevados para elementos tales como Si, Al, Fe, Ca, Na, K.

	Si	Al	Fe	Mg	Ca	Na	Κ	Ti	Р	Mn
SPI(AND)	0.07	0.14	0.33	-0.40	-0.40	-0.72	0.00	-0.16	0.10	0.22
SPI(BXM)	-0.32	0.40	0.44	-0.14	0.11	-0.43	-0.21	0.38	0.34	-0.25
SPI(BXT)	-0.57	0.47	0.55	0.80	0.58	-0.14	-0.62	0.75	0.18	-0.60
SPI(INTR)	-0.39	0.27	-0.10	0.00	0.35	0.10	-0.01	-0.09	-0.05	-0.31

Puede observarse en la Tabla 4.7 que existen buenos coeficientes de correlación, tanto positivos como es el caso del Fe, Mg, Ca y Al, como negativos como es el caso del Si, Na, Mn y K.

Los valores de coeficientes de correlación para la totalidad de elementos identificados por roca total en el yacimiento pueden observarse en la sección de anexos de geoquímica roca total (Anexos A, 10.1.7).

4.3 DIFRACCIÓN DE RAYOS X

La mineralogía obtenida por el método de difracción de rayos X se encuentra representada por minerales formadores de rocas y minerales de alteración. A continuación, se observa un resumen por unidad, de la composición mineralógica (Tabla 4.8):

Tabla 4.8: Resumen de mineralogía predominante analizada por XRD. Puede observarse que la mineralogía obtenida por XRD para las unidades de rocas varía para el caso de la biotita, la cual no se presenta en brechas de turmalina, magnetita, la cual se identifica solamente en rocas andesíticas, turmalina, la cual no se presenta en rocas andesíticas y por último pirita, la cual se presenta en mayores proporciones en brechas de turmalina.

MINERAL	ANDESITA	BRECHAS MAGMÁTICAS	BRECHAS DE TURMALINA	INTRUSIVOS
Cuarzo				
Albita				
Ortoclasa				
Mica Blanca				
Biotita				
Calcopirita				
Anhidrita				
Clorita				
Magnetita				
Turmalina				
Carbonatos				
Pirita				

La mineralogía cualitativa predominante de las rocas es relativamente regular en su amplia mayoría. Aquí, pueden identificarse minerales como micas primarias y secundarias, tectosilicatos formadores de roca como el cuarzo, albita, feldespato potásico. A su vez pueden observarse sulfatos como anhidrita o yeso, carbonatos, en menor medida, para el caso de las brechas de turmalina y parte de los intrusivos. Por último, puede observarse que el mineral pirita solo se identifica en brechas de turmalina, lo que se adjudica al enmascaramiento de este mineral por calcopirita en el análisis de difracción de rayos X.

4.4 CONVERSIÓN ELEMENTOS A MINERALES

El proceso de conversión de elementos a minerales se realizó utilizando la composición química de los minerales identificados por XRD, tal como se muestra a continuación (Tabla 4.9):

Minaral	Eármula Ouímica		Elementos										
Mineral	Formula Química	Si	Na	Ca	Al	Κ	Fe	Mg	Cu	S	С		
Cuarzo	SiO2												
Albita	(Na,Ca)Al(Si,Al)3O8												
Feldespato Potásico	KAlSi3O8												
Mica Blanca	KA12Si3AlO10(OH)2												
Biotita	K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2												
Clorita	(Mg,Fe)6(Si,Al)4O10(OH)8												
Anhidrita/Yeso	CaSO4												
Magnetita	Fe3O4												
Calcopirita	CuFeS2												
Turmalina*	NaMg3Al6(BO3)3Si6O18(OH)4												
Pirita	FeS2												
Calcita	Ca(CO3)												
Ankerita	Ca(Fe,Mg)(CO3)2												

Tabla 4.9: Fórmula química de los minerales evidenciados por XRD y distribución de elementos en los minerales.

Una vez identificados los elementos que componen la roca se procedió a identificar de forma semicuantitativa la proporción mineral de estas.

Uno de los principales problemas que se presentan a la hora de querer identificar estas proporciones corresponde a la solución sólida que existe en minerales tales como plagioclasas, biotita, clorita y ankerita. El análisis por XRD da un indicio de la composición de esta solución sólida, por lo que al momento de estimar la razón de elementos se utilizó el extremo de la solución sólida identificado por el método, o bien, se utilizó una proporción que consumiera la totalidad de elementos del análisis químico.

La principal dificultad que tiene este método surge al momento de identificar la proporción de mica blanca-feldespato potásico. Estos minerales, al poseer una configuración equivalente de elementos, generan una dependencia entre uno y el otro, debido a que no se les puede asignar todo el aluminio presente en la muestra ya que el aluminio puede estar presente en cualquier silicato reemplazando al catión Si⁺⁴. Lo que se realizó como primera instancia, fue identificar aquellas muestras que mostraran solo uno de estos dentro de los minerales identificados, ya sea mica blanca o feldespato potásico.

Siguiendo la correlación encontrada para elementos como el Na y el Ca, que por lo general aumentan directamente proporcional al SPI y al Mg y Fe, que aumentan de manera indirecta al SPI se analizó el coeficiente de correlación para minerales como el cuarzo, albita, feldespato potásico, mica blanca, biotita, clorita, calcopirita, anhidrita y turmalina (Tabla 4.10)

Mineral	R	\mathbb{R}^2
Cuarzo	-0.01	0.00
Albita	-0.09	0.01
Feldespato Potásico	-0.75	0.57
Mica Blanca	0.86	0.75
Biotita	0.22	0.05
Clorita	0.39	0.15
Calcopirita	-0.07	0.00
Anhidrita	0.28	0.08
Turmalina	-0.05	0.00

Tabla 4.10: Coeficiente de correlación entre SPI y porcentaje de mineral. Se observan buenos coeficientes para el feldespato potásico, mica blanca, biotita, clorita y anhidrita.

Respecto a los coeficientes de correlación obtenidos en la Tabla 4.10 se agruparon los minerales tectosilicatados y filosilicatados, debido a que al pertenecer al mismo grupo mineral y poseen características reológicas similares (Tabla 4.11).

Tabla 4.11: Relación entre SPI respecto a filosilicatos, tectosilicatos y filosilicatos/tectosilicatos. Puede observarse que al agrupar los minerales en su respectivo grupo el coeficiente de correlación aumenta, mientras que aumenta en mayor medida si se toma la relación entre filosilicatos y tectosilicatos.

Grupo Mineral	R	R2
Filosilicatos	0.89	0.79
Tectosilicatos	-0.79	0.62
Razón Filosilicatos/Tectosilicatos	0.91	0.84

Con lo anteriormente expuesto es evidente que de cierta forma habría una relación entre los minerales filosilicatados y tectosilicatados. Mientras mayor contenido de filosilicatos tiene la muestra, mayor debiera ser el SPI de la roca ensayada, y viceversa para el contenido de tectosilicatos. Puede observarse en la Figura 4.5 la distribución de valor SPI de las muestras respecto a la razón filosilicatos/tectosilicatos.

Figura 4.5: SPI versus razón entre la proporción de filosilicatos y tectosilicatos. Se pueden apreciar datos outliers que se alejan de la tendencia, estos corresponderían a casos excepcionales los cuales no mostrarían la tendencia del global de las rocas del yacimiento

Respecto a la regresión obtenida en la Figura 4.5 se observa una buena correlación entre los resultados de SPI de las muestras y su razón filosilicatos/tectosilicatos obtenida por mineralogía modal. Estos resultados permitirían discernir sobre el rol de esta clase de minerales en la dureza geometalúrgica de las rocas.

Las muestras que muestran una gran dispersión entre el SPI y la razón de Filosilicatos/Tectosilicatos se caracterizan por ser de muy alta dureza o muy baja dureza respecto al promedio de su unidad geológica. De esta forma las muestras que se ubican muy por debajo de la tendencia corresponden a rocas andesíticas, con bajos niveles de alteración, mientras que las rocas que están muy sobre la tendencia, corresponden a brechas con componente magmático en la matriz.

Debido a la dificultad que se presenta a la hora de estimar la razón entre mica blanca/feldespato potásico (Mb/Fk) y utilizando la hipótesis del rol de filosilicatos y tectosilicatos sobre el SPI, se procedió a generar un estimador, de modo de evaluar la proporción Mb/(Mb+Fk) en base a la regresión realizada para muestras con uno u otro mineral.

La relación utilizada para el modelamiento de las variables corresponde a la regresión lineal sin los valores considerados outliers, como se observa en la Figura 4.6.

$$SPI = 315.22 * \left(\frac{Filosilicatos}{Tectosilicatos}\right) + 80.463$$

Al eliminar los datos outliers la ecuación anterior posee un coeficiente de correlación (R) de 0.99 y 0.98 de R^2 . La interpolación de datos se observa a continuación:

SPI en función de Filosilicatos/Tectosilicatos para valores interpolados

Figura 4.6: SPI versus razón de filosilicatos/tectosilicatos para valores interpolados con la fórmula de valores extremos.

Una vez obtenidos los resultados de la razón filosilicatos/tectosilicatos para los datos interpolados, y utilizando los valores empleados para la creación de la regresión lineal, se extrajo la razón de mica blanca/feldespato potásico, para la validación mediante un modelo numérico espacial. Esto debido a que el principal problema de estimar la mineralogía de las rocas reside en la proporción de mica blanca y feldespato potásico.

4.5 MODELAMIENTO DE LA VARIABLE MICA BLANCA/FELDESPATO POTÁSICO

Utilizando los valores Mb/(Mb+Fk) estimados para las muestras se realizó un modelo numérico con el programa de modelamiento geológico "LeapFrog" (Figura 4.7). Como se puede observar en la figura, se tiene un modelo el cual posee las mayores proporciones de mica blanca, respecto a feldespato potásico, hacia las estaciones de sondajes 9-10. En la Figura 1.3 y Figura 4.8 se puede observar que las mayores proporciones de mica mostrada por el perfil se condicen con la unidad de BXT de la zona con alteración SET. En la Figura 1.4 y Figura 4.9 puede observarse un centro de alta proporción de mica blanca, en las cercanías de un cuerpo de BXM y BXT con alteraciones BT y SE, hacia el SW. Por último, en la Figura 1.5 y Figura 4.10 puede observarse una baja proporción de mica blanca respecto a feldespato potásico, en muestras de intrusivos con alteración K y BT, mientras que se tienen altos índices SPI en muestras de BXB con alteración pervasiva de BT.

Figura 4.7: Modelo numérico. Proporción de mica blanca respecto al total entre mica blanca y feldespato potásico. Se observan 2 centros predominantes, uno en el sector de brechas de turmalina en las cercanías de la estación 7 y hacia el sur, en los alrededores de las brechas magmáticas con mayor mineralización. Vista con respecto a la traza del Túnel Los Sulfatos.

El modelo numérico evidenciado en los perfiles puede observarse en la Figura 4.8, Figura 4.9 y Figura 4.10.

Figura 4.8: Perfil A-A' y modelo de mica blanca estándar.

En el perfil de la Figura 4.8 pueden observarse dos cuerpos que contendrían un porcentaje de Mb/(Mb+Fk) de entre 33 y 66%, uno en la parte inferior y uno en la parte superior a la traza del Túnel Sulfatos.

Figura 4.9: Perfil B-B' y modelo de mica blanca estándar.

Puede observarse en el perfil de la Figura 4.9 un núcleo de Mb/(Mb+Fk) mayor al 66%, lo que indicaría que en esta zona se tiene una alteración tardía pervasiva la cual tiene recristalizada gran parte de la roca.

Figura 4.10: Perfil C-C' y modelo de mica blanca estándar.

Por último, puede observarse el perfil perteneciente a la Figura 4.10. Este posee una tendencia en la parte central asociada a grandes proporciones de mica blanca respecto a feldespato potásico.

Para la estimación de nuevas variables se confeccionó un modelo de bloques de 25x25x15 basado en el modelo numérico (Figura 4.11). Este se utilizó para la etapa de validación de las 30 muestras restantes, evaluando la razón de Mb/(Mb/Fk) espacial en el lugar de la muestra ensayada.

Figura 4.11: Modelo de bloques mica blanca estándar. Se observan centros de alta proporción de mica blanca en sectores superiores a la estación de sondajes 7 y en las inmediaciones de las estaciones 9 y 10, representando zonas de alteración sericítica intensa.

4.6 VALIDACIÓN

Una vez modelada la variable Mb/(Mb+Fk) se procedió a estimar la proporción para las muestras no utilizadas en la creación del modelo numérico. Con el valor estimado y la mineralogía común de andesitas, brechas de turmalina, brechas magmáticas e intrusivos se procedió a estimar la razón filosilicatos/tectosilicatos para la aplicación del método. A continuación, puede observarse un resumen de los resultados obtenidos para la validación de muestras (Figura 4.12):

Distribución de datos validados por el método Mica

Figura 4.12: Frecuencias de datos y frecuencia acumulada para valores absolutos de error. Del gráfico anterior se obtiene que aproximadamente el 40% de las muestras se estiman con un error menor al 10% mientras que aproximadamente el 80% se obtienen con un error asociado menor al 30%.

La especificación de los datos validados puede observarse a continuación (Tabla 4.12):

Unidad	SPI Lab (Min)	SPI Est Fórmula (min)	Diferencia	Error Porcentual	Unidad	SPI Lab (min)	SPI Est Fórmula (min)	Diferencia	Error Porcentual
BXT	60	129	69	114.3%	BXB	136	141	5	3.6%
-	95	202	107	113.1%	BXT	107	111	4	3.6%
-	77	127	50	65.5%	BXT	100	102	2	1.6%
-	83	127	44	53.1%	-	220	219	-1	-0.6%
-	84	121	37	43.9%	-	212	210	-2	-0.7%
BXT	86	112	26	30.1%	-	117	115	-2	-1.4%
-	111	142	31	27.5%	BXT	91	87	-4	-4.0%
-	93	115	22	23.3%	-	114	103	-11	-9.8%
_	115	134	19	16.5%	-	179	155	-24	-13.6%
_	127	145	18	14.2%	BXB	150	128	-22	-14.7%
BXB	136	155	19	13.8%	-	195	165	-30	-15.4%
BXT	91	101	10	10.6%	-	210	172	-38	-18.0%
-	190	208	18	9.6%	-	261	203	-58	-22.3%
-	171	184	13	7.3%	-	235	179	-56	-23.9%
BXB	183	191	8	4.2%	BXM	147	104	-43	-29.1%

Tabla 4.12: Resumen de datos validados a partir del modelo de bloques para el yacimiento Los Sulfatos. Puede observarse que por lo general, los datos con un mayor error porcentual son sobre estimados y que por lo general poseen bajas durezas.

Como resultado final puede observarse en la Figura 4.13 los datos validados con el modelo los cuales se ajustan de buena forma a la regresión realizada con muestras con mica blanca o feldespato potásico.

Figura 4.13: SPI respecto a la razón de filosilicatos/tectosilicatos para las muestras validadas. Se puede observar que gran cantidad de las muestras (80%) se validan con un error absoluto menor al 30% (líneas rojas)

4.7 MAPEO DE SONDAJES Y CORTES TRANSPARENTES

Los resultados resumidos del mapeo geológico pueden observarse a continuación (Tabla 4.13). El mapeo en detalle puede observarse en Anexos E, 10.5.

Sondaje	Desde (m)	Hasta (m)	Litología	Alteración
LBUG17_17	295	310	BXANH	SET
LBUG16_17	345	360	BXM	К
LBUG17_22	140	160	BXPR	SET
LBUG16_03	55	70	BXT	SET
LBUG16_02	175	190	BXT	SE
LBUG16_09	415	430	BXT	SET
LBUG16_09	245	260	BXT	SE
LBUG16_17	460	475	BXB	BT
LBUG17_18	315	328	AND	SE
LBUG16_11	405	420	AND	К
LBUG15_02	245	260	AND	BT
LBUG16_17	200	215	AND	SE

Tabla 4.13: Litología y alteración de los tramos seleccionados para el mapeo geológico. SET (sericita-turmalina), K (potásica), Se (sericita), BT (biotita), BXANH (brecha de anhidrita).

4.7.1 COMPORTAMIENTO GEOMETALÚRGICO DE ANDESITAS

Con la finalidad de corroborar los resultados con respecto a las litologías andesíticas se realizó un mapeo litológico y de alteración a 3 muestras representativas de andesitas con dureza baja (82 min), media (166 min) y alta (233 min). El principal propósito del mapeo fue la identificación de parámetros que tengan una incidencia directa en el comportamiento geometalúrgico de las rocas. A su vez se realizaron cortes transparentes en los tramos indicados.

El mapeo de las muestras puede observarse a continuación (Tabla 4.14 y Tabla 4.15):

Tabla 4.14: Mapeo litológico de andesitas con alta dispersión de SPI. Las muestras presentan las características típicas de una roca ígnea extrusiva, difiriendo únicamente en el contenido de plagioclasas en la masa fundamental.

				LITOLOGÍA							
HOLEID	Desde (m)	Hasta (m)	SPI (minutos)	FITOLOGIA	TEXTURA	FENOCRISTALES	TAMAÑO				
LBUG15_02	245	260	233	AND	Porfírica	Plagioclasa	Fino (1-3 mm)				
LBUG16_11	405	420	166	AND	Afanítica						
LBUG17_18	315	328	83	AND	Porfírica	Plagioclasa	Fino (1-3 mm)				

Tabla 4.15: Mapeo de alteración de andesitas con alta dispersión de SPI, minerales de alteración y porcentaje relativo. SeG (sericita gris)

				ALTERACIÓN													
HOLEID	Desde (m)	Hasta (m)	SPI (minutos)	MINERAL 1	1 NIN %	MINERAL 2	% MIN 2	MINERAL 3	% WIN 3	MINERAL 4	% MIN 4	1 TLT 1	ALT 2	INTENSIDAD 1	PENETRATIVIDA	INTENSIDAD 2	PENETRATIVIDA
LBUG15_02	245	260	233	Se	40	Bt	14	Chl	15	SeG	8	SE	BT	6	5	3	3
LBUG16_11	405	420	166	Fk	40	Qz	20	Chl	30	Se	10	K	QSER	6	5	3	2
LBUG17_18	315	328	83	Se	9	SV	7	Anh	9	Bt	6	SE	BT	1	1	1	1

Puede observarse que la roca con menor SPI corresponde a una roca cuya masa fundamental inalterada conforma alrededor del ~95% (Figura 4.14). La composición de esta roca andesítica correspondería a una mineralogía primaria con flogopitas ricas en Fe, evidenciado por los resultados de XRD (Anexos B, 10.2).

Figura 4.14: MeT_LBUG_17_184. LBUG17_18 desde 315 hasta 328 m. Andesita de baja dureza perteneciente a la roca caja del yacimiento con SPI=83.

A su vez, la roca con dureza intermedia presenta una intercalación de grados de alteración dados por el cambio de densidad de vetillas con halos sericíticos. Por último, puede observarse que la roca andesítica que presenta el mayor índice SPI, corresponde a la que posee el mayor grado de alteración. En esta se observa una gran densidad de vetillas tardías con halos sericíticos y cloríticos, mientras la masa fundamental se encuentra totalmente alterada (Figura 4.15).

Figura 4.15: LBUG15_02 desde 245 hasta 260 m. Andesita de alta dureza con un grado de alteración sericítico alto con SPI=233.
Luego de un análisis exhaustivo a las rocas andesíticas restantes con el software "imago" se logró corroborar esta generalidad para gran proporción de las rocas andesíticas del yacimiento.

Para la descripción microscópica de los tramos de baja y alta dureza se realizaron cortes transparentes en secciones representativas de cada intervalo, las cuales pueden observarse a continuación (Figura 4.16 y Figura 4.17).

Figura 4.16: Andesita de baja dureza SPO (83 min) con alteración biotítica perteneciente al sondaje LBUG17_18 desde 315 hasta 328 m. Se observa el bajo nivel de alteración secundaria que presentan los feldespatos, los cuales se presentan euhedrales.

Figura 4.17: Andesita de alta dureza SPI (233 min) con alteración sericítica perteneciente al sondaje LBUG15_02 desde 245 hasta 260 m. Se observa una masa fundamental totalmente recristalizada a sericita y un cristal de albita subhedral.

4.7.2 COMPORTAMIENTO GEOMETALÚRGICO DE BRECHAS DE TURMALINA

Para evaluar el comportamiento geometalúrgico y el nivel de alteración se mapearon 4 tramos caracterizados como brecha de turmalina o brecha de polvo de roca (Tabla 4.16 y Tabla 4.17), esto debido al bajo índice SPI que presentan estas rocas. A su vez se realizaron cortes transparentes en los intervalos correspondientes.

Tabla 4.16: Descripción litológica de las rocas caracterizadas como brechas de turmalina o polvo de roca en el mapeo del yacimiento. La muestra LBUG17_17 se caracterizó como una brecha de anhidrita, debido al alto porcentaje de anhidrita que tiene en la matriz. La mayor parte de los clastos de estas rocas de baja dureza son de origen intrusivo y poseen bajo porcentaje de matriz.

								LII	TOLOG	ÍA				
HOLEID	Desde (m)	Hasta (m)	SPI (minutos)	LITOLOGIA	PCT MATRIZ	VUGGS	CLASTO 1	PORCENTAJE 1	CLASTO 2	PORCENTAJE 2	COMPOSICIÓN MATRIZ 1	PORCENTAJE 1	COMPOSICIÓN MATRIZ 2	PORCENTAJE 2
LBUG16_02	175	190	117	BXT	10	0	INTR	70	AND	30	Tm	80	PR	20
LBUG16_09	415	430	95	BXT	30	0	INTR	90	AND	10	Tm	51	Carb	7
LBUG17_17	295	310	42	BXAH	15	0.5	INTR	100	-	-	Tm	90	PR	10
LBUG17_22	140	160	77	BXPR	20	0.5	INTR	80	AND	20	PR	70	Tm	30

Tabla 4.17: Descripción de alteración y minerales de alteración de las rocas caracterizadas como brechas de turmalina o polvo de roca en el mapeo del yacimiento. Puede observarse que las 4 rocas presentan un porcentaje no menor de anhidrita en la matriz de las brechas, la cual estaría asociada a un rebrechizamiento tardío.

									AL	TERA	CIÓN	ſ					
HOLEID	Desde (m)	Hasta (m)	SPI (minutos)	MINERAL 1	% MIN 1	MINERAL 2	% MIN 2	MINERAL 3	% MIN 3	MINERAL 4	% MIN 4	ALT 1	ALT 2	INTENSIDAD 1	PENETRATIVIDAD 1	INTENSIDAD 2	PENETRATIVIDAD 2
LBUG16_02	175	190	117	SeV	15	Se	20	Ab	40	Anh	15	SE	AK	4	4	2	1
LBUG16_09	415	430	95	SeV	24	Se	6	Anh	20	Ab	23	SET	SV	6	5	3	3
LBUG17_17	295	310	42	Qz	25	Ar	14	Anh	35	Se	14	SET	AK	7	7	3	4
LBUG17_22	140	160	77	Se	25	SeV	20	Ab	25	Anh	8	SET	AR	7	8	4	4

El mapeo evidencia que las rocas descritas poseen bajos porcentajes de matriz y, por lo general, un contenido de clastos mayoritariamente intrusivos. A su vez, se tiene que las rocas poseen un alto nivel de alteración, predominantemente sericítica o de sericita-turmalina.

El resultado de los cortes transparentes correspondientes se puede observar en Anexos F, 10.6.

4.7.3 COMPORTAMIENTO GEOMETALÚRGICO DE BRECHAS MAGMÁTICAS

Para evaluar el comportamiento geometalúrgico de brechas magmáticas se analizaron las composiciones minerales de la etapa de validación en esta unidad de roca. De esta forma se puede observar que, para minerales como albita o feldespato potásico pertenecientes a los tectosilicatos, se tienen buenos coeficientes de correlaciones de forma inversa con el SPI, mientras minerales como la biotita, clorita o anhidrita poseen altos coeficientes de correlación positivos respecto al SPI.

Tabla 4.18: Coeficiente de correlación entre minerales obtenidos en etapa de validación para unidad de brechas magmáticas y SPI. Se observan buenos coeficientes de correlación negativos para tectosilicatos como albita y feldespato potásico y buenos coeficientes de correlación positivos para minerales como la biotita, clorita y anhidrita.

BXM	
Mineral	R
Cuarzo	0.08
Albita	-0.59
Feldespato Potásico	-0.40
Mica Blanca	0.13
Biotita	0.30
Clorita	0.43
Calcopirita	0.10
Anhidrita	0.51

5 DISCUSIONES

5.1 CORRELACIÓN CON MAPEO GEOLÓGICO

Se puede observar que, si bien existen buenas correlaciones entre el porcentaje de minerales de alteración y el SPI, existe una gran incertidumbre en estos datos debido a que son porcentajes estimados visualmente y dependen del geólogo que mapee los sondajes. A su vez, el mapeo de minerales de alteración se realiza normalizando las proporciones en la roca, no como un porcentaje absoluto de minerales.

Un caso particular de la condición anteriormente expuesta, se presenta en rocas andesíticas cercanas al centro del sistema y pertenecientes a la roca caja. El mapeo geológico de alteración para andesitas con baja alteración, en muchos casos biotítica, arroja cantidades de biotita mayores al 50%, sin contemplar de que existe gran porcentaje de masa fundamental inalterada. Si bien este porcentaje podría asociarse a la intensidad de la alteración, parámetro que se cuantifica como un grado de 1 a 10 y se divide entre alteración baja, media o intensa, al existir variadas alteraciones sobreimpuestas en la roca se pierde el sentido de cuantificación.

Dentro del trabajo se realizó un cambio en ciertas litologías, principalmente desde BXT a BXM. Esto debido a que si bien estas rocas poseen una matriz compuesta por turmalina-polvo de roca, poseen gran porcentaje de clastos de brechas y/o de andesitas con menos de 20% de matriz. La finalidad de este cambio se basa en agrupar rocas que poseerían cierto comportamiento geometalúrgico similar debido a condiciones geológicas similares. El cambio de unidad geológica de las rocas puede observarse en Anexos A, 10.1.6.

Posterior al cambio de unidad geológica se observaron los resultados de geoquímica roca total, los que arrojaron composiciones afines a las unidades cambiadas, lo que sustentó el cambio de litología de las rocas.

5.2 GEOQUÍMICA ROCA TOTAL

5.2.1 RELACIÓN CON EL SPI

La geoquímica de roca total mostró buenas correlaciones, en general, respecto al SPI. Dentro de los resultados de mayor relevancia se tiene que por lo general, elementos tales como el Si, Na, K, Mn poseen coeficientes de correlación negativos. Los 3 primeros se asociarían principalmente a minerales tectosilicatados tales como cuarzo, albita, feldespato potásico (en rocas con poca alteración), mientras que el Mn se asociaría a carbonatos. Dentro de los elementos con coeficiente de correlación positivo se encuentra Al, Fe, Mg, Ca, Ti, P.

Debido a que la ganga de las rocas está compuesta principalmente por silicatos, no es posible relacionar el elemento Si con un mineral o grupo mineral especifico. Sin embargo, ya que dentro de los silicatos descritos, los que poseen mayor proporción de sílice en su estructura corresponden a los tectosilicatos tales como feldespatos y cuarzo, al contrario de los filosilicatos como la biotita, mica blanca o clorita, se podría inferir a priori, cierta relación inversa entre tectosilicatos y el SPI.

Dentro del grupo de las plagioclasas pueden identificarse los minerales albita, extremo sódico, y anortita, extremo cálcico. Se observa que estos elementos poseen coeficientes de correlación inversos, o sea, mientras el Ca aumentaría respecto al SPI de las rocas, el Na disminuiría. Si bien puede asociarse la concentración de Na casi absolutamente a las plagioclasas albiticas (debido al análisis XRD), no puede asociarse la totalidad del Ca al extremo anortítico, debido a que también existen otros minerales como la anhidrita, el yeso y la calcita, que aportan Ca a las mediciones. A su vez, como se observa en las brechas magmáticas, se tienen coeficientes

de correlación positivos para la anhidrita y negativos para las plagioclasas. Esta razón sería la principal causante de que no existan buenas relaciones entre la concentración de Ca de la unidad de brecha magmática y el SPI, debido a que ambos minerales aportarían el elemento al sistema.

Con respecto al Mn como se observó en los análisis anteriores, se tiene que este posee un coeficiente de correlación negativo respecto al SPI y estaría asociado a carbonatos con un coeficiente de correlación igual a 0.61. La litología que posee el coeficiente de correlación mayor para el Mn corresponde a la BXT, la cual a su vez, contiene los niveles de C más altos.

Los elementos Fe y Mg estarían asociados a minerales tales como biotita, clorita o ankerita, reconocidos por XRD. Estos poseen coeficientes de correlación positivos, en general, exceptuando por el Mg en andesitas y brechas magmáticas. También para rocas intrusivas los coeficientes de correlación tienden a 0 debido a la baja proporción de minerales ferromagnesianos que poseen los intrusivos del sistema.

El Al, debido a que puede sustituir al Si en gran cantidad de silicatos, reemplazándolo en la estructura fundamental (SiO₂), no puede asociarse a un mineral o grupo mineral específico.

El elemento K posee coeficientes de correlación negativos con respecto al SPI, lo que indicaría que mientras mayor concentración de potasio, la roca tiende a poseer menor dureza geometalúrgica. Dentro de los minerales identificados que poseen este elemento se encuentran los feldespatos potásicos y micas blancas.

Por último, los elementos Ti y P poseen coeficientes positivos. Estos, al no ser elementos fundamentales en la estructura de silicatos, no se puede identificar un mineral formador de roca asociado. El P se asocia directamente a apatito, el cual dentro del yacimiento se concentra en mayores proporciones en brechas magmáticas y en brechas de biotita, mientras que el Ti se asociaría a biotita.

5.2.2 CONCENTRACIÓN DE SILICIO Y BRECHAS DE TURMALINA DE BAJA DUREZA

Uno de los resultados observados con mayor relevancia viene de las brechas de turmalina con baja dureza, estas poseen una concentración de Si alta, comparable con la huella geoquímica de los intrusivos. Una de las principales razones a la que se les adjudica esta alta concentración radica en la alteración ácida tardía, la cual genera en ciertos sectores rocas con un nivel de porosidad superior a la reconocida en la globalidad del yacimiento, acompañada por cuarzo oqueroso de baja intensidad y arcillas. A su vez, en sectores con menores índice SPI, las brechas poseen altas proporciones de clastos intrusivos.

5.3 CONVERSIÓN DE ELEMENTOS A MINERALES, MODELAMIENTO GEOLÓGICO Y VALIDACIÓN

La conversión de elementos a minerales mostró dificultades a la hora de la cuantificación debido a distintas razones. Por un lado, la única posibilidad de realizar una cuantificación de minerales tales como biotita o clorita se basó en el extremo de la solución sólida reconocido por el análisis XRD, el cual en ocasiones no mostró un extremo, sino que arrojó valores intermedios de la solución solida de los minerales.

Por otro lado, se tuvo una imposibilidad de medir proporciones entre minerales ricos en K tales como mica blanca y feldespato potásico. La principal razón de este problema radica en que ambos minerales contienen relativamente los mismos elementos en distintas proporciones, por lo que a la hora de cuantificarlos no se tiene una distribución dada para el uno o el otro, sumado con el reemplazo del elemento Al en la estructura fundamental de los silicatos. La solución al problema planteado se basó en una interpolación para análisis con mica blanca y feldespato potásico, fundamentado en los resultados de una regresión lineal para muestras con uno o el otro mineral, para luego generar una validación.

Dentro de la etapa de validación, aproximadamente un 80% de los datos fueron predichos con menos de un 30% de error, mientras que 2 fueron validados con más de un 100% de error (Tabla 4.12). Para entender de mejor forma la razón de la extensa brecha entre el valor estimado y el valor medido en laboratorio para estas 2 muestras se mapearon los tramos y se realizaron cortes transparentes representativos.

La primera muestra (MET_LBUG_17_177), correspondiente al sondaje LBUG16_17 entre los 345 a 360 metros desde la estación 9 (SPI Lab=95 min), presenta una diferencia de SPI de más de 195 min con las muestras más próximas (290 y 295 de SPI) (Figura 5.1).

Figura 5.1: Sondaje LBUG16_17. Puede observarse que en el sondaje perteneciente a la estación 9 se tienen 3 muestras consecutivas la cuales difieren de gran manera en su dureza SPI. Las muestras que poseen altas índices se utilizaron para la creación del modelo numérico, por lo que al validar la muestra central esta se asociaría a una alta dureza.

Una vez realizado el mapeo geológico de los tramos ensayados para SPI, se evidencia que para el intervalo en cuestión existe una ocurrencia de albita masiva, la cual forma gran parte de la matriz de las brechas. Lo anteriormente expuesto advierte que el tramo que se valida por las muestras aledañas posee una variación en la composición, adquiriendo una mayor proporción de tectosilicatos representados por plagioclasas, por lo que al validarlo este no representa la composición mineralógica de las muestras adyacentes.

Una vez descritos los cortes transparentes pertenecientes a los intervalos mencionados, se puede observar que el tramo que posee el menor índice SPI, corresponde, a su vez, a la roca que posee la menor proporción de minerales filosilicatados versus minerales tectosilicatados (Figura 5.2). Aquí, puede apreciarse que los cortes A y C, pertenecientes al sondaje LBUG16_17 poseen una alteración sericítica de alta pervasividad e intensidad, mientras que el tramo intermedio "B" posee una masa cristalina granular con sericita intersticial.

Figura 5.2: Tramos pertenecientes al sondaje LBUG16_17. A) 200 a 215 m; B) 345 a 360 m; C) 460 a 475 m.

La segunda muestra que tuvo la mayor dispersión entre el SPI estimado por el método (129 min) y el SPI medido en laboratorio (60 min) corresponde a la muestra MET_LBUG_17_76, en el sondaje LBUG17_01 desde los 90 a los 105 metros. Esta, según el mapeo geológico del yacimiento, corresponde a una brecha de turmalina con alteración SET. También se observó que la muestra en

cuestión posee un evento de rebrechizamiento de anhidrita de alta intensidad, la cual se incorporaría dentro de la matriz y el cemento de las brechas.

En el corte transparente del intervalo puede observarse una intensa alteración de sericítica pervasiva en los clastos intercrecida con anhidrita (Figura 5.3), mientras que la matriz de la roca está compuesta por turmalina, alunita, minerales opacos y anhidrita. Lo anteriormente expuesto indicaría que para el caso de las brechas de turmalina-anhidrita, la razón filosilicatos/tectosilicatos podría no ser el factor fundamental que controla la dureza geometalúrgica de las rocas.

Figura 5.3: Cristal de anhidrita inmerso en una masa microcristalina de sericita-anhidrita perteneciente al sondaje LBUG17_01

Como se puede observar en la Tabla 4.12 existe una amplia cantidad de muestras que poseen durezas iguales o por debajo de los 83 min que permite el método, estas a su vez son las que poseen los valores de error porcentual absoluto mayores al 30% pero menores al 100%. Del mapeo geológico de estos tramos se observa un evento de alteración ácida tardía, seguido de un evento de brechizamiento de anhidrita sobreimpuesto, en las inmediaciones de la estación de sondajes 7, de igual manera que en el sondaje LBUG17_01.

De esta manera el mapeo de sondajes y los cortes transparentes evidenciaron que ciertas rocas, a pesar de poseer altos niveles de filosilicatos versus tectosilicatos, poseen bajas durezas geometalúrgicas debido a la sobreimposición de un evento de anhidrita en la matriz. Es por esto que la razón filosilicatos/tectosilicatos, no podría ser utilizada para rocas con estas características.

5.4 **REOLOGÍA DE SILICATOS Y SPI**

Como se observó en el estudio, el SPI estaría íntimamente ligado a la mineralogía de ganga de las rocas del yacimiento, en particular, con la proporción de minerales micáceos y tectosilicatados. La principal razón a la que se adjudica este resultado reside en los métodos de fracturamiento mineral que ocurren en el molino SAG, el cual rompe la roca principalmente mediante abrasión e impacto, por lo que el factor clave que gobierna este proceso corresponde a la

reología de los silicatos descritos, los cuales van desde comportamientos plásticos-elásticos (filosilicatos) a frágiles (tectosilicatos). De esta forma, minerales micáceos al poseer un comportamiento plástico y elástico son capaces de resistir una mayor carga de energía, debido a su estructura molecular, la cual puede deformarse sin necesariamente fracturarse. Caso contrario pasa con minerales tectosilicatados, tales como el cuarzo, feldespatos potásicos y plagioclasas, los cuales, al ser sometidos a un gradiente de estrés, colapsan en su estructura cristalina y se rompen de forma arbitraria.

5.5 DESARROLLO DEL MÉTODO EN EL YACIMIENTO

Existe la posibilidad de desarrollar la técnica anteriormente expuesta para determinar el índice geometalúrgico SPI en la globalidad del yacimiento. Para la realización de este procedimiento se debe determinar la densidad de pruebas geoquímicas a realizar, en dependencia de la variabilidad de las unidades litológicas, en los sectores de extracción de mineral, en este caso, caserones. Así, de esta forma, se puede determinar mediante modelamiento geológico la composición mineralógica y la razón de filosilicatos versus tectosilicatos en el caserón, para así determinar su SPI espacial y aplicarlo para la planificación minera. Cabe destacar que el procedimiento de modelamiento de variables geometalúrgicas debe seguir límites duros entre las unidades geológicas que componen estas unidades geológicas, esto, debido a que la alteración no respeta bordes litológicos determinados, pero sí existe una dependencia entre la mineralogía secundaria producida y el protolito que antecede a la alteración.

Debido a que el estudio correlaciona la geoquímica de roca total con el análisis XRD, no sería posible desarrollar el método a partir de una geoquímica obtenida por el análisis de agua regia que se realiza normalmente en el yacimiento, para la medición de elementos calcófilos, esto debido a al poseer una disolución parcial o incompleta de los silicatos, no se obtiene la composición química cuantitativa de elementos mayores de las muestras.

6 CONCLUSIONES

Existe una estrecha relación entre la mineralogía de las rocas y el SPI. Al parecer, en sistemas hidrotermales, la alteración de las rocas provocaría una variación en la dureza geometalúrgica, haciéndolas cada vez más difíciles de tratar en la etapa de molienda, según su mineralogía secundaria. Minerales micáceos como la biotita, clorita o micas blancas provocarían un incremento en el SPI de las rocas, el cual se atribuye al comportamiento elástico y plástico de estos, mientras que tectosilicatos como el cuarzo, feldespato potásico o plagioclasa, al ser minerales frágiles con baja tenacidad, disminuyen la dureza geometalúrgica de las rocas.

Por lo tanto, el parámetro geometalúrgico SPI estaría relacionado con la mineralogía de las rocas de yacimiento, en particular, con la relación entre filosilicatos y tectosilicatos.

La condición anteriormente descrita se cumple para gran parte de las rocas del yacimiento, difiriendo al momento de sobreimponerse un rebrechizamiento tardío, como se observa en las inmediaciones de la estación de sondajes 7 y 10, donde se produce un rebrechizamiento de anhidrita, el cual estaría acompañado por arcillas y una porosidad secundaría superior a la observada en la globalidad del yacimiento.

Utilizando las limitaciones anteriormente descritas, existe la posibilidad de obviar las variables estructurales y texturales, generando dominios de comportamiento que dependan únicamente de la composición mineralógica de la roca. Así, teniendo en cuenta las unidades geológicas y estructuras presentes, se podría pensar en desarrollar un modelo geometalúrgico robusto para la etapa de extracción minera.

Por último, con respecto a la metodología de balance de minerales (elementos a minerales), se puede concluir que esta tiene ventajas y desventajas. Por un lado, al utilizar la química de las rocas para modelar los minerales que deberían estar presentes en esta, se realiza un análisis semicuantitativo el cual puede ser de mucha utilidad a la hora de querer encontrar relaciones con características tales como la dureza geometalúrgica de las muestras. Por otro lado, la principal desventaja de esta metodología se evidencia a la hora de tener gran cantidad de minerales con composiciones químicas similares y soluciones sólidas.

7 RECOMENDACIONES

Si bien la relación filosilicatos/tectosilicatos permitió una buena estimación de la dureza SPI de las rocas del yacimiento, existe la posibilidad de encontrar otros factores que podrían incidir de igual forma en esta. Es por esto que se propone, para futuros trabajos, la posibilidad de evaluar el incluir al análisis las proporciones de sulfatos de las rocas, pues, como se observa en el yacimiento, rocas con una sobreimposición de brechizamiento de anhidrita poseen índices SPI muy bajos.

Debido a que las pruebas de conminución miden el índice SPI, BWI y CI en un mismo tramo, existe la posibilidad de evaluar las configuraciones minerales que provocarían una variación en estos dos últimos índices, de igual forma como se realizó para el SPI, ya que se tienen los análisis de geoquímica roca total y XRD realizados.

Debido a que los análisis geoquímicos de roca total del estudio se realizaron en tramos ya ensayados para geoquímica con agua regia, existe una sobreposición de datos químicos con distintas metodologías de medición. De esta forma, se tiene la posibilidad de desarrollar un estudio el cual busque encontrar correlaciones entre la química evidenciada por los dos métodos. De esta forma, si se lograra encontrar una correlación que permitiera determinar la química roca total de las muestras, utilizando la geoquímica multielemento por agua regia, podría utilizarse la relación encontrada en este estudio, junto con el modelo mica blanca estándar, para estimar índices SPI en todo el yacimiento.

Como recomendación principal para continuar con el trabajo realizado, se sugiere la realización de análisis químicos roca total, evaluando su densidad espacial respecto a la variedad

de unidades geológicas de las zonas de interés, de esta forma y utilizando la mineralogía mayoritaria típica, identificada con análisis XRD, se puede evaluar el SPI de las rocas mediante la regresión lineal encontrada y utilizando el modelo numérico de mica blanca estándar. Debido a que la mina Los Sulfatos comprenderá extracción subterránea por medio de caserones, se sugiere destinar los análisis químicos roca total a las zonas con alta prioridad de extracción, para así tener una buena caracterización geometalúrgica SPI en etapas tempranas de la mina.

8 GLOSARIO

Mineral	Abreviación
Gp	Yeso
SV	Sericita Verde
Bt	Biotita
Ab	Albita
Fk	Feldespato Potásico
Tm	Turmalina
Anh	Anhidrita
Se	Sericita
Chl	Clorita
Qz	Cuarzo
Cal	Calcita
Mb	Mica Blanca
Сру	Calcopirita
Ру	Pirita

Tabla 8.1: Abreviaciones minerales

Tabla 8.2: Abreviaciones generales, conceptos de geometalurgia y litologías en el proyecto.

Sigla	Abreviación
SPI	SAG Power Index
SAG	Semi-Autogenous Grinding Mill
XRD	X-Ray Diffraction
BWI	Bond Ball Work Index
CI	Crusher Index
PIP	Pórfido Intermineral Principal
PIT	Pórfido Intermineral Tardío
PPM	Pórfido Post Mineral
QMF - QMDG	Cuarzo Monzonita Fina
AND	Andesita
BXM	Brecha Magmática
BXB	Brecha de Biotita
BXI	Brecha Ígnea
BXT	Brecha de Turmalina
BXH	Brecha Hidrotermal
BXPR	Brecha Polvo de Roca
SOB	Sobrecarga

9 BIBLIOGRAFÍA

Aranz Geo Limited. (2014). User Manual for LeapFrog Geo version 2.1.

- Barr, J. (2017). Machine Learning Applications in Mining & Exploration. Informe Interno.
- Bilal, D. (2017). Geometallurgical estimation of comminution indices for porphyry copper deposit applyins mineralogical approach. *Degree Project. Lulea University of Technology, Department of Civil, Environmental and Natural Resources Engineering.*
- Bond, F. (1961). Crushing and Grinding Calculations Part I. *British Chemical Engineering*, Vol. 6, 378-385.
- Bunaciu, A., Udristioiu, E., & Aboul-Enein, H. (2005). X-Ray Diffraccion: Instrumentation and Applications. *Critical Reviews in Analytical Chemistry*, 45:4, 289-299.
- Bureau Veritas Minerals. (2016 (a)). Method Form v1, Lithogeochemistry AA LITHOPC. *Bureau Veritas Minerals*.
- Bureau Veritas Minerals. (2018). QA/QC Análisis Químico Roca Total. Informe interno.
- Charrier, R., Elgueta, S., Flynn, J., Gans, P., Kay, S., Muñoz, N., Wyss, AR., Zurita, E. (2002). Evidence for Cenozoic extensional basin development and tectonic inversion south of the flat-slab segment, southern Central Andes, Chile (33-36° S.L.). J S Am Earth Sci 15, 117-139.
- Comisión Chilena del Cobre. (2018). *Informe Consumo de Agua y Energía en la Minería del Cobre año 2017.*
- Deckart, K., Clark, A., Aguilar, C., Bertens, A., Mortensen, J., & Fanning, M. (2005). Magmatic and hydrotermal Chronology of the giant Río Blanco porphyry copper deposit, central Chile: Implications of an integrated U-Pb and 40Ar/39Ar database. *Economic Geology*, 905-934.
- Deckart, K., Clark, A., Cuadra, P., & Fanning, M. (2013). Refinement of the time-space evolution of the giant Mio-Pliocene Río Blanco-Los Bronces porphyry Cu–Mo cluster, Central Chile: new U–Pb (SHRIMP II) and Re–Os geochronology and 40Ar/39Ar thermochronology data. *Miner Deposita 48*, 57-79.
- Deckart, K., Silva, W., Sprönle, C., & Vela, I. (2014). Timing and duration of hydrothermal activity at the Los Bronces porphyry cluster: an update. *Miner Deposita*, *DOI 10.1007/s00126-014-0512-9*.
- Deckart, K., Silva, W., Toro, J., & Bertens, A. (2009). New geochronology of the Los Bronces porphyry: Implication for mineral exploration on the Río Blanco-Los Bronces Cluster. *Congreso Geológico Chileno, 12th.*
- Eggers, T. (2009). Alteración argílica avanzada en el distrito Los Bronces. *Congreso Geológico Chileno, 12th, Santiago*, S11-013.

- Gamal, A. (2012). Correlation Between Bond Work Index And Mechanical Properties Of Some Saudi Ores. *Journal of Engineering Sciences, Assiut University, Vol 40*, 271-280.
- Gomes, R., De Tomi, G., & Assis, P. (2015). Impact of quality of iron ore lumps on sustainability of mining operations in the Quadrilatero Ferrifero Area. *Miner. Eng.*, *n*. 70, 201-206.
- Lamberg, P. (2011). Particles A new method to quantify mineral textures for geometallurgy. *In: Conference in Mineral Engineering, Proceedings*, 1-16.
- Lamberg, P., Hautala, P., Sotka, P., & Saavalainen, S. (1997). *Mineralogical Balances by Dissolution Methodology*.
- Maksaev, V., Zentilli, M., Munizaga, F., & Charrier, R. (2003). Denudación/Alzamiento del Mioceno Superior - Plioceno Inferior de la Cordillera de Chile Central (33°-35°S) Inferida por Dataciones de Trazas de Fision en Apatito de Plutones Miocenos. 10° Congreso Geológico Chileno.
- Pablo, M. (2017). Actualización Modelo Geológico, Litología, Alteración y Zona Mineral. Santiago: LBD Project, División Los Bronces, Anglo American.
- Perelló, J., Sillitoe, R., Brockway, H., Posso, H., & MPodozis, C. (2009). Contiguous porphyry Cu-Mo adn Cu-Au mineralization at Los Pelambres Central Chile. *Congreso Geológico Chileno, 12th.*
- Serrano, L; Vargas, R; Stambuk, V; Aguilar, C; Galeb, M; Holmgren, C; Contreras, A; Godoy, S; Vela, I. (1996). The late Miocene to early Pliocene Río Blanco-Los Bronces copper deposit, central Chilean Andes. Society of Economic Geologist Special Publication 5, 119-130.
- Sillitoe, R., & Perelló, J. (2005). Andean copper province: toctoomagmatic setting deposit types, metallogeny, exploration, and discovery: Eonomic Geology 100th Anniversary Volume.
- Skewes, M., & Holmgren, C. (1993). Solevantamiento andino, erosion y emplazamiento de brechas mineralizadas en el depósito de cobre porfídico Los Bronces, Chile Central (33°S): Aplicación de geotermometría de inclusiones fluidas. *Revista Geológica de Chile 20*, 71-83.
- Skewes, M., & Stern, C. (1994). Tectonic trigger for the formation of late Miocene Cu-rich breccia pipes in the Andes of central Chile. *Geology* 22, 551-554.
- Starkey, J. (1994). A new tool for SAG hardness testing. *Canadian Mineral Processor's Conference*, Ottawa.
- Starkey, J. (1997). Gerring more from drill core preliminary SAG design. *Randol Gold Forum*, Monterey, California.
- Stern, C. (1989). Pliocene to Present migration of the volcanic front, Andean southern volcanic zone. *Revista Geológica de Chile*, 145-162.
- Toro, J., Ortuzar, J., Zamorano, J., Cuadra, P., Hermosilla, J., & Sprohnle, C. (2012). Protrected magmatic-hydrotermal history of the Río Blanco-Los Bronces district, central Chile: Development of world's greatest known concentration of copper. Society of Económics Geologists Special Publicacion 16, 105-126.

- Vargas, R., Gustafson, L., Vukasovix, M., Tidy, E., & Skewes, M. (1999). Ore breccias in the Río Blanco-Los Bronces porphyry copper deposit, Chile. Society of Economics Geologists Special Publication 7, 281-297.
- Vela, I. (2014). El Rol del "techo de sulfatos" en el comportamiento Hidrogeológico y Geotécnico de las zonas Primaria y Secundaria del Socavón Los Sulfatos. Informe Interno. Santiago: LBD Project, División Los Bronces, Anglo American.
- Warnnars, F. (1978). Geologic synopsis of Los Bronces. Informe interno Compañía Minera Disputada Las Condes (Inédito).
- Wills, B., & Napier-Munn, T. (2006). Will's Mineral Processing Technology: An introduction to the practical aspects of ore treatment and mineral recovery, seventh edition (7th ed.). Boston : Oxford, U.K.: Butterworth-Heinemann.
- Zamorano, J., & Pablo, M. (2013). *PLBD Informe de Modelamiento Geológico Los Sulfatos. Informe Interno.* LBD Project, División Los Bronces, Anglo American.

10 ANEXOS

10.1 ANEXO A): GEOQUÍMICA ROCA TOTAL

10.1.1 BASE DE DATOS

	Method	LF200									
	Analyte	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO
	Unit	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01
Sample	Туре										
MeT_LBUG_17_26	Core Pulp	63.64	14.44	2.94	1.12	2.39	3.54	4.78	0.44	0.14	0.03
MeT_LBUG_17_27	Core Pulp	63.29	13.34	2.96	0.75	3.5	1.62	5.67	0.33	0.1	0.04
MeT_LBUG_17_28	Core Pulp	69.02	12.93	3.19	0.52	1.39	2.86	4.51	0.28	0.09	0.1
MeT_LBUG_17_29	Core Pulp	61.57	14.53	3.48	1.04	3.16	2.42	5.35	0.47	0.17	0.05
MeT_LBUG_17_30	Core Pulp	58.81	13	5.67	0.59	3.67	0.54	6.14	0.29	0.08	0.1
MeT_LBUG_17_31	Core Pulp	54.89	15.21	8.23	2.25	4.69	0.76	1.84	0.79	0.13	0.01
MeT_LBUG_17_32	Core Pulp	58.58	13.01	5.92	0.72	3.52	0.79	6.31	0.34	0.08	0.13
MeT_LBUG_17_33	Core Pulp	58.51	17.17	2.9	0.83	3.02	3.65	5.59	0.95	0.18	0.04
MeT_LBUG_17_34	Core Pulp	66.46	16.09	1.71	0.74	2.2	4.87	3.89	0.33	0.12	0.02
MeT_LBUG_17_35	Core Pulp	64.46	13.75	3.77	1.57	1.68	3.22	4.57	0.56	0.13	0.03
MeT_LBUG_17_36	Core Pulp	58.72	13.88	4.86	0.7	3.62	0.69	6.97	0.36	0.11	0.07
MeT_LBUG_17_37	Core Pulp	62.98	15.63	4.78	1	1.57	1.36	5.86	0.4	0.15	0.11
MeT_LBUG_17_38	Core Pulp	56.95	16.58	2.66	1.46	5	2.58	4.51	0.82	0.21	0.01
MeT_LBUG_17_39	Core Pulp	60.19	13.31	4.32	0.62	3.91	0.34	6.8	0.33	0.09	0.11
MeT_LBUG_17_40	Core Pulp	50.81	14.5	6.15	2.95	6.41	1.6	3.68	0.78	0.2	0.05
MeT_LBUG_17_41	Core Pulp	57.86	15.12	3.04	2.56	5.12	3.44	3.53	0.64	0.16	0.02
MeT_LBUG_17_42	Core Pulp	55.1	16.07	4.16	1.21	5.09	1.57	4.88	0.84	0.22	0.02
MeT_LBUG_17_43	Core Pulp	50.71	17.34	3.1	2.42	6.84	2.75	4.89	0.94	0.2	0.02
MeT_LBUG_17_44	Core Pulp	56.95	18.25	2.66	1.58	3.62	2.45	5.52	1.14	0.3	0.02
MeT_LBUG_17_45	Core Pulp	53.03	18.01	7.43	1.72	5.64	1.43	3.21	1.05	0.24	0.04
MeT_LBUG_17_46	Core Pulp	53.05	18.26	3	1.1	4.85	3.14	4.9	0.95	0.2	< 0.01
MeT_LBUG_17_47	Core Pulp	49.71	18.74	8.13	4.16	6.06	2.37	2.94	0.92	0.19	0.03
MeT_LBUG_17_48	Core Pulp	52.98	18.33	3.57	1.57	4.86	3.46	4.17	0.97	0.21	0.01
MeT_LBUG_17_49	Core Pulp	57.21	15.67	1.78	2.32	4.94	3.94	5.42	0.79	0.2	0.01
MeT_LBUG_17_50	Core Pulp	53.85	16.41	6.47	0.95	4.39	0.35	4.48	0.83	0.32	0.02
MeT_LBUG_17_76	Core Pulp	66.75	13.12	4.39	0.57	1.23	2.03	5.32	0.31	0.1	0.12
MeT_LBUG_17_77	Core Pulp	51.79	17.32	6.23	3.06	5.63	1.55	3.05	1	0.23	0.02
MeT_LBUG_17_78	Core Pulp	50.34	18.43	7.79	3.72	6.68	1.86	2.91	1.02	0.21	0.05

MeT_LBUG_17_79	Core Pulp	53.7	16.68	3.75	3.31	5.01	3.37	3.98	0.98	0.23	0.04
MeT_LBUG_17_80	Core Pulp	53.34	17.01	4.49	3.17	5.74	2.17	3.51	1.03	0.24	0.04
MeT_LBUG_17_81	Core Pulp	53.56	19.38	4.48	1.34	5.09	2.28	3.96	1.06	0.23	0.03
MeT_LBUG_17_82	Core Pulp	56.75	16.14	3.9	2.78	3.1	4.69	4.16	0.87	0.18	0.02
MeT_LBUG_17_83	Core Pulp	56.08	17.22	5.98	2.62	4.67	1.77	2.98	0.92	0.23	0.04
MeT_LBUG_17_84	Core Pulp	59.4	13.44	5.28	0.94	6.05	0.39	4	0.4	0.16	0.01
MeT_LBUG_17_85	Core Pulp	57.2	16.37	2.71	1.68	4.82	2.14	5.16	0.62	0.23	0.02
MeT_LBUG_17_86	Core Pulp	55.35	17.2	2.87	2.63	5.76	3.32	4.08	0.91	0.21	0.02
MeT_LBUG_17_87	Core Pulp	57.53	16.94	3.77	1.18	5.12	2.19	3.54	0.84	0.22	0.02
MeT_LBUG_17_88	Core Pulp	55.25	16.48	6.91	2.7	4.25	2.99	2.8	0.82	0.21	0.02
MeT_LBUG_17_89	Core Pulp	51.76	17.15	7.49	3.49	5.66	2.3	2.68	0.88	0.22	0.03
MeT_LBUG_17_90	Core Pulp	57.63	16.31	3.52	1.87	3.87	2.13	5.16	0.63	0.17	0.03
MeT_LBUG_17_91	Core Pulp	56.83	15.29	3.38	2.32	4.36	2.31	5.01	0.72	0.2	0.03
MeT_LBUG_17_92	Core Pulp	56.09	16.1	4.44	1.45	4.83	1.24	4.36	0.77	0.22	0.01
MeT_LBUG_17_93	Core Pulp	56.49	16.2	2.18	2.67	3.8	4.27	5.76	0.87	0.16	0.02
MeT_LBUG_17_94	Core Pulp	59.29	16.11	4.36	1.76	2.59	3.22	3.56	0.67	0.18	0.02
MeT_LBUG_17_95	Core Pulp	61.87	14.98	5.18	1.31	2.04	2.38	3.7	0.51	0.13	< 0.01
MeT_LBUG_17_96	Core Pulp	55.27	15.39	2.62	2.36	5.32	2.42	5.28	0.73	0.19	0.02
MeT_LBUG_17_97	Core Pulp	52.22	15.89	2.99	2.4	7.27	4.04	4.25	0.79	0.2	0.02
MeT_LBUG_17_98	Core Pulp	58.56	15.69	3.87	1.83	3.85	1.1	5	0.64	0.2	0.01
MeT_LBUG_17_99	Core Pulp	53.24	15.35	2.5	2.58	6.11	2.83	4.7	0.87	0.21	0.02
MeT_LBUG_17_100	Core Pulp	50.24	15.09	6.83	0.88	6.86	0.29	3.51	0.77	0.21	< 0.01
MeT_LBUG_17_126	Core Pulp	66.17	15.17	1.37	1.04	2.9	3.85	4.49	0.43	0.14	0.01
MeT_LBUG_17_127	Core Pulp	57.63	16.36	2.74	3.04	5.53	3.94	3.45	0.88	0.23	0.02
MeT_LBUG_17_128	Core Pulp	53.66	16.56	5.94	2.47	4.75	3.36	4.29	0.85	0.21	0.04
MeT_LBUG_17_129	Core Pulp	58.32	15.55	6.65	1.43	2.89	0.42	4.82	0.56	0.17	< 0.01
MeT_LBUG_17_130	Core Pulp	62.35	15.62	4.48	1.07	1.58	1.49	7.22	0.53	0.15	0.22
MeT_LBUG_17_131	Core Pulp	59.52	16.69	2.79	1.81	3.02	3.69	4.9	0.65	0.21	0.03
MeT_LBUG_17_132	Core Pulp	54.67	15.86	4.73	2.61	4.53	4.76	2.92	0.6	0.24	0.06
MeT_LBUG_17_133	Core Pulp	56.25	15.48	3.76	2.69	4.66	2.06	4.27	0.69	0.2	0.04
MeT_LBUG_17_134	Core Pulp	56.01	16.04	4.13	2.47	4.58	1.01	4.29	0.8	0.22	0.03
MeT_LBUG_17_135	Core Pulp	58.76	14.18	6.31	1.24	3.57	0.94	3.83	0.46	0.15	0.09
MeT_LBUG_17_136	Core Pulp	61.63	15.33	3.43	1.14	2.65	3.83	4.24	0.53	0.15	0.07
MeT_LBUG_17_137	Core Pulp	59.17	14.73	5.91	0.97	2.92	2.88	3.73	0.45	0.15	0.05
MeT_LBUG_17_138	Core Pulp	54.06	16.35	7.06	1.81	3.99	2.91	4.4	0.85	0.21	0.1
MeT_LBUG_17_139	Core Pulp	63.78	15.34	4.69	1.3	2	1.67	5.04	0.37	0.13	0.14
MeT_LBUG_17_140	Core Pulp	52.78	17.16	8.14	1.16	4.31	0.5	4.05	0.87	0.21	< 0.01
MeT_LBUG_17_141	Core Pulp	59.54	15.91	4.45	1.09	5.03	2.51	3.96	0.82	0.24	0.01
MeT_LBUG_17_142	Core Pulp	63.85	15.65	1.59	1.24	2.62	2.14	5.66	0.39	0.16	0.03
MeT_LBUG_17_143	Core Pulp	65.88	11.34	5.41	0.58	2.14	0.39	5.89	0.26	0.08	0.14
MeT_LBUG_17_144	Core Pulp	64.51	14.65	3.16	0.79	2.45	3.36	3.82	0.37	0.11	0.04
MeT_LBUG_17_145	Core Pulp	60.73	14.71	2.05	1.68	4.45	3.04	4.26	0.43	0.15	0.03
MeT_LBUG_17_146	Core Pulp	65.59	15.64	2.5	0.71	2.1	3.12	4.15	0.31	0.11	0.06

MeT I	BUG	17 147	Core	Pulp	63.77	14.7	7 3	3.7	0.	79	1.4	3	2.43	6.4	13	0.54	0.14	0.11
MeT I	BUG	17 148	3 Core	Pulp	61.64	13.54	4 3	.87	0.	.59	3.2	2	0.76	7.3	34	0.34	0.11	0.15
MeT_I	BUG	17_149) Core	Pulp	63.08	16.79) 2	.03	1.	.25	1.6	9	5.68	4.2	28	0.79	0.07	0.03
MeT_I	_BUG_	17_150) Core	Pulp	44.16	14.05	5 9	.73	1.	.79	7.6	9	1.03	2.9	95	0.77	0.26	0.01
MeT_I	_BUG_	17_176	5 Core	Pulp	52.06	18.58	3 6	.38	3.	.29	8.2	3	2.01	2.	7	0.96	0.23	0.03
MeT_I	_BUG_	17_177	7 Core	e Pulp	57.01	15.0	1 1	.42	1.	.68	6.2	6	3.01	5.4	41	0.69	0.2	0.04
MeT_I	_BUG_	17_178	3 Core	e Pulp	64.16	15.60	5 2	.05	0.	.79	2.5	5	4.06	4.()9	0.32	0.13	< 0.01
MeT_I	_BUG_	17_179	O Core	Pulp	57.11	17.20	5 2	.05	1.	.54	4.3	6	5.84	2.7	71	0.6	0.31	0.02
MeT_I	_BUG_	17_180) Core	Pulp	58.81	17.85	5 1	.55	1.	.62	3.0	5	7.94	2.0)4	0.72	0.13	0.01
MeT_I	_BUG_	17_181	Core	e Pulp	55.16	15.5		2.5	1	.8	6.6	1	1.85	4.8	32	0.7	0.19	0.04
MeT_L	LBUG_	17_182	2 Core	e Pulp	50.29	17.43	3 6	.23	4.	.99	6.5	1	2.94	3.2	28	0.94	0.21	0.02
MeT_I	_BUG_	17_183	B Core	Pulp	60.86	16.83	3 3	.38	1.	.44	1.7	1	2.37	5.9	97	0.58	0.14	0.03
MeT_I	_BUG_	17_184	Core	Pulp	52.54	17.97	7 6	.15	3.	.88	6.8	9	3.5	2.6	53	0.93	0.22	0.02
MeT_L	LBUG_	17_185	5 Core	Pulp	61.55	15.4	4	.07	0	.7	2.0	5	2.14	7.	14	0.43	0.16	0.13
MeT_L	_BUG_	17_186	6 Core	Pulp	57.27	15.9	1 4	.06	0.	.63	3.1	1	1.94	7.9	92	0.81	0.21	0.09
MeT_L	_BUG_	17_187	Core	Pulp	59.89	13.65	5 6	.44	1.	.09	2.3	8	0.63	5.3	31	0.43	0.13	0.12
MeT_L	_BUG_	17_188	Core	Pulp	58.17	15.14	4 6	.09	1.	.03	2.6	4	1.14	5.	3	0.52	0.17	0.12
MeT_L	_BUG_	17_189	O Core	Pulp	57.64	15.85	5 6	.74	1.	.84	3.5	9	0.71	3.0)9	0.63	0.19	0.11
MeT_I	LBUG_	17_190) Core	Pulp	57.24	14.55	5 6	.83	1.	.09	2.4	4	0.84	6.0)9	0.47	0.17	0.13
MeT_I	MeT_LBUG_17_191 Core Pul		Pulp	58.23	15.24	4 4	.79	0.	.88	3.5	2	0.63	5.9	91	0.46	0.15	0.09	
MeT_I	MeT_LBUG_17_192 Co		2 Core	Pulp	59.53	15.5	16	.66	1.	.47	2.5	9	1.17	3.8	31	0.45	0.18	0.11
MeT_I	LBUG_	17_193	B Core	Pulp	55.41	16.3	5 5	.21	2.	.68	3.0	4	4.05	4.	9	0.99	0.25	0.02
MeT_I	LBUG_	17_194	Core	Pulp	51.12	16.8	1 5	.32	4.	.33	7.3	9	3.42	3.3	31	0.9	0.2	0.02
MeT_I	LBUG_	17_195	5 Core	Pulp	58.04	15.64	4 1	.96	2.	.38	4.9	1 :	5.67	3.0)7	0.63	0.23	0.01
MeT_I	LBUG_	17_196	5 Core	Pulp	58.31	15.49) 2	.84	0.	.87	4.3	9	2.62	5.6	53	0.61	0.2	0.08
MeT_L	_BUG_	17_197	Core	Pulp	64.17	16.59) 2	.49	0.	.95	2.1	2	5.09	4.	1	0.4	0.17	0.08
MeT_L	_BUG_	17_198	Core	Pulp	59.2	15.3	5	.27	1.	.21	2.8	2	2.07	4.3	39	0.6	0.19	0.16
MeT_I	LBUG_	17_199	O Core	Pulp	56.52	15.15	5 7	.17	1.	.06	3.1	1	0.81	5.0)7	0.56	0.18	0.09
MeT_I	_BUG_	17_200) Core	Pulp	61.25	15.68	3 6	.55	1.	41	2.1	5	0.76	4.()8	0.47	0.15	0.09
000	000	300	300	000	000	300	000	00		00		000	00		000	000	000	000
LF2	LF2	LF2	LF2	LF2	LF2	LF2	LF2	LFC		LF2		LF2	LF2		LF2	LF2	LF2	LF2
Cr2O3	Ba	Sc	Sum	Cs	Ga	Hf	Nb	R	b	Sn		Sr	Та		Th	U	V	W
%	PPM	PPM	%	PPM	PPM	PPM	PPM	PP	Μ	PPN	A I	PPM	PPN	1 H	PPM	PPM	PPM	PPM
0.002	1	1	0.01	0.1	0.5	0.1	0.1	0.	1	1		0.5	0.1		0.2	0.1	8	0.5
0.056	661	6	98.23	3.2	17.5	2.6	3.2	113	3.4	3	2	269.6	0.2		3.3	1.1	123	17.3
0.048	703	4	98.14	2.8	14.3	2.6	3.3	140).5	4	2	273.9	0.2		3	1.2	69	22.1
0.063	839	3	98.74	2.7	13.8	2.6	2.5	10	8	1	1	195.6	0.2		3.1	1	49	11.4
0.05	708	6	98.44	3.4	16.6	2.8	3.5	143	3.5	4	2	280.4	0.2		3.4	1.5	97	21.4
0.051	1312	3	97.28	3.2	13	2.6	2.5	165	5.9	3	2	299.5	0.1		3.8	1.5	52	22.4
0.046	107	14	98.03	0.9	22.4	3.3	4.1	51	.7	11	2	298.3	0.3		4.7	3.7	174	52.2

0.042	1389	4	97.44	3.1	15.2	2.6	2.5	170.1	2	351.2	0.2	3.4	2.5	68	19.5
0.034	721	15	97.92	3.3	16.5	2.3	3.3	136.3	3	336.2	0.2	1.8	1.5	149	24.5
0.05	644	3	99.12	2.7	19.3	3.3	2.5	88.1	1	559.1	0.2	4.4	0.8	72	12.5
0.056	660	9	97.59	2.8	17.9	2.5	3.2	130	2	216.1	0.2	2.6	1.3	128	18
0.034	1238	4	97.52	3	14.2	2.5	2.7	181.1	3	277.1	0.1	4	2.4	74	46
0.032	929	5	98.42	4.2	20.3	3.1	2.6	171.1	3	182.4	0.2	4.7	5	73	33.1
0.037	553	14	97.62	1.5	18	3.3	3.8	105.9	4	465.6	0.2	4.4	2.7	149	26
0.038	1544	4	98.11	3.2	13.6	2.7	2.4	182.3	2	308.9	0.2	3.9	2.3	61	21.4
0.037	298	15	98.13	4.8	15.8	2.4	2.9	128.6	4	367	0.1	3	1.8	182	32.6
0.033	362	11	98.22	2.6	16	2.6	2.7	92.4	1	391.1	0.1	3.5	1.7	148	21.7
0.035	579	13	97.86	1.6	19.3	3	3.3	121.6	5	420.7	0.1	3.4	2.3	163	29
0.025	370	19	97.64	2.4	17.6	1.8	2.2	116.5	4	479.7	0.2	1.5	1.4	234	25.2
0.022	654	19	97.99	1.6	18.4	2.8	3.4	107.6	5	368.7	0.1	2.4	1.7	221	23.2
0.024	323	20	98.01	2.1	18.5	2.2	2.6	88.1	5	465.6	0.1	1.9	0.9	236	10.9
0.029	586	19	97.15	1.3	19.3	2.1	2.6	115	6	501.7	0.2	2	2.5	195	38
0.021	221	19	98.44	4.5	21.1	2.2	2.6	128.7	4	612.9	0.1	1.9	2.9	226	13.6
0.024	443	19	97.8	1.8	19.4	2.5	2.5	117.5	5	506.9	0.2	2.2	2.5	207	33.1
0.027	695	13	98.25	1.9	15	4.1	5	110.1	2	463.9	0.2	6.1	2.8	166	24.9
0.04	391	15	97.33	1.6	19	2.6	3.3	138.7	9	373.1	0.1	3.1	9	165	55.6
0.043	914	3	98.2	2.7	13.7	2.7	2	140.8	1	165.2	0.1	3	0.9	59	11.4
0.029	285	19	97.62	2	19.7	2.5	3.1	102.3	5	419.9	0.1	2.9	1.9	220	18.4
0.028	338	21	98.44	4.2	21	2.1	2.2	109.4	4	437.3	0.1	1.7	2	233	61.8
0.028	309	18	98.09	3.3	13.9	2.5	2.7	108.3	3	426.5	0.3	2.4	1.3	216	18.9
0.027	295	19	98.16	3.6	16.4	2.4	2.9	103.6	4	373.2	0.1	2	1.2	231	21.6
0.022	445	21	98.26	2.7	18.4	2.3	2.1	98.3	4	556.1	0.2	2	1.2	239	13.5
0.028	264	15	97.64	2	15.8	4.5	5.1	128.2	4	321.4	0.4	8.3	3.3	179	25.1
0.017	386	14	98.01	2.7	18	3	3.4	92.8	6	451.3	0.2	3.8	1.8	196	22.4
0.029	265	5	97.28	3.3	19.9	2.2	2.6	140.3	4	466.5	0.2	3	1.4	79	25
0.017	416	8	98.05	2.3	17.8	2.7	3.7	110.1	4	322.4	0.3	4	1.6	123	41.4
0.026	350	16	98.61	2.3	14.9	2.4	3.2	104.3	3	497.9	0.1	2.7	1.4	197	20.7
0.024	378	14	98.04	1.5	16.6	2.9	4	85.4	5	399	0.3	4.5	2.2	149	14.6
0.024	217	14	98.23	2.6	17.8	2.8	3.7	94.1	4	353.4	0.2	4.3	1.9	140	13.7
0.025	176	15	98.54	3	18.4	2.8	3.2	95.5	4	462	0.2	3.6	1.6	176	14.1
0.027	524	9	98.68	4.6	17.6	2.5	3	124.9	4	353.4	0.2	3.4	2.1	132	30.9
0.028	466	12	98	5	16.1	2.7	3	128.8	4	346.7	0.2	3.3	7.9	159	33.7
0.036	455	12	98.16	2	19.2	3.7	4	115.1	6	369.2	0.2	4.6	8	114	31.2
0.028	809	15	97.89	2.4	16.2	4	5.3	122.5	3	383.9	0.4	6.6	4.6	189	27.6
0.038	270	10	97.93	4.5	18.8	2.9	4.2	109.1	3	239.7	0.2	4.1	3.6	127	30
0.033	346	6	97.8	4	19	2.6	3.5	119.6	4	222.6	0.2	3.6	8.8	107	28
0.039	739	12	97.76	1.7	17.2	3.4	4.2	90.5	4	356	0.2	5.3	4	160	38.6
0.028	444	15	98.18	2.7	15.2	2.3	3.3	113	2	534.4	0.2	2.8	1.9	180	22.6
0.041	551	10	98.03	1.5	20.2	3.5	3.5	105.8	9	304.8	0.2	4.5	3.7	138	46.4
0.03	479	15	97.79	2.1	15.5	4.4	5.5	112.1	4	450.9	0.4	6	4.8	176	42.4

0.045	388	13	98.57	1.4	17.8	2.5	3.3	102.4	6	477	0.3	3.4	2.5	133	20.3
0.039	670	3	99.23	3.3	14.9	3.5	4.2	107.8	2	524.9	0.3	9	2.8	72	16.3
0.034	349	15	98.86	3.2	16.1	2.8	3.6	97.1	2	457.5	0.2	3.6	1.2	178	17.6
0.029	371	17	98.54	5.8	17.1	2.2	2.5	149.6	2	349.6	0.2	2.2	2.4	207	18.9
0.036	560	7	98.66	1.8	20.4	3	3.4	136	6	194	0.2	4.3	14.4	101	32.9
0.029	1323	7	99.07	5.1	18.3	2.8	3.2	182.1	3	211.5	0.2	3.8	6.9	104	30.8
0.029	406	8	98.81	2	18.7	3.1	3.6	93.4	2	302.7	0.2	3.3	2	123	27.3
0.022	199	8	98.28	1.4	21.7	2.7	3.3	63.8	3	383.4	0.2	2.8	3.8	135	15.9
0.038	370	10	98.43	1.5	18.1	3.6	3.6	85.6	4	283.7	0.3	4.5	3.7	124	39.4
0.036	320	13	97.86	2.2	21.4	3.8	4.7	90.3	6	296.9	0.3	5.8	3.7	162	54
0.046	308	6	98.55	4.5	15.9	2.7	2.7	130.1	3	229.3	0.1	3.4	1.6	84	31.8
0.03	749	6	98.5	3.9	16.2	2.6	3.2	111.8	2	283.6	0.2	3.4	1.5	98	34.4
0.044	552	4	98.63	4.9	14.7	2.8	2.7	126.3	3	206.2	0.1	3.2	1.7	81	44.9
0.034	422	16	98.33	6.8	17.7	2.7	3.1	156.4	2	306.4	0.2	3.1	2.6	184	25.7
0.035	899	4	99.31	3.3	20.3	3	2.7	135.7	3	212.4	0.2	3.9	2.5	63	22.5
0.036	350	17	98.24	1.3	21.4	2.7	3.4	132.2	6	291.6	0.1	3.1	31.3	170	25.5
0.039	512	12	97.76	1.5	15.7	3	3.6	92.5	5	429.3	0.2	3.9	4.7	123	22.5
0.041	631	4	98.57	1.7	13.9	3	2.7	99.7	4	306.9	0.2	4.1	1.5	97	24.2
0.059	1111	3	97.95	3.3	11.4	2	1.6	146	2	196.6	0.1	2.8	1.2	53	10.3
0.03	472	3	98.68	4	18.7	2.6	2.3	114.8	2	290.6	0.2	3.5	1.2	61	17.4
0.018	457	5	98.66	2.5	14.2	2.9	2.7	84.2	2	384.2	0.2	3.9	1.5	88	18.9
0.038	525	3	99.05	3.8	19.8	3	2.3	114	2	272	0.1	4.2	1.1	52	16.6
0.034	1010	8	98.21	4.6	17.5	2.3	2.3	159.9	2	221.6	0.2	2.8	1.3	105	19.7
0.04	1416	5	98.67	4	14.4	2.6	3.7	185.4	2	302.5	0.2	3.8	2.1	66	26
0.029	567	9	98.98	3.3	22.6	2.7	6.6	110	2	318.9	0.4	1.9	1.1	119	29.1
0.054	304	15	97.66	1.4	17.4	2.1	3.3	90.8	7	434.6	0.2	2.4	21.1	176	34.2
0.028	311	20	98.34	3.6	20.3	2.5	2.6	106.5	4	544.9	0.2	2.5	1.7	220	19
0.04	657	12	98.87	3.1	13.4	3.2	4.3	93.3	2	545.2	0.3	4.6	3.6	134	30
0.03	639	3	98.9	2.6	18.4	3.1	2.8	101.9	2	366	0.1	4.3	1.1	55	16.2
0.016	300	7	97.91	2.2	17.2	3.1	3.7	69.4	1	466.9	0.3	2.9	1.6	104	15.8
0.021	149	10	97.97	1.8	19.7	3.2	4.2	58.3	2	335.3	0.3	3.2	2.7	148	28.7
0.04	589	11	98.7	3.6	15.6	3.3	4.7	102.8	2	452.5	0.3	5.2	2.9	160	39.9
0.024	237	21	98.62	7.2	20.3	2.4	2.3	156.5	3	522.3	< 0.1	1.7	1.5	215	11.3
0.03	482	6	97.53	2.3	22.4	3.4	3.7	110.3	4	250.3	0.2	3.4	4.1	97	50.8
0.025	257	20	98.91	4.9	19.6	2.2	2.8	118.9	2	649	0.2	1.9	2	214	10.9
0.026	1303	6	98.92	3.6	18.3	3.3	3.1	188.9	2	252.7	0.2	4.6	5.3	72	69.7
0.027	1338	15	98.27	4.3	17	2.7	3.6	196	3	338.9	0.2	3.7	3.4	147	40.1
0.046	1583	7	96.69	3.5	16.7	2.8	2.9	145.8	5	283.9	0.1	4	2.9	97	76.3
0.029	1010	8	97.23	5.5	19.4	3	3.6	189.6	5	246.4	0.2	4.1	3.6	101	50.2
0.035	361	10	98.87	3.9	23.1	3.9	4.2	127.7	4	261.9	0.2	4.9	3.2	112	36.3
0.031	1704	8	96.45	4.7	17.7	2.7	3.3	162.1	4	335	0.2	3.8	2.5	121	38
0.034	1118	6	97.71	4.4	18.8	3.1	2.7	190.9	4	325.7	0.2	3.7	3.6	86	48.2
0.033	517	7	98.26	3.7	23	2.9	3.1	131.2	4	311.4	0.2	4	3.9	77	30.8

0.03	477	18	97.7	4 2.3	8 17.	8 5.	3 6.	.4 1	136.1	4	2	94.7	0.4	7.6	4.7	188	29.5
0.024	235	5 20	98.6	61 6.	5 19.	9 2.	1 2.	.7 1	145.9	2	5	24.5	0.1	1.9	1.1	210	14.1
0.026	277	9	98.9	2 2.5	5 18.	2 2.	7 3.	.6	87.9	1	4	72.9	0.2	3.5	0.9	124	9.7
0.024	954	8	98.	9 4.	2 15.	4 3	3.	.5	156	3	3	37.1	0.2	3.6	3	111	118.9
0.027	850) 4	99.6	61 6	21.	3 3.	4 2.	.3	109	2	4	47.9	0.1	2.8	1.5	69	5.8
0.029	520) 9	98.0	08 4.	1 18.	4 3	3.	.6 1	143.3	4	2	69.9	0.2	4.4	2.3	118	50.1
0.041	538	8 8	97.6	56 5.	1 21.	2 3.	1 3.	.7 1	191.2	5	2	32.9	0.2	3.6	5.2	112	82.2
0.031	468	8 7	98.	8 4.	1 22.	6 3.	6 3.	.5 1	167.1	3	1	75.4	0.2	4.6	4.3	91	41.8
0	0	0	0	0	0	0	0	0	0		0	0	0	0	0	0	70
F20	F20	F20	F20	F20	F20	F20	F20	F20	F20		F20	F20	F20	F20	F20	F20	A37
					Г	Г	L			•				L	Γ	Г	M
Zr	Y	La	Ce	Pr	Nd	Sm	Eu	Gd	l Tb	D	Эу	Но	Er	Tm	Yb	Lu	Mo
PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPM	PPN		1 PH	PM	PPM	PPM	PPM	PPM	PPM	%
0.1	0.1	0.1	0.1	0.02	0.3	0.05	0.02	0.0	5 0.01	0.	.05	0.02	0.03	0.01	0.05	0.01	0.001
00.2	5.0	12.2	24.9	2.09	11.0	2.22	0.47	1.0	4 0 10		02	0.10	0.56	0.00	0.40	0.07	0.000
88.3	5.8	15.5	24.8	2.98	11.8	2.23	0.47	1.64	4 0.19		.92	0.18	0.56	0.06	0.48	0.07	0.006
94.1	5.1 2.4	15.5	27.0	5.52 1.24	14.1	2.51	0.48	1.0		0.	.89	0.17	0.47	0.05	0.40	0.07	0.013
91.9	2.4	0.0	22.2	1.54	J.1 17	0.92	0.3	$\frac{0.7}{2.22}$	3 0.25) 0. / 1	43	0.08	0.15	0.05	0.21	0.05	0.002
93.4	/./	11.0	10.5	4.05	86	5.11 1.45	0.7	2.2.	$\frac{5}{2}$ 0.27	1.	.43	0.20	0.8	0.1	0.39	0.09	0.005
124.2	1/ 6	26.3	50.7	6.02	23	1.43	1.04	3.6	1 0.14	· 0.	.75 81	0.14	1.48	0.05	1.57	0.05	0.009
92.9	3.1	9.8	17	2.01	77	1 39	0.38	1.1	0.17	2.	58	0.55	0.29	0.23	0.31	0.24	0.025
76.5	8.9	15.3	26.8	3 33	14.2	2 78	0.30	2 32	3 0 33	1	76	0.1	0.2	0.04	0.91	0.03	0.007
108.2	3.4	10.5	18.7	2.29	8.8	1.49	0.42	1.0	2 0.14	0.	76	0.12	0.36	0.04	0.31	0.04	0.004
92.4	5.1	6.8	12.5	1.52	5.9	1.21	0.33	1	0.13	0.	74	0.13	0.41	0.06	0.44	0.07	0.002
95	4.9	12.5	21.3	2.47	10.1	1.6	0.45	1.34	4 0.16	i 0.	.83	0.18	0.42	0.06	0.53	0.07	0.008
104.7	6	14.3	26.1	3	11.5	2.01	0.52	1.53	3 0.19	1.	.04	0.21	0.55	0.09	0.6	0.09	0.009
116.3	14.7	24.9	47.8	5.64	21.8	4.3	1.13	3.38	8 0.46	5 2.	.87	0.55	1.55	0.23	1.42	0.24	0.105
98.5	3.5	10	16.5	1.9	7.6	1.37	0.42	1.19	9 0.12	0.	.66	0.12	0.37	0.05	0.34	0.06	0.009
87.1	14.4	27.4	51.8	5.92	22.8	4.19	1.07	3.44	4 0.49	2.	.43	0.53	1.41	0.19	1.14	0.17	0.01
98.6	11.7	30.6	54.6	5.9	22.4	3.71	0.97	2.80	6 0.38	3 2.	.22	0.38	1.19	0.18	1.09	0.16	0.008
103.6	13.3	13.9	28.6	3.72	17	3.28	0.97	3.25	5 0.48	8 2	.4	0.53	1.39	0.21	1.42	0.2	0.018
66.5	12.4	12.5	25.7	3.36	14.4	2.99	0.96	2.97	7 0.44	2.	.58	0.49	1.29	0.18	1.26	0.16	0.028
100.9	15.7	15.2	31.6	4.13	17.1	3.6	1.14	3.54	4 0.52	3.	.12	0.61	1.68	0.24	1.66	0.26	0.028
82.2	15	13.9	29.5	3.93	17.2	3.99	1.24	3.40	6 0.52	2.	.98	0.56	1.68	0.24	1.49	0.23	0.01
79.7	13.6	23.1	46.7	5.49	21.1	4.08	1.04	3.10	6 0.47	2	.6	0.5	1.55	0.19	1.45	0.2	0.177
79.8	12.2	13.6	26.3	3.22	13.6	3	0.9	2.57	7 0.4	2.	.46	0.54	1.34	0.19	1.35	0.19	0.013
85	14.1	18.1	34.7	4.42	18.7	3.65	1	3.15	5 0.46	5 2.	.66	0.53	1.49	0.21	1.31	0.22	0.029
138.4	13.2	44.7	81.3	8.94	33.5	5.21	1.13	3.69	9 0.48	3 2.	.49	0.49	1.27	0.18	1.32	0.21	0.03
96.1	18.2	31.3	60.5	7.08	27.4	5.3	1.2	4.34	4 0.62	3.	.38	0.7	2.08	0.27	1.87	0.28	0.085
84.7	2.6	5	8.7	1.05	4.4	0.87	0.38	0.7	1 0.09	0.	.42	0.08	0.21	0.04	0.27	0.05	0.007
94.9	13.7	13.9	28.3	3.73	15.2	3.18	0.99	3.02	2 0.47	2.	.62	0.51	1.52	0.22	1.36	0.2	0.005

73.1	11.4	11.1	22.3	2.84	12.1	3.02	0.88	2.5	0.37	2.01	0.43	1.15	0.16	1.13	0.17	0.021
89	12.6	15.8	31.7	4.03	16.6	3.17	1.01	2.99	0.46	2.6	0.5	1.32	0.21	1.29	0.2	0.013
90.9	13.8	14.5	29.6	3.78	16	3.37	0.99	2.92	0.45	2.65	0.5	1.6	0.21	1.35	0.21	0.02
76	12.9	12.6	28.3	3.48	15.7	3.26	1.04	3.04	0.43	2.64	0.54	1.45	0.2	1.21	0.19	0.032
164.5	16.5	26.8	51.5	6.04	24.9	4.9	1.18	4.13	0.56	3.26	0.64	1.7	0.26	1.82	0.28	0.03
117.6	14.5	16.6	33.8	4.09	17.2	3.29	1.03	3.11	0.44	2.68	0.55	1.51	0.22	1.48	0.22	0.035
77.6	5.7	10	19.1	2.26	9.9	1.87	0.66	1.55	0.2	1.09	0.2	0.59	0.07	0.44	0.07	0.003
103.7	9.6	18.2	32.2	3.99	16.3	3.21	0.82	2.38	0.33	2.06	0.37	1.13	0.14	1.05	0.17	0.009
90.2	11	15.1	30.1	3.63	15.2	3.06	0.92	2.58	0.38	2.08	0.47	1.23	0.15	1.01	0.16	0.022
110.8	12.9	20.2	38.7	4.8	19.3	3.69	1.15	3.13	0.43	2.56	0.51	1.49	0.21	1.47	0.23	0.016
109.7	12.5	14.8	30.6	3.72	15.6	3.04	0.91	2.78	0.39	2.34	0.49	1.42	0.21	1.37	0.2	0.004
97.2	12.6	13.8	28.9	3.49	14.5	3.07	0.87	2.83	0.41	2.38	0.49	1.38	0.2	1.28	0.19	0.003
85.9	7.1	23	43.4	4.84	18.6	2.98	0.82	2.11	0.28	1.38	0.27	0.78	0.12	0.73	0.12	0.014
98.5	10.7	26.3	46.4	5.36	20.6	3.52	0.87	2.79	0.38	2.02	0.43	1.13	0.19	1.13	0.18	0.034
132.7	19.3	26.3	54.4	6.42	25	4.68	1.12	3.87	0.59	3.38	0.72	2.18	0.32	2.1	0.31	0.043
157.7	14.5	38.5	74.1	7.82	29	4.73	1	3.49	0.47	2.58	0.54	1.63	0.24	1.65	0.25	0.018
114.7	8.1	14.1	29.2	3.32	13.8	2.49	0.56	1.93	0.27	1.49	0.29	0.92	0.12	0.85	0.12	0.003
100.6	5.8	14.4	26.1	3.08	11.8	2.09	0.53	1.57	0.21	1.17	0.21	0.62	0.09	0.68	0.1	0.016
130.4	12.9	33.4	63.7	7.17	26.6	4.32	0.96	3.3	0.46	2.56	0.49	1.39	0.2	1.35	0.21	0.042
82.3	12.6	31	58.8	6.44	25	4.51	0.97	3.29	0.44	2.34	0.48	1.15	0.16	1.1	0.16	0.021
133.9	12.6	30.8	59.3	6.69	25.3	4.42	0.97	3.16	0.44	2.34	0.47	1.39	0.21	1.27	0.21	0.039
170.2	15.8	28.2	55.8	6.43	24.7	4.36	0.98	3.8	0.53	2.76	0.56	1.78	0.26	1.69	0.25	0.099
97.1	15.5	40.1	74.7	8.14	30.6	5.24	1.21	3.86	0.53	2.67	0.53	1.56	0.21	1.43	0.2	0.086
120.4	5.4	19.7	38.3	4.21	15.6	2.49	0.63	1.62	0.2	0.95	0.16	0.48	0.07	0.48	0.06	0.016
114.5	11.4	17.6	33.6	3.99	15.8	2.93	0.85	2.58	0.37	2.15	0.4	1.19	0.16	1.07	0.15	0.005
76.1	11.1	17.5	34.6	3.95	15.4	2.94	0.84	2.52	0.37	1.96	0.37	1.24	0.16	1.02	0.16	0.028
116	12.7	34.8	58.1	6.09	22.7	3.78	0.87	2.93	0.39	2.21	0.45	1.32	0.23	1.47	0.22	0.008
112.3	5.7	18.3	33.2	3.73	13.9	2.44	0.48	1.77	0.22	1.09	0.22	0.56	0.09	0.67	0.1	0.004
119	8	17.3	33.5	4.05	15.8	2.85	0.71	2.03	0.27	1.47	0.3	0.88	0.11	0.82	0.11	0.013
104.3	10.6	15.8	32.2	3.84	15.3	3.08	1.06	2.44	0.36	1.88	0.35	0.99	0.16	0.94	0.14	0.019
131.2	12.5	22.8	43.3	5.16	20.6	3.74	0.92	2.9	0.4	2.09	0.45	1.29	0.19	1.23	0.18	0.026
150.3	14.3	22.6	43.3	5.05	20.9	3.85	0.97	3.06	0.44	2.5	0.52	1.42	0.21	1.44	0.21	0.037
102.1	6.7	13.3	25.9	3.1	12.2	2.04	0.49	1.62	0.23	1.14	0.21	0.65	0.08	0.6	0.09	0.011
102.4	6.2	16.1	30	3.53	14.2	2.33	0.49	1.54	0.2	1.01	0.19	0.5	0.08	0.52	0.07	0.003
100.1	5.4	14.6	27.5	3.3	13.7	2.25	0.49	1.52	0.19	0.93	0.2	0.52	0.06	0.49	0.08	0.004
98.8	12.8	21.2	38.2	4.57	18	3.24	0.81	2.8	0.39	2.16	0.41	1.37	0.18	1.21	0.17	0.02
111.5	5.7	12.4	23.2	2.6	11.1	1.89	0.46	1.48	0.18	1.12	0.19	0.52	0.09	0.49	0.07	0.006
102.5	15	24.5	51.4	6	23.9	4.34	1.08	3.2	0.5	2.72	0.6	1.75	0.23	1.66	0.25	0.021
113.3	16.4	22.6	45.5	5.49	21.8	4.48	1.07	3.75	0.52	3.22	0.59	1.77	0.27	1.66	0.25	0.018
104.3	4.5	14.3	28.5	3.16	12.2	1.88	0.51	1.3	0.15	0.79	0.13	0.43	0.07	0.49	0.07	0.022
74	2.4	3.8	6.8	0.85	3.9	0.68	0.27	0.58	0.06	0.39	0.06	0.25	0.03	0.22	0.03	0.006
97.1	4	9.6	19.1	2.21	9.2	1.49	0.43	1.11	0.13	0.76	0.12	0.35	0.05	0.31	0.04	0.005
109	8.3	30.6	55.5	6.1	22.2	3.36	0.74	2.52	0.29	1.47	0.28	0.78	0.11	0.67	0.09	0.008

81.8 4.4 7.8 15 1.71 7.7 1.41 0.38 1.18 0.15 0.77 0.16 0.44 0.08 0.44 0.07 0.001 95.5 4.2 8.5 1.6 1.84 7.3 1.52 0.4 1.04 0.13 0.06 0.12 0.44 0.08 0.21 0.04 0.28 0.05 0.007 73 15.6 43.9 78.7 92.2 3.48 0.23 1.26 1.66 1.38 0.21 0.11 0.21 0.11 82.8 12.9 1.36 29 3.56 1.51 2.97 0.88 2.83 0.39 2.29 0.46 1.38 0.21 1.01 112.4 10.9 2.47 4.6 5.16 1.2.3 0.75 2.71 0.37 1.94 0.38 1.05 0.16 0.06 0.16 0.04 0.05 0.001 112.4 10.8 10.7 0.75 5.2 1.02 3.71 0.44 1.03 0.13 0.37 0.44 1.21 0.4	105.1	3.5	10.3	17.9	2.04	8.1	1.	35	0.35	0.95	0.11	0.52	0.09	0.26	0.04	0.29	0.05	0.005
95.5 4.2 8.5 1.6 1.84 7.3 1.52 0.4 1.04 0.13 0.61 0.12 0.42 0.05 0.34 0.05 0.01 99.1 2.6 5.6 10.2 1.14 4.1 0.81 0.35 0.67 0.88 0.41 0.08 0.21 0.45 0.28 0.05 0.21 0.11 98.1 12.0 13.6 2.9 2.35 15.1 2.97 0.88 3.38 0.39 0.46 1.38 0.21 1.01 0.10 0.017 122.4 10.5 2.47 4.6 5.16 19.2 3.42 0.75 2.71 0.37 1.94 0.38 1.05 0.41 0.04 0.05 0.01 114.7 10.5 17 35.8 4.32 1.8 1.95 0.47 1.4 0.16 0.81 0.03 0.38 1.06 0.4 0.01 123 12.7 68.1 10.84 10.74 3.75 2.10 3.75 0.41 0.21 0.41 0.13 0.10	81.8	4.4	7.8	15	1.71	7.7	1.	41	0.38	1.18	0.15	0.77	0.16	0.44	0.08	0.44	0.07	0.001
99.1 2.6 5.6 10.2 1.14 4.1 0.81 0.35 0.67 0.08 0.41 0.08 0.21 0.04 0.28 0.05 0.007 73 15.6 43.9 78.7 9.22 3.48 6.23 1.26 4.59 0.63 3.11 0.62 1.56 0.25 1.59 0.21 0.113 89.8 12.9 13.6 92.3 3.56 15.1 2.97 0.88 2.83 0.39 2.92 0.46 1.38 0.0 0.6 0.00 0.021 113.2 4.8 1.47 2.85 3.05 11.8 1.95 0.47 1.4 0.16 0.81 0.13 0.38 0.06 0.4 0.04 0.16 0.90 0.16 0.004 113.4 8.1 105.4 1.75 5.2 1.02 3.71 0.44 1.20 0.41 1.30 0.81 0.97 0.16 0.29 0.41 1.21 0.18 0.14 0.10 0.113 0.38 0.40 0.21 0.14 0.21 0.	95.5	4.2	8.5	16	1.84	7.3	1.	52	0.4	1.04	0.13	0.61	0.12	0.42	0.05	0.34	0.05	0.01
73 15.6 43.9 78.7 9.22 34.8 6.23 1.26 4.59 0.63 3.11 0.62 1.56 0.25 1.59 0.21 0.113 89.8 12.9 13.6 29 3.56 15.1 2.97 0.88 2.83 0.39 2.29 0.46 1.38 0.21 1.2 0.19 0.017 12.4 10.9 24.7 46 5.16 19.2 3.42 0.75 2.71 0.37 1.94 0.38 1.05 0.16 0.04 0.05 0.004 113.2 4.8 1.47 28.5 3.05 1.18 1.95 0.47 1.44 0.16 0.81 0.13 0.60 0.4 0.05 0.004 1147 10.5 17 3.58 4.32 18 3.03 0.88 2.64 0.29 0.94 0.13 0.97 0.16 0.004 12.7 68.1 108.4 10.74 3.75 5.2 1.02 3.57 0.44 2.12 0.4 1.13 0.18 0.07 0.023<	99.1	2.6	5.6	10.2	1.14	4.1	0.	81	0.35	0.67	0.08	0.41	0.08	0.21	0.04	0.28	0.05	0.007
89.8 12.9 13.6 2.9 3.56 15.1 2.97 0.88 2.83 0.39 2.29 0.46 1.38 0.2 1.2 0.19 0.017 122.4 10.9 24.7 46 5.16 19.2 3.42 0.75 2.71 0.37 1.94 0.38 1.05 0.16 1.06 0.16 0.004 113.2 4.8 14.7 28.5 3.05 1.18 1.94 0.47 1.4 0.16 0.88 1.03 0.82 0.60 0.44 0.13 0.97 0.16 0.004 114.1 10.5 17 3.58 5.29 2.22 3.19 0.72 2.31 0.28 1.44 0.24 1.13 0.18 1.08 0.17 0.01 7.6.6 13.7 20 40.9 5.06 21 3.83 0.93 3.28 0.45 2.27 0.19 1.21 0.18 0.01 0.019 13.5 6.7 19.9 3.24 1.26 2.60 6.6 1.77 0.23 1.41 0.21 <td>73</td> <td>15.6</td> <td>43.9</td> <td>78.7</td> <td>9.22</td> <td>34.8</td> <td>6.</td> <td>23</td> <td>1.26</td> <td>4.59</td> <td>0.63</td> <td>3.11</td> <td>0.62</td> <td>1.56</td> <td>0.25</td> <td>1.59</td> <td>0.21</td> <td>0.113</td>	73	15.6	43.9	78.7	9.22	34.8	6.	23	1.26	4.59	0.63	3.11	0.62	1.56	0.25	1.59	0.21	0.113
122.4 10.9 24.7 46 5.16 19.2 3.42 0.75 2.71 0.37 1.94 0.38 1.05 0.16 1.06 0.16 0.024 113.2 4.8 14.7 28.5 3.05 11.8 1.95 0.47 1.4 0.16 0.81 0.31 0.38 0.06 1.4 0.05 0.04 118 8.1 10.5 17 35.8 4.32 1.8 3.03 0.8 2.66 0.36 1.74 0.38 1.09 0.16 0.004 118 8.1 2.67 49.8 5.29 2.22 3.19 0.72 2.31 0.28 1.44 0.14 0.13 0.97 0.16 0.008 129.3 1.27 6.81 10.49 5.06 21 3.83 0.93 3.28 0.45 1.27 0.19 1.21 0.18 0.07 32.4 12.2 17.4 3.45 17.9 3.22 0.95 3.04 2.28 0.45 1.47 0.19 1.28 0.07 120.4 6.3 15.9 9.8 4.92 1.21 3.45 1.33 0.37 1.4 0.21 0.10 121 <td>89.8</td> <td>12.9</td> <td>13.6</td> <td>29</td> <td>3.56</td> <td>15.1</td> <td>2.</td> <td>97</td> <td>0.88</td> <td>2.83</td> <td>0.39</td> <td>2.29</td> <td>0.46</td> <td>1.38</td> <td>0.2</td> <td>1.2</td> <td>0.19</td> <td>0.017</td>	89.8	12.9	13.6	29	3.56	15.1	2.	97	0.88	2.83	0.39	2.29	0.46	1.38	0.2	1.2	0.19	0.017
113.2 4.8 14.7 28.5 3.05 11.8 1.95 0.47 1.4 0.16 0.81 0.13 0.38 0.06 0.4 0.05 0.004 114.7 10.5 17 35.8 4.32 18 3.03 0.8 2.66 0.36 1.74 0.38 1.09 0.16 0.04 0.04 118 8.1 26.7 49.8 5.29 2.2.3 1.09 0.72 2.31 0.28 1.49 0.29 0.94 0.13 0.97 0.16 0.008 1203 12.7 68.1 108.4 10.74 37.5 5.2 1.02 3.77 0.44 2.12 0.4 1.13 0.18 0.08 0.023 1315 6.7 19.9 3.88 4.94 2.02 3.14 0.84 2.22 0.27 1.41 0.23 0.77 0.08 0.54 0.07 0.023 1204 6.3 15.9 9.8 3.27 12.6 2.36 0.66 1.7 0.23 0.11 0.10 0.10 0.10 </td <td>122.4</td> <td>10.9</td> <td>24.7</td> <td>46</td> <td>5.16</td> <td>19.2</td> <td>3.</td> <td>42</td> <td>0.75</td> <td>2.71</td> <td>0.37</td> <td>1.94</td> <td>0.38</td> <td>1.05</td> <td>0.16</td> <td>1.06</td> <td>0.16</td> <td>0.024</td>	122.4	10.9	24.7	46	5.16	19.2	3.	42	0.75	2.71	0.37	1.94	0.38	1.05	0.16	1.06	0.16	0.024
114.7 10.5 17 35.8 4.32 18 3.03 0.8 2.66 0.36 1.74 0.38 1.09 0.16 0.9 0.16 0.004 118 8.1 26.7 49.8 5.29 22.2 3.19 0.72 2.31 0.28 1.49 0.29 0.94 0.13 0.97 0.16 0.008 129.3 12.7 68.1 108.4 10.74 37.5 5.2 1.02 3.57 0.44 2.12 0.4 1.13 0.18 0.18 0.018 131.5 6.7 19.9 39.8 4.94 20.2 3.14 0.84 2.22 0.27 1.41 0.23 0.72 0.88 0.44 0.70 0.023 82.4 12.2 17.4 3.45 12.6 2.36 0.66 1.7 0.23 1.13 0.23 0.47 0.11 0.66 0.11 0.021 10.4 6 2.27 41.9 4.51 17.4 2.44 0.66 1.65 0.22 1.11 0.23 0.61 0.01	113.2	4.8	14.7	28.5	3.05	11.8	1.	95	0.47	1.4	0.16	0.81	0.13	0.38	0.06	0.4	0.05	0.004
118 8.1 26.7 49.8 5.29 22.2 3.19 0.72 2.31 0.28 1.49 0.29 0.94 0.13 0.97 0.16 0.008 129.3 12.7 68.1 108.4 10.74 37.5 5.2 1.02 3.57 0.44 2.12 0.4 1.13 0.18 1.08 0.17 0.01 76.6 13.7 20 40.9 5.06 21 3.83 0.93 3.28 0.45 2.52 5.5 1.27 0.19 1.21 0.18 0.017 82.4 12.2 17.4 34.5 4.28 17.9 3.22 0.95 3.09 0.43 2.28 0.45 1.47 0.19 1.28 0.19 0.02 105 12.3 0.99 4.45 17.4 2.44 0.61 1.65 0.22 1.11 0.23 0.61 0.9 0.69 0.11 0.006 1117 6.4 20.8 37.7 4.31 17 2.78 0.65 2.18 0.21 1.11 0.23 0.61 <td>114.7</td> <td>10.5</td> <td>17</td> <td>35.8</td> <td>4.32</td> <td>18</td> <td>3.</td> <td>03</td> <td>0.8</td> <td>2.66</td> <td>0.36</td> <td>1.74</td> <td>0.38</td> <td>1.09</td> <td>0.16</td> <td>0.9</td> <td>0.16</td> <td>0.004</td>	114.7	10.5	17	35.8	4.32	18	3.	03	0.8	2.66	0.36	1.74	0.38	1.09	0.16	0.9	0.16	0.004
129.3 12.7 68.1 108.4 10.74 37.5 5.2 1.02 3.57 0.44 2.12 0.4 1.13 0.18 1.08 0.17 0.01 76.6 13.7 20 40.9 5.06 2.1 3.83 0.93 3.28 0.45 2.25 0.5 1.27 0.19 1.21 0.18 0.013 82.4 12.2 17.4 34.5 4.28 17.9 3.22 0.95 3.09 0.43 2.28 0.45 1.47 0.19 1.28 0.19 0.21 120.4 6.3 15.9 29.8 3.27 12.6 2.36 0.6 1.7 0.23 0.46 1.4 0.9 1.00 1.1 0.23 0.61 0.07 0.11 0.69 0.11 0.00 0.11 0.00 0.11 0.00 0.10 0.01	118	8.1	26.7	49.8	5.29	22.2	3.	19	0.72	2.31	0.28	1.49	0.29	0.94	0.13	0.97	0.16	0.008
76.6 13.7 20 40.9 5.06 21 3.83 0.93 3.28 0.45 2.52 0.5 1.27 0.19 1.21 0.18 0.018 131.5 6.7 19.9 3.98 4.94 20.2 3.14 0.84 2.22 0.27 1.41 0.23 0.72 0.08 0.54 0.07 0.021 82.4 17.2 3.74 3.27 12.6 2.36 0.6 1.7 0.23 0.43 2.28 0.45 1.47 0.19 0.28 0.01 0.01 105 12.3 20.9 41 4.67 19.1 3.46 0.93 2.93 0.44 2.3 0.46 1.4 0.2 1.19 0.2 0.06 0.11 0.01 0.11 0.25 0.10 0.11 0.23 0.10 0.11 0.26 0.11 0.02 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	129.3	12.7	68.1	108.4	10.74	37.5	5	.2	1.02	3.57	0.44	2.12	0.4	1.13	0.18	1.08	0.17	0.01
131.5 6.7 19.9 39.8 4.94 20.2 3.14 0.84 2.22 0.27 1.41 0.23 0.72 0.08 0.54 0.07 0.023 82.4 12.2 17.4 34.5 4.28 17.9 3.22 0.95 3.09 0.43 2.28 0.45 1.47 0.19 1.28 0.19 0.21 105 12.3 20.9 4.1 4.67 19.1 3.46 0.93 2.93 0.4 2.3 0.46 1.4 0.2 1.19 0.2 0.006 103.4 6 22.7 41.9 4.45 17.4 2.44 0.6 1.65 0.22 1.11 0.23 0.61 0.09 0.69 0.11 0.006 111.7 6.4 2.08 3.77 4.31 1.7 2.78 0.65 2.18 0.21 0.41 1.23 0.17 0.16 0.01 0.01 136.4 6.4 2.48 4.44 4.09 3.26 0.38 2.01 0.14 0.12 0.75 0.1 0.10 <td>76.6</td> <td>13.7</td> <td>20</td> <td>40.9</td> <td>5.06</td> <td>21</td> <td>3.</td> <td>83</td> <td>0.93</td> <td>3.28</td> <td>0.45</td> <td>2.52</td> <td>0.5</td> <td>1.27</td> <td>0.19</td> <td>1.21</td> <td>0.18</td> <td>0.018</td>	76.6	13.7	20	40.9	5.06	21	3.	83	0.93	3.28	0.45	2.52	0.5	1.27	0.19	1.21	0.18	0.018
82.4 12.2 17.4 34.5 4.28 17.9 3.22 0.95 3.09 0.43 2.28 0.45 1.47 0.19 1.28 0.19 0.021 1204 6.3 15.9 29.8 3.27 12.6 2.36 0.6 1.7 0.23 1.13 0.23 0.7 0.1 0.61 0.1 0.019 105 12.3 20.9 4.1 4.67 19.1 3.46 0.93 2.93 0.4 2.3 0.46 1.4 0.2 1.19 0.2 0.006 1013 6.4 20.8 3.7.7 4.31 1.7 2.78 0.65 2.18 0.25 1.34 0.27 0.7 0.11 0.69 0.1 0.007 135.4 10.9 3.2.6 6.2 5.7 2.9 4.4 0.99 3.26 0.38 2.01 0.41 1.23 0.17 1.16 0.06 0.13 0.01 1064 6.4 2.48 4.44 4.69 1.82 2.77 0.59 0.30 0.23 1.26	131.5	6.7	19.9	39.8	4.94	20.2	3.	14	0.84	2.22	0.27	1.41	0.23	0.72	0.08	0.54	0.07	0.023
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	82.4	12.2	17.4	34.5	4.28	17.9	3.	22	0.95	3.09	0.43	2.28	0.45	1.47	0.19	1.28	0.19	0.021
105 12.3 20.9 41 4.67 19.1 3.46 0.93 2.93 0.4 2.3 0.46 1.4 0.2 1.19 0.2 0.006 103.4 6 22.7 41.9 4.45 17.4 2.44 0.6 1.65 0.22 1.11 0.23 0.61 0.09 0.69 0.11 0.006 111.7 6.4 20.8 37.7 4.31 17 2.78 0.65 2.18 0.25 1.34 0.27 0.7 0.11 0.69 0.1 0.007 135.4 10.9 33.2 62 6.57 25.9 4.4 0.99 3.26 0.38 2.01 0.41 1.23 0.17 1.12 0.16 0.003 106.4 6.4 24.8 44.4 4.69 18.2 2.77 0.59 2.03 0.23 1.26 0.24 0.77 0.1 0.79 0.13 0.004 110 6.9 25.3 4.3 1.71 2.67 0.67 2.07 0.25 1.41 0.21 0.77	120.4	6.3	15.9	29.8	3.27	12.6	2.	36	0.6	1.7	0.23	1.13	0.23	0.7	0.1	0.61	0.1	0.019
103.4 6 22.7 41.9 4.45 17.4 2.44 0.6 1.65 0.22 1.11 0.23 0.61 0.09 0.69 0.11 0.006 111.7 6.4 20.8 37.7 4.31 17 2.78 0.65 2.18 0.25 1.34 0.27 0.7 0.11 0.69 0.1 0.007 135.4 10.9 33.2 62 6.57 25.9 4.4 0.99 3.26 0.38 2.01 0.41 1.23 0.17 1.12 0.16 0.003 106.4 6.4 24.8 44.4 4.69 18.2 2.77 0.59 2.03 0.23 1.26 0.24 0.77 0.1 0.79 0.13 0.004 110 6.9 25.3 48.8 5.28 20.6 3.04 0.66 2.18 0.27 1.34 0.26 0.77 0.09 0.72 0.1 0.004 111.0 6.19 31.4 61.9 6.76 25.9 5.07 1.21 4.44 0.63 3.66 0.69 </td <td>105</td> <td>12.3</td> <td>20.9</td> <td>41</td> <td>4.67</td> <td>19.1</td> <td>3.</td> <td>46</td> <td>0.93</td> <td>2.93</td> <td>0.4</td> <td>2.3</td> <td>0.46</td> <td>1.4</td> <td>0.2</td> <td>1.19</td> <td>0.2</td> <td>0.006</td>	105	12.3	20.9	41	4.67	19.1	3.	46	0.93	2.93	0.4	2.3	0.46	1.4	0.2	1.19	0.2	0.006
111.7 6.4 20.8 37.7 4.31 17 2.78 0.65 2.18 0.25 1.34 0.27 0.7 0.11 0.69 0.1 0.007 135.4 10.9 33.2 62 6.57 25.9 4.4 0.99 3.26 0.38 2.01 0.41 1.23 0.17 1.12 0.16 0.003 106.4 6.4 24.8 44.4 4.69 18.2 2.77 0.59 2.03 0.23 1.26 0.24 0.77 0.1 0.79 0.13 0.004 110 6.9 25.3 48.8 5.28 20.6 3.04 0.66 2.18 0.27 1.34 0.26 0.7 0.99 0.72 0.1 0.004 113.6 6.8 21.5 39.3 4.3 17.1 2.67 0.67 2.07 0.25 1.41 0.21 0.75 0.1 0.69 0.1 0.01 0.01 20.37 18.9 31.4 61.9 6.76 2.9 3.61 0.57 1.34 0.47 0.34	103.4	6	22.7	41.9	4.45	17.4	2.	44	0.6	1.65	0.22	1.11	0.23	0.61	0.09	0.69	0.11	0.006
135.4 10.9 33.2 62 6.57 25.9 4.4 0.99 3.26 0.38 2.01 0.41 1.23 0.17 1.12 0.16 0.003 106.4 6.4 24.8 44.4 4.69 18.2 2.77 0.59 2.03 0.23 1.26 0.24 0.77 0.1 0.79 0.13 0.004 110 6.9 25.3 48.8 5.28 20.6 3.04 0.66 2.18 0.27 1.34 0.26 0.7 0.09 0.72 0.1 0.001 13.6 6.8 21.5 39.3 4.3 17.1 2.67 0.67 2.07 0.25 1.41 0.21 0.75 0.1 0.69 0.1 0.001 203.7 18.9 31.4 61.9 6.76 25.9 5.07 1.21 4.44 0.63 3.66 0.69 1.99 0.29 2.01 0.32 0.045 111.6 11 23.5 4.81 5.74 2.46 4.13 0.84 3.07 0.39 1.92 0.34<	111.7	6.4	20.8	37.7	4.31	17	2.	78	0.65	2.18	0.25	1.34	0.27	0.7	0.11	0.69	0.1	0.007
106.4 6.4 24.8 44.4 4.69 18.2 2.77 0.59 2.03 0.23 1.26 0.24 0.77 0.1 0.79 0.13 0.004 110 6.9 25.3 48.8 5.28 20.6 3.04 0.66 2.18 0.27 1.34 0.26 0.7 0.09 0.72 0.1 0.004 113.6 6.8 21.5 39.3 4.3 17.1 2.67 0.67 2.07 0.25 1.41 0.21 0.75 0.1 0.69 0.1 0.001 203.7 18.9 31.4 61.9 6.76 25.9 5.07 1.21 4.44 0.63 3.66 0.69 1.99 0.29 2.01 0.32 0.045 77 13.5 25.6 51.5 6.37 2.46 4.51 0.92 3.61 0.55 0.55 0.47 1.33 0.17 0.68 0.12 0.011 109.9 7.7 14.5 29.2 3.56 14.7 2.65 0.75 1.34 0.14 0.7 0.12	135.4	10.9	33.2	62	6.57	25.9	4	.4	0.99	3.26	0.38	2.01	0.41	1.23	0.17	1.12	0.16	0.003
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	106.4	6.4	24.8	44.4	4.69	18.2	2.	77	0.59	2.03	0.23	1.26	0.24	0.77	0.1	0.79	0.13	0.004
113.6 6.8 21.5 39.3 4.3 17.1 2.67 0.67 2.07 0.25 1.41 0.21 0.75 0.1 0.69 0.1 0.001 203.7 18.9 31.4 61.9 6.76 25.9 5.07 1.21 4.44 0.63 3.66 0.69 1.99 0.29 2.01 0.32 0.045 77 13.5 25.6 51.5 6.37 24.6 4.51 0.92 3.61 0.5 2.5 0.47 1.31 0.17 0.96 0.15 0.01 101.6 11 23.5 48.1 5.74 23.4 4.13 0.84 3.07 0.39 1.92 0.34 0.97 0.15 0.86 0.12 0.001 109.9 7.7 14.5 29.2 3.56 14.7 2.65 0.7 2.26 0.28 1.43 0.27 0.76 0.11 0.74 0.12 0.001 172.7 7.3 17.9 34.9 4.01 15.9 2.85 0.65 2.17 0.27 1.49 0.2	110	6.9	25.3	48.8	5.28	20.6	3.	04	0.66	2.18	0.27	1.34	0.26	0.7	0.09	0.72	0.1	0.004
203.7 18.9 31.4 61.9 6.76 25.9 5.07 1.21 4.44 0.63 3.66 0.69 1.99 0.29 2.01 0.32 0.045 77 13.5 25.6 51.5 6.37 24.6 4.51 0.92 3.61 0.5 2.5 0.47 1.31 0.17 0.96 0.15 0.01 111.6 11 23.5 48.1 5.74 23.4 4.13 0.84 3.07 0.39 1.92 0.34 0.97 0.15 0.86 0.12 0.001 109.9 7.7 14.5 29.2 3.56 14.7 2.65 0.7 2.26 0.28 1.43 0.27 0.76 0.11 0.74 0.12 0.001 109.9 7.7 14.5 29.2 3.56 14.7 2.65 0.7 1.24 0.28 1.43 0.05 0.26 0.05 0.002 17.2 7.3 17.9 34.9 4.01 15.9 2.74 0.73 2.1 0.29 1.46 0.28 0.81 0.12	113.6	6.8	21.5	39.3	4.3	17.1	2.	67	0.67	2.07	0.25	1.41	0.21	0.75	0.1	0.69	0.1	0.001
77 13.5 25.6 51.5 6.37 24.6 4.51 0.92 3.61 0.5 2.5 0.47 1.31 0.17 0.96 0.15 0.01 111.6 11 23.5 48.1 5.74 23.4 4.13 0.84 3.07 0.39 1.92 0.34 0.97 0.15 0.86 0.12 0.001 109.9 7.7 14.5 29.2 3.56 14.7 2.65 0.7 2.26 0.28 1.43 0.27 0.76 0.11 0.74 0.12 0.009 125.8 3.2 13.7 28.8 3.24 13.6 1.99 0.57 1.34 0.14 0.7 0.12 0.34 0.05 0.26 0.05 0.002 117.2 7.3 17.9 34.9 4.01 15.9 2.85 0.65 2.17 0.27 1.49 0.28 0.83 0.11 0.74 0.13 0.001 119.1 8.6 25.6 47.8 5.25 20.4 3.61 1.07 2.91 0.34 1.64 0.2	203.7	18.9	31.4	61.9	6.76	25.9	5.	07	1.21	4.44	0.63	3.66	0.69	1.99	0.29	2.01	0.32	0.045
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	77	13.5	25.6	51.5	6.37	24.6	i 4.	51	0.92	3.61	0.5	2.5	0.47	1.31	0.17	0.96	0.15	0.01
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	111.6	11	23.5	48.1	5.74	23.4	4.	13	0.84	3.07	0.39	1.92	0.34	0.97	0.15	0.86	0.12	0.001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	109.9	7.7	14.5	29.2	3.56	14.7	2.	65	0.7	2.26	0.28	1.43	0.27	0.76	0.11	0.74	0.12	0.009
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	125.8	3.2	13.7	28.8	3.24	13.6	1.	99	0.57	1.34	0.14	0.7	0.12	0.34	0.05	0.26	0.05	0.002
119.1 8.6 25.6 47.8 5.25 20.4 3.61 1.07 2.91 0.34 1.64 0.32 0.95 0.13 0.85 0.12 0.005 139.2 7.4 20.6 38.9 4.34 17.5 2.74 0.73 2.1 0.29 1.46 0.32 0.95 0.13 0.85 0.12 0.001 OLE W OLE W OLE W OLE W OLE W OLE W 0.2 0.2 0.2 0.4 0.29 1.46 0.32 0.95 0.13 0.85 0.12 0.001 0.0 0.0 0.2 1.46 0.28 0.81 0.12 0.77 0.1 0.001 0.0 0.0 0.0 0.0 0.2 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.2 0.0 0.4 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.1 0.1 <td< td=""><td>117.2</td><td>7.3</td><td>17.9</td><td>34.9</td><td>4.01</td><td>15.9</td><td>2.</td><td>85</td><td>0.65</td><td>2.17</td><td>0.27</td><td>1.49</td><td>0.28</td><td>0.83</td><td>0.11</td><td>0.74</td><td>0.13</td><td>0.004</td></td<>	117.2	7.3	17.9	34.9	4.01	15.9	2.	85	0.65	2.17	0.27	1.49	0.28	0.83	0.11	0.74	0.13	0.004
139.2 7.4 20.6 38.9 4.34 17.5 2.74 0.73 2.1 0.29 1.46 0.28 0.81 0.12 0.77 0.1 0.001 0	119.1	8.6	25.6	47.8	5.25	20.4	3.	61	1.07	2.91	0.34	1.64	0.32	0.95	0.13	0.85	0.12	0.005
0L 0L 0L 0L 0L 0L 00 00 27 <th27< th=""> 27 27 27<!--</td--><td>139.2</td><td>7.4</td><td>20.6</td><td>38.9</td><td>4.34</td><td>17.5</td><td>2.</td><td>74</td><td>0.73</td><td>2.1</td><td>0.29</td><td>1.46</td><td>0.28</td><td>0.81</td><td>0.12</td><td>0.77</td><td>0.1</td><td>0.001</td></th27<>	139.2	7.4	20.6	38.9	4.34	17.5	2.	74	0.73	2.1	0.29	1.46	0.28	0.81	0.12	0.77	0.1	0.001
01 02 02 02 02 00<																		
\widetilde{V} <	70	70	70	02	2	70	01		00	00	C C	70	52		52	52	52	52
\geq \geq \geq \geq \vdash \vdash \leftarrow	1A3	IA3	1A3	143		1A3	ĞÕ		C0(COC	Č	77	62		02	62	025	02
Cu Pb Zii Ag Ni LOI IOI/C IOI/S Mo Cu Pb Zii Ag Ni % % % GM/T PPM % % PPM PPM PPM PPM PPM PPB PPM 0.001 0.02 0.01 2 10 -5.11 0.01 0.01 0.01 0.01 0.11 2 0.1 1.43 <0.02			2	2	*			т				۹; (م	<u>ح</u> (۲)		⊲ Dh	√ 7n		⊲; N;
no no <th< td=""><td>0%</td><td>PU 0%</td><td>21</td><td></td><td>g I/T E</td><td>DM</td><td><u>%</u></td><td>1</td><td>%</td><td>101/3</td><td></td><td>DM</td><td></td><td>ſ</td><td>PDM</td><td>DDM</td><td>DDR</td><td>DDM</td></th<>	0%	PU 0%	21		g I/T E	DM	<u>%</u>	1	%	101/3		DM		ſ	PDM	DDM	DDR	DDM
0.001 0.02 0.01 2 10 0.01 0.0	0.001	0.02	0.0	1 2	, 1 1	10 -	5 11	($\frac{70}{0.01}$	0.01	0	01	0.01	1	0.01	0.1	2	0.1
1.43 <0.02	0.001	0.02	0.0	1 2	,	10 -	5.11		5.01	0.01	0.	01	0.01		0.01	0.1	2	0.1
	1.43	< 0.02	2 0.0	1 2	2	14	4.6	().39	1.95	50	.14	>10000	0.00	9.06	26.2	2646	10.7
1.713 <0.02 0.01 5 <10 6.4 0.2 2.86 83.08 >10000.00 13.96 70.1 4552 5.4	1.713	< 0.02	2 0.0	1 5		<10	6.4		0.2	2.86	83	.08	>10000	0.00	13.96	70.1	4552	5.4
1.143 <0.02 <0.01 <2 <10 3.7 0.27 1.6 17.67 >10000.00 10.26 55.1 1077 5.4	1.143	< 0.02	2 <0.0)1 <	2 .	<10	3.7	().27	1.6	17	.67	>10000	0.00	10.26	55.1	1077	5.4
1.401 <0.02 <0.01 <2 14 6.1 0.3 2.64 31.88 >10000.00 14.94 54.8 1028 8.1	1.401	< 0.02	2 < 0.0)1 <	2	14	6.1		0.3	2.64	31	.88	>10000	0.00	14.94	54.8	1028	8.1
2.703 <0.02 <0.01 3 <10 8.2 0.24 4.37 72.62 >10000.00 18.88 68.6 3095 4.5	2.703	< 0.02	2 <0.0)1 3		<10	8.2	().24	4.37	72	.62	>10000	0.00	18.88	68.6	3095	4.5

1.665	< 0.02	< 0.01	<2	38	9.2	0.05	5.37	179.83	>10000.00	12.74	22.1	1570	17.3
2.418	< 0.02	0.01	<2	<10	7.9	0.41	3.92	41.36	>10000.00	18.39	107	369	5.2
1.816	< 0.02	< 0.01	5	10	5	0.23	2.2	55.52	>10000.00	9.09	69.8	5726	7.8
0.606	< 0.02	< 0.01	<2	<10	2.6	0.11	0.99	36.22	6182.83	14.35	38.8	924	6.6
2.109	< 0.02	< 0.01	5	13	3.7	0.22	2.1	13.61	>10000.00	7.53	25	4431	12.9
2.228	< 0.02	< 0.01	4	<10	7.4	0.17	3.81	66.38	>10000.00	9.99	74.8	4075	2.7
1.217	< 0.02	< 0.01	<2	<10	4.4	0.27	1.76	72.13	>10000.00	7.23	68	681	3.2
1.769	< 0.02	< 0.01	4	16	6.7	0.03	3.1	1110.69	>10000.00	8.14	34.3	4103	15.4
1.59	< 0.02	0.01	<2	<10	7.9	0.26	3.47	82.84	>10000.00	25.31	106.2	578	3
1.625	< 0.02	< 0.01	3	30	10.9	0.21	4.48	75.83	>10000.00	11.03	86.3	2974	29.1
1.504	< 0.02	< 0.01	4	20	6.6	0.06	2.77	56.63	>10000.00	6.79	39	3769	19.6
1.828	< 0.02	< 0.01	4	15	8.6	0.02	3.84	142.06	>10000.00	11.17	57.2	3363	13.9
2.153	< 0.02	< 0.01	5	31	8.4	0.03	3.82	247.7	>10000.00	10.2	38.2	4828	25.4
1.615	< 0.02	< 0.01	3	13	5.4	0.02	2.45	275.3	>10000.00	8.54	35.9	2890	10.7
1.626	< 0.02	< 0.01	<2	36	6.2	0.03	3.71	79.02	>10000.00	11.79	61	1762	32.5
2.227	< 0.02	< 0.01	3	23	7.6	0.03	3.46	1641.76	>10000.00	7.71	27.2	3287	17.4
1.174	< 0.02	< 0.01	<2	38	5.1	0.01	2.32	104.42	>10000.00	4.34	46.2	963	33.5
1.872	< 0.02	< 0.01	3	28	7.6	0.03	3.55	261.7	>10000.00	5.4	27.5	2595	20.1
1.282	< 0.02	< 0.01	3	23	5.9	0.03	2.64	262.37	>10000.00	6.41	26.1	3503	21
2.166	< 0.02	< 0.01	<2	28	9.2	0.05	4.81	875.47	>10000.00	16.74	41.2	1810	22.7
1.549	< 0.02	< 0.01	<2	<10	4.1	0.38	1.84	62.18	>10000.00	9.94	55	508	3.6
1.978	< 0.02	< 0.01	2	17	7.7	0.03	4.25	44.79	>10000.00	5.72	44.9	2209	16.2
1.224	< 0.02	< 0.01	<2	31	5.4	0.02	2.47	172.6	>10000.00	4.76	45.2	1510	28.5
1.687	< 0.02	< 0.01	6	26	7	0.08	2.92	122	>10000.00	7.12	56.2	5730	23.9
1.435	< 0.02	< 0.01	4	36	7.3	0.07	3.25	134.76	>10000.00	4.4	47.5	3185	30.6
1.45	< 0.02	< 0.01	2	25	6.8	0.1	2.96	281.96	>10000.00	7.37	35.3	2147	18.3
1.885	< 0.02	< 0.01	4	41	5	0.02	2.48	250.78	>10000.00	5.53	31.8	4457	39.7
1.661	< 0.02	< 0.01	<2	15	5.5	0.03	3.08	350.19	>10000.00	5.92	50.5	1576	14.1
2.225	< 0.02	< 0.01	2	<10	7.2	0.06	5.54	19.92	>10000.00	6.78	18.8	2621	7
1.594	< 0.02	< 0.01	4	10	7	0.06	3.45	46.55	>10000.00	12.77	20.4	3899	6.3
1.04	< 0.02	< 0.01	3	17	6.2	0.07	2.5	196.55	>10000.00	6.91	39.7	2740	15.4
1.697	< 0.02	< 0.01	3	21	6.6	0.04	3.07	111.15	>10000.00	14.13	48.9	2604	16.6
1.544	< 0.02	< 0.01	2	30	5.8	0.03	3.22	38.09	>10000.00	7.29	60.6	1442	27.1
1.235	< 0.02	< 0.01	<2	37	6.8	0.02	3.71	24.47	>10000.00	9.27	75.4	1458	30.4
1.114	< 0.02	0.01	<2	18	7.3	0.08	3	147.88	>10000.00	40.28	133.5	1842	16.2
1.663	< 0.02	< 0.01	4	24	7.5	0.19	3.2	245.98	>10000.00	10.98	45.8	3737	23.2
1.706	< 0.02	< 0.01	<2	18	8.6	0.04	3.88	368.15	>10000.00	4.27	22.2	1618	14.9
1.779	< 0.02	< 0.01	6	38	5.3	0.04	2.53	130.94	>10000.00	9.28	40.3	6365	36.2
1.868	< 0.02	< 0.01	2	16	6.1	0.35	2.72	25.76	>10000.00	6.73	26.6	1997	12.4
2.042	< 0.02	< 0.01	2	13	5.6	0.06	3.42	120.32	>10000.00	4.84	15	1807	10
1.874	< 0.02	< 0.01	5	26	8	0.05	3.44	352.64	>10000.00	5.61	21.9	4806	17.2
1.511	< 0.02	< 0.01	4	27	8	0.04	3.8	151.46	>10000.00	12.01	39.9	3968	24.8
1.772	< 0.02	< 0.01	3	28	7.2	0.03	3.35	330.13	>10000.00	7.27	29.2	3121	14.1

1.782	< 0.02	< 0.01	4	31	9.3	0.06	3.92	962.18	>10000.00	6.1	31.8	4393	25.7
1.176	< 0.02	< 0.01	<2	29	13.8	0.02	7.96	877.54	>10000.00	2.59	19.3	890	21.7
0.55	< 0.02	< 0.01	<2	<10	3.5	0.05	1.2	158.61	5402.89	5.22	17.7	1592	6.1
0.798	< 0.02	< 0.01	2	25	5	0.09	1.88	41.92	7618.51	1.78	22.2	2538	21.9
1.173	< 0.02	< 0.01	3	41	6.3	0.31	2.53	273.57	>10000.00	1.51	24.7	2419	36.5
1.165	< 0.02	< 0.01	<2	19	7.7	0.04	4.77	61.36	>10000.00	1.31	19	1073	15
0.694	< 0.02	< 0.01	<2	12	4.2	0.48	1.14	36.47	6880.85	9.81	36.7	677	6.4
0.925	< 0.02	< 0.01	2	15	5.4	0.15	2.16	115.11	9062.7	1.36	34.1	1648	13
1.523	< 0.02	< 0.01	7	19	7.3	0.06	3.04	182.43	>10000.00	3.11	72.9	6829	17.1
1.282	< 0.02	< 0.01	3	28	8.3	0.05	3.4	247.15	>10000.00	3.13	46.9	2731	19.5
1.81	< 0.02	< 0.01	4	32	8.2	0.04	3.3	300.01	>10000.00	6.21	39.2	3209	17.8
1.258	< 0.02	< 0.01	4	14	8.9	0.2	4.75	102.82	>10000.00	8.58	50.7	4021	7.5
1.292	< 0.02	< 0.01	5	11	5.4	0.36	2.2	27.67	>10000.00	24.28	74	4628	7.7
1.16	< 0.02	< 0.01	3	13	7.6	0.33	4.47	39.95	>10000.00	7.21	35.1	2062	9.7
1.338	< 0.02	< 0.01	3	39	6.5	0.43	2.65	181.63	>10000.00	2.06	28.5	2743	31.5
0.521	< 0.02	< 0.01	<2	<10	4.7	0.36	1.29	54.47	5262.41	1.14	47	432	2.9
1.554	< 0.02	< 0.01	<2	36	9	0.01	6.58	144.94	>10000.00	12.71	39.1	1326	32.7
1.805	< 0.02	< 0.01	<2	16	4.1	0.03	3.73	133.51	>10000.00	1.65	18.8	1581	13.6
1.132	< 0.02	< 0.01	3	<10	5.1	0.18	1.85	202.17	>10000.00	7.27	47.1	2573	5.5
1.981	< 0.02	< 0.01	<2	<10	5.7	0.4	2.98	53.26	>10000.00	4.25	32.6	327	4.8
1.083	< 0.02	< 0.01	2	<10	5.3	0.3	2.26	40.86	>10000.00	11.14	50	2298	5
1.072	< 0.02	< 0.01	3	11	7.1	0.13	2.66	45.93	>10000.00	2.11	27	2593	9.5
0.695	< 0.02	< 0.01	<2	<10	4.6	0.24	1.49	49.61	7383.41	13.95	45.6	480	3.5
1.561	< 0.02	< 0.01	3	11	3.9	0.4	1.77	10.7	>10000.00	27.55	64.5	2962	7.1
1.029	< 0.02	< 0.01	<2	<10	6.9	0.36	2.47	89.04	>10000.00	11.27	63.5	1643	3.3
0.711	< 0.02	< 0.01	3	11	3.2	0.41	0.85	57.8	7221.77	7.44	37.3	2706	9.4
1.777	< 0.02	< 0.01	2	31	15.1	0.03	9.99	978.49	>10000.00	1.91	18	1820	23.7
1.333	< 0.02	< 0.01	3	36	3.8	0.03	3.34	116.16	>10000.00	1.81	29.8	1911	28.9
0.83	< 0.02	< 0.01	3	18	8	0.25	3.2	215.6	8225.11	2.03	42.4	2117	13.8
0.8	< 0.02	< 0.01	<2	<10	5	0.19	1.9	39.78	8248.96	1.03	13.7	838	4.5
1.716	< 0.02	< 0.01	6	<10	5.1	0.15	2.43	35.13	>10000.00	5.52	38.6	5379	9
1.608	< 0.02	< 0.01	5	14	4.2	0.07	1.92	64.27	>10000.00	3.7	17.2	4992	12.6
0.981	< 0.02	< 0.01	2	14	9.4	0.25	3.67	94.58	>10000.00	3.7	36.4	2244	7.8
0.979	< 0.02	< 0.01	<2	38	5.7	0.02	2.58	132.74	9758.76	1.03	25.6	1680	33.9
2.041	< 0.02	< 0.01	5	14	4.1	0.08	2.36	181.83	>10000.00	1.85	36.8	5126	9.8
0.757	< 0.02	< 0.01	<2	32	4.1	0.02	2.07	199.19	7416.53	0.78	26.1	1163	29
0.777	< 0.02	< 0.01	<2	<10	5	0.39	1.62	178.55	7931.19	1.79	34.6	1333	4.1
1.448	< 0.02	< 0.01	3	16	6.1	0.32	2.52	43.73	>10000.00	3.04	27.4	1798	7.6
2.822	< 0.02	0.01	<2	15	6.4	0.27	3.69	49.1	>10000.00	13.22	95.9	1877	4.3
2.394	< 0.02	< 0.01	<2	12	6.8	0.28	3.5	55.79	>10000.00	9.06	57.9	1495	4.4
0.832	< 0.02	< 0.01	2	15	8.4	0.29	3.07	23.04	8610.08	2.71	41.4	1833	5.6
3.078	< 0.02	0.01	2	13	6.4	0.31	4.01	29.2	>10000.00	12.28	94.7	2346	4
1.91	< 0.02	< 0.01	<2	<10	7.6	0.21	3.27	32.81	>10000.00	7.33	68.2	1550	3.2

1.524	< 0.02	2 <0.01	3	1	1	6.7	0.3	2	2.81	10.4	8	>1000	0.00	3.66	34	2	850	3.9
1.924	< 0.02	2 < 0.01	5	4	3	4.8	0.03	2	2.36	389.9	98	>1000	0.00	1.98	27.9	4	711	39.5
1.063	< 0.02	2 < 0.01	3	(1)	34	5.7	0.01	2	2.74	70.6	2	>1000	0.00	1.66	27.2	2	428	31.1
0.813	< 0.02	2 <0.01	3	1	6	6.3	0.09	· ·	2.5	13.4	5	8011.	43	4.36	24.9	2	544	14.3
0.869	< 0.02	2 < 0.01	<2	1	1	7.7	0.31	2	2.78	69.2	4	8783.	27	1.7	17.3	8	370	4.6
0.211	< 0.02	2 < 0.01	<2	<	10	3.3	0.49	(0.6	22.0	7	2050.	07	6.38	52.3	2	277	6
1.524	< 0.02	2 < 0.01	<2	1	2	6.8	0.39		2.8	34.2	6	>1000	0.00	10.88	59.8	4	594	5.3
2.135	< 0.02	2 < 0.01	<2	1	2	7.8	0.29	4	k.11	44.9	4	>1000	0.00	3.31	46.1	1	129	7
0.901	< 0.02	2 <0.01	<2	1	2	6.1	0.37	1	.95	11.8	7	8892.	01	3.35	26.5	1	334	4.1
52		52	52			52	52			7		52		52	52			52
Q2;		Q25	Q2;			Q2;	Q2;			777 7		02;		.Q2;	02,	,		.Q2;
<u>ح</u>		A	<u> </u>			<u> </u>	4			<u>م</u> 		<u>ح</u>		۷ ۲	4			<u> </u>
Co DDM	r	Mn DDM	As			Au	Cd DDM	r		Sb DM		Bi	D	Cr DM	B	Л	D	TI DM
						0.2				02			P		1	VI	P	
0.1		1	0.1			0.2	0.01		0.	02		0.02	,	5.5	1			.02
4.1		224	88.1		1	30.8	0.11		0.	49		6.66	10	50.4	9		0	0.09
3		314	286.8		1	179.9	0.36		6.	95		10.7	12	20.6	6		0	.13
3.4		717	212.3			30.9	0.22		8.	01		1.92	1′	73.2	8		0	.08
3.7		370	132.5			46.5	0.31		3.	67		1.16	13	36.1	8		0	.15
3.8		784	314.2			15.1	0.4		8.	76		0.99	1:	56.5	12		0	.13
32.8		68	25.2			20.6	0.21		1.	73		0.22	10	07.9	27		0	.07
3.4		1035	355.3			20	0.41		7.	09		1.07	1	15.3	11		0	.11
9.4		284	415.3		1	27.3	0.34		22	.67		6.85	8	6.9	9		0	.12
2.5		114	87.5			26.3	0.17		2.	57		0.55	14	46.6	14		(0.1
5.1		210	40			195	0.08		4.	33		8.37	14	42.2	8		0	.17
3.4		498	275.3			15.9	0.48		6.	12		1.34	9	0.6	18		(0.1
3.6		799	216.9			18.3	0.31		2.	09		0.63	8	8.2	15		0	.12
5.5		83	13.3			44.6	0.73		4.	08		2.69	1	17.3	6		0	.19
3.2		824	340.5			13.1	0.44		12	.75		1.09	9	3.9	12		0	.09
14.4		387	60			54.9	0.21		2.	34		2.48	10	09.7	7		0	.22
8.1		178	13.1			50	0.11		2.	52		1.42	9	9.8	4		(0.2
8.7		132	21.1			57.4	0.31		3.	54		1.4	10	04.5	3		0	.22
9.3		142	12.2			74.3	0.25		2.	58		2.18	7	2.6	4		0	.29
9.1		113	5.3			31.8	0.32		1.	03		1.03	6	9.6	2		0	.12
22		236	18.1			27.7	0.26		2.	47		0.45	6	7.7	4		0	.31
5		57	5.6			34.5	1.21		1.	03		1.57	7	1.7	5		0	.13
18.3		199	6.4			15	0.15		0.	89		0.11	7	0.5	1		0	.79
8.4		84	9.1			31.8	0.26		1.	52		0.92	6	8.2	4		0	.22
5		98	5.7			66	0.2		1	.3		1.88		86	3		0	.21
35.6		129	45.7			24	0.66		1.	84		0.15	10	01.1	6		0	.12
4.1		921	278.2			11	0.18		21	.17		2.88	1	00	11		0	0.05

23.9	155	7.9	24.3	0.16	1.22	0.31	90.7	4	0.24
21.5	258	10	14.4	0.12	1.46	0.23	93.2	4	0.59
13.7	309	40.6	40.1	0.19	3.1	2.66	85.1	7	0.25
12.4	274	6.7	30.9	0.15	0.76	1.28	79.9	5	0.21
14.1	202	26.3	26.3	0.3	1.86	1.17	68.8	4	0.13
12.3	116	6	30.1	0.25	1.11	2.22	99.1	2	0.48
21.7	301	12.5	30.1	0.35	2.16	0.17	43	3	0.39
9.2	87	11.5	30.2	0.12	1.36	0.57	65.6	6	0.1
3.8	114	10.6	50.3	0.11	1.45	1.82	44	8	0.07
8.2	173	8.4	35.7	0.24	1.54	1.03	76.8	5	0.27
11	112	17.2	34.4	0.27	2.74	0.98	68	3	0.19
25.1	159	13.9	22.2	0.23	1.68	0.1	86.2	3	0.53
44.4	196	13.2	17.8	0.29	1.12	0.08	75.6	2	0.64
8.2	233	217.4	30.9	0.68	7.07	1.94	83.7	10	0.24
9.4	195	50.1	49.8	0.25	1.95	2.28	77.2	8	0.28
11.1	78	6.5	21.9	0.29	1.27	0.41	98	5	0.19
5.6	167	8.2	92.9	0.2	1.69	2.89	98.2	3	0.29
5.9	140	15.4	51.4	0.1	2.02	2.45	103.5	10	0.19
6.8	63	9.8	50.7	0.13	1.56	1.43	82.1	8	0.14
5.3	136	6	64	0.3	1.4	2.14	104.7	16	0.11
6.8	157	7.6	60.9	0.22	1.49	2.1	89.1	5	0.25
6	91	9.5	29.2	0.36	2.45	1.12	122.7	16	0.12
6	139	5.2	77.2	0.68	1.64	2.53	84.2	6	0.2
30.7	29	7.4	16	0.69	1.35	0.31	121.4	6	0.08
2.9	83	4.2	36.2	0.16	0.29	1.53	107.6	8	0.11
7.9	125	10.1	64.5	0.03	0.19	1.54	110.8	6	0.26
12	304	17.5	34.1	0.19	0.46	3.17	99.8	7	0.33
23.1	57	17.7	12.3	0.07	0.59	0.64	104.5	8	0.14
4.5	1684	104.6	4.2	0.19	1.22	0.53	78	17	0.07
8	235	18	19.4	0.08	1.17	1.05	95	12	0.07
11.3	428	3.6	17.3	0.14	0.4	2.23	57.3	11	0.12
7.7	306	4.1	18.5	0.18	0.52	1.11	110.4	13	0.09
6.6	228	4.4	16.4	0.2	0.75	1.31	86.5	13	0.08
23.5	660	159.4	23.3	0.25	1.76	0.7	134.9	20	0.08
9.1	506	289.2	34.2	0.37	4.04	3.67	93.3	9	0.09
66.8	377	126.1	29.4	0.16	1.73	0.44	128.4	11	0.09
17.8	787	96.9	36.2	0.14	1.06	2.96	110.7	13	0.22
3.4	1038	179	3	0.15	1.63	0.71	118.2	29	0.06
28.8	49	14.9	95.2	1.14	1.07	1.33	63.7	7	0.26
9.1	66	1.4	18.4	0.08	0.23	0.36	90.4	3	0.15
1.9	199	290.8	21.3	0.28	3.76	1.4	103.1	9	0.07
5	1078	228.6	16.5	0.05	25.68	4.18	140.4	14	0.04
6	258	151.9	21.1	0.22	14.71	3.78	65.3	6	0.06

4.7	174	15.1	27.5	0.02	0.27	1.12	42	4	0.05
1.8	476	68.1	5.4	0.24	0.46	0.25	106.6	9	0.06
3.3	785	240.5	87.2	0.39	4.08	4.05	71.7	9	0.06
2.9	1134	154.2	5.3	0.28	5.48	0.88	99.6	13	0.06
4.2	232	141.9	49.6	0.13	0.33	3.14	68.6	6	0.11
58.9	58	2.2	19.8	0.47	0.3	0.39	121.7	8	0.09
15.1	171	3.8	13.4	0.07	0.14	0.99	84	3	0.43
3	277	299	32.9	0.19	1.4	1.07	97.7	9	0.13
2.3	68	11.7	8.5	0.02	0.36	0.14	70.3	7	0.06
5.4	120	122.3	84.5	0.18	0.44	5.21	44.7	7	0.13
3.7	94	19.7	72.5	0.04	0.23	3.35	61.7	6	0.12
3	267	191.1	46.7	0.16	1.75	1.43	97.3	15	0.08
15.1	159	2.4	15.6	0.03	0.18	1.24	82	3	0.81
7.7	167	43.2	32.1	0.14	1.99	2.65	90.8	14	0.07
13	157	1.4	22.4	0.11	0.1	1.59	82.1	1	0.71
3.1	1025	121	5	0.2	1.49	0.58	74.2	12	0.08
2.8	669	166.9	43.1	0.09	2.49	4.02	57.8	7	0.07
4.3	832	381	6.2	0.31	15.98	2.19	112.2	22	0.07
3.7	872	295.1	12.1	0.23	3.57	1.88	67.3	9	0.09
7	795	186.1	4.9	0.12	12.4	0.63	95.3	29	0.1
4.7	936	426.4	7.9	0.29	11.6	2.37	64.8	19	0.07
2.9	657	272.1	6.8	0.22	3.63	2.51	86.8	15	0.08
4.8	764	206.2	5.4	0.09	10	1.11	76	17	0.11
10.8	122	4	28.4	0.19	0.17	2.56	90.8	4	0.43
13.3	151	1.8	33.9	0.08	0.11	2	85.1	1	0.74
5.7	102	10.5	37.5	0.02	0.36	1.73	64.8	7	0.2
2.8	640	32.9	3.7	0.06	0.7	0.54	55	8	0.07
5	575	41.3	< 0.2	0.13	0.85	0.31	87.2	13	0.04
4.9	1218	172.6	3.4	0.25	7.13	1.45	72.6	19	0.08
15.5	749	193.8	15.7	0.12	1.21	0.89	114.1	15	0.12
3.6	681	154.6	5.5	0.06	3.39	0.37	85.5	18	0.11
		_							
252	252	252	252	252	252	252	252	252	252
AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ	AQ
Hg	Se	Te	Ge	In	Re	Be	Li	Pd	Pt
PPB	PPM	PPM	PPM	PPM	PPB	PPM	PPM	PPB	PPB
5	0.1	0.02	0.1	0.02	1	0.1	0.1	10	2
21	9.4	0.8	< 0.1	0.14	37	0.2	2.1	<10	<2
65	8.2	0.81	< 0.1	0.13	74	0.3	1.1	<10	<2
35	8.7	0.36	< 0.1	0.2	15	0.3	0.6	<10	<2
43	7.6	0.42	<0.1	0.16	29	0.3	1.6	<10	<2

79	12.6	0.29	< 0.1	0.55	60	0.2	1.1	<10	<2
51	3.7	0.08	< 0.1	0.05	112	< 0.1	0.4	<10	<2
74	11.1	0.46	< 0.1	0.48	35	0.1	1.1	<10	<2
97	7.5	0.65	< 0.1	0.08	42	0.3	3.7	<10	2
19	2.1	0.15	< 0.1	0.04	17	0.2	7.4	<10	<2
17	12.5	0.71	< 0.1	0.16	13	0.1	6.4	<10	<2
73	8.2	0.24	< 0.1	0.41	133	0.3	0.9	<10	<2
46	1.5	0.16	< 0.1	0.18	49	0.3	0.8	<10	<2
65	4.2	0.28	< 0.1	< 0.02	667	0.4	4.1	*	<2
81	8.4	0.18	< 0.1	0.3	47	0.2	0.7	<10	<2
19	4.3	0.41	< 0.1	0.16	68	0.3	10.7	<10	<2
20	4.9	0.5	< 0.1	0.05	72	0.2	7	<10	<2
59	2.7	0.15	< 0.1	0.04	101	0.3	2.9	<10	<2
39	5.1	0.43	< 0.1	< 0.02	254	< 0.1	7.7	<10	<2
21	3.9	0.17	< 0.1	< 0.02	263	0.3	4.7	<10	<2
50	3.9	0.21	< 0.1	0.06	89	0.2	4.9	<10	<2
28	3.8	0.21	< 0.1	< 0.02	330	0.2	2.4	*	<2
15	1.6	0.08	0.1	0.03	72	0.4	7	<10	<2
28	3.1	0.14	< 0.1	< 0.02	179	0.3	3.7	<10	<2
17	5.3	0.37	< 0.1	< 0.02	252	0.2	7.3	<10	<2
30	4.5	0.11	< 0.1	< 0.02	122	0.2	0.6	*	<2
75	16.1	0.21	< 0.1	0.37	48	0.2	0.5	<10	<2
28	3.9	0.09	< 0.1	0.09	33	0.4	5.8	<10	<2
17	1.6	0.09	< 0.1	0.08	176	0.3	6.3	<10	<2
22	4.6	0.37	< 0.1	0.06	129	0.1	9.9	<10	<2
11	3.4	0.26	< 0.1	0.07	174	0.1	8.4	<10	<2
14	2.9	0.25	< 0.1	0.04	261	0.2	4.1	<10	<2
28	3.4	0.25	< 0.1	< 0.02	188	0.4	9.2	<10	<2
36	3.5	0.08	< 0.1	0.05	16	0.5	5.6	<10	<2
33	4.8	0.25	< 0.1	0.17	7	0.3	1.3	<10	<2
33	5.7	0.49	< 0.1	0.06	42	0.2	2	<10	<2
29	3.3	0.23	< 0.1	< 0.02	229	0.2	8.6	<10	<2
37	3	0.17	< 0.1	0.05	98	0.2	3.5	<10	<2
38	2	0.07	< 0.1	0.05	12	0.5	6.7	<10	<2
32	2.5	0.07	< 0.1	0.04	13	0.4	7	<10	<2
41	2.3	0.34	< 0.1	0.06	128	0.5	5.7	<10	<2
34	5	0.53	< 0.1	< 0.02	206	0.4	7.5	<10	<2
16	3.1	0.11	< 0.1	< 0.02	72	0.6	3	<10	<2
85	6.6	0.46	<0.1	< 0.02	89	0.2	7.9	<10	<2
24	4.4	0.83	<0.1	0.22	26	0.2	4.5	<10	<2
8	4.5	0.94	< 0.1	0.25	71	0.2	4.5	<10	<2
23	5.5	0.46	< 0.1	< 0.02	199	0.2	4.8	<10	<2
23	4.6	0.36	< 0.1	< 0.02	117	0.2	9.8	<10	<2

48	3.5	0.16	< 0.1	0.02	205	0.3	2.8	<10	<2
41	4.6	0.29	< 0.1	< 0.02	522	0.4	7.5	<10	<2
41	4.2	0.15	< 0.1	< 0.02	244	0.1	0.7	<10	<2
9	2	0.1	< 0.1	< 0.02	122	0.3	7.1	<10	<2
9	4.1	0.31	< 0.1	< 0.02	65	0.2	8.7	<10	<2
10	3.5	0.5	< 0.1	0.09	265	0.2	9.5	<10	<2
9	2	0.4	< 0.1	0.05	47	0.6	2.9	<10	<2
8	2.8	0.1	< 0.1	0.27	53	0.5	2	<10	<2
<5	2.6	0.22	< 0.1	0.07	128	0.3	3.8	<10	<2
10	3.3	0.52	< 0.1	0.04	148	0.3	5.7	<10	<2
10	2.9	0.31	< 0.1	0.02	217	0.5	4.7	<10	<2
32	2.6	0.24	< 0.1	0.05	211	0.3	3.2	<10	<2
27	5.2	1.67	< 0.1	0.15	193	0.4	1.2	<10	<2
126	3.8	0.56	< 0.1	0.16	38	0.2	2.4	<10	<2
110	4	1.55	< 0.1	0.12	46	0.3	1.1	<10	<2
20	3.8	0.71	< 0.1	0.14	183	0.2	7.4	<10	<2
31	0.8	0.07	< 0.1	0.15	39	0.2	1	<10	<2
44	2.9	0.24	0.1	0.17	89	0.2	1.4	<10	2
9	3.7	0.13	< 0.1	0.04	78	0.3	2.7	<10	<2
70	3.1	0.12	< 0.1	< 0.02	136	0.2	2.3	<10	<2
166	18.1	0.2	0.1	0.38	45	0.3	0.7	14	<2
65	3.8	0.15	< 0.1	0.11	23	< 0.1	1	<10	<2
6	3.3	0.32	< 0.1	0.03	39	0.2	4.4	<10	<2
9	1.4	0.1	< 0.1	0.07	14	0.2	0.8	<10	<2
32	11.9	0.46	0.1	0.24	12	0.2	1.1	<10	<2
39	5.1	0.16	< 0.1	0.29	93	0.2	1.1	<10	<2
15	2.2	0.25	< 0.1	0.03	27	0.3	3.5	<10	<2
25	5.3	0.16	< 0.1	< 0.02	472	0.3	2.3	<10	<2
18	2.9	0.16	< 0.1	0.05	78	0.5	6.3	<10	<2
17	3.4	0.33	< 0.1	< 0.02	224	0.3	4.5	<10	<2
7	1.7	0.18	< 0.1	0.09	23	0.2	1.4	<10	<2
11	6.8	0.79	< 0.1	0.04	28	0.2	6.2	<10	<2
<5	4.5	0.66	0.1	0.04	46	0.3	5.1	<10	<2
37	3.6	0.61	< 0.1	0.07	52	0.4	3	<10	<2
22	1.9	0.18	0.2	< 0.02	155	0.3	10.7	<10	<2
8	4.4	0.71	< 0.1	0.11	123	0.1	1.7	<10	<2
6	1.9	0.1	0.2	< 0.02	147	< 0.1	6.7	<10	<2
19	1.8	0.1	< 0.1	0.19	153	0.3	0.7	<10	<2
20	5.1	0.59	< 0.1	0.24	43	0.2	1.1	<10	<2
52	8.6	0.43	0.1	0.41	32	0.4	0.7	<10	<2
62	2.9	0.66	< 0.1	0.26	212	< 0.1	0.8	<10	<2
32	0.8	0.28	< 0.1	0.17	27	0.6	0.4	<10	<2
43	8.9	0.42	0.1	0.47	28	0.2	0.7	<10	<2

119	3.1	0.27	< 0.1	0.3	95	0.3	0.9	<10	<2
55	1.1	0.25	< 0.1	0.18	10	0.4	0.8	<10	<2
15	2.9	0.27	0.2	< 0.02	153	0.7	7.9	<10	<2
<5	3.1	0.21	0.1	0.03	60	0.3	9.7	<10	<2
<5	2.9	0.42	0.1	0.03	10	0.2	8.1	<10	<2
20	2.6	0.13	< 0.1	0.15	71	0.2	0.9	<10	<2
8	1	0.29	< 0.1	0.08	19	0.2	4.6	<10	<2
33	3.3	0.24	< 0.1	0.27	34	0.2	1.2	<10	<2
39	2.3	0.84	< 0.1	0.24	76	0.2	1.2	<10	<2
17	0.5	0.23	< 0.1	0.14	10	0.2	0.8	<10	<2

10.1.2 QA/QC GEOQUÍMICA ROCA TOTAL

	Method	LF200										
	Analyte	SiO2	Al2O3	Fe2O3	MgO	CaO	Na2O	K2O	TiO2	P2O5	MnO	Cr2O3
	Unit	%	%	%	%	%	%	%	%	%	%	%
	MDL	0.01	0.01	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.002
MeT_LBUG_17_137	Core Pulp	59.17	14.73	5.91	0.97	2.92	2.88	3.73	0.45	0.15	0.05	0.044
MeT_LBUG_17_137	REP	59.43	14.64	5.94	0.98	2.91	2.86	3.63	0.45	0.15	0.05	0.043
MeT_LBUG_17_76	Core Pulp	66.75	13.12	4.39	0.57	1.23	2.03	5.32	0.31	0.1	0.12	0.043
MeT_LBUG_17_76	REP	66.44	13.23	4.42	0.58	1.24	2.03	5.39	0.3	0.09	0.12	0.043
MeT_LBUG_17_192	Core Pulp	59.53	15.51	6.66	1.47	2.59	1.17	3.81	0.45	0.18	0.11	0.033
MeT_LBUG_17_192	REP	59.39	15.61	6.65	1.46	2.6	1.15	3.73	0.45	0.17	0.11	0.034
MeT_LBUG_17_150	Core Pulp	44.16	14.05	9.73	1.79	7.69	1.03	2.95	0.77	0.26	0.01	0.054
MeT_LBUG_17_150	REP	44.22	14.09	9.64	1.78	7.69	1.03	2.99	0.77	0.27	0.01	0.054
STD SO-19	STD	60.29	13.96	7.56	2.94	5.97	4.02	1.31	0.7	0.33	0.13	0.503
STD SO-19	STD	60.68	13.84	7.47	2.89	5.91	4.03	1.29	0.69	0.32	0.13	0.495
STD SO-19	STD	60.31	14.01	7.48	2.95	5.94	4.05	1.31	0.7	0.32	0.13	0.51
STD SO-19	STD	60.22	14.06	7.5	2.95	5.97	4.05	1.31	0.71	0.31	0.13	0.508
STD SO-19	STD	60.01	14.05	7.55	2.95	6.01	4.09	1.34	0.71	0.34	0.13	0.516
STD SO-19	STD	60.51	13.92	7.36	2.9	5.94	4.09	1.31	0.7	0.33	0.13	0.506
STD SO-19	STD	60.25	13.98	7.52	2.93	5.97	4.08	1.32	0.71	0.33	0.13	0.509
STD SO-19	STD	60.37	13.99	7.38	2.94	6	4.06	1.31	0.71	0.33	0.13	0.506
BLK	BLK	0.03	< 0.01	< 0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.002
BLK	BLK	0.05	0.01	< 0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.002
BLK	BLK	0.01	< 0.01	< 0.04	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.002
BLK	BLK	< 0.01	< 0.01	< 0.04	< 0.01	0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.002

	r																
LF200	LF200	LF200	LF200		Lr 200	LF200		LF200	LF200		LF200						
Ва	Sc	Sum	n Cs	C	ła	Hf	Ν	√b	Rb		Sn	Sr	Та	Th	U	V	W
PPM	PPM	%	PPN	A PF	M	PPM	i Pl	PM	PPM	Р	PM	PPM	PPM	PPM	PPM	PPM	PPM
1	1	0.01	0.1	. 0	.5	0.1	0	.1	0.1		1	0.5	0.1	0.2	0.1	8	0.5
552	4	98.6	3 4.9) 14	.7	2.8	2	.7	126.3		3	206.2	0.1	3.2	1.7	81	44.9
563	4	98.7	1 4.6	5 16	5.2	2.6	2	.9	127.6		2	204.6	0.2	3	1.5	82	43
914	3	98.2	2 2.7	/ 13	5.7	2.7		2	140.8		1	165.2	0.1	3	0.9	59	11.4
935	3	98.1	3.2	2 13	.3	2.4		2	138.6		1	163.3	0.1	3	0.7	59	12.6
517	7	98.2	6 3.7	2	3	2.9	3	.1	131.2		4	311.4	0.2	4	3.9	77	30.8
530	6	98.12	2 3.9	23	.7	3.1		3	135.3		4	308.8	0.2	4	3.8	83	32.4
304	15	97.6	6 1.4	17	'.4	2.1	3	.3	90.8		7	434.6	0.2	2.4	21.1	176	34.2
320	15	97.7	1 1.2	2 17	.6	2.2		3	91.2		7	446.5	0.2	2.3	21.5	159	32.7
469	26	99.7	8 4.6	5 15	5.8	2.9	70	0.9	20.4		19	327.3	4.7	12.6	20.2	164	10.2
451	26	99.7	9 4.5	5 1	6	3.1	6	56	19.5		17	313.8	4.6	12.3	18.4	162	9.5
488	27	99.7	7 4.8	8 17	'.9	3.1	7(0.8	20.1		19	335.7	4.8	12.8	19.9	169	10.1
493	27	99.7	7 4.8	3 16	5.5	3.1	7	1.4	20.1		18	335.3	4.5	14.2	20.5	171	11
514	29	99.7′	7 4.2	2 17	.1	3	7	1.5	20.6		19	346.7	4.7	13.6	21.4	173	10
517	28	99.7	7 5	1	8	3.4	7	5.2	21.7		20	362.7	5.2	13.9	21.6	165	11.3
478	29	99.7	8 4.6	5 16	5.5	3.1	68	8.1	19.1		18	330.3	4.1	13	20	157	9.3
478	28	99.7	8 4.4	17	'.1	2.9	68	8.8	18.3		18	320.7	4.4	13.2	19.8	156	9.8
3	<1	0.04	₩ <0.	1 <0).5	< 0.1	<	0.1	0.1		<1	< 0.5	< 0.1	< 0.2	< 0.1	<8	< 0.5
3	<1	0.11	<0.	1 <0).5	< 0.1	<	0.1	0.1		<1	< 0.5	< 0.1	< 0.2	< 0.1	<8	< 0.5
<1	<1	< 0.0	1 <0.	1 <0).5	< 0.1	<	0.1	0.1		<1	< 0.5	< 0.1	< 0.2	< 0.1	<8	< 0.5
<1	<1	< 0.0	1 <0.	1 <0).5	< 0.1	0	.2	< 0.1		<1	< 0.5	< 0.1	< 0.2	< 0.1	<8	< 0.5
LF200	LF200	LF200	LF200	LF200		LF200	LF200	LF200	LF200		LF200						
Zr	Y	La	Ce	Pr	Ν	ld	Sm	Eu	Gd	ł	Tb	Dy	Но	Er	Tm	Yb	Lu
PPM	PPM	PPM	PPM	PPM	PI	PM	PPM	PPN	1 PPN	Ν	PPM						
0.1	0.1	0.1	0.1	0.02	0	.3	0.05	0.02	2 0.0	5	0.01	0.05	0.02	0.03	0.01	0.05	0.01
100.1	5.4	14.6	27.5	3.3	13	3.7	2.25	0.49) 1.5	2	0.19	0.93	0.2	0.52	0.06	0.49	0.08
100.7	5.1	14.7	28.3	3.26	13	3.1	2.29	0.5	1.6	6	0.21	1.03	0.17	0.54	0.08	0.51	0.06
84.7	2.6	5	8.7	1.05	4	.4	0.87	0.38	3 0.7	1	0.09	0.42	0.08	0.21	0.04	0.27	0.05
91	2.7	5.2	9.1	1.06	4	.7	0.95	0.38	3 0.6	8	0.09	0.5	0.09	0.25	0.04	0.22	0.04
113.6	6.8	21.5	39.3	4.3	17	7.1	2.67	0.67	2.0	7	0.25	1.41	0.21	0.75	0.1	0.69	0.1
120.9	6.9	22.5	40.5	4.58	17	7.5	2.79	0.68	3 2.0	6	0.27	1.37	0.25	0.76	0.11	0.85	0.09
73	15.6	43.9	78.7	9.22	34	1.8	6.23	1.26	5 4.5	9	0.63	3.11	0.62	1.56	0.25	1.59	0.21
75.2	17.2	44.4	81.1	9.59	35	5.3	6.07	1.33	3 4.5	9	0.65	3.2	0.62	1.76	0.22	1.44	0.23
114.6	36.4	71.4	156.6	18.91	70).8	13.1	3.47	9.7	8	1.33	7.36	1.33	3.66	0.54	3.31	0.5
109.3	33.3	68.7	151.9	17.98	69	9.5	12.27	3.57	9.9	6	1.31	6.84	1.29	3.43	0.5	3.13	0.47
113.7	36.7	74.9	168.1	19.61	77	7.5	13.5	3.68	3 10.3	36	1.41	7.21	1.38	3.94	0.52	3.52	0.51

116.3	37.1	74.7	165.2	19.99	75.5	13.79	3.68	10.43	1.44	7.51	1.37	4.1	0.54	3.66	0.52
115.5	35.4	75.5	172.4	19.64	77.3	13.81	3.76	10.49	1.44	7.14	1.43	4.07	0.54	3.73	0.52
125.3	40.8	77.5	176.2	20.4	80.7	14.29	3.78	11.41	1.51	7.87	1.49	4.03	0.58	3.98	0.58
109.8	35.3	70.3	153.2	18.84	77.4	12.48	3.55	10.81	1.41	7.46	1.4	3.97	0.51	3.52	0.51
112	34.9	72	157.6	19.15	74.4	12.97	3.57	10.32	1.4	7.33	1.32	3.78	0.53	3.5	0.51
0.2	< 0.1	< 0.1	< 0.1	< 0.02	< 0.3	< 0.05	< 0.02	< 0.05	< 0.01	< 0.05	< 0.02	< 0.03	< 0.01	< 0.05	< 0.01
0.2	< 0.1	< 0.1	< 0.1	< 0.02	< 0.3	< 0.05	< 0.02	< 0.05	< 0.01	< 0.05	< 0.02	< 0.03	< 0.01	< 0.05	< 0.01
0.1	< 0.1	< 0.1	< 0.1	< 0.02	< 0.3	< 0.05	< 0.02	< 0.05	< 0.01	< 0.05	< 0.02	< 0.03	< 0.01	< 0.05	< 0.01
0.2	< 0.1	< 0.1	< 0.1	< 0.02	< 0.3	< 0.05	< 0.02	< 0.05	< 0.01	< 0.05	< 0.02	< 0.03	< 0.01	< 0.05	< 0.01

	Method	MA370	MA370	MA370	MA370	MA370	MA370
	Analyte	Мо	Cu	Pb	Zn	Ag	Ni
	Unit	%	%	%	%	GM/T	PPM
	MDL	0.001	0.001	0.02	0.01	2	10
MeT_LBUG_17_189	Core Pulp	0.003	0.832	< 0.02	< 0.01	2	15
MeT_LBUG_17_189	REP	0.003	0.818	< 0.02	< 0.01	<2	15
MeT_LBUG_17_132	Core Pulp	0.019	1.523	< 0.02	< 0.01	7	19
MeT_LBUG_17_132	REP	0.021	1.504	< 0.02	< 0.01	7	20
MeT_LBUG_17_46	Core Pulp	0.177	2.227	< 0.02	< 0.01	3	23
MeT_LBUG_17_46	REP	0.182	2.241	< 0.02	< 0.01	3	24
STD CDN-ME-14	STD	0.002	1.234	0.48	3.1	45	20
STD CDN-ME-9	STD	< 0.001	0.666	< 0.02	0.01	3	9724
STD CDN-ME-14	STD	0.002	1.259	0.49	3.15	45	19
STD CDN-ME-9	STD	< 0.001	0.656	< 0.02	0.01	3	9237
STD CDN-ME-14	STD	0.002	1.286	0.51	3.21	46	19
STD CDN-ME-9	STD	< 0.001	0.667	< 0.02	0.01	4	9447
BLK	BLK	< 0.001	< 0.001	< 0.02	< 0.01	<2	<10
BLK	BLK	< 0.001	< 0.001	< 0.02	< 0.01	<2	<10
BLK	BLK	< 0.001	< 0.001	< 0.02	< 0.01	<2	<10

	Method	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252	AQ252
	Analyte	Mo	Cu	Pb	Zn	Ag	Ni	Co	Mn	As	Au
	Unit	PPM	PPM	PPM	PPM	PPB	PPM	PPM	PPM	PPM	PPB
	MDL	0.01	0.01	0.01	0.1	2	0.1	0.1	1	0.1	0.2
MeT_LBUG_17_198	Core Pulp	34.26	>10000.00	10.88	59.8	594	5.3	4.9	1218	172.6	3.4
MeT_LBUG_17_198	REP	35.91	>10000.00	11.7	65.2	615	5.9	4.9	1219	188.3	3.5
MeT_LBUG_17_39	Core Pulp	82.84	>10000.00	25.31	106.2	578	3	3.2	824	340.5	13.1
MeT_LBUG_17_39	REP	79.07	>10000.00	25.56	102.6	536	3.2	3.3	848	337.7	13.8
MeT_LBUG_17_96	Core Pulp	352.64	>10000.00	5.61	21.9	4806	17.2	5.3	136	6	64

MeT_	LBUG_1	7_96	REP	3	40.1	>10000.0	00	5.34	2	0.9	4713	1	6.5	5.1	130	6		60.8
MeT_I	LBUG_1	7_178	Core Pu	lp 3	9.78	8248.96	5	1.03	1	3.7	838	2	4.5	2.3	68	11.7		8.5
MeT_I	LBUG_1	7_178	REP	3	9.67	8219.88	3	0.94	1	2.5	766	2	4.4	2.2	69	11.9	(11.6
ST	D OXC1	29	STD		1.2	28.51		6.4	3	9.9	21	7	5.4	19.6	435	0.8		185.3
S	TD DS1	1	STD	1	3.31	141.27	1	43.31	33	35.6	1810	7	7.5	12.9	1023	44.1		83
ST	D OXC1	29	STD	1	1.28	31.35		6.34	4	0.9	9	8	4.3	21.5	423	0.6		193.8
S	TD DS1	1	STD	1	4.21	151.25	1	132.2	32	29.8	1540	7	8.2	14	1010	39.6	ì	72.4
ST	D OXC1	29	STD	1	1.44	29.85		6.3	3	8.5	18	8	0.7	19.6	428	0.6		195
S	TD DS1	1	STD	1	5.19	151.11	1	46.67	34	40.3	1751	7	9.4	13.5	1038	42.1		71.8
ST	D OXC1	29	STD		1.45	35.76		6.01	3	8.6	8	7	6.5	20.1	411	0.3		187.5
S	TD DS1	1	STD	1	4.87	131.79	1	57.38	36	53.1	1746	8	3.4	13.7	1071	44.4		100.3
	BLK		BLK	<	0.01	1.33		0.02	().1	<2	<	:0.1	< 0.1	<1	0.2		< 0.2
	BLK		BLK	<	0.01	3.78	<	< 0.01	<	0.1	<2	<	:0.1	< 0.1	<1	0.1		< 0.2
	BLK		BLK	().06	5.69	<	< 0.01	<	0.1	<2	<	:0.1	< 0.1	<1	0.2		< 0.2
	BLK		BLK	(0.02	1.51	<	< 0.01	<	0.1	<2	<	:0.1	< 0.1	<1	0.2		< 0.2
52	52	52	52	52	52	52	52	0	52	52		70	52	52	52	57	1	52
AQ2	4Q2	AQ2	AQ2	AQ2	4Q2	AQ2	4Q2		4Q2	4Q2		772	4Q2	4Q2	4Q2	402	1 Y	4Q2
Cd	Sh	B;	Cr	P	т Т	Ча	So	1	Г <u>а</u>	Ge		n	Pa	Bo	1	D		Dt
PPM	PPM	PPM	PPM	PPM	PPM		PPN		PM	PPM	1 PI	n PM	PPR	PPM		1 PP	B B	PPR
0.01	0.02	0.02	0.5	1	0.02	5	0.1		02	0.1	0	02	1	0.1	01	1(<u>b</u>	2
0.25	7.13	1.45	72.6	19	0.08	33	3.3	3 0.	.02	<0.1	0.	02 27	34	0.2	1.2	<1	0	<2
0.26	7.51	1.55	75.3	19	0.08	39	3.7	7 0.	.24	< 0.1	0.	27	40	0.2	1.4	<1	0	<2
0.44	12.75	1.09	93.9	12	0.09	81	8.4	ι O.	.18	< 0.1	. 0	.3	47	0.2	0.7	<1	0	<2
0.47	13	1.09	90.1	14	0.09	83	9	0	.2	< 0.1	0.	37	42	0.2	0.6	<1	0	<2
0.3	1.4	2.14	104.7	16	0.11	23	5.5	5 0.	.46	< 0.1	<0	.02	199	0.2	4.8	<1	0	<2
0.28	1.39	2.15	107.1	17	0.11	23	5.4	ι O.	.43	< 0.1	. <0	.02	196	0.5	4.9	<1	0	<2
0.02	0.36	0.14	70.3	7	0.06	5 7	1.7	7 0.	18	< 0.1	0.	09	23	0.2	1.4	<1	0	<2
0.02	0.37	0.13	70.6	6	0.04	6	1.7	0.	.37	< 0.1	0.	12	22	0.5	1.3	<1	0	<2
0.01	0.04	0.04	49.1	<1	0.04	< <5	<0.	1 <0	0.02	< 0.1	<0	.02	<1	0.5	2.4	<1	0	<2
2.61	8.79	12.28	59.7	8	4.87	283	2.5	5 4.	.76	0.1	0.	24	48	0.6	22.6	5 83	3	174
0.02	0.03	< 0.02	52.4	<1	0.04	< <5	0.1	<0	0.02	< 0.1	. <0	.02	<1	0.8	2.1	<1	0	<2
2.33	7.7	11.86	59.6	6	4.79	258	2.1	4.	.59	< 0.1	0.	21	42	0.8	22	84	4	156
0.01	0.03	0.02	51.5	1	0.03	<5	<0.	1 <0	0.02	< 0.1	. <0	.02	<1	0.9	2.4	<1	0	<2
2.64	8.29	12.84	58.5	8	5.18	268	2.2	2 4.	.73	< 0.1	0.	24	54	0.9	24.4	8	7	178
< 0.01	0.04	< 0.02	49.4	2	0.03	<5	<0.	1 0.	.02	< 0.1	<0	.02	<1	0.8	1.9	<1	0	<2
2.45	8.65	12.42	59	7	5.41	270	2	5.	.22	0.1	0.	24	61	0.4	23.1	12	3	193
< 0.01	< 0.02	< 0.02	< 0.5	<1	< 0.02	2 <5	<0.	1 <0	0.02	< 0.1	<0	.02	<1	< 0.1	<0.1	<1	0	<2
< 0.01	< 0.02	< 0.02	< 0.5	<1	< 0.02	2 <5	<0.	1 <0	0.02	< 0.1	<0	.02	<1	< 0.1	<0.1	<1	0	<2
< 0.01	< 0.02	< 0.02	< 0.5	<1	< 0.02	2 <5	<0.	1 <0	0.02	< 0.1	<0	.02	<1	< 0.1	<0.1	<1	0	<2
< 0.01	< 0.02	< 0.02	< 0.5	<1	< 0.02	2 <5	<0.	1 0.	.02	< 0.1	<0	.02	<1	< 0.1	<0.1	<1	0	<2

	Method	TC000	TC000
	Analyte	TOT/C	TOT/S
	Unit	%	%
	MDL	0.01	0.01
MeT_LBUG_17_27	Core Pulp	0.2	2.86
MeT_LBUG_17_27	REP	0.2	2.75
MeT_LBUG_17_88	Core Pulp	0.03	3.22
MeT_LBUG_17_88	REP	0.02	3.15
MeT_LBUG_17_148	Core Pulp	0.36	2.47
MeT_LBUG_17_148	REP	0.37	2.57
STD GS311-1	STD	1.05	2.21
STD GS910-4	STD	2.8	7.95
STD GS311-1	STD	1.05	2.31
STD GS910-4	STD	2.81	8.07
STD GS311-1	STD	1.05	2.24
STD GS910-4	STD	2.77	7.98
BLK	BLK	< 0.01	< 0.01
BLK	BLK	< 0.01	< 0.01
BLK	BLK	< 0.01	0.01

	Method	TG001
	Analyte	LOI
	Unit	%
	MDL	-5.11
MeT_LBUG_17_138	Core Pulp	6.5
MeT_LBUG_17_138	REP	6.5
MeT_LBUG_17_192	Core Pulp	6.7
MeT_LBUG_17_192	REP	6.6
MeT_LBUG_17_50	Core Pulp	9.2
MeT_LBUG_17_50	REP	9.2
MeT_LBUG_17_150	Core Pulp	15.1
MeT_LBUG_17_150	REP	15.2
STD DOLOMITE-3	STD	48.2
STD DOLOMITE-3	STD	48
STD DOLOMITE-3	STD	48.9
STD DOLOMITE-3	STD	48.4
10.1.3 LÍMITES DE DETECCIÓN

Elemento	Método	A	Límite inferior de	Valores en el límite	
		Analisis	detección (ppm)	de detección	
SiO2	LF302	ICP-ES	100	0	
AI2O3	LF302	ICP-ES	100 0		
Fe2O3	LF302	ICP-ES	400	0	
MgO	LF302	ICP-ES	100	0	
CaO	LF302	ICP-ES	100	0	
Na2O	LF302	ICP-ES	100	0	
К2О	LF302	ICP-ES	100	0	
TiO2	LF302	ICP-ES	100	0	
P2O5	LF302	ICP-ES	100	0	
MnO	LF302	ICP-ES	100	6	
Cr2O3	LF302	ICP-ES	20	0	
Sc	LF302	ICP-ES	1	0	
Cs	LF302	ICP-ES	0.1	0	
Ba	LF100	ICP-MS	1	0	
Ga	LF100	ICP-MS	0.5	0	
Hf	LF100	ICP-MS	0.1	0	
Nb	LF100	ICP-MS	0.1	0	
Rb	LF100	ICP-MS	0.1	0	
Sn	LF100	ICP-MS	1	0	
Sr	LF100	ICP-MS	0.5	0	
Та	LF100	ICP-MS	0.1	1	
Th	LF100	ICP-MS	0.2	0	
U	LF100	ICP-MS	0.1	0	
V	LF100	ICP-MS	8	0	
W	LF100	ICP-MS	0.5	0	
Zr	LF100	ICP-MS	0.1	0	
Y	LF100	ICP-MS	0.1	0	
La	LF100	ICP-MS	0.1	0	
Ce	LF100	ICP-MS	0.1	0	
Pr	LF100	ICP-MS	0.02	0	
Nd	LF100	ICP-MS	0.3	0	
Sm	LF100	ICP-MS	0.05	0	
Eu	LF100	ICP-MS	0.02	0	
Gd	LF100	ICP-MS	0.05	0	
Tb	LF100	ICP-MS	0.01	0	
Dy	LF100	ICP-MS	0.05	0	
Но	LF100	ICP-MS	0.02	0	
Er	LF100	ICP-MS	0.03	0	
Tm	LF100	ICP-MS	0.01	0	
Yb	LF100	ICP-MS	0.05	0	
Lu	LF100	ICP-MS	0.01	0	

Elemento	Método	Análisis	Límite inferior de	Valores en el límite	
			detección (ppm)	de detección	
Мо	MA370	ICP-ES	10	0	
Cu	MA370	ICP-ES	10	0	
Pb	MA370	ICP-ES	200	100	
Zn	MA370	ICP-ES	100	93	
Ag	MA370	ICP-ES	2	38	
Ni	MA370	ICP-ES	10	22	
С	TC000	ICP-ES	100	0	
S	TC000	ICP-ES	100	0	
Мо	AQ252	ICP-MS	0.01	0	
Cu	AQ252	ICP-MS	0.01	82	
Pb	AQ252	ICP-MS	0.01	0	
Zn	AQ252	ICP-MS	0.1	0	
Ag	AQ252	ICP-MS	0.002	0	
Ni	AQ252	ICP-MS	0.1	0	
Со	AQ252	ICP-MS	0.1	0	
Mn	AQ252	ICP-MS	1	0	
As	AQ252	ICP-MS	0.1	0	
Au	AQ252	ICP-MS	0.0002	1	
Cd	AQ252	ICP-MS	0.01	0	
Sb	AQ252	ICP-MS	0.02	0	
Bi	AQ252	ICP-MS	0.02	0	
Cr	AQ252	ICP-MS	0.5	0	
В	AQ252	ICP-MS	1	0	
TI	AQ252	ICP-MS	0.02	0	
Hg	AQ252	ICP-MS	0.005	4	
Se	AQ252	ICP-MS	0.1	0	
Те	AQ252	ICP-MS	0.02	0	
Ge	AQ252	ICP-MS	0.1	88	
In	AQ252	ICP-MS	0.02	24	
Re	AQ252	ICP-MS	0.001	0	
Be	AQ252	ICP-MS	0.1	5	
Li	AQ252	ICP-MS	0.1	0	
Pd	AQ252	ICP-MS	0.01	99	
Pt	AQ252	ICP-MS	0.002	98	

Figura 10.1: Elementos medidos por digestión litio borato con ICP-ES e ICP-MS

Figura 10.2: Elementos medidos por digestión 4 ácidos y agua regia con medición por ICP-ES e ICP-MS.

10.1.4 HISTOGRÁMAS DE ELEMENTOS MAYORES

A continuación, se observan los histogramas realizados con el software de análisis de datos IOGAS para las muestras analizadas por geoquímica roca total:

Figura 10.3: Geoquímica roca total de elementos mayores de las muestras ensayadas para geometalurgia del yacimiento Los Sulfatos.

Figura 10.4: Box Plots del total de pruebas geometalúrgicas (2017) del yacimiento Los Sulfatos.

10.1.6 REDISTRIBUCIÓN DE UNIDADES GEOLÓGICAS

A continuación, se presentan las rocas con un patrón químico diferente a su unidad geológica asignada (Figura 10.5 a Figura 10.12). Estas rocas se redefinieron con respecto a parámetros tales como la geoquímica, cantidad de matriz y porcentaje de clastos, dureza geometalúrgica.

Figura 10.5: LBUG17_12, prueba geometalúrgica MeT_LBUG_17_133.

Figura 10.6 LBUG17_12, prueba geometalúrgica MeT_LBUG_17_134.

Figura 10.7: LBUG16_17, prueba geometalúrgica MeT_LBUG_17_86.

Figura 10.8: LBUG17_18, prueba geometalúrgica MeT_LBUG_17_150.

Figura 10.9: LBUG17_14, prueba geometalúrgica MeT_LBUG_17_180.

Figura 10.10: LBUG15_01, prueba geometalúrgica MeT_LBUG_17_85.

Figura 10.11: LBUG16_05, prueba geometalúrgica MeT_LBUG_17_78

Figura 10.12: LBUG16_03, prueba geometalúrgica MeT_LBUG_17_31.

10.1.7 COEFICIENTE DE CORRELACIÓN ENTRE SPI Y ANÁLISIS DE ROCA TOTAL

Elemento	Coeficiente de correlación con SPI	Elemento	Coeficiente de correlación con SPI	Elemento	Coeficiente de correlación con SPI
Ag	0 <mark>.04</mark>	Hf	- <mark>0</mark> .09	Sc	0.52
Al	0.54	Hg	-0.26	Se	-0.29
As	-0.48	Но	0.62	Si	-0.47
Au	0.08	In	-0.56	Sm	0.41
В	-0.34	К	<mark>-0</mark> .40	Sn	0.58
Ва	-0.52	La	0,10	Sr	0 .27
Be	0.16	Li	021	Та	0 .00
Bi	<mark>-0</mark> .16	Lu	0,60	Tb	Ø .56
Са	0.35	Mg	021	Те	-0.19
Cd	0.27	Mn	-0.51	Th	-0.18
Ce	0.15	Мо	0.32	Ti	0 .58
Со	0.36	Na	- <mark>0</mark> .07	Tl	0 .22
Cr	-0.24	Nb	0.06	Tm	0 .62
Cs	<mark>-0</mark> .35	Nd	0.26	U	0.22
Cu	0.13	Ni	0,43	V	0 .51
Dy	0.59	Р	0.51	W	-0.07
Er	0.63	Pb	0.00	Y	0 .60
Eu	0.56	Pr	0.22	Yb	0.62
Fe	0.22	Rb	-0.39	Zn	-0.15
Ga	0.30	Re	0.16	Zr	-0.08
Gd	0.50	Sb	<mark>-0</mark> .29		

Figura 10.13: Coeficientes de correlación del análisis de química roca total con respecto a los resultados SPI para las pruebas geometalúrgicas en el yacimiento Los Sulfatos

 Mail
 File: BT_MET_BUG_17-28.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - St

 ____Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 00-021-0816 (*) - Gypsum - CaSO4-2H2O - Y: 2.39 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 6.28600 101-089-0950 (C) - Magnetite - Fe3O4 - Y: 1.36 % - d x by: 1. - WL: 1.5406 - Cubic - a 8.39900 - b 8.3990 ■ 01-072-0916 (C) - Anhydrite - Ca(SO4) - Y: 1.33 % - d x by: 1. - WL: 1.5406 - Othorhombic - a 7.00600 -101-078-2063 (C) - Chlorite Ia - (Mg5.0Fe0.1Cr0.7AI0.2)(Si3AIO10)(OH0.9875)8 - Y: 0.30 % - d x by: 1. -101-074-1731 (C) - Tourmaline - NaMg3B3AI6Si6O27(OH)4 - Y: 0.42 % - d x by: 1. - WL: 1.5406 - Rhomb ■ 01-088-1173 (C) - Rutile, syn - TiO2 - Y: 1.49 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 4.54800 - b 4.5

40000 -39000 -38000 -37000 -36000 -35000 -34000 -33000 -32000 -31000 -30000 -29000 -28000 -27000 -26000 -25000 -24000 -23000 -22000 -20000 -19000 -18000 -17000 -17000 -16000 -15000 -14000 -13000 12000 -11000 -10000 -9000 -8000 7000 6000 5000 4000 3000 2000 1000 0 2 10 20 30 40 50 60 70 8 2-Theta - Scale

MeT_LBUG_17_34

 Dile: BT_MET_BUG_17-34.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - St

 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

● 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 - Y: 37.14 % - d x by: 1. - WL: 1.5406 - T
 ● 01-085-0504 (C) - Quartz - SiO2 - Y: 76.35 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91280 - b 4.912
 ● 01-076-0823 (C) - Orthoclase - KAISi308 - Y: 7.82 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.58900 - b 1
 ● 00-033-0256 (I) - Yeelimite, syn - Ca4Al6O12SO4 - Y: 10.76 % - d x by: 1. - WL: 1.5406 - Cubic - a 18.3
 ● 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 5.33 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.9933
 ■ 01-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.8SO10)((CH)1.744F0.256) - Y: 3.28 % - d x b

X01-083-0984 (C) - Chalcopyrite - CuFeS2 - Y: 3.78 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.27700 - → 01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 - Y: 0.79 % - d x by: 1.

▼01-076-0823 (C) - Orthoclase - KAISi3O8

34000 -33000 -32000 -31000 -30000 -29000 -28000 -27000 -26000 -25000 -24000 -23000 -22000 -21000 -20000 -19000 -17000 -16000 -15000 -14000 -13000 -12000 -11000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 20 30 40 50 2 10 60 70 8 2-Theta - Scale 🖾 File: BT_MET_LBUG_17-44.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S 🛛 💌 01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import 01-085-0504 (C) - Quartz - SiO2 • 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 00-031-0966 (*) - Orthoclase - KAISi3O8 00-006-0263 (I) - Muscovite-2M1 - KAI2(Si3AI)O10(OH,F)2

MeT_LBUG_17_44

119

▼00-037-1496 (*) - Anhydrite, syn - CaSO4 ▼00-037-0471 (*) - Chalcopyrite - CuFeS2

40000 -39000 -38000 -37000 -36000 -35000 -34000 -33000 -32000 -31000 30000 -29000 -28000 -27000 -26000 -25000 -24000 -17000 -16000 -15000 -14000 -13000 12000 -11000 -10000 -9000 -8000 7000 6000 5000 4000 3000 2000 1000 0 30 40 2 10 20 50 60 70 8 2-Theta - Scale 🖾 File: BT_MET_LBUG_17-45.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S 📃 01-089-0555 (C) - Rutile, syn - Ti0.924O2 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import 00-046-1045 (*) - Quartz, syn - SiO2 • 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 00-037-1496 (*) - Anhydrite, syn - CaSO4 00-006-0263 (I) - Muscovite-2M1 - KAI2(Si3AI)O10(OH,F)2 ▼00-037-0471 (*) - Chalcopyrite - CuFeS2

MeT_LBUG_17_45

120

200-046-1323 (I) - Clinochlore-1MIIb - (Mg,AI,Fe)6(Si,AI)4O10(OH)8

M File: BT_MET_LBUG_17-77.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - Step time: 37.8 s - Temp.: 25 °C (Room) - Time Started: 15 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - Ph
 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 01-086-1630 (C) - Quartz low - SiO2 - Y: 70.51 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4.91410 - c 5.40600 - alpha 90.000 - beta 90.000 - gamma 120.000 - Primitive - P3121 (152) - 3 - 113.056 - I/L P ● 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8 - Y: 12.56 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.16100 - b 12.85800 - c 7.11200 - alpha 93.680 - beta 116.420 - gamma 89.390 - Base-centered - C ● 00-006-0263 (I) - Muscovite-2M1 - KAI2(Si3Al)O10(OH,F)2 - Y: 7.89 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5.19000 - b 9.03000 - c 20.05000 - alpha 90.000 - beta 95.770 - gamma 89.000 - Base-centered - CZ/c ▲ 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 11.11 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.9930 - b 7.00170 - c 6.24110 - alpha 90.000 - beta 90.000 - beta 90.000 - Base-centered - Bmmb (63) - 4 - 305 ♥ 00-029-0701 (I) - Clinochlore-1MIlb, Fe-rich - (Mg,Fe)6(Si,Al)4O10(OH)8 - Y: 8.15 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5.36000 - b 9.28000 - c 14.20000 - alpha 90.000 - beta 97.150 - gamma 90.000 - Base-centered - ♥ 00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 9.92 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.28930 - b 7.01200 - alpha 90.000 - beta 90.000 - Body-centered - I-42d (122) - 4 - 291.60

31000 30000 -29000 -28000 -27000 -26000 -25000 -24000 -23000 -22000 -21000 -20000 -19000 -18000 17000 16000 15000 .<u></u>_______ 13000 -12000 -11000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 2 10 20 30 40 50 60 70 8 2-Theta - Scale

MeT_LBUG_17_78

W File: BT_MET_BUG_17-78.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - St Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 01-085-0504 (C) - Quartz - SiO2 - Y: 71.44 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91280 - b 4.912 ● 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8 - Y: 25.68 % - d x by: 1. - WL: 1.5406 - T ● 00-042-1437 (I) - Phlogopite-1M, Fe-rich - K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2 - Y: 19.41 % - d x by: 1. - W ▲ 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 13.60 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.993 ♥ 00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 9.03 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.28930 -■ 00-029-0701 (I) - Clinochlore-1MIIb, Fe-rich - (Mg,Fe)6(Si,Al)4C010(OH)8 - Y: 3.80 % - d x by: 1. - WL: 1.

Molecular Content of the second of the

27000 -26000 -25000 -24000 -23000 -22000 -21000 -20000 -19000 -18000 -17000 -(16000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 -11000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 20 30 40 50 2 10 60 70 8 2-Theta - Scale ∏ File: BT_MET_LBUG_17-86.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S 🕅 01-085-2275 (C) - Phlogopite - KMg3Si3AlO10(F,OH)2 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import 01-088-1808 (C) - Calcite - Ca(CO3) 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 ●01-086-1630 (C) - Quartz low - SiO2 01-076-0823 (C) - Orthoclase - KAISi3O8 400-037-1496 (*) - Anhydrite, syn - CaSO4 T01-083-1380 (C) - Chlorite, chromian - Mg5.0Al0.76Cr0.23Al0.96Si3.04O10(OH)8 C1-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256)

37000 36000 -35000 -34000 -33000 -32000 -31000 -30000 -29000 -28000 -27000 -26000 -25000 -24000 -23000 -22000 -0000 19000 18000 18000 15000 -14000 -13000 -12000 -11000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 2 10 20 30 40 50 60 70 8 2-Theta - Scale MFile: BT_MET_BUG_17-89.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - St 00-029-0701 (I) - Clinochlore-1MIIb, Fe-rich - (Mg,Fe)6(Si,Al)4O10(OH)8 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import 01-083-0984 (C) - Chalcopyrite - CuFeS2 00-051-1445 (I) - Thometzekite, sulfatian - Pb(Cu,Zn)2(AsO4,SO4)2-2H2O 00-046-1045 (*) - Quartz, syn - SiO2 • 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 01-088-2157 (C) - Bornite high - (Cu5FeS4)0.5 00-037-1496 (*) - Anhydrite, syn - CaSO4 01-089-0555 (C) - Rutile, syn - Ti0.924O2 00-042-1437 (I) - Phlogopite-1M, Fe-rich - K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2 01-088-1809 (C) - Calcite - Ca(CO3) 00-022-0712 (I) - Nimite-1MIIb - (Ni,Mg,AI)6(Si,AI)4O10(OH)8 01-086-0439 (C) - Orthoclase - K(AlSi3O8) 200-014-0090 (*) - Petalite-2M - alpha-LiAlSi4O10

 M File: BT_MET_LBUG_17-91.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S

 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 01-086-1630 (C) - Quartz low - SiO2 - Y: 78.72 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. ● 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)AI(Si,AI)308 - Y: 17.69 % - d x by: 1. - WL: 1.5406 - T ● 01-076-0823 (C) - Orthoclase - KAISi308 - Y: 9.80 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.58900 - b 1 ▲ 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 16.56 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.993 ♥ 00-007-042 (I) - Muscovite-3T - (K,Na)(AI,Mg,Fe)2(Si3.1AI0.9)O10(OH)2 - Y: 5.19 % - d x by: 1. - WL: 1 ▼ 00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 4.61 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.28930 -

■00-042-1413 (I) - Annite-1M - KFe3+2(Si,Al)4O10(OH)2 - Y: 8.08 % - d x by: 1. - WL: 1.5406 - Monoclini =01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 - Y: 1.60 % - d x by: 1.

22000 21000 -20000 -19000 -18000 -17000 -16000 -15000 -14000 -9000 8000 d=10,03627 7000 6000 5000 4000 3000 2000 1000 0 40 2 10 20 30 50 60 70 Q

MeT_LBUG_17_93

2-Theta - Scale

MFile: BT_MET_BUG_17-93.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - St Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

01-086-0438 (C) - Orthoclase - K(AlSi3O8) - Y: 22.27 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 8.5912 ●01-086-1630 (C) - Quartz low - SiO2 - Y: 47.51 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 24.53 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.993 T01-089-0951 (C) - Magnetite - Fe3O4 - Y: 13.01 % - d x by: 1. - WL: 1.5406 - Cubic - a 8.49100 - b 8.491 🔟 00-010-0393 (*) - Albite, disordered - Na(Si3Al)O8 - Y: 43.66 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.1 Z01-074-1758 (C) - Dickite - Al2Si2O5(OH)4(HCONH2) - Y: 19.49 % - d x by: 1. - WL: 1.5406 - Monoclinic

●01-075-0940 (C) - Chalcopyrite - CuFeS2 - Y: 7.88 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.24000 -01-083-1380 (C) - Chlorite, chromian - Mg5.0Al0.76Cr0.23Al0.96Si3.04O10(OH)8 - Y: 2.25 % - d x by: 1. 101-088-2197 (C) - Biotite 1M, titanoan barian - (K1.81Na0.12Ba0.07)(Mg3.33Fe2.05Al0.26Ti0.36)(Al2.75

32000 -31000 -30000 -29000 -28000 -27000 -26000 -25000 -24000 -23000 -22000 -21000 -20000 -19000 -13000 -12000 -11000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 40 2 10 20 30 50 60 70 8 2-Theta - Scale 🖾 File: BT_MET_LBUG_17-96.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S 🛛 🔟 01-073-1658 (C) - Phlogopite 2M1 - KMg3AlSi3O10OHF Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import =01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 01-086-1630 (C) - Quartz low - SiO2 ●01-086-0437 (C) - Orthoclase - K(AlSi3O8) 00-037-1496 (*) - Anhydrite, syn - CaSO4 00-044-1457 (*) - Dravite, V-rich - Na(Mg,V)3Al6(BO3)3Si6O18(OH)4 V00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8 Z01-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256)

MeT_LBUG_17_96

139

 M File: BT_MET_LBUG_17-99.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S

 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 01-086-1630 (C) - Quartz low - SiO2 - Y: 80.63 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. ● 01-076-0823 (C) - Orthoclase - KAISi3O8 - Y: 11.54 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.58900 - b ● 00-037-1496 (') - Anhydrite, syn - CaSO4 - Y: 24.45 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.993 ▲ 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)AI(Si,AI)3O8 - Y: 28.22 % - d x by: 1. - WL: 1.5406 - T ♥ 00-044-1457 (*) - Dravite, V-rich - Na(Mg,V)3AI6(BO3)3Si6O18(OH)4 - Y: 3.56 % - d x by: 1. - WL: 1.5406 - Monocl ♥ 00-00-0263 (I) - Muscovite-2W1 + KAI2(Si3AI)O10(OH,F)2 - Y: 4.50 % - d x by: 1. - WL: 1.5406 - Monocl

♥01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 - Y: 1.85 % - d x by: 1. ●01-073-0250 (C) - Annite - KFe3AlSi3O10(OH,F)2 - Y: 8.27 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 5

25000 -24000 -23000 -22000 -21000 -20000 -19000 -18000 -17000 -16000 -10000 -9000 -8000 7000 6000 5000 4000 3000 2000 1000 0 40 2 10 20 30 50 60 70 8 2-Theta - Scale MFile: BT_MET_BUG_17-128.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - S M01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import =01-089-0951 (C) - Magnetite - Fe3O4 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 00-002-0056 (D) - Illite - KAI2Si3AIO10(OH)2 •01-086-1630 (C) - Quartz low - SiO2 00-031-0966 (*) - Orthoclase - KAISi3O8 00-037-1496 (*) - Anhydrite, syn - CaSO4 100-042-1437 (I) - Phlogopite-1M, Fe-rich - K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2 ▲01-083-0984 (C) - Chalcopyrite - CuFeS2

Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■01-086-1630 (C) - Quartz low - SiO2 - Y: 82.04 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. ●00-007-0042 (I) - Muscovite-3T - (K,Na)(Al,Mg,Fe)2(Si3.1Al0.9)O10(OH)2 - Y: 10.85 % - d x by: 1. - WL: 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 10.36 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.993 ▲ 00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 4.87 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.28930 -Tot-071-2219 (C) - Pyrite - FeS2 - Y: 1.19 % - d x by: 1. - WL: 1.5406 - Cubic - a 5.41790 - b 5.41790 - c Z00-045-1340 (I) - Dravite, Cr-rich - Na0.24(Mg,Al,Cr)3Al6(BO3)3Si6O18(OH)4 - Y: 1.09 % - d x by: 1. -

23000 22000 -21000 -20000 -19000 -18000 -17000 -16000 -15000 -Line Counts) 10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 20 40 2 10 30 50 60 70 8 2-Theta - Scale MFile: BT_MET_LBUG_17-132.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° -01-076-1746 (C) - Gypsum - CaSO4(H2O)2 Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import 01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 01-080-1094 (C) - Albite low - Na(AlSi3O8) 01-083-0984 (C) - Chalcopyrite - CuFeS2 ●01-086-1630 (C) - Quartz low - SiO2 +01-088-1812 (C) - Calcite - Ca(CO3) 01-075-1190 (C) - Orthoclase - K(AlSi3)O8 00-025-1307 (I) - Dravite, Cr-rich - Na0.8Mg3Al6B3O9Si6O18(OH)4 ▼00-037-1496 (*) - Anhydrite, syn - CaSO4 M01-088-2198 (C) - Biotite 1M, aluminous barian - (K1.77Ba0.23)(Mg3.16Fe2.01Al0.49Ti0.34)(Al2.83Si5.1

∏File: BT_MET_LBUG_17-135.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 01-086-1630 (C) - Quartz low - SiO2 - Y: 81.74 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. ● 00-033-0311 (*) - Gypsum, syn - CaSO4-2H2O - Y: 4.24 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 6.28 ● 00-007-0042 (I) - Muscovite-3T - (K,Na)(AI,Mg,Fe)2(Si3.1AI0.9)O10(OH)2 - Y: 4.98 % - d x by: 1. - WL: 1 ▲ 00-025-1307 (I) - Dravite, Cr-rich - Na0.8Mg3Al6B3O9Si6O18(OH)4 - Y: 3.74 .498 % - d x by: 1. - WL: 1.5406 ♥ 00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 6.02 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.2830 - ▼ 00-037-1496 (*) - Anhydrite, syn - CaSO4 - Y: 4.40 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.933

■01-084-0982 (C) - Albite low - Na(AlSi3O8) - Y: 3.02 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.11510 - b ■01-086-0439 (C) - Orthoclase - K(AlSi3O8) - Y: 1.18 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 8.59046

∏ File: BT_MET_LBUG_17-137.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 00-046-1045 (*) - Quartz, syn - SiO2 - Y: 75.66 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91344 - b 4 ● 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8 - Y: 22.93 % - d x by: 1. - WL: 1.5406 - T ● 00-007-0042 (I) - Muscovite-3T - (K,Na)(Al,Mg,Fe)2(Si3.1A10.9)O10(OH)2 - Y: 5.37 % - d x by: 1. - WL: 1 ▲ 00-021-0816 (*) - Gypsum - CaSO4-2H2O - Y: 3.68 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 6.28600 ♥ 00-037-0471 (*) - Chalcopyrite - CuFeS2 - Y: 6.01 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.28930 -▼ 01-076-0823 (C) - Orthoclase - KAISi3O8 - Y: 6.89 % - d x by: 1. - WL: 1.5406 - Triclinic - a 8.58900 - b 1

▶ 01-086-1030 (C) - Sodalite ((N O3)-exchanged), syn - Na7.89(AlSiO4)6(NO3)1.92 - Y: 4.00 % - d x by: 1. ■ 00-025-1307 (I) - Dravite, Cr-rich - Na0.8Mg3Al6B3O9Si6O18(OH)4 - Y: 2.88 % - d x by: 1. - WL: 1.5406

• 00-037-0471 (*) - Chalcopyrite - CuFeS2

- 00-031-0966 (*) Orthoclase KAISi3O8
- ▲ 00-025-1307 (I) Dravite, Cr-rich Na0.8Mg3Al6B3O9Si6O18(OH)4 ▼ 00-007-0042 (I) Muscovite-3T (K,Na)(Al,Mg,Fe)2(Si3.1Al0.9)O10(OH)2

200-021-0816 (*) - Gypsum - CaSO4-2H2O

30000 -29000 -28000 -27000 -26000 -25000 24000 -23000 -22000 -21000 -20000 -19000 -18000 -Counts) 12000 15000 15000 12000 12000 12000 12000 -11000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 40 2 10 20 30 50 60 70 2-Theta - Scale

MeT_LBUG_17_149

∭ File: BT_MET_LBUG_17-149.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - 🕨 01-083-0984 (C) - Chalcopyrite - CuFeS2 - Y: 1.75 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.27700 -Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

00-046-1045 (*) - Quartz, syn - SiO2 - Y: 70.09 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91344 - b 4 ●00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8 - Y: 64.26 % - d x by: 1. - WL: 1.5406 - T 00-031-0966 (*) - Orthoclase - KAISi3O8 - Y: 12.63 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 8.55600 -▲01-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256) - Y: 3.40 % - d x b T01-088-2195 (C) - Biotite 1M, titanoan barian - (K1.71Na0.22Ba0.07)(Mg3.4Fe1.5Ti0.98)(Al1.52Si6.48O2 Z01-086-2270 (C) - Anhydrite - Ca(SO4) - Y: 5.15 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.99300 -

160

V00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8

01-086-1630 (C) - Quartz low - SiO2

● 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8

01-086-0439 (C) - Orthoclase - K(AlSi3O8)

O1-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256)

▼01-076-1746 (C) - Gypsum - CaSO4(H2O)2

▼01-083-0984 (C) - Chalcopyrite - CuFeS2

00-037-1496 (*) - Anhydrite, syn - CaSO4

401-083-1366 (C) - Biotite - K2(Fe2.786Mg2.321Ti0.550)(Al2.413Si5.587O20)(OH)4

01-086-0439 (C) - Orthoclase - K(AlSi3O8)

201-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8

00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8

25000 24000 -23000 -22000 -21000 -20000 -19000 -18000 -17000 -16000 -10000 -9000 8000 7000 6000 5000 4000 3000 2000 1000 0 40 2 10 20 30 50 60 70 8 2-Theta - Scale

MeT_LBUG_17_182

2-Theia -

 ∭ File: BT_MET_LBUG_17-182.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 °

 ____Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

■ 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 - Y: 29.26 % - d x by: 1. - WL: 1.5406 - T ◆ 01-086-1630 (C) - Quartz low - SiO2 - Y: 67.93 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. ■ 00-042-1437 (I) - Philogopite-1M, Fe-rich - K(Mg,Fe)3(Al,Fe)Si3O10(OH,F)2 - Y: 33.36 % - d x by: 1. - W ▲ 01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O1(OH)8 - Y: 4.10 % - d x by: 1. ♥ 01-086-2270 (C) - Anhydrite - Ca(SO4) - Y: 16.79 % - d x by: 1. - WL: 1.5406 - Orthorhombic - a 6.99300 ▼ 01-083-0984 (C) - Chalcopyrite - CuFeS2 - Y: 4.66 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.27700 -

▶ 01-086-0439 (C) - Orthoclase - K(AlSi3O8) - Y: 3.91 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 8.59046 ■ 01-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256) - Y: 1.14 % - d x b

27000 26000 -25000 -24000 -23000 -22000 -21000 -20000 -19000 -18000 17000 -16000 -Connts 12000 13000 13000 13000 11000 -10000 -9000 -8000 7000 6000 5000 4000 3000 2000 1000 0 40 2 10 20 30 50 60 70 2-Theta - Scale

MeT_LBUG_17_186

Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

01-075-1190 (C) - Orthoclase - K(AlSi3)O8 - Y: 24.04 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 8.5616 ●01-086-1630 (C) - Quartz low - SiO2 - Y: 67.77 % - d x by: 1. - WL: 1.5406 - Hexagonal - a 4.91410 - b 4. ●00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8 - Y: 14.18 % - d x by: 1. - WL: 1.5406 - T ▲01-083-0984 (C) - Chalcopyrite - CuFeS2 - Y: 11.30 % - d x by: 1. - WL: 1.5406 - Tetragonal - a 5.27700 To1-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256) - Y: 2.80 % - d x b E01-076-1746 (C) - Gypsum - CaSO4(H2O)2 - Y: 1.68 % - d x by: 1. - WL: 1.5406 - Monoclinic - a 10.470

💭 File: BT_MET_LBUG_17-187.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - Step time: 37.8 s - Temp.: 25 °C (Room) - Time Started: 15 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - P Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import

01-086-1630 (C) - Quartz low - SiO2

●01-076-0823 (C) - Orthoclase - KAISi3O8

• 00-037-0471 (*) - Chalcopyrite - CuFeS2

▲00-044-1457 (*) - Dravite, V-rich - Na(Mg,V)3Al6(BO3)3Si6O18(OH)4 ▼00-021-0816 (*) - Gypsum - CaSO4-2H2O

200-007-0042 (I) - Muscovite-3T - (K,Na)(AI,Mg,Fe)2(Si3.1Al0.9)O10(OH)2

MeT_LBUG_17_190

00-046-1045 (*) - Quartz, syn - SiO2

●01-076-0823 (C) - Orthoclase - KAISi3O8

00-037-0471 (*) - Chalcopyrite - CuFeS2

00-044-1457 (*) - Dravite, V-rich - Na(Mg,V)3Al6(BO3)3Si6O18(OH)4

00-033-0311 (*) - Gypsum, syn - CaSO4·2H2O

101-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256)

23000 22000 -21000 -20000 -19000 -18000 -17000 -16000 -15000 -14000 -Line Counts) 10000 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 20 30 40 50 2 10 60 70 8 2-Theta - Scale MFile: BT_MET_LBUG_17-193.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° -N01-086-2270 (C) - Anhydrite - Ca(SO4) Operations: Strip kAlpha2 0.500 | Background 1.000,1.000 | Import E01-086-1386 (C) - Muscovite 2M1 - K0.94Al1.96(Al0.95Si2.85O10)((OH)1.744F0.256) 00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)308 ●01-075-1190 (C) - Orthoclase - K(AlSi3)O8 • 01-086-2237 (C) - Quartz low - SiO2 00-042-1413 (I) - Annite-1M - KFe3+2(Si,AI)4O10(OH)2 T01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8 ▼01-083-0984 (C) - Chalcopyrite - CuFeS2

MeT_LBUG_17_193

24000 -23000 -22000 -21000 -20000 -19000 -18000 -17000 -16000 -15000 -Ling (2000 - 10000 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1 10000 -9000 8000 7000 -6000 5000 4000 3000 2000 1000 0 20 30 40 50 60 2 10 70 8 2-Theta - Scale

MeT_LBUG_17_194

File: BT_MET_LBUG_17-194.raw - Type: 2Th/Th locked - Start: 2.000 ° - End: 80.003 ° - Step: 0.020 ° - Step time: 37.8 s - Temp.: 25 °C (Room) - Time Started: 16 s - 2-Theta: 2.000 ° - Theta: 1.000 ° - Chi: 0.00 ° - P Operations: Strip kAlpha2 0.500 | Background 1.000, 1.000 | Import

00-041-1480 (I) - Albite, Ca-rich, ordered - (Na,Ca)Al(Si,Al)3O8

●01-086-1630 (C) - Quartz low - SiO2

• 00-042-1413 (I) - Annite-1M - KFe3+2(Si,AI)4O10(OH)2

00-037-1496 (*) - Anhydrite, syn - CaSO4

T01-083-1381 (C) - Chlorite, chromian - Mg5.0Al0.75Cr0.25Al1.00Si3.00O10(OH)8

▼01-083-0984 (C) - Chalcopyrite - CuFeS2

MeT_LBUG_17_195

MeT_LBUG_17_197

10.3 ANEXO C):RESULTADOS ELEMENTOS A MINERALES

Etapa	Sample	holeid	from	to	Litología	Alteración	SPI (min)	Qz (%)	PI (%)	Fk (%)	Ms (%)	Bt (%)	Cpy (%)
For	MeT_LBUG_17_77	LBUG15_02	245	260	AND	SV	233	30	20	0	16	0	6
For	MeT_LBUG_17_30	LBUG16_02	120	135	BXT	SET	82	40	9	24	0	0	8
For	MeT_LBUG_17_45	LBUG16_05	546	561	BXM	BT	254	31	20	0	17	0	5
For	MeT_LBUG_17_78	LBUG16_05	480	495	BXPR	SE	171	27	30	0	0	6	4
For	MeT_LBUG_17_49	LBUG16_07	180	195	BXB	SE	96	24	35	17	0	6	4
For	MeT_LBUG_17_47	LBUG16_07	620	635	AND	BT	239	23	31	0	4	14	3
For	MeT_LBUG_17_97	LBUG16_07	780	795	AND	BT	115	17	40	15	0	3	4
For	MeT_LBUG_17_89	LBUG16_08	185	200	BXM	SV	206	30	23	2	0	14	4
For	MeT_LBUG_17_98	LBUG16_11	740	755	AND	BT	243	39	12	0	20	7	5
For	MeT_LBUG_17_94	LBUG16_15	105	120	BXM	SV	231	34	24	0	19	0	5
For	MeT_LBUG_17_50	LBUG16_17	460	475	BXB	BT	290	44	0	0	16	12	6
For	MeT_LBUG_17_132	LBUG17_02	235	250	BXB	BT	128	23	36	8	0	5	4
For	MeT_LBUG_17_137	LBUG17_03	125	140	BXT	SET	76	37	21	14	0	0	3
For	MeT_LBUG_17_135	LBUG17_13	65	80	BXT	SV	83	43	12	15	0	0	4
For	MeT_LBUG_17_180	LBUG17_14	485	507	BXH	BT	164	18	57	0	11	0	5
For	MeT_LBUG_17_147	LBUG17_15	225	245	BXI	SET	114	39	17	22	0	5	5
For	MeT_LBUG_17_186	LBUG17_19	195	214	BXB	BT	113	29	18	25	5	2	4
For	MeT_LBUG_17_190	LBUG17_22	40	60	BXT	SET	70	43	0	23	0	0	9
For	MeT_LBUG_17_187	LBUG17_24	30	51	BXT	SET	75	44	8	20	0	0	8
For	MeT_LBUG_17_199	LBUG17_27	125	148	BXT	SET	77	41	7	19	0	0	6
Int	MeT_LBUG_17_26	LBUG15_01	15	30	BXM	Κ	128	37	27	10	7	5	4
Int	MeT_LBUG_17_27	LBUG15_01	30	45	PIP	SV	142	41	16	12	14	0	5
Int	MeT_LBUG_17_28	LBUG15_01	105	120	PIP	Κ	87	47	20	17	0	0	3
Int	MeT_LBUG_17_85	LBUG15_01	270	285	BXT	SET	155	32	21	11	12	0	5
Int	MeT_LBUG_17_29	LBUG16_02	5	20	BXM	Κ	146	38	20	10	11	3	4
Int	MeT_LBUG_17_32	LBUG16_02	175	190	BXT	SET	117	43	0	19	7	0	7
Int	MeT_LBUG_17_33	LBUG16_02	405	420	BXM	Κ	192	27	31	7	20	0	5
Int	MeT_LBUG_17_34	LBUG16_02	560	575	PIP	Κ	158	36	35	3	17	0	2
Int	MeT_LBUG_17_31	LBUG16_03	55	70	BXT	SE	240	41	6	0	10	0	5
Int	MeT_LBUG_17_79	LBUG16_05	295	310	BXB	BT	176	23	33	7	8	4	5
Int	MeT_LBUG_17_46	LBUG16_07	210	225	BXB	SE	230	23	31	1	24	0	6
Int	MeT_LBUG_17_42	LBUG16_07	475	490	BXM	Κ	237	31	18	3	21	0	5
Int	MeT_LBUG_17_149	LBUG16_08	310	325	BXM	Κ	131	30	39	8	6	6	2

Int	MeT_LBUG_17_36	LBUG16_09	415	430	BXT	SET	95	37	10	24	0	6	6
Int	MeT_LBUG_17_99	LBUG16_10	55	70	BXM	BT	161	24	29	10	10	2	5
Int	MeT_LBUG_17_181	LBUG16_10	320	335	BXB	BT	118	30	22	13	8	0	3
Int	MeT_LBUG_17_145	LBUG16_11	130	145	BXM	K	114	34	25	14	3	0	3
Int	MeT_LBUG_17_91	LBUG16_11	345	360	AND	BT	153	31	23	12	7	4	5
Int	MeT_LBUG_17_43	LBUG16_11	405	420	AND	BT	166	18	34	10	10	2	6
Int	MeT_LBUG_17_44	LBUG16_11	485	500	BXB	BT	218	32	20	0	16	0	6
Int	MeT_LBUG_17_84	LBUG16_13	105	120	BXI	BT	157	45	9	5	15	0	6
Int	MeT_LBUG_17_96	LBUG16_13	250	265	BXB	BT	122	27	26	15	3	5	5
Int	MeT_LBUG_17_82	LBUG16_16	375	390	BXB	BT	155	26	36	6	4	13	5
Int	MeT_LBUG_17_86	LBUG16_17	25	40	BXT	SET	185	24	34	4	15	0	3
Int	MeT_LBUG_17_87	LBUG16_17	200	215	AND	BT	295	34	26	0	18	0	5
Int	MeT_LBUG_17_185	LBUG17_04	310	330	BXT	SET	92	37	16	25	3	0	2
Int	MeT_LBUG_17_182	LBUG17_05	65	79	AND	BT	131	21	34	3	0	17	3
Int	MeT_LBUG_17_126	LBUG17_05	775	790	QMF	BT	96	38	30	16	1	2	2
Int	MeT_LBUG_17_128	LBUG17_06	255	270	AND	BT	221	24	31	3	12	9	3
Int	MeT_LBUG_17_138	LBUG17_06	270	285	AND	BT	216	28	26	4	10	11	4
Int	MeT_LBUG_17_129	LBUG17_07	200	230	BXB	SE	278	45	0	3	22	0	3
Int	MeT_LBUG_17_141	LBUG17_11	375	390	AND	SE	127	36	25	9	8	0	5
Int	MeT_LBUG_17_193	LBUG17_11	595	615	BXB	BT	98	23	33	16	0	7	6
Int	MeT_LBUG_17_133	LBUG17_12	60	75	BXT	BT	142	32	18	13	5	0	4
Int	MeT_LBUG_17_134	LBUG17_12	225	240	BXT	SET	208	36	14	3	18	0	5
Int	MeT_LBUG_17_178	LBUG17_14	65	85	PIP	K	106	38	28	11	6	0	2
Int	MeT_LBUG_17_144	LBUG17_14	200	215	PIP	K	122	45	19	8	10	0	3
Int	MeT_LBUG_17_195	LBUG17_14	295	314	BXI	BT	127	23	44	8	4	3	2
Int	MeT_LBUG_17_179	LBUG17_14	365	388	BXI	K	172	18	53	1	12	1	5
Int	MeT_LBUG_17_148	LBUG17_17	80	103	BXT	SET	62	42	5	28	0	0	3
Int	MeT_LBUG_17_197	LBUG17_17	165	188	PPM	SET	118	35	32	11	3	4	1
Int	MeT_LBUG_17_143	LBUG17_17	295	310	BXT	SET	42	52	0	23	0	0	6
Int	MeT_LBUG_17_150	LBUG17_18	50	65	BXT	SET	157	33	6	6	8	0	5
Int	MeT_LBUG_17_194	LBUG17_18	395	408	AND	BT	82	22	40	0	0	8	3
Int	MeT_LBUG_17_189	LBUG17_24	230	248	BXT	SET	156	46	6	2	13	0	2
Out	MeT_LBUG_17_92	LBUG16_11	570	585	BXB	BT	349	37	15	0	19	6	5
Out	MeT_LBUG_17_93	LBUG16_11	675	690	AND	BT	95	22	36	22	0	1	5
Out	MeT_LBUG_17_81	LBUG16_16	125	140	-	BT	299	29	25	0	21	0	4
Out	MeT_LBUG_17_127	LBUG16_17	645	660	AND	BT	91	27	39	6	0	14	2
Out	MeT_LBUG_17_184	LBUG17_18	315	328	AND	BT	83	23	40	0	0	10	2
Val	MeT_LBUG_17_80	LBUG15_02	375	390	-	BT	190	27	26	4	13	0	4
Val	MeT_LBUG_17_39	LBUG16_02	140	155	BXT	SET	91	39	7	26	0	0	5
Val	MeT_LBUG_17_41	LBUG16_05	85	100	-	BT	115	28	34	11	4	3	4
Val	MeT_LBUG_17_40	LBUG16_05	170	185	-	SET	210	29	17	11	5	0	5
Val	MeT_LBUG_17_90	LBUG16_05	385	400	-	SE	171	33	18	10	13	0	3
Val	MeT_LBUG_17_83	LBUG16_07	330	345	-	BT	212	32	21	5	10	9	5

Val	MeT_LBUG_17_146	LBUG16_08	120	135	-	K	117	42	22	13	4	0	2
Val	MeT_LBUG_17_37	LBUG16_09	245	260	BXT	SET	107	43	6	21	2	0	4
Val	MeT_LBUG_17_35	LBUG16_09	535	550	-	BT	127	39	25	8	6	9	6
Val	MeT_LBUG_17_48	LBUG16_14	230	245	-	SV	195	24	30	8	11	0	5
Val	MeT_LBUG_17_95	LBUG16_14	320	335	-	SE	179	42	15	8	8	0	6
Val	MeT_LBUG_17_38	LBUG16_14	460	475	BXB	SV	136	29	27	9	11	0	5
Val	MeT_LBUG_17_100	LBUG16_14	625	640	-	BT	220	36	11	2	9	11	3
Val	MeT_LBUG_17_88	LBUG16_15	185	200	-	SET	261	32	26	1	7	11	4
Val	MeT_LBUG_17_177	LBUG16_17	345	360	-	BT	95	26	30	6	19	1	2
Val	MeT_LBUG_17_76	LBUG17_01	90	105	BXT	SET	60	45	15	13	10	0	4
Val	MeT_LBUG_17_131	LBUG17_02	45	61	BXB	BT	136	31	27	13	6	4	3
Val	MeT_LBUG_17_183	LBUG17_02	130	144	BXB	SET	150	36	17	16	5	5	6
Val	MeT_LBUG_17_142	LBUG17_05	215	230	-	K	111	39	19	14	11	0	3
Val	MeT_LBUG_17_130	LBUG17_06	115	130	-	SET	84	37	12	26	2	0	2
Val	MeT_LBUG_17_139	LBUG17_08	245	260	BXT	SET	86	49	0	19	0	0	2
Val	MeT_LBUG_17_140	LBUG17_11	205	219	-	SE	235	42	0	8	10	0	4
Val	MeT_LBUG_17_136	LBUG17_13	135	150	-	K	114	34	28	16	0	0	4
Val	MeT_LBUG_17_196	LBUG17_13	325	344	BXM	SV	147	32	21	21	2	0	3
Val	MeT_LBUG_17_176	LBUG17_18	185	199	BXB	BT	183	25	33	1	2	14	4
Val	MeT_LBUG_17_191	LBUG17_22	140	160	-	SET	77	38	9	19	5	0	6
Val	MeT_LBUG_17_192	LBUG17_22	240	260	-	SET	83	43	8	14	1	0	4
Val	MeT_LBUG_17_188	LBUG17_24	130	152	BXT	SET	100	39	11	17	5	0	7
Val	MeT_LBUG_17_198	LBUG17_27	40	62	BXT	SET	91	38	15	16	2	0	4
Val	MeT_LBUG_17_200	LBUG17_27	210	233	-	SET	93	37	12	27	1	0	2

Anh	Tm	Chl	Dck	Cal	Sdl	Total	SPI Estimado (min)	Diferencia	Filosilicatos	Tectosilicatos	Ciclosilicatos	Sulfatos	Sulfuros	Carbonatos	Filo/Tecto	Feldespato potásico estándar	Muscovita estándar
5	0	11	0	0	0	88	255	-9	27	49	0	5	6	0	0.55	0.00	1.00
4	2	0	0	0	0	85	80	2	0	72	2	4	8	0	0.00	1.00	0.00
5	0	11	0	0	0	88	253	1	28	51	0	5	5	0	0.55	0.00	1.00
3	0	12	0	0	0	81	179	-5	18	57	0	3	4	0	0.31	0.00	1.00
3	0	2	0	0	0	91	112	-17	8	76	0	3	4	0	0.10	1.00	0.00
3	0	11	0	0	0	89	248	-4	29	54	0	3	3	0	0.53	0.00	1.00
5	0	5	0	0	0	90	116	-1	8	72	0	5	4	0	0.11	1.00	0.00
6	0	6	0	0	0	85	191	7	20	56	0	6	4	0	0.35	1.00	0.00
4	5	0	0	0	0	92	251	-3	28	51	5	4	5	0	0.54	0.00	1.00
2	2	6	0	0	0	92	214	7	25	58	2	2	5	0	0.42	0.00	1.00
6	1	0	0	0	0	85	280	3	28	44	1	6	6	0	0.63	0.00	1.00
3	6	4	0	0	0	90	124	3	9	67	6	3	4	0	0.14	1.00	0.00
0	2	0	0	0	3	81	80	-6	0	75	2	0	3	0	0.00	1.00	0.00
3	2	0	0	0	0	78	80	3	0	69	2	3	4	0	0.00	1.00	0.00
1	0	3	0	0	0	94	139	15	14	75	0	1	5	0	0.19	0.00	1.00
0	0	0	0	0	0	88	102	11	5	78	0	0	5	0	0.07	1.00	0.00
2	0	0	0	0	0	87	112	1	7	73	0	2	4	0	0.10	1.00	0.00
2	3	0	0	0	0	80	80	-15	0	66	3	2	9	0	0.00	1.00	0.00
2	0	0	0	0	0	82	80	-7	0	72	0	2	8	0	0.00	1.00	0.00
4	0	0	0	0	0	78	80	-4	0	68	0	4	6	0	0.00	1.00	0.00
1	0	0	0	0	0	91	128	0	11	75	0	1	4	0	0.15	0.61	0.39
3	1	0	0	0	0	91	142	0	14	69	1	3	5	0	0.20	0.47	0.53
1	0	0	0	0	0	89	80	8	0	84	0	1	3	0	0.00	0.95	0.05
4	2	3	0	0	0	90	155	0	15	64	2	4	5	0	0.24	0.45	0.55
3	0	0	0	0	0	89	147	-1	14	68	0	3	4	0	0.21	0.48	0.52
3	4	0	0	0	0	84	117	0	7	62	4	3	7	0	0.12	0.73	0.27
1	0	3	0	0	0	94	192	0	23	65	0	1	5	0	0.35	0.24	0.76
1	0	2	0	0	0	95	158	0	18	74	0	1	2	0	0.25	0.14	0.86
7	6	11	0	0	0	86	216	10	21	48	6	7	5	0	0.43	0.00	1.00
3	0	7	0	0	0	90	177	0	19	63	0	3	5	0	0.30	0.45	0.55
3	0	2	0	0	0	92	231	0	26	55	1	3	6	0	0.48	0.04	0.96
4	2	5	0	0	0	90	237	0	26	53	2	4	5	0	0.50	0.00	1.00
0	0	0	0	0	0	92	131	0	12	77	0	0	2	0	0.16	0.59	0.41
4	2	0	0	0	0	86	109	-15	6	70	2	4	6	0	0.09	0.90	0.10
5	2	5	0	0	0	91	162	0	16	63	2	5	5	0	0.26	0.50	0.50
6	3	0	0	0	0	85	119	-1	8	65	3	6	3	0	0.12	0.63	0.37
4	0	4	0	1	0	89	114	0	8	74	0	4	3	1	0.11	0.81	0.19

3	0	5	0	0	0	90	154	-1	15	66	0	3	5	0	0.23	0.64	0.36
4	0	4	0	0	0	89	167	0	17	62	0	4	6	0	0.27	0.48	0.52
5	0	6	0	0	0	84	218	0	22	51	0	5	6	0	0.44	0.00	1.00
7	0	0	0	0	0	88	158	0	15	59	0	7	6	0	0.24	0.23	0.77
3	4	1	0	0	0	89	122	0	9	68	4	3	5	0	0.13	0.86	0.14
1	0	0	0	0	0	91	156	-1	16	68	0	1	5	0	0.24	0.62	0.38
3	0	5	0	0	0	90	186	0	21	63	0	3	3	0	0.33	0.20	0.80
3	0	2	0	0	0	88	191	35	21	60	0	3	5	0	0.35	0.00	1.00
2	0	0	0	0	0	85	92	0	3	78	0	2	2	0	0.04	0.92	0.08
4	0	6	0	0	0	88	204	-56	23	58	0	4	3	0	0.39	1.00	0.00
1	0	2	0	0	0	91	96	0	4	83	0	1	2	0	0.05	0.99	0.01
3	0	5	0	0	0	91	221	0	26	59	0	3	3	0	0.45	0.18	0.82
3	0	4	0	0	0	90	217	0	25	58	0	3	4	0	0.43	0.26	0.74
5	0	9	0	0	0	87	279	0	30	48	0	5	3	0	0.63	0.08	0.92
4	0	2	0	0	0	89	127	0	10	69	0	4	5	0	0.15	0.54	0.46
1	0	6	0	0	0	90	134	-37	12	72	0	1	6	0	0.17	1.00	0.00
5	3	7	0	0	0	87	143	0	12	63	3	5	4	0	0.20	0.72	0.28
3	5	3	0	0	0	88	208	0	21	52	5	3	5	0	0.40	0.13	0.87
2	0	0	0	0	0	88	107	-1	6	77	0	2	2	0	0.08	0.67	0.33
3	0	0	0	0	0	86	123	-1	10	71	0	3	3	0	0.14	0.43	0.57
4	0	4	0	0	0	91	127	0	11	74	0	4	2	0	0.15	0.65	0.35
2	0	3	0	0	0	92	152	12	16	72	0	2	5	0	0.23	1.00	0.00
3	2	0	0	2	0	85	80	-30	0	75	2	3	3	2	0.00	1.00	0.00
0	0	2	0	2	0	90	118	0	9	78	0	0	1	2	0.12	0.81	0.19
2	3	0	0	0	0	86	80	-92	0	74	3	2	6	0	0.00	1.00	0.00
14	1	3	0	0	0	75	158	-1	11	44	1	14	5	0	0.25	0.43	0.57
4	0	9	0	0	0	87	171	-108	18	62	0	4	3	0	0.29	0.22	0.78
5	5	0	0	0	0	79	157	-1	13	54	5	5	2	0	0.24	0.15	0.85
5	0	3	0	0	0	89	247	29	27	52	0	5	5	0	0.53	0.00	1.00
2	0	2	0	0	0	89	92	4	3	79	0	2	5	0	0.04	1.00	0.00
3	0	3	0	0	0	85	216	28	23	54	0	3	4	0	0.43	0.00	1.00
2	0	0	0	0	0	90	142	-56	14	71	0	2	2	0	0.19	1.00	0.00
3	0	8	0	0	0	87	172	-107	18	63	0	3	2	0	0.29	0.23	0.77
4	0	10	0	0	0	88	208	-10	23	57	0	4	4	0	0.41	0.23	0.77
4	3	4	0	0	0	89	101	-11	5	73	3	4	5	0	0.06	0.99	0.01
3	0	5	0	0	0	91	134	-17	12	72	0	3	4	0	0.17	0.75	0.25
6	0	12	0	1	0	85	172	18	16	57	0	6	5	1	0.29	0.68	0.32
4	0	7	0	0	0	89	184	-7	20	61	0	4	3	0	0.33	0.43	0.57
3	0	6	0	0	0	91	210	1	24	59	0	3	5	0	0.41	0.33	0.67
2	0	4	0	0	0	89	115	1	9	77	0	2	2	0	0.11	0.75	0.25
1	5	5	0	1	0	88	111	-4	7	71	5	1	4	1	0.10	0.93	0.07
0	0	0	0	0	0	94	145	-14	15	73	0	0	6	0	0.20	0.60	0.40
4	1	6	0	0	0	89	165	15	17	62	1	4	5	0	0.27	0.42	0.58

3	2	7	0	0	0	91	155	14	15	65	2	3	6	0	0.24	0.50	0.50
3	2	4	0	0	0	91	155	-14	15	66	2	3	5	0	0.24	0.44	0.56
8	0	2	0	0	0	82	219	1	21	49	0	8	3	0	0.44	0.19	0.81
4	0	6	0	0	0	89	203	22	23	58	0	4	4	0	0.39	0.13	0.87
5	0	3	0	0	0	94	202	-113	24	62	0	5	2	0	0.39	0.24	0.76
1	1	1	0	0	0	91	129	-114	11	73	1	1	4	0	0.15	0.55	0.45
3	0	4	0	0	0	90	141	-4	14	71	0	3	3	0	0.19	0.67	0.33
1	4	0	0	0	0	90	128	15	10	69	4	1	6	0	0.15	0.76	0.24
2	0	3	0	0	0	91	142	-27	14	72	0	2	3	0	0.19	0.57	0.43
1	2	7	0	0	0	90	121	-44	10	75	2	1	2	0	0.13	0.92	0.08
2	5	7	0	2	0	88	112	-30	7	68	5	2	2	2	0.10	0.94	0.06
8	1	5	0	0	0	79	179	24	16	50	1	8	4	0	0.31	0.44	0.56
2	1	5	0	0	0	90	103	10	6	78	1	2	4	0	0.07	0.99	0.01
4	0	4	0	0	0	86	104	29	6	74	0	4	3	0	0.08	0.93	0.07
4	0	5	0	0	0	89	191	-4	21	60	0	4	4	0	0.35	0.37	0.63
3	1	5	0	0	0	86	127	-65	10	66	1	3	6	0	0.15	0.79	0.21
3	1	9	0	0	0	87	127	-53	10	66	1	3	4	0	0.15	0.28	0.72
2	3	0	0	0	0	84	102	-2	5	67	3	2	7	0	0.07	0.79	0.21
3	7	0	0	0	0	84	87	4	2	68	7	3	4	0	0.02	0.91	0.09
1	2	7	0	0	0	83	115	-23	8	76	1	2	3	0	0.11	0.71	0.29

10.4 ANEXO D): MINERALOGÍA DE LAS ROCAS POR QEMSCAN

Análisis QEMSCAN a las muestras de flotación por litología:

Minerales / Grupos Minerales Predominantes

Minerales / Grupos Minerales

Figura 10.14: Mineralogía dada por análisis QEMSCAN.

Mineral	AND (6*)	BXB (6*)	BXM (6*)	BXT (5*)
Cuarzo	17.10%	20.05%	18.14%	39.22%
Feldespatos (Ca-Na)	27.91%	25.88%	33.23%	4.44%
Grupo de la Clorita	19.15%	14.55%	15.86%	17.94%
Feldespatos (K)	5.27%	14.52%	15.08%	15.78%
Yeso, Anhidrita, Basanita	7.30%	8.37%	4.83%	5.59%
Biotita, Flogopita	12.13%	6.77%	3.37%	0.52%
Calcopirita	1.57%	1.32%	1.99%	5.01%
Muscovita, Sericita, Illita, Fengita	2.41%	2.16%	1.77%	0.63%
Grupo de Turmalina	0.73%	1.11%	0.94%	3.86%
Bornita	0.87%	1.47%	0.74%	0.04%
Total	94.43%	96.21%	95.96%	93.02%

Tabla 10.1: Mineralogía principal dada por QEMSCAN en tramos para flotación.

Tabla 10.2: Mineralogía dada por QEMSCAN respecto al tipo de mineral presente en las muestras por litología y número de datos*.

Tipo de mineral	AND (6*)	BXB (6*)	BXM (6*)	BXT (5*)
Filosilicato	33.69%	23.48%	21.00%	19.09%
Tectosilicato	50.28%	60.45%	66.46%	59.44%
Ciclosilicato	0.73%	1.11%	0.94%	3.86%
Sulfuro	2.44%	2.79%	2.72%	5.04%
Sulfato	7.30%	8.37%	4.83%	5.59%

10.5 ANEXO E): MAPEO GEOLÓGICO

								Lite	ología							
GIEID	Desde	Hasta	Litología	TAMAÑO FCX	PCT_MATRIZ	NUGGS	CLASTO_1	PORCENTAJE_1	CLASTO_2	PORCENTAJE_2	CLASTO_3	PORCENTAJE_3	COMPOSICIÓN_MATRIZ_1	PORCENTAJE_1	composición_matriz_2	PORCENTAJE_2
LBUG15_02	245	260	AND	1-3 mm												
LBUG16_02	175	190	BXT		10	0	INTR	70	AND	30			Tm	80	PR	20
LBUG16_03	55	70	BXT		70	0	BX	70	AND	20	INTR	10	Tm	80	PR	20
LBUG16_09	245	260	BXT		30	0	INTR	97	AND	3			Tm	95	PR	5
LBUG16_09	415	430	BXT		30	0	INTR	90	AND	10			Tm	51	Carb	7
LBUG16_11	405	420	AND													

LBUG16_17	200	215	AND												
LBUG16_17	345	360	BXM		80	0	INTR	70	BX	30		Ab	45	Fk	25
LBUG16_17	460	475	BXB		40	0	BX	80	AND	20		Bt	80	Ab	15
LBUG17_17	295	310	BXANH		15	0.5	INTR	100				Tm	90	PR	10
LBUG17_18	315	328	AND	1-3 mm											
LBUG17_22	140	160	BXPR		20	0.5	INTR	80	AND	20		PR	70	Tm	30

Litol	ogía								ALTE	RACIĆ	DN							
COMPOSICIÓN_MATRIZ_3	PORCENTAJE_3	MINERAL_1	PCT_MIN_1	MINERAL_2	PCT_MIN_2	MINERAL_3	PCT_MIN_3	MINERAL_4	PCT_MIN_4	ALT_1	ALT_2	ALT_3	INTENSIDAD_1	PENETRATIVIDAD_1	INTENSIDAD_2	PENETRATIVIDAD_2	INTENSIDAD_3	PENETRATIVIDAD_3
		Se	40	Bio	14	Cl	15	Fk	8	SE	BT		6	5	3	3	1	1
		SeV	15	SeB	20	Ab	40	Carb	10	SE	AK	SET	4	4	2	1	2	1
		Tm	50	Se	30	Fk	20			SET	SE	К	3	2	2	2	1	1
		Se	40	Ab	5	SeV	20	Anh	35	SE	AK		2	1	1	1		
Anh	42	SeV	24	SeB	6	Anh	20	Ab	23	SET	SV	AK	6	5	3	3	2	2
		Fk	40	Qz	20	Cl	30	Se	10	К	QSER		6	5	3	2		
		Se	30	Bio	40	Ab	10	Anh	10	SE	К		7	7	2	2		
Bt	30	Ab	50	Fk	20	Bio	20	Qz	10	AK	BT		5	6	3	3		
Fk	5	Bio	60	Ab	22	Fk	8	Qz	10	BT	AK		6	5	3	3		
		Qz	25	Ar	14	Carb	12	SeB	14	SET	AK		7	7	3	4		
		SeG	9	SeV	7	Anh	9	Mag	6	BT	QSER		1	1	1	1		
		SeB	25	SeV	20	Tm	5	Anh	8	SET	AR	AK	7	8	4	4	2	2

10.6 ANEXO F): CORTES TRANSPARENTES Y PULIDOS

Fecha	Muestra
22-06-2018	LBUG15_02_253

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG15_02- 253	Andesita

Se observa una roca ígnea alterada con matriz de sericita y plagioclasas euhedrales. Vetillas con sulfuros de cobre y sericita verde. Pirita y calcopirita diseminada y calcopirita en vetillas.

Observaciones Microscópicas

Se observa una roca con alteración intensa compuesta por fenocristales de plagioclasa subhedrales pasando a sericita. La masa fundamental se encuentra recristalizada a feldespatos, posteriormente alterados a sericita. Las vetillas son de 87% sericita, 5% opacos, 5% anhidrita y 3% cuarzo

Figura 10.15: Sector con fenocristales de plagioclasa inmersos en una matriz obliterada compuesta por sericita y anhidrita.

Figura 10.16: Masa fundamental cristalina con fenocristales de plagioclasa y feldespatos subhedrales de aprox. 3 mm.

Roca (protolito)

Mineral	Volumen	Ocurrencia
Plagioclasa	30%	Cristales Subhedrales
Feldespato K	5%	Cristales Subhedrales
Masa Fundamental	65%	Microcristalina

Minerales Accesorios (Vetillas)		
Mineral	Volumen	Ocurrencia
Sericita	90%	Cúmulos
Cuarzo	5%	Granular
Anhidrita	5%	Cúmulos

Minerales de Alteración (50%)		
Mineral	Volumen	Ocurrencia
Sericita	80%	Reemplazo Parcial
Anhidrita	5%	Cúmulos
Cuarzo	5%	Cúmulos
Feldespato K	10%	Recristalización

Minerales Opacos (2,5%)		
Mineral Volumen Ocurrencia		Ocurrencia
Calcopirita	95%	Diseminada y Vetillas
Pirita	5%	Diseminada

Figura 10.17: Diseminación de calcopirita inmersos en una masa silicatada.

Fecha	Muestra
-------	---------

22-06-2018 LBUG16_02_180

Procedencia	Ubicación-Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG16_02_180	Brecha de Turmalina con alteración tardía

Observaciones Macroscópicas

El corte presenta clastos con alteración de arcillas verdosas y albita. La matriz posee calcopirita, anhidrita y polvo de roca. Entre los opacos se puede divisar calcopirita y enargita

Observaciones Microscópicas

Se observa una brecha compuesta por clastos silicificados y sericitizados-argilizados con feldespatos alterados. En la matriz posee sulfuros, alunita, al parecer pirofilita, diásporo y podría tener andalucita. Los clastos se encuentran muy alterados pero la masa fundamental no, porque se compone principalmente de cuarzo.

Figura 10.18: Fenocristal obliterado con sercitia-biotita en la parte inferior y masa cristalina granular de cuarzo y feldespatos.

Roca (protolito)			
Mineral	Volumen	Ocurrencia	
Obliterado	100%	-	

Minerales de Alteración		
Mineral	Volumen	Ocurrencia

Sericita	15%	Reemplazo de feldespatos
Alunita	7%	Cúmulo
Anhidrita	8%	Cúmulo
Cuarzo	70%	Cúmulo

Figura 10.19: Cúmulos de alunita euhedral en la matriz de la brecha. Se observan sectores con anhidrita en la parte baja del corte.

Minerales Accesorios (Vetillas)		
Mineral Volumen Ocurrencia		
Feldespato	100%	veta de 0.8 mm y agregado cristalino

Minerales Opacos (4%)		
Mineral Volumen Ocurrencia		
Calcopirita	97%	Diseminado y cúmulos en matriz
Pirita	3%	Reemplazando Cpy en bordes

Fecha	Muestra
22-06-2018	LBUG16_09_421

Procedencia	Ubicación-Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG16_09_421	Brecha de Turmalina

El corte posee clastos con alteración sericita-arcillas con ankerita, la matriz posee minerales tales como turmalina, anhidrita, calcopirita y polvo de roca.

Observaciones Microscópicas

El corte presenta una alteración tardía compuesta por alunita, y clastos con alteración sericitaarcillas. La matriz está compuesta por cuarzo y feldespatos microcristalinos. Posee agregados cristalinos de cuarzo granular

Figura 10.20: Agregado granular cristalino de cuarzo y feldespato con sericita intersticial.

Roca (protolito)		
Mineral	Volumen	Ocurrencia
Obliterada	100%	Obliterada

Minerales de Alteración (15%)		
Mineral Volumen Ocurrencia		
Alunita	10%	Agregados tabulares
Sericita- Pirofilita	90%	Reemplazo Selectivo

Minerales Opacos (4%)		
Mineral	Volumen	Ocurrencia
Calcopirita	100%	Cúmulos y diseminado

Figura 10.21: Cristal de calcopirita de aproximadamente 1,5mm.

Fecha	Muestra
22-06-2018	LBUG16_17_205

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG16_17- 205	Andesita

El corte corresponde a una roca ígnea con alteración biotítica y sericita verde con fenocristales de plagioclasa y vetillas

Observaciones Microscópicas

Se observa una roca casi completamente sericitizada y con un poco de biotita subhedrales secundaria de alteración. Los fenocristales del protolito se encuentran recristalizados

Roca (protolito)		
Mineral Volumen Ocurrencia		
Roca obliterada total	100%	Obliterada

Minerales Accesorios (Vetillas)		
Asociación Volumen Ocurrencia		
Opacos+Feld-k+Qz	60%	Sin halo visible y cristales de 0.5 mm
Qz-Feld	40%	Cúmulos granulares de 0.6 mm

Figura 10.22: Masa fundamental sericitizada y vetilla de cuarzo y feldespatos.

Minerales de Alteración (95%)		
Mineral	Volumen	Ocurrencia
Sericita	90%	Masivo
Biotita	8%	Masivo
Anhidrita	2%	Cúmulos

Minerales Opacos (2%)		
Mineral	Volumen	Ocurrencia
Calcopirita	50%	Diseminado y vetillas
Bornita	42%	Diseminado y vetillas, reemplazando
Digenita	2%	Reemplazo parcial
Pirita	6%	Reemplazo parcial

Figura 10.23: Cristal de bornita y calcopirita.

Fecha	Muestra
22-06-2018	LBUG16_17_350

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG16_17- 350	Brecha Hidrotermal

Se observa una roca albitizada y silicificada, sectores con minerales opacos y poco vetilleo. A su vez se observan sectores con cúmulos de plagioclasas-feldespato potásico con poco nivel de alteración. La sericita se encuentra reemplazando selectivamente a los feldespatos, pero con baja intensidad y penetratividad

Observaciones Microscópicas

Se observan sectores con cúmulos de plagioclasas-feldespato potásico subhedrales con poco nivel de alteración. La sericita se encuentra reemplazando selectivamente a los feldespatos, pero con baja intensidad y penetratividad. Agregados cristalinos de minerales como cuarzo y feldespatos. Posee anhidrita en vetillas y en la matriz.

Figura 10.24: Agregados granulares de cuarzo y feldespatos con sericita intersticial y fenocristales de feldespato potásico con una leve alteración a sericita.

Roca (protolito)		
Mineral	Volumen	Ocurrencia
Plagioclasas	33%	Cúmulos Euhedrales
Feldespato potásico	22%	Fenocristales
Masa Fundamental	45%	Cristalina

Figura 10.25: Cúmulos de plagioclasas euhedrales y feldespato potásico.

Minerales Accesorios (Vetillas)			
Mineral	neral Volumen Ocurrencia		
Biotita	35%	Cúmulos	
Anhidrita	5%	Cristales aislados	
Cuarzo	60%	Cúmulos	

Figura 10.26: Cristal de anhidrita inmerso en la matriz granular de cuarzo y feldespatos.

Minerales de Alteración (15%)		
Mineral Volumen Ocurrencia		
Feldespatos	40%	Intersticial
Sericita	30%	Reemplazo selectivo
Cuarzo	30%	Intersticial

Minerales Opacos (1%)		
Mineral Volumen Ocurr		Ocurrencia
Calcopirita	90%	Diseminado
Bornita	10%	Diseminado
Pirita	5%	Reemplazo parcial

Figura 10.27: Cristal de calcopirita con reemplazo de bornita y digenita.

Fecha	Muestra
22-06-2018	LBUG16_17_468

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG16_17- 468	Brecha de Biotita

Se observa una roca compuesta por clastos de intrusivo y matriz compuesta por biotita y plagioclasas. Posee vetillas A con cuarzo.

Observaciones Microscópicas

Se observa una roca brechosa con alteración biotítica y sericitica sobreimpuesta. Los clastos se encuentran obliterados y compuestos por biotita, sericita y agregados microcristalinos de tectosilicatos. El clasto que se observa presenta una aureola de contacto compuesta por sericita y biotita

Figura 10.28: Intercrecimiento de cristales de biotita, sericita y anhidrita en matriz cristalina de plagioclasa y feldespato potásico.

Roca (protolito)		
Mineral	Volumen	Ocurrencia
Obliterada	100%	Obliterada

Figura 10.29: Alteración sericítica y biotítica en menor proporción en el sector derecho. Agregado microcristalino de feldespatos y cuarzo en el sector izquierdo, con poca mineralización.

Minerales Accesorios (Vetillas)		
Mineral Volumen Ocurrencia		
Qz-Anh-	100%	Agregados granulares y en
Feld	100%	cúmulos

Minerales de Alteración (85%)		
Mineral	Volumen	Ocurrencia
Biotita	40%	Reemplazo
Sericita	40%	Reemplazo
Anhidrita	5%	Cúmulos
Cuarzo	15%	Vetillas

Minerales Opacos (1%)		
Mineral	Volumen	Ocurrencia
Bornita	80%	Diseminado
Calcopirita	10%	Reemplazo
Digenita	10%	Reemplazo

Figura 10.30: Bornita con reemplazo de calcopirita y digenita.

Fecha	Muestra
22-06-2018	LBUG17_01_104

Procedencia	Ubicación-	Clasificación Patrográfica
	Traino	Petrografica
Los Sulfatos	LBUG17_01-	Brecha de Turmalina
Los Sullatos	104	Dicena de Turmanna

Observaciones	Macroscópicas	
Observaciones	Macroscopicas	

Se observa un corte de brecha de turmalina con anhidrita con clastos de andesita sericitizada. Mayoritariamente tiene calcopirita y pirita

Observaciones Microscópicas

La roca se presenta completamente obliterada con minerales como sericita, alunita, anhidrita. Los clastos poseen una alteración pervasiva y la matriz se encuentra con turmalina, opacos y cuarzo

Figura 10.31: Matriz de turmalina, cuarzo y opacos y clastos sericitizados.

Roca (protolito)			
Mineral Volumen Ocurrencia			
Obliterada	100%	Obliterada	

Figura 10.32: Clasto obliterado alterado a sericita.

Minerales de Alteración (95%)		
Mineral	Volumen	Ocurrencia
Sericita	55%	Reemplazo
Turmalina	7%	Cúmulos
Anhidrita	3%	Cúmulos
Pirofilita	30%	Reemplazo
Anhidrita	5%	Cúmulos

Figura 10.33: Cristal de anhidrita inmerso en una masa microcristalina de sericita-anhidrita.

Minerales Opacos (5%)		
Mineral Volumen Ocurrencia		
Calcopirita	60%	Diseminado
Pirita	40%	Diseminado

Fecha	Muestra
22-06-2018	LBUG17_17_085

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG17_17- 085	Brecha de Turmalina

Se observa un corte con clastos de intrusivos albitizados y con alteración sericítica parcial en feldespatos, con matriz de turmalina (5%). Algunos clastos están argilizados. Posee poca mineralización

Observaciones Microscópicas

La roca se encuentra casi totalmente silicificada. Se reconocen sectores con sericita selectiva sobre feldespatos de los clastos. La matriz se compone por turmalina microcristalina y se puede observar que se tienen turmalinas euhedrales tabulares

Figura 10.34: Clastos silicificados y matriz con alunita.

Figura 10.35: Clastos silicificados y fenocristales con alteración a sericita.

Roca (protolito)		
Mineral Volumen Ocurrencia		Ocurrencia
Posibles clastos de intrusivo obliterados	100%	Obliterados

Minerales de Alteración (95%)		
Mineral	Volumen	Ocurrencia
Cuarzo	70%	Granular
Sericita	10%	Reemplazo
Selicita		selectivo
Turmalina	12%	Matriz
Ankerita	3%	Cúmulos
Anhidrita	5%	Cúmulos

Minerales Opacos (0.5)

Mineral	Volumen	Ocurrencia
Calcopirita	100%	Diseminado

Figura 10.36: Cristal de calcopirita diseminado en una matriz de ganga.

Fecha	Muestra
22-06-2018	LBUG17_17_306

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG17_17- 306	Brecha Silicificada

Se observa un corte con clastos argilizados y silicificados. La matriz está compuesta por turmalina, calcopirita, cuarzo. Posee molibdenita y calcopirita masiva.

Observaciones Microscópicas

Se observa una roca muy silicificada con una sobreimposición de alteración sericítica afectando a los fenocristales del protolito obliterándolos. Se tienen minerales como alunita y opacos en la matriz

Figura 10.37: En la esquina superior izquierda se observa un clasto con alteración sericítica sobreimpuesta a la silicificación. En la esquina inferior derecha se observa la matriz con cuarzo y alunita.

Roca (protolito)			
Mineral	Volumen	Ocurrencia	
Intrusivo pero obliterado	100%	Obliterado	

Figura 10.38: Clasto con fenocristal sericitizado inmerso en una masa fundamental silicificada.

Minerales Accesorios (Vetillas)			
Mineral	Volumen	Ocurrencia	
Alunita	10%	Cristales tabulares	
Cuarzo	10%	Granular	
Opacos	80%	Cúmulos	

Minerales de Alteración (90%)			
Mineral	Volumen	Ocurrencia	
Cuarzo	83%	Granular	
-------------------------	-----	-------------------------------	
Alunita	5%	Cristales tabulares	
Sericita- Pirofilita	12%	Reemplazando fenocristales	

Minerales Opacos (4%)		
Mineral Volumen Ocurrencia		
Calcopirita 100% Diseminada y matri		Diseminada y matriz

Fecha	Muestra
22-06-2018	LBUG17_18_317

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG17_18- 317	Andesita

Observaciones Macroscópicas		
Se observa una roca ígnea de color oscuro con vetilleo intenso y fenocristales oscuros. La roca posee magnetismo		

Observaciones Microscópicas

Las vetillas observadas son por lo general de biotita con anhidrita, feldespatos. La roca posee fenocristales de plagioclasa euhedrales con muy bajo nivel de alteración sericitica. Posee un nivel de alteración biotítica entre feldespatos, seguramente proveniente de la alteración de la andesita primaria.

Figura 10.39: Fenocristales de plagioclasa y biotita intersticial reemplazando la masa fundamental vítrea. Se observa un cristal aislado de anhidrita a la derecha del corte.

Roca (protolito)				
Mineral Volumen Ocurrencia				
Plagioclasas 70%		Cúmulos euhedrales		
Feldespato potásico	Fenocristales			

Minerales Accesorios (Vetillas)			
Mineral Volumen Ocurrencia			
Anh-Feld-Opacos-Qz	65%	Intercrecimiento de cristales 0.3 mm	
Biotita	35%	veta EB de biotita	

Figura 10.40: Vetilla de anhidrita, cuarzo y opacos de aproximadamente 0,1 mm.

Minerales de Alteración (40%)			
Mineral	Mineral Volumen Ocurrencia		

Biotita	90%	Intersticial
Clorita	5%	Intersticial
Sericita	5%	Reemplazo parcial

Minerales Opacos (0,5%)			
Mineral Volumen Ocurrencia			
Calcopirita	60%	Diseminada y vetillas	
Bornita	40%	Diseminada y reemplazando Cpy	

Figura 10.41: Cristal de calcopirita con reemplazo de bornita.

Fecha	Muestra
22-06-2018	LBUG17_22_150

Procedencia	Ubicación- Tramo	Clasificación Petrográfica
Los Sulfatos	LBUG17_22- 150	BXPR o BXAH o BXT

Observaciones Macroscópicas

La roca posee clastos de intrusivo y andesita argilizada con matriz de polvo de roca, anhidrita y calcopirita. Posee molibdenita.

Observaciones Microscópicas

Se observa una roca totalmente obliterada con alteración sericitica pervasiva en los clastos y en la matriz. Cristales aislados de turmalina y alunita sobreimpuesto en una masa cristalina de tectosilicatos.

Figura 10.42: Alunita con crecimiento radial desde un mineral opaco y cristal de turmalina con colores de interferencia altos.

Roca (protolito)				
Mineral	Volumen	Ocurrencia		
Obliterada	100%	Obliterada		

Minerales de Alteración (95%)			
Mineral	Volumen	Ocurrencia	
Feldespatos	15%	Masivo en	
	4370	matriz	
Alunita	10%	Cristales	
		aislados	
Sericita	40%	Reemplazo total	
Turmalina		Cristales	
	5%	aislados	

Minerales Opacos (1,5%)			
Mineral	Volumen	Ocurrencia	
Calcopirita	98%	Diseminado y vetillas	
Pirita	2%	Diseminado y reemplazo	