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Resumen

Buscar contenido multimedia es una de las tareas más comunes que los usuarios realizan en
la Web. Actualmente, los motores de búsqueda en la Web han mejorado la precisión de sus
búsquedas de contenido multimedia y ahora brindan una mejor experiencia de usuarios. Sin
embargo, estos motores aún no logran obtener resultados precisos para consultas que no son
comunes, y consultas que se refieren a conceptos abstractos. En ambos escenarios, la razón
principal es la falta de información preliminar.

Esta tesis se enfoca en mejorar la recuperación de información multimedia en la Web us-
ando datos generados a partir de la interacción entre usuarios y recursos multimedia. Para
eso, se propone mejorar la recuperación de información multimedia desde dos perspectivas:
(1) extrayendo conceptos relevantes a los recursos multimedia, y (2) mejorando las descrip-
ciones multimedia con datos generados por el usuario. En ambos casos, proponemos sistemas
que funcionan independientemente del tipo de multimedia, y del idioma de los datos de en-
trada.

En cuanto a la identificación de conceptos relacionados a objetos multimedia, desarrol-
lamos un sistema que va desde los resultados de búsqueda específicos de la consulta hasta
los conceptos detectados para dicha consulta. Nuestro enfoque demuestra que podemos
aprovechar la vista parcial de una gran colección de documentos multimedia para detectar
conceptos relevantes para una consulta determinada. Además, diseñamos una evaluación
basada en usuarios que demuestra que nuestro algoritmo de detección de conceptos es más
sólido que otros enfoques similares basados en detección de comunidades.

Para mejorar la descripción multimedia, desarrollamos un sistema que combina contenido
audio-visual de documentos multimedia con información de su contexto para mejorar y
generar nuevas anotaciones para los documentos multimedia. Específicamente, extraemos
datos de clicks de los registros de consultas y usamos las consultas como sustitutos para las
anotaciones manuales. Tras una primera inspección, demostramos que las consultas propor-
cionan una descripción concisa de los documentos multimedia.

El objetivo principal de esta tesis es demostrar la relevancia del contexto asociado a
documentos multimedia para mejorar el proceso de recuperación de documentos multimedia
en la Web. Además, mostramos que los grafos proporcionan una forma natural de modelar
problemas multimedia.
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Abstract

Retrieving multimedia content is one of the most common daily tasks users perform while
surfing on the Web. Current Web multimedia search engines have increased the accuracy of
search results, and now provide a more user-friendly experience. Nevertheless, some engines
still fail at getting accurate query results that are not so popular, and queries that carry
abstract concepts. In both scenarios, the main reason is the lack of background information.

This thesis addresses multimedia information retrieval by using data generated from the
interaction between users and multimedia resources. We propose to enhance multimedia
information retrieval from two perspectives: (1) extracting relevant concepts from multimedia
resources, and (2) improving multimedia descriptions with implicit user-generated data (click-
through data). In both cases, we develop frameworks that work independently from the
multimedia type, and from the language of the input data.

Regarding the identification of concepts related to multimedia resources, we develop a
framework that goes from query-specific search results, to the concepts detected for such
a query. Our framework shows that we can leverage a partial view of a large multimedia
collection to detect concepts relevant to a given query. Furthermore, we design a user-based
evaluation that demonstrates that our concept detection algorithm is more robust than similar
approaches based on community detection.

To improve multimedia description, we develop a framework that combines multimedia
content with context data in order to enhance multimedia annotations. Specifically, we
mine click-through data from query logs, and use queries as surrogates for explicit manual
annotations. Upon first inspection, we show that queries provide a concise description of
multimedia documents. In addition, we propose a classification for queries and multimedia
(e.g., images), based on the semantics they carry, and their interaction with multimedia
content in terms of clicks.

Throughout this work, we aim to demonstrate the relevance of multimedia context data
when attempting to enhance the process of retrieving multimedia documents on the Web.
We show that graph structures provide a natural way to model multimedia problems.
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To women in STEM, keep raising your voice
for a brighter and more equitative environment

to the girls that come next.
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Chapter 1

Introduction

Information Retrieval on the Web is not only limited to text documents. The Web provides
the perfect platform to share and gather multimedia information from around the world.
In this context, Web search engines must represent, index and search within ever-growing
collections of electronic text and other media, such as images, audio and video. To fulfill
user information needs, commercial search engines apply the same text-based structure to
represent text documents and multimedia objects. Users easily adopted this functionality
extension as the default mechanism for multimedia searches. Hence, query-by-keyword search
is still the main paradigm to represent multimedia information requests on the Web.

Though the multimedia documents online search function has been around for the past
decade, search engines do not always return accurate results for multimedia searches. Based
on our experience as searchers, Web search engines can retrieve multimedia content focused
on a single object or idea effectively. For instance, if we introduce “sea” and “lion” in a
Web search engine, we get accurate results in most commercial Web search engines as shown
in Figure 1.1. However, when we introduce queries with more complex semantics, their
performance decreases. For example, if we introduce the query “lion swimming in the sea”, we
get results that correspond to the query “sea lion swimming”. In Figure 1.2 we show the results
returned for each query. Thus, the more complex the ideas in our queries, the more noise
in the results list. Moreover, we notice that multimedia resources with completely different
meaning might be associated with similar descriptions, and therefore might be indexed with
similar terms. Novel techniques based on deep-learning have been proven to effectively index
large collections of multimedia documents by exploiting multimedia content and context.
Nevertheless, most of these techniques focus on single-term indexing (which is similar to
indexing images with the class they get from a classifier), while multi-term indexing has yet
to be further explored.

The loss of accuracy for queries that represent complex ideas can be explained as a result
of the semantic gap [103]. The semantic gap is defined as the difference between the com-
putational representation of multimedia objects and what users understand from its content.
The main issue on having different representations for the same object is that these repre-
sentations are not equivalent. For instance, we can represent multimedia objects based on
their color, though this description is not compatible with another representation based on

1



(a) “sea” (b) “lion”

Figure 1.1: Images in the search result listing for queries “sea” and “lion”.

(a) “sea lion” (b) “lion swimming in the sea”

Figure 1.2: Images in the search result listing for queries “sea lion” and “lion swimming in
the sea”.

texture. We can also describe multimedia objects using natural language with different terms
and levels of detail. Thus, the main challenge in Web Multimedia Information Retrieval is
how to establish a meaningful relationship between context and content information of mul-
timedia objects taking into consideration that this relationship must scale to the diversity
of context we find on the Web. We can therefore obtain accurate results for user requests
regardless of the query complexity.

Regarding the current state of multimedia information retrieval on the Web, this thesis
addresses the following research question:
How to extract relevant concepts, and enhance the description of multimedia

documents published on the Web?

Our hypothesis is that by aggregating the information users generate on the Web as a
result of their interaction, both with multimedia publishing platforms and multimedia search
engines, we can enrich the context of multimedia objects. Specifically, we center our efforts
on two (2) main goals, which we consider to be the basis for improving multimedia retrieval
on the Web:

• Goal 1: Identify concepts in multimedia search results

• Goal 2: Effectively annotate multimedia documents using queries

2



Besides our main goals, we also expand our efforts to properly assess the results obtained
for Goal 1: Identify concepts on multimedia search results:

• Goal 1.A: Design and deploy a human-centered evaluation to assess algo-
rithms for detecting groups of related annotations.

It is necessary to clarify that multimedia documents may refer to single mode documents
(such as images, video, speech, video and so on), or multimodal documents (i.e., the combina-
tion of two or more modes). Despite that in this thesis we aim to generalize our frameworks
to any type of multimedia document, our use cases are primarily concerned with images. We
address Goal 1 (identify concepts in multimedia search results) by focusing on discovering
concepts that arise from a set of images returned for a given query using community detection
techniques over the set of annotations that describe such images. To accomplish this goal,
we analyze and exploit online social community properties of folksonomies [113] to discover
semantically meaningful groups of related terms (clusters), based on the way users employ
them for tagging images distributed through sharing platforms. We assume that there exists
a large collection of manually annotated images, and that such collection is freely available
to use (e.g., Flickr1). In particular we:

1. Design a general framework to discover concepts associated with a set of images.
2. Explore state-of-the-art approaches based on community detection for discovering query-

related concepts.
3. Propose a new community detection method based on the paradigm of graph islands.
4. Describe, quantitatively and qualitatively, the behavior and performance of community

detection methods when applied to discovering image-related concepts.

Our second goal is to annotate multimedia documents using queries by focusing on au-
tomatically tagging images by propagating annotations, specifically queries, between images
with similar audio-visual content. To accomplish this, we mine user-generated content (UGC)
from query-logs to obtain tags. Antonellis et al. [2] state that logsonomies [60] (query-log
based ontologies) are a rich source of high quality tags. We assume that we have access to a
large collection of multimedia documents, and to the set of queries for which they have been
clicked. We are aware that although individual clicks do not indicate relevance, when these
clicks are aggregated over many users, they do indicate a relationship between a query and
a document. Specifically, we:

1. Design a general framework to automatically annotate images based on audio-visual
similarity.

2. Explore state-of-the art methods for automatic multimedia annotation.
3. Propose a new automatic annotation method based on a graph structure that combines

audio-visual and semantic data (e.g., visual-semantic graph).
4. Describe, quantitatively and qualitatively, the behavior and performance of automatic

annotation methods.
1Flickr is a hosting service for images and videos available at https://www.flickr.com (visited

2018/06/01)

3
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Most of the existing work in the area of multimedia retrieval on the Web is performed over
hand-crafted datasets. There is a notorious lack of ground-truths to automatically assess the
performance of tasks related to multimedia searches other than ranking. Therefore, we believe
that designing and deploying well-documented evaluation methodologies is an important step
on the path to repeatable and reproducible research. For Goal 1.A (design & deploy human-
centered evaluation to assess algorithms for detecting groups of related annotations) we focus
on designing and deploying user-based evaluations that allow measuring the performance of
different approaches to assess the framework proposed for Goal 1. Defining short and focused
Human Intelligence Tasks (HIT’s) is a priority, regardless of whether a user-based evaluation
is deployed in a controlled environment such as a user study, or on a large scale, such as a
crowd-sourced evaluation.
In particular, we:

1. Propose a methodology to sample equivalent subsets of data to be assessed by humans
for Goal 1.

2. Design a Human Intelligence Task to measure the effectiveness of using community
detection approaches to find semantically relevant sets of terms.

1.1 Thesis contributions

The main contributions of this thesis focus on three main aspects: algorithmic, theoretical,
and empirical. We describe them next.

Algorithmic contributions

A1: A community detection method based on island-cuts, called Adaptive Island Cuts
(AIC-*), that returns sets of semantically relevant terms that represent concepts asso-
ciated with multimedia search results. (c.f. Section 4.2)

A2: An approach for sampling equivalent subsets of elements from different com-
munities created by distinct community detection approaches. (c.f. Section 4.3)

A3: An automatic tagging method based on the propagation of information over a graph
structure based on multimedia content similarity. (c.f. Section 5.3)

Theoretical contributions

T1: A general framework to detect concepts associated to multimedia-related
queries. (c.f. Section 4.1)

T2: A general framework for automatically tagging multimedia resources based
on content and context similarity. (c.f. Section 5.1)
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Empirical contributions

E1: An experimental framework (inspired on IR-metrics) for the assessment of
sets of related terms by collecting multiple user opinions. (c.f. Section 4.3)

E2: An empirical evaluation of community detection approaches for detecting con-
cepts represented as sets of related terms. (c.f. Section 4.3)

E3: An empirical evaluation of effectiveness of queries for describing multimedia
resources. (c.f. Section 5.4)

1.2 Publications

1. Bracamonte, T., Poblete, B. “Automatic image tagging through information propa-
gation in a query log based graph structure” (2011). MM’11 - Proceedings of the 2011
ACM Multimedia Conference and Co-Located Workshops, pp. 1201-1204.
This paper presents our algorithm for automating tagging based on tag propagation
over a TagGraph (A3). It also shows the results of our preliminary assessment (E3).

2. Bracamonte, T. “Multimedia information retrieval on the social web”(2013). WWW’13
Companion - Proceedings of the 22nd International Conference on World Wide Web,
pp. 349-353.
The article contains our initial ideas on how to address this thesis research problem.
The paper is mainly oriented to describe the early stages for our theoretical contribu-
tions on concept detection (T1), and automatic tagging (T2).

3. Bracamonte, T., Hogan, A., Poblete, B. “Applying community detection methods to
cluster tags in multimedia search results” (2016). ISM’16 - Proceedings of the 2016
IEEE International Symposium on Multimedia, pp. 467-474.
This paper presents our study on concept discovery on multimedia annotations. The
article introduces our framework for concept detection (T1), and the algorithm we
propose for the detection of communities of tags based on island cuts (A1). Also, on
the experimental side, the article includes the algorithm to select comparable sets of
annotations from different algorithms (A2); and our experimental setup for assessing
such sets (E1 – E2).

4. Bracamonte, T., Bustos, B., Poblete, B., Shreck, T., “Extracting semantic knowledge
from Web context for multimedia IR: A taxonomy, survey and challenges”. Multimedia
Tools and Applications (2017). https://doi.org/10.1007/s11042-017-4997-y
This article summarizes and organizes State-of-the-Art work related to this thesis. We
also introduce a taxonomy that allows classifying multimedia IR research works based
on the type of context data employed to get insights.
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1.3 Thesis outline

This thesis is organized as follows:

Chapter 2 describes the preliminary concepts and terminology employed in our research.
We present the Triad of Search: User, Query and Document. We contextualize the
triad entities under the scenario of Web Multimedia IR. We describe the main types
of users, queries and multimedia documents. We then discuss the main challenges that
arise from the interaction between these entities, such as the intention gap (user-query),
the semantic gap (query-document), and an assessment mechanism with standardized
datasets that include the user in the loop (user-document).

Chapter 3 describes the related work and state-of-the-art approaches for the main topics
addressed in this thesis: concept discovery, automatic annotations and user-based eval-
uations. We orient our literature review only to works with a long term impact in their
respective areas. We point out works with extended state-of-the-art literature reviews
and contextualize our research under the current state-of-the-art.

Chapter 4 presents our proposal for detecting concepts associated to search results. We
present the general framework, as well as our proposed algorithm for concept detection
based on island cuts. We describe every stage of the framework, presenting the Tag
Graph structure we employed as a building block for our framework. We also include
a detailed description of the proposed concept detection algorithm by explaining the
concept of “islands”, and the two variations we propose on our base algorithm. We
describe in detail the evaluation methodology employed and the results obtained from
our assessment.

Chapter 5 presents our proposal for automatically tagging multimedia documents using
query logs. We present the general framework for the tagging of multimedia doc-
uments with user-generated content, as well as an algorithm for the propagation of
user-generated content regarding visual similarity. In addition, we present a taxonomy
for Visual Information Needs in the context of Web Multimedia IR. We develop this
chapter following the use case of tagging images with queries, and describe the empirical
assessment of accuracy performed over a small sample.

Chapter 6 summarizes the conclusions of this thesis. We discuss how our research is posi-
tioned in the context of emerging technologies such as deep learning, and current large
multimedia datasets such as ImageNet and others released by commercial Web search
engines. Additionally, we present the limitations of this work, as well as the direction
of future research.
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Chapter 2

Preliminaries

In this chapter we provide an overview on the area of Web Multimedia Retrieval. First, we
introduce the concept of relevance. Then, we present the entities involved in the problem
of retrieving relevant information, which we call the Triad of Search. Finally, we discuss
concepts related to each of those entities, as well as some challenging problems related to
them.

2.1 Relevance in IR Systems

Before we describe the main characteristics of each entity in the so-called Triad of Search, it
is necessary to understand the concept of relevance. Saracevic [94] introduces the concept of
relevance as:

“Nobody has to explain to users of IR systems what relevance is, even if they
struggle (sometimes in vain) to find relevant stuff. People understand relevance
intuitively.”

In a following publication, Saracevic [95] identifies several manifestations (or types) of
relevance:

– System or algorithmic relevance: The relation between a query and the objects retrieved
by a given algorithm. This manifestation of relevance assumes that the intent is to
retrieve a set of objects that the system inferred as relevant for a given query.

– Topical or subject relevance: The relation between the topic expressed in a query, and
the topic covered by the retrieved objects. Topicality is inferred based on aboutness.

– Cognitive relevance or pertinence: The relation between the cognitive state of the
knowledge of a user, and the retrieved objects. Informativeness, novelty, and informa-
tion quality are some criteria employed to infer cognitive relevance.

– Situational relevance or utility: The relation between the situation, task, or problem
at hand, and the retrieved objects. Usefulness, appropriateness of information, and
reduction of uncertainty, are some criteria to infer situational relevance.
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– Affective relevance: The relation between the intent and motivations of a user, and the
retrieved objects. Satisfaction, and sense of accomplishment, are criteria for inferring
motivational relevance.

Each manifestation of relevance focuses on a different side of the timeless concept of
relevance. The factors that affect the manifestations of relevance are not the same for all.
Even though there is no general agreement on the factors that define the degree of relevance
of each manifestation, Saracevic [96] states that users make relevance inferences based on the
following basis:

– Content: Is the topic of the retrieved object related to my information need?
– Object: Is the retrieved object stored in an accessible standard format?
– Validity: Is the content of the retrieved object verifiable?
– Use or situational match: Is the retrieved object useful to solve my information need?
– Cognitive match: Is the retrieved object easy to understand, or does it require addi-

tional mental effort?
– Affective match: How do I feel about the content on the retrieved object?
– Belief match: Is personal credence given to information? Do I feel confident about the

publisher of the retrieved object?

In the following Sections and Chapters, when we mention the term “relevance” we will be
referring to “topical relevance”, unless explicitly stated.

2.2 The Triad of Search: User, Query and (Multimedia)

Document

In Figure 2.1 we illustrate the main entities behind any Information Retrieval (IR) system: the
user, the query, and the document (multimedia document, for our specific case). We believe
that the interaction between these entities is key to understand the main process performed
by any search engine, and to identify the challenges to enhance accuracy in current search
engines.

2.2.1 The User

The user is the entity that has an information need related to multimedia content. Datta et
al. [28] define three types of users based on search intent:

• Searcher: The user has a clear goal and knows how to represent his information need
in a concise query. The user has knowledge on how to operate a multimedia retrieval
system and employs advanced search features, if necessary. The user is also able to
reformulate the initial query to effectively lead to the expected results in a short time
session.
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User Document

Query

Figure 2.1: Triad of Search: User, Query and Multimedia Document.

• Surfer: The user is exploring a multimedia repository, such as the Web, to get an
overview of the existing resources; and then come up with more specific queries once
an overview has been achieved. Users in this category tend to start with a vague and
broad-topic query and then, based on the search results and query suggestions provided
by the search engine, narrow the query to get more accurate results. The search sessions
of surfers tend to last longer than those of searchers.

• Browser: The user goal is less clear. Queries from this kind of user encompass multiple
broad (and even unrelated) topics. Browsers do not have a clear idea of what they are
looking for, and therefore the relevance value assigned to resources in the search results
is highly subjective.

Web search engines were designed to satisfy users in the role of searchers. Most commercial
Web search engines employ user relevance feedback to enhance search results for future
searches. Relevance feedback is a reliable source of information as it derives from searchers
or surfers. Furthermore, we noticed that most Web search engines were not initially designed
to support browser behavior. However, lately some search engines have begun to include some
additional information in their multimedia-oriented searches layout, which allows expert and
non-expert users to explore search results in a friendly and efficient way. For instance, Flickr
and Instagram are multimedia sharing platforms that allow users to browse their repositories
without submitting an initial query.

Example 2.1. Let us consider three people: Bob, Sue and Sean. Bob is planning a
long vacation in Chile, starting at Santiago. Sue is going to visit Santiago, Chile for a
weekend, and she is interested on visiting the most iconic places. Sean is preparing a
report about Chile for a school assignment. The three of them submit the same query:
“santiago chile tourist attractions” to get information, despite the fact that they have
different needs. Figure 2.2 shows the search results in a search engine that also provides a
Navigation section.
Bob goes over the initial search results, and takes advantage of topics listed on the Navigation
section to browse content from other related searches. He changes between topics whenever
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Figure 2.2: Google image search results for query “santiago chile tourist attractions”. This
layout is divided into two main sections: Navigation Section and Search results section.

he ends up looking at tourist attractions that are not located in Santiago. In this case, Bob
depicts the behavior of a browser.
On the other hand, Sue carefully picks some suggestions at the Navigation section and she
clicks on some images in the Search results section. Sue takes advantage of search engine
suggestions to tune the scope of her query. She represents the behavior of a surfer.
Finally, Sean is more interested on images from the Search results section. He clicks on some
images that he considers attractive for his report, without diving on additional suggestions
from the search engine. Sean depicts the behavior of a searcher.
Given that the context and motivations of Bob, Sue and Sean are different, the way they
interact with the search engine also varies.

2.2.2 The Query

We consider the query to be the representation of an information need. The query might
have the same format of the multimedia objects included in the archive, or be expressed as
text. We generalize the classification presented by Datta et al. [28].

• Text-based queries: Most Web search engines index multimedia content using textual
descriptions obtained from the Web sites in which the content was uploaded, or from
other related resources. Hence, representing information needs using text seems to be
the most common way to retrieve multimedia documents. Based on the complexity
with which the information need is expressed, we find two ways to formulate queries:

– Query by keyword: Users provide a set of terms that describes the content or
context of the multimedia objects they are looking for. The query-by-keyword
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paradigm is the de facto paradigm of current commercial Web search engines,
such as Google1 and Bing2.

– Free-text query: Users can express their information needs using more complex
phrases (e.g., long sentences, and questions). Search engines that support this
type of query require algorithms to process queries on natural language, because
they need to correctly interpret such complex queries expressed as text. Kngine3 is
a semantic search engine that understands complex queries, and answers questions
in response to user information needs.

• Content-based queries: Many multimedia resources on the Web are not associated
with a textual description. This makes the content difficult to both index and make it
available to Web users. Thus, content-based queries provide a mechanism that allows
users to search multimedia content when textual descriptions are unavailable. In this
scenario, we find that there are two main types of queries based on the amount of
information they contain:

Queries for near-duplicate search: This type of query is useful when the intention
of the user is to find multimedia documents with similar audio-visual content.

– Query by example: Users give an example of a multimedia object similar to the
one they are looking for. This type of query is suitable for users that have a
clear idea of what they are looking for and already have a sample. For instance,
Shazam4 is a mobile application that allows users to search for music using only
fragments of songs that are being played on their direct vicinity.

– Query by musical notation: This type of query applies to audio searches, and is
a more professional way of expressing an audio-related information needs. In this
type of query, the user describes a request as a set of musical notes. Fournier et
al. [35] model music as temporal sequences of musical events represented by their
notations.

Queries by approximate example: This type of query allows users to define their
searches in a more flexible fashion. In addition, they are useful for users that are inter-
ested in specific content, but do not have access to something similar to the expected
multimedia resource.

– Query by sketch: Users provide a sketch of the multimedia object they are looking
for. The sketch is then processed to obtain its signature. The retrieval process
uses this signature to get similar multimedia objects. MindFinder5 is a technology
developed by Microsoft that supports sketch-based searches.

– Query by humming: This type of query applies to audio searches, and it requires
that the user hums (or whistles or sings) a melodic query. The search engine then
looks for matching melodies in its repository [121].

1http://www.google.com/
2http://www.bing.com/
3http://www.kngine.com/
4https://www.shazam.com/
5https://www.microsoft.com/en-us/research/project/mindfinder-finding-images-by-sketching/
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bodian castle

(a) Query-by-keyword (b) Query-by-example (c) Query-by-sketch

Figure 2.3: Image search results for “bodian castle” using different types of query. All three
types can return more than one result. For simplicity we depict only one output image for
query-by-example, and query-by-sketch types.

• Multimodal queries: This type of query aims to combine two or more modalities
of multimedia content. Currently, none of the Web commercial search engines support
multimodal queries. Nevertheless, there are some field-specific search engines that
support multimodal queries. For example, the NovaMedSearch [77] system supports
queries that combine keywords and medical images.

Example 2.2. Let us imagine a user, who is looking for pictures of the “Bodian castle”,
and who has access to a multimedia search engine that allows searching with different types
of query. She could use a query-by-keyword and request for images associated to the text
“bodian castle”. She could also use a picture of the place, and search for the same image in
higher resolution using a query-by-example. If she did not have a picture to use as example,
she could use a drawing that represents the main features of the sought object, and retrieve
similar pictures using a query-by-sketch. We illustrate the different types of query mentioned
in Figure 2.3.

2.2.3 The Multimedia Document

The multimedia document may refer to a single mode or multimodal document published on
the Web, such as an annotated image published on Instagram, or a tweet linking an image
or video. Given that documents under this scope are not like plain text documents, they
comprise two types of content: (1) the multimedia object which comprises the non-textual
data contained in the document, and (2) the metadata which comprises the additional non-
visible data embedded on the document.
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• The multimedia object: This represents the actual multimedia content, such as
an image, video, or audio clip. These modalities might be composed to create more
complex multimedia objects.

– Image: Digital images were the first non-text data to be distributed over the Web.
Nowadays, online social platforms, as well as mobile devices with cameras, enable
users to share pictures from all over the world. Images are usually represented as
color value matrices using color spaces (e.g., RGB). Since human vision is tolerant
to loss of information, some image formats (e.g., JPEG) allow for lossy compression
encoding and thus minimize redundancy in the image representation. Besides the
matrix representation of images, there are also vector-oriented representations
(e.g., SVG) which encode visual content independently of a given matrix and can
scale smoothly to any output resolution.

– Video: Digital videos are composed of a sequence of images, also known as frames.
Without compression it typically takes a large amount of data to represent videos
based on each frame. Hence, space efficient video representations have been devel-
oped, which are widely used in digital video acquisition devices, or for transmission
on various media, including the Internet. Similarly to images, video compression
standards, such as MPEG4, focus on reducing redundancy and compression with-
out losing too much perceived video quality. The main assumption for compressing
videos is that neighboring frames have similar content. Therefore, frames with few
differences between one another could be replaced with the pixels of one frame and
the motion vector, encoding only the differences between images.

– Audio: Audio data can be distinguished by two main classes of audio objects:
music and speech. For example, music is uploaded to different social platforms
to share it with other users through the Internet (e.g., podcasts). Most news
broadcast channels offer their services on-line. Users therefore have the chance
to listen to their favorite news and programs on-line. Despite the widespread
use of both types of audio documents, this area is still under development in
terms of Web Multimedia IR. Nonetheless, there are notable exceptions such as
the technology used in Shazam [116], which consists of capturing small segments
of music through the smartphone microphone to search for the full song in a
collection with millions of tracks. One of the main difficulties in audio retrieval is
that digitized audio signals from speech and music have different properties.

– Other types of media: Text, images, video and audio make up the majority of
multimedia data types most often encountered in the Web. However, other data
aspects exist that can be identified as multimedia data types. For instance, 3D
objects are important data types often used for simulation and visualization, par-
ticularly for CAD processing or scientific applications. Retrieval in 3D object
data has been studied for some years now [19, 107], due to its relevance for many
scientific and industrial applications.

• The Metadata: This corresponds to text that is embedded in a document and de-
scribes the multimedia content. This is a rich source of information, although it is
not always available. We can distinguish between automatically and manually gener-
ated metadata. The first type includes technical metadata, which can be derived from
the acquisition process, such as the file size and resolution of a digital image. Most
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digital devices represent metadata on still images and audio using Exif, which is a
metadata standard for images initially introduced by the Japan Electronic Industries
Development Association (JEITA6) in 1998. Metadata may also be generated as part
of an automatic media analysis process. For example, automatic video segmentation
methods can generate scene or shot indexes, which are a form of technical metadata.

In the second type of annotation (manual), metadata can be created during an inter-
active process. Annotations may be added by information experts, e.g., in a library
context. Manual annotation may also be performed by individual authors, e.g., in the
form of HTML markup of a Web page that is edited. Also, collaborative annotation
efforts exist in which user communities share annotations or metadata, such as with
the bibsonomy7 effort for scientific bookmark sharing.

2.3 Expressing an Information Need

Looking for information to satisfy an information need might be harder than expected. Users
with little prior experience, or that are trying to accomplish complex tasks, might struggle
with long-lasting search sessions with no acceptable results. Kofler et al. [59] consider that
a user information need has two dimensions: (1) the “why”, which refers to the search task
the user is intended to solve, and (2) the “what”, which refers to the object being searched.
The first dimension, “why”, might be described as the main goal behind the user information
need. This dimension is tied to the type of task the user is trying to solve by interacting
with the search engine. The second dimension, “what”, might be described as the topic under
research. This dimension requires users to provide a clear request (i.e., a query) so that the
search engine can “understand ” the specific topic the user is looking for.

2.3.1 The Intention Gap

Expressing search intent through a query is not straightforward, since keywords might not
fully represent the complexity behind an information need. This gap between the users’
search goals and the queries employed to express them is called The Intention Gap [28].
The intention gap is related to the “why” dimension of an information need, and is not
exclusive to multimedia searches. Broder [18] provides the first query taxonomy based on
Web search intention. He defines three categories: (1) Informational, (2) Navigational, and
(3) Transactional. Nevertheless, multimedia searches should be treated somewhat differently,
since they require a more fine-grained understanding of the intention behind them. Lux et
al. [71] refine Broder’s proposal with a taxonomy for user intention in image search. After
analyzing query logs and conducting interviews, Lux et al. [71] determine user intention can
be classified into four (4) categories:

6http://www.jeita.or.jp/english/
7 https://www.bibsonomy.org
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• Knowledge Orientation: The user is looking for and wants an image from which to
learn something.
• Mental Image: The user has in mind an image with some specific content.
• Navigation: The user has no idea about the image appearance, but knows about its

existence.
• Transaction: The user is searching an image for further use.

Similarly, Hanjalic et al. [44] define a taxonomy for video search based on social Web
mining and crowdsourcing. They divide user intention in five (5) categories:

• Information: Users are looking for new information or explanations.
• Experience-Learning: Users want to learn a new ability practically by experience.
• Experience-Exposure: Users aim to have a particular experience from a real-life event

or entity.
• Affect: Users aim to change their mood or affective state.
• Object: Users want a video for further use.

Regardless of the type of multimedia content or taxonomy employed to organize user in-
tent, relevance feedback is the most common mechanism employed to determine the intent
behind a user information need. Search engines aim to refine the retrieval based on iterative
feedback; for example, users might be required to explicitly label resources as relevant or
irrelevant. There are plenty of methods that propose elaborate learning functions to auto-
matically enhance search results based on user relevance feedback. Nevertheless, the original
idea of asking users for relevance labels has been replaced by more elegant approaches that
analyze historical data from search query logs. Several works [15, 46, 52, 93] show that mod-
eling search behavior using query logs allows search engines to predict the user intention,
and therefore improve the search results with fewer user interactions. Hence, user modeling
is very important when attempting to bridge the intention gap.

2.3.2 Query disambiguation

An accurate formulation of queries is required to accurately describe the “what” dimension
associated with a user information need. Most of the time, formulating a query that ac-
curately represents a user information need requires vast background knowledge about the
topic under search. The ambiguity associated to queries is not exclusive to polysemic terms.
The ambiguity of a query might be tied to the scope of the query and the popularity of
the topic among Web users. Queries with a wide scope might need to be reformulated in
order to improve the search results. Moreover, niche queries usually do not have enough user
feedback, which makes it difficult to determine whether the search results contain relevant
or irrelevant documents.

In many approaches, the disambiguation problem is treated as a query refinement prob-
lem. This means that the solution enhances the request sent to the search engine, not the
results returned by it. We find that there are two main approaches that deal with query
disambiguation:
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(a) Query suggestion in Bing, Yahoo! and Google

"who" OR "world health organization" OR "whotv"

(b) Query expansion in Yahoo!

Figure 2.4: Search engines query disambiguation functionality: (a) Query suggestion gives
users the possibility to expand their queries, and (b) Query expansion works internally after
users submit their queries.

• Automatic query expansion (AQE): The mechanisms for expanding queries in
multimedia IR systems go beyond determining relevant keywords to expand a query-
by-keywords or applying spell checking to increase accuracy in search results. Carpineto
and Romano [20] survey current AQE approaches and propose a taxonomy to organize
them according to the data source employed to expand the query features.

Regarding multimedia IR systems, it is important to consider that queries might carry
information from different modalities (e.g., text, image, audio), and even include con-
text data from the user (such as historical session data, location). Some works trim the
query expansion problem by mapping textual and audiovisual features to predefined
concepts obtained from an ontology [29] or mined from the multimedia repository [78].
For example, Natsev et al. [78] propose a concept-based model to perform query expan-
sion on multimedia repositories. Similar works [128] expand queries, but analyze only
local information relevant for the current query. Other studies on multimedia query
expansion focus on the audio-visual expansion of the query. For instance, Chum et
al. [26] assume that the input query is part of a bigger image, and hence they expand
the area of interest initially selected as the query.

• Query suggestion (QS): When translating an information need to a query, some
information is usually lost. This loss of information might affect the quality of the search
results, and therefore it is necessary for search engines to provide suitable mechanisms
that allow users to formulate queries as accurately as possible, in order to obtain relevant
results. One of the most common mechanisms to help users is by suggesting additional
elements to expand their queries before submitting them to the search engine.
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Zha et al. [134] propose a framework for Visual Query Suggestions (VSQ) which com-
plements text-based query suggestions with multimedia resources (such as images) that
might help users to quickly identify which suggested query is closer to their search goal.
In their framework, they propose presenting suggestions in two ways: (1) in-line query
suggestions in the query box, and (2) multimedia snippets next to search results. As
a result of their work, they demonstrate that a search engine that allows for VSQ out-
performs other search engines in terms of both query suggestion quality and search
performance.

To the best of our knowledge, there are no works on multimedia content-based query
suggestion in commercial Web search engines.

It is important to remark that while automatic query expansion is transparent for users,
the query suggestion process requires users to interact with the system before submitting the
query.

Example 2.3. Let us submit the one-term query “who” to different search engines, with no
additional information about the user intention. In order to return relevant results, search
engines might suggest additional terms that lead to reducing the scope of the query, such as
“who - World Health Organization”. If none of the suggestions is accepted by the user,
search engines likely expand the original query internally in order to get a more elaborate
query that stands for a more diverse results. For example, an extended version of the original
query might be [“who” OR “world health organization” OR “whotv”]. Nevertheless, the
terms added by the search engine are unknown for the user. In Figure 2.4 we show examples
of both functionalities. For query suggestion, we show results from three different commercial
search engines in Figure 2.4(a); for query expansion we provide a candidate expanded version
of the original query based on the search results shown in Figure 2.4(b).

2.4 Retrieving Multimedia Documents on the Web

Recovering multimedia documents on the Web is more complex than retrieving text docu-
ments, because the query representing the information need is usually expressed in a domain
different from that of the multimedia documents (e.g., employing textual queries for search-
ing videos). Hence, extracting information from other resources apart from the audio-visual
content is essential to understanding the context in which the multimedia document is pub-
lished. Multimedia retrieval systems on the Web are built upon components that deal with
the semantic gap and the analysis of context data, as well as the user interaction with the
search results. In this section, we describe the semantic gap problem and some approaches to
reduce it. We then explain the main sources of context data we find on the Web, and briefly
describe a generic Multimedia Retrieval System architecture.
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2.4.1 The Semantic Gap

Multimedia document semantics cannot be directly mapped to a universally agreed descrip-
tion because people have different opinions and tend not to agree on a consensus. Moreover,
the lack of specific semantics associated with audio-visual features makes it difficult for Web
search engines to index multimedia objects in the same way they do with text. Smeulders et
al. [103] define the semantic gap as : “the lack of coincidence between the information that
one can extract from the visual data and the interpretation that the same data has for a user
in a given situation”. In Figure 2.5 we show two different pictures (an apple and a tomato).
Although both pictures correspond to different objects, their computational representations
carry enough similar information to determine that both elements are the same.

Many proposals address the semantic gap from different perspectives. Some approaches
focus on exploiting ontologies and metadata standards to automatically infer knowledge
from the relationship between multimedia content and semantic information. Ponnada and
Sharda [87] propose a model for a Web search engine centered on multimedia object semantics.
Similarly, Straccia [105] proposes a retrieval system which combines an ontology with logic
inference over multimedia features. Both approaches intend to establish a proper ontology
that reflects the semantic relationship between multimedia objects.

Supervised and unsupervised machine learning techniques have also been applied to bridge
the semantic gap. Gao et al. [36] explore the application of co-clustering techniques over a
graph that represents the relationship between image features and surrounding text. Simi-
larly, van Leuken et al. [112] apply clustering over visual features of images from query search
results to diversify search result listings. In the same way, Gui et al. [43] employ surround-
ing text and visual features to describe images, and ranks these images based on a linear
combination of different representations. Apart from clustering techniques, Chen et al. [24]
apply statistical learning to determine meaningful relationships between textual and visual
features in vertical searches. Rasiwasia et al. [91] exploit the correlation between visual and
textual multidimensional spaces by applying logistic regression to produce a classifier.

An additional way to bridge the semantic gap is by enhancing the annotations of multi-
media documents. Wu et al. [124] propose to automatically annotate objects inside images
by building a codebook from the concepts detected inside the images of their dataset. Li et
al. [64] propose to determine tag relevance using a voting scheme. Tags from similar images
represent a vote over the tag in the image under analysis. Li et al. [65] extend their work
to include multiple features, where each feature focuses on a different visual characteristic.
Aside from image tagging, Turnbull et al. [110] annotate songs based on different objective
and subjective aspects related to such songs. In addition, Yao et al. [130] apply 3D convolu-
tional neural networks to represent temporal dynamics, and then detect entities and actions
to generate video descriptions.

Recent proposals exploit state-of-the-art machine learning techniques, such as deep learn-
ing, in order to reduce the semantic gap. Wan et al. [115] present a comprehensive study on
deep learning techniques for content-based image retrieval. Some proposals center on learn-
ing other multimedia representations beyond content to apply multimodal retrieval [119] or
cross-domain retrieval [120]. Other proposals improve the description of multimedia content,
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Figure 2.5: Example of semantic gap: apple and tomato carry different semantics, although
they have similar audio-visual representations.

such as generating text descriptions [56], or determining the relevance of manually-assigned
annotations [63]. Besides, there are works that exploit Web context data in combination with
deep learning [66, 118, 51].

2.4.2 Multimedia Context Data

The data distributed along with multimedia content over the Web offers rich information
about the context of said content, and also about how users access and employ it. This
context data enhances multimedia understanding [50, 53, 67], and thus reduces the semantic
gap. We identify five (5) main resources from which multimedia context data can be mined:

1. Web structure data: Documents within the Web are interconnected by hyperlinks,
which implicitly indicate a relationship between them. These hyperlinks between doc-
uments include anchor text, which provides information about the document being
pointed to. The directed graph structure built upon hyperlinks (where documents are
nodes and hyperlinks are edges) is usually exploited to extract relevance indication for
documents [129], and might be useful for multimedia understanding as well. Linked
Data is an analog structure of hyperlinks, but for the Semantic Web [10]. There are
some works [45, 48, 74] that describe the benefits of using Linked Data in combination
with multimedia content.

2. Document structure data: Another type of structural data found on the Web is the
structure within a document (e.g., HTML pages). For example, the title of a document
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can be considered more relevant than the content of the document, and highlighted
words might be more relevant than others in the same sentence or paragraph. Also,
the caption or surrounding text of multimedia data embedded in Web documents, is
thought of as descriptive of the actual (semantic) content of the multimedia object
itself.

3. Document metadata: Metadata is the data that is provided manually or automat-
ically in order to enrich the understanding of a certain document (being text, HTML
or multimedia). For example, images can often be found stored along with metadata
that describe the location where the image was taken (if it is a picture), the camera
that was used, and the date it was taken, among others. Additionally, metadata can
include human descriptions of the multimedia objects, known as tags, which commonly
describe objects and concepts represented in the data. These latter types of annotations
are usually generated by humans.

4. Social media data: In recent years, the concept of the Social Web has substantially
broadened, if not changed, the landscape of Web information systems. In the Social
Web, user-centric platforms have flourished and users have become editors, publishers,
and consumers alike, of the content they generate. On a daily basis, the Social Web is
growing with multimedia data generated by users in real time at extremely high rates.
Social data includes different types of information, and is very rich in several ways. For
example, user preferences for certain content can be extracted from social data. Also,
comments generated by users for multimedia content can be potentially exploited to
actually understand the semantics of the content. At a higher level, users also form
networks in which they become related to each other. This information is also a new
factor to incorporate.

5. Search engine query logs: Web Multimedia IR systems are constantly exposed to a
large number and variety of users that interact with the system. This constant interac-
tion through time, if appropriately processed, may become a rich source of information
recorded in the search engine query log. This log keeps track of all the queries issued by
users and later on, their clicked results. This information can be mined, for example,
to extract implicit relevance feedback information about the best results for certain
queries.

The contextual resources listed before describe several aspects of multimedia content.
For instance, using Web structure data, we might determine which websites for multimedia
content distribution are more popular. By using Social Media data, we could identify how
multimedia content spreads inside social circles. Using multimedia sharing platforms, we
might get user-generated data from the publisher and further interactions from other users
(see Figure 2.6). And finally, by using Search Engine query logs, we might identify which
terms applied to index multimedia content are more effective and are employed by a larger
number of users.
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Figure 2.6: Context data of images published on Flickr includes information of the publisher,
capture device, and annotations, among others. Descriptions for specific context sections is
provided inside yellow rectangles.9
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2.4.3 Multimedia Retrieval System

As the volume of digital repositories on the Web increased, it became more and more difficult
to manually classify them into different topics, as well as searching for a specific document.
Web information retrieval systems were created to solve this problem in an automatic fashion,
allowing users to search by formulating a query that describes the information that they
need. In this section we give an overview of the architecture of a Web retrieval system with
a focus on the multimedia documents represented in Figure 2.7. We see that there are two
main processes: (1) the indexing process, which is performed off-line; and (2) the querying
process, which works on-line.

For the indexing process, we notice that the Multimedia Content Acquisition com-
ponent is in charge of crawling the Web, gathering multimedia documents that are stored in
a Multimedia Repository. Then, the Feature Extraction & Transformation component
processes those documents. As a result of this process, a set of features that describes the
content and/or context of the multimedia documents is sent to the next component. The
Index Creation component computes some document statistics, and may apply a weighting
scheme that determines the relevance of a feature with respect to the document. The main
step in the indexing process consists of inverting the stream of document-feature into feature-
document information for the inverted index structure. Once this process is completed, the
Index structure is available for searching. It is important to remark that the Index might be
distributed across multiple servers.

For the querying process, we assume that there is an Index that supports the search
process. The querying process starts with the user submitting a request (i.e., query) through
the User Interaction component. This component is also in charge of applying some initial
query transformations (e.g., spell checking, query expansion), and formatting the display of
the search results listing. When the Ranking component receives the query, it recovers a set
of relevant documents for it, and produces a sorted list of documents from the most relevant
to the least relevant. This list is sent back to the user. The interaction with the ranked list
is assessed in the Evaluation component, which is in charge of monitoring and improving
the system performance, as well as logging the users’ queries and their interactions with the
system in the Log data server.

2.5 Assessing Search Results

The quality of the search results returned by a Multimedia IR system is not only measure
based on the similarity between the retrieved documents and the query. The usefulness to the
users’ information needs must also be considered. Indeed, the way in which the results are
presented to users plays an important role on the quality assessment. For instance, a flexible,
navigable presentation of “average quality” results may work better than a rigid, list-based
presentation of “high-quality” results. In this section, we discuss different ways to present
search results employed by most search engines, as well as the different ways users might
interact with a search engine. We also describe the main evaluation metrics employed in
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Figure 2.7: Multimedia Retrieval System Architecture11 includes two main processes: in-
dexing and querying. In the Indexing Process, the Multimedia Repository and Index are
built. In the Querying Process, the user requests information from the IR system using a
query. The IR system uses the Index as the main source of information for retrieving relevant
documents. All interactions between the user and the system are registered in the Log Data.

IR systems, focused on effectiveness and efficacy, and point out some Web-based collections
employed to assess large-scale multimedia retrieval systems.

2.5.1 Presenting the Results

Once a user request is complete and the search engine has retrieved a set of relevant multi-
media documents, they must be shown to the user in a friendly and useful fashion. Current
commercial Web search engines that provide multimedia search functionality have a grid-
based template for presenting their search results listings.

For image searches, search engines such as Google12 or Bing13 provide a thumbnail preview
of the relevant images, and when a user clicks on one, a bigger version of the image appears,
as shown in Figure 2.8. This way the user can decide if she wants to open the Website that
contains that image.

For video searches, engines such as Yahoo!14 and Google provide different display tem-
plates. While Yahoo! opts for a grid-based presentation, in which you can click a video
and get an embedded preview, Google displays the results as a list (similar to YouTube15).
Figure 2.9 shows the search results page from the previously mentioned search engines.

For audio searches, providing an interface that allows for a preview of the multimedia
document is more difficult than for images and videos. In the case of audio, we noticed that

12http://www.google.com
13http://www.bing.com
14http://www.yahoo.com
15http://www.youtube.com
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(a) Google image search (b) Bing image search

Figure 2.8: Search results display for image searches in two different search engines. In both
cases, the layout changes when a user clicks on an image.

(a) Yahoo video search (b) Youtube video search

Figure 2.9: Search results display for video searches in two different search engines. Despite
that the layouts are different, in both cases they show the video next to recommendations of
other similar videos.
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(a) SoundDogs (b) FindSounds

Figure 2.10: Search results display for audio searches in two different search engines. Search
engines oriented to audio files do not have a standardized layout to present their results.

existing search engines provide a display fashion similar to that of text, and show annotations
associated to multimedia documents as snippets. For example, SoundDogs 16 shows the search
results as a list (the ranking criteria is not clear). For each element in the list, SoundDogs
provides information such as a brief description, the length of the audio (in seconds); and
allows users to hear a preview of the audio. Similarly, FindSounds17 shows search results
as a list with additional metadata. However, FindSounds includes a visual representation of
the audio file using a visual representation of the wave sound. Figure 2.10 shows the search
results of both audio search engines.

Contrarily to text-oriented Web search engines, for image search results it is not necessary
to add snippets as for other type of resources. For video search results, it is helpful to have
a brief description of the video, which might help users to select relevant videos when the
preview static image does not provide enough information. Finally, for audio, it is completely
necessary to include in the search result a textual description that summarizes the content in
the audio file. Search engines face the challenge of displaying multimedia content and reducing
the loading time of the result page, buffering audio-visual content efficiently to deliver it
glitch-free. Accomplishing these challenges would provide a pleasurable user experience. [12]

2.5.2 User Interaction

Multimedia search engines not only have to cope with the data deluge18, but also with the
task of including features that allow them to manage the huge amount of multimedia data
distributed across the Web. Search engines have to provide enough guidance and support

16http://www.sounddogs.com
17http://www.findsounds.com
18Data deluge refers to the ever-growing amount of data or information published on the Web, as well as

the challenges it represents.
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to users to make their search interaction an enjoyable experience, through a smooth and
friendly sequence of seamless interactions.

In this section we provide the four ways of user interaction with multimedia systems
described in Blanken et. al [12], into the context of Web multimedia retrieval. These inter-
actions span the scenario of users retrieving responses to their questions, to search engines
providing personalized recommendations without explicit questions.

• Retrieval: This is the most common way we found to interact with multimedia content
on the Web. Nevertheless, it requires the user to know what she is looking for before
having an idea of the content available. This the scheme employed by commercial
search engines. Regarding the user interaction side, there are two main aspects:

– The user should know the syntax required by the search engine, such as special
tags for advanced search functionality.

– The user should formulate the query in such a way that it represents her informa-
tion need.

Since search engines limit the amount of multimedia content a user can preview for a
given query, the retrieval interaction is usually an iterative process of query formulation,
results exploration, query reformulation, and so on. This process continues until the
user finds some elements that satisfy her information need, or until she decides that
the information searched is not available.

• Dynamic query interaction: Blanken et al. [12] describe this interaction as a very
visual way to interact with the multimedia content through sliders, buttons, and other
components that allow users to formulate and refine queries at a fast pace. Dynamic
query interaction requires search engines to provide and update search results very
quickly, based on changes in the user input. Hence, search sessions tend to be shorter
than other types of interactions. Furthermore, queries in this type of interaction are
not as expressive as those for keyword-based-queries.

Given the large amount of documents indexed by major commercial search engines
(e.g., Google, Bing), or internally managed by multimedia hosting websites (e.g., Flickr,
YouTube); a content-based dynamic query mechanism is not available in commercial
search engines. Nevertheless, query suggestions are a good surrogate for this type of
interaction.

• Browsing: This interaction between the user and the multimedia system does not re-
quire the user to input a query. Instead, the multimedia system provides a functionality
that allows users to freely navigate the search space. Browsing is similar to entering a
museum and walking around looking for a “nice” picture. Blanken et al. [12] state that
“the characteristic for the browsing model is that there is no explicit specification of
information need, like there is in query specification.”

Although Web search engines do not provide this interaction model, for some queries,
such as popular queries, they provide tools for browsing the search results. For instance,
Google provides a set of query related topics on top of their search results, which
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might allow users to refine their query through browsing. Users may alternate between
querying and browsing. In this fashion, users can access multimedia documents related
to their original request without explicitly querying them.

• Recommendation: Unlike the interaction types previously described, the recommen-
dation model does not need any iput from the user. Recommendation interactions are
initiated by the multimedia system, and do not require users to ask for any type of
multimedia content. Since Web search engines do require an input from the user to
start the search mechanism, recommendations are usually presented under labels such
as “Related images” or “People also view”. On the other hand, multimedia related ser-
vices such as Netflix19 and Spotify20 do include these recommendations as they push
new content to their users. For both platforms, personalizing recommendations is an
important characteristic when attempting to provide better recommendations.

2.5.3 Evaluation

Assessing search engines requires measuring the relevance of the documents it returns (ef-
fectiveness), as well as the time and space it requires to accomplish its goal (efficiency).
Measuring the effectiveness of search engines requires to count on a ground-truth built from
user feedback on the relevance of documents returned for a given query. On the other side,
measuring efficiency can be performed automatically. In this section we describe the main
metrics for measuring effectiveness and efficiency in search engines.

• Effectiveness metrics: Effectiveness metrics can be organized in two main categories,
based on whether they include the order of the documents on their computation or not.
Ranking-independent metrics do not take into account the order in which documents
are presented to the user. On the other side, ranking-dependent metrics consider the
order in which documents are listed in the search results.

Ranking-independent metrics

We define the evaluation metrics following the notation described in the following ma-
trix:

Relevant Non-relevant
Retrieved TP FP
Not retrieved FN TN

and #S represents the cardinality of a set S.

– Precision(P): defined as the rate of relevant documents retrieved with respect to
the full set of retrieved documents.

P =
#TP

#TP +#FP
19www.netflix.com
20www.spotify.com
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– Recall(R): defined as the rate of relevant documents retrieved with respect to the
full set of relevant documents.

R =
#TP

#TP +#FN

– F-measure: an evaluation metric that combines precision and recall to provide a
better understanding of the overall relevance of the search results and the distri-
bution of relevant documents. The F-measure is defined as the harmonic mean of
Precision and Recall.

F = 2×
R× P

(R + P )

Ranking-dependent metrics

– Precision at rank (P@k): Similarly to P , P@k measures the rate of relevant
documents over the set of retrieved documents in the top-k positions.

– Precision at fixed Recall levels (P(R)): This metric describes “the effect of precision
and recall on the performance of an IR system” (Ceri et al. [21]). Standard recall
levels are defined step-wise from 0.0 to 1.0, in increments of 0.1. P(R) is defined as
the maximum Precision value at a fixed standard Recall level. The values obtained
using this metric are interpolated precision values.

P (R) = max{P ′ : R′ ≥ R ∧ (R′, P ′) ∈ S}

where S is the set of (R,P ) pairs for a given results set.

– Mean Average Precision (MAP): It represents a summary of the effectiveness of a
retrieval system over a set of queries (specifically, its ranking algorithm). Before
defining MAP, it is necessary to introduce the Average Precision (AP):

AP =

∑n
k=1 P@k ×∆r(k)

#TP

where n is the number of retrieved documents for the query, and ∆r(k) = ⌈R@k−
R@k′⌉ (k′ = k − 1).

Once we know the AP for every query q in our dataset we proceed to compute the
MAP as follows:

MAP =

∑Q
q=1AP (q)

Q

where Q is the number of queries.

– Discounted Cumulative Gain (DCG): This measure assumes that the relevance of
a document is proportional to its utility, and also that highly relevant documents
ranked in low positions are not useful for users, since those documents are not
likely to be reviewed. The DCG is defined as:

DCGp = rel1 +

p
∑

i=2

reli
log2i
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where relk is the relevance value of the document at the k-th position, and p is
the position of the last document in the ranking.

The DCG is likely to have a value between 0 and an arbitrary number; this value
might increment indefinitely if the ranking list contains many relevant documents.
Hence, this value should be normalized in order to keep it within the interval [0.,1]
at any point during the ranking assessment. The Normalized DCG (NDCG) can
be computed as follows:

NDCGp =
DCGp

IDCGp

where IDCG is the ideal DCG value for that query. The IDCG corresponds to
the DCG in the scenario in which documents on the results list are sorted by
relevance in descending order.

– Ranking correlations: Relevance judgments are not always available; therefore
,assessing retrieval systems requires other metrics that compute the effectiveness
of retrieval systems, by means of surrogate preference information available in
query logs. In that case, it is possible to measure the effectiveness of a retrieval
system, by comparing its ranking with respect to user’s preferences stored in query
logs. The Kendall tau coefficient (τ) is one metric to compare two rankings:

τ =
P −Q

P +Q

where P is the number of pairs for which both rankings agree with one another,
and Q is the number that disagree. The τ value varies in the range 1 (rankings
fully agree) and −1 (rankings fully disagree).

Example 2.4. Let us assume we are assessing a retrieval system that returns the
following documents for two different queries. Using the information from the result
list, we compute Precision, Recall, MAP, and NDCG.

Here we consider a ranking for query q1 which contains 5 relevant documents in the full
collection.

1 2 3 4 5 6 7 8 9 10

Ranking A o o o o o o o o o o

Relevance Ë é Ë é Ë Ë é é é Ë
Precision 1.00 0.50 0.67 0.50 0.60 0.67 0.57 0.50 0.44 0.50
Recall 0.20 0.20 0.40 0.40 0.60 0.80 0.80 0.80 0.80 1.00

Here we consider a ranking for query q2 which contains 4 relevant documents in the full
collection.
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1 2 3 4 5 6 7 8 9 10

Ranking B o o o o o o o o o o

Relevance é é Ë Ë é Ë é é é Ë
Precision 0.00 0.00 0.33 0.50 0.40 0.50 0.43 0.38 0.33 0.40
Recall 0.00 0.00 0.25 0.50 0.50 0.75 0.75 0.75 0.75 1.00

The MAP of the retrieval system, based on these two queries, is computed as follows:

AP (q1) = (1.00 + 0.67 + 0.60 + 0.67 + 0.5)/5 = 0.67
AP (q2) = (0.33 + 0.50 + 0.50 + 0.40)/4 = 0.43

MAP = (0.43 + 0.67)/2 = 0.55

To compute the NDCG for query q1 we assume that documents have a binary relevance
value where relevant documents have relevance = 1, and irrelevant documents have
relevance = 0.

DCG(q1) = 1 + 0 + 0.63 + 0 + 0.43 + 0.39 + 0 + 0 + 0 + 0.30 = 2.75
iDCG(q1) = 1 + 1 + 0.63 + 0.5 + 0.43 + 0 + 0 + 0 + 0 + 0 = 3.56

NDCG(q1) = 2.75/3.56 = 0.77

Finally, the Recall-Precision graph depicting the P(R) values of query q1 is:
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• Efficiency metrics:

Measuring the efficiency of search engines does not require knowing the relevance of
the retrieved documents, so the metrics can be automatically computed. We find three
aspects related to search engines for which efficiency plays an important role: (1) index
construction time, (2) index space, and (3) query response time. Table 2.1 exhibits a
summarized list of the most common efficiency metrics.
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Metric name Description
Elapsed indexing time Measures the amount of time necessary to build a document

index on a particular system.
Indexing process time Measures the CPU seconds used in building a document in-

dex. This is similar to elapsed time, but does not count time
waiting for I/O of speed gains from parallelism.

Query throughput Number of queries processed per second.
Query latency The amount of time a user must wait after issuing a query

before receiving a response, measured in milliseconds. This
can be measured using the mean, but is often more instruc-
tive when used with the median or a percentile bound.

Indexing temporary space Amount of temporary disk space used while creating an in-
dex.

Index size Amount of storage necessary to store the index file.

Table 2.1: Definition of some efficiency metrics (Croft et al. [27])

Since index-related efficiency metrics do not directly affect the user’s perception of a
search engine, the most commonly used metrics are those related to query response
time, such as query throughput and query latency. Query throughput is an intuitive
metric that measures the number of queries processed per second. To compare differ-
ent systems, it is necessary to make their respective runs on hardware with the same
characteristics. Query throughput values helps determine whether a retrieval system
can handle its workload, or whether it needs to tune its capacity planning policies. On
the other side, query latency measures the amount of time that passes since the user
submits a query and until the system shows the results. Latency might be affected by
the level of parallelism set up in the retrieval system. Low latency and high throughput
are advisable properties, but they cannot be optimized at the same time.

Although users are not aware of the time and space consumed to build the index
structure, this structure has a direct effect on the retrieval system performance. For
example, building a large index that stores several pre-computed values might increase
the query throughput and reduce the latency, but will likely take more time to build,
and use additional storage space.
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• Collections:

To advance the state-of-the-art in the field of Web Multimedia IR, it is essential to
be able to reproduce and compare the performance of new proposals with respect to
state-of-the-art approaches. Several communities dedicated to Multimedia IR foster
the comparison of effectiveness using standard benchmarks based on real data. The
Text REtrieval Conference (TREC21) and The Conference and Labs of the Evaluation
Forum (CLEF Initiative22) provide the scientific community with huge amounts of non-
synthetic multimedia-related data. Similarly, the MediaEval initiative23 has brought
together various research groups interested in addressing multimedia retrieval using
multimodal approaches that involve user-generated data. MediaEval emphasizes the use
of multimodal data, and encourages the use of context data. Furthermore, MediaEval
centered on the social and human aspects of multimedia retrieval. Table 2.2 contains
descriptions to the main TREC, CLEF and MediaEval initiative datasets, and also to
other independent efforts.

In addition to the initiatives of the multimedia community, major commercial Web
search engines (i.e., Google Research24, Microsoft Research25 and Yahoo! Lab26) have
also put forth efforts to provide public datasets. For instance, Microsoft Research has
made various datasets available that combine information from the Web with crowd-
sourced context data. For Google Research, we notice a larger effort in building video-
oriented datasets. This makes sense in that YouTube is a service owned by Google,
and has been widely adopted in the Web community. Finally, regarding the variety of
services provided by Yahoo!, the most diverse datasets are published by Yahoo! Labs.
For example, Yahoo! Labs provides datasets based on user opinions, e.g. ratings. Also,
given that Yahoo! owned Flickr for several years27, they built one of the largest image
datasets which can be used for many different tasks such as classification, geo-location,
automatic tagging, among others. Table 2.3 summarizes the main datasets provided
by commercial Web search engines.

Research in the multimedia community would greatly benefit from the use of bench-
marks with a well-defined ground-truth, as well as from standard evaluation metrics.
In this manner, the amount of reproducible research would increase, and the compar-
ison between methods would be easier. Besides the ground-truth and metrics used,
it is important to build benchmarks based on public datasets, or publishing all data
employed in current Web Multimedia IR research in standard formats. Unfortunately,
most research in Multimedia IR is conducted on hand-crafted datasets, which are not
always available to other research groups. This is sometimes due to the lack of specific
information required to boost the methods proposed, or because research is conducted
within private organizations.

21http://trec.nist.gov
22http://www.clef-initiative.eu
23http://www.multimediaeval.org
24https://research.google.com/research-outreach.html#/research-outreach/

research-datasets
25http://research.microsoft.com/en-US/projects/data-science-initiative/datasets.aspx
26https://webscope.sandbox.yahoo.com/#datasets
27Since April, 2018 Flickr is owned by SmugMug, an image hosting service. (https://www.smugmug.com)
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Dataset Size Data available
Content Implicit Context Explicit Context

TRECVID

IACCa r 7,300
videos

Video files, shot
reference

Title, keywords,
description

BBC
EastEnders

r 244
videos

Video files, shot
segmentation, face
recognition

Metadata
embedded in video

BBC
Archive

r 6,000
hours

Video files, shot
segmentation, face
recognition

Subtitles,
descriptions, UK
celebrities

HAVIC r 9,300
hours

Video files Events related to
videos

MediaEval

Flickr Places
[25]

Õ
r

5M
images
25K
videos

Image and video
files, visual features

Geographic data
(lat, lon), text with
geo location

Flickr
Images [49]

Õ 90K
images

Image files 300 location
queries

Related Wikipedia
pages

Flickr
Events [85]

Õ 500K
images

Image files Title, description,
tags, geo
coordinates

MusicBrainz
music [98]

É 13K
songs

Audio features Artist, title, last.fm
tags, genre, mood

Blip 10000
[99]

r 14K
videos

Video files, shot
boundaries and key
frames

25,000 tweets and
8,800 Twitter users

Title, description,
duration, tags,
transcripts

Other resources

TREC
Twitter
Datasetb

7 240M
tweets

Tweets posted from
Feb. 2013 to Mar.
2013

CLEF
Images from
Search
Engines
[114], [39]

Õ 500K
images

Image files and
visual features

Web pages: (word,
source, rank),
(word, score)

MSDc É 1M songs Audio features Hotness Title, year, artist,
album

NUS-WIDEd Õ 269K
images

Visual features Image URL, tags

MIRFlickr e Õ 1M
images

Image files and
thumbnails, and
visual features

Creator, license,
image URL, title,
tags, exif

a Internet Archive videos under Creative Commons license.
b https://github.com/lintool/twitter-tools/wiki
c https://aws.amazon.com/es/datasets/million-song-dataset
d http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
e http://press.liacs.nl/mirflickr

Table 2.2: Datasets for benchmarking - Part 1

33

https://github.com/lintool/twitter-tools/wiki
https://aws.amazon.com/es/datasets/million-song-dataset
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
http://press.liacs.nl/mirflickr


Dataset Size Data available
Content Implicit Context Explicit Context

Google Research

YouTube
Video
Games

r 120K
videos

Audio-visual
features

Title, tags,
comments

YouTube
Speakers

r 1,111
videos

Speaker ID, video
URL

Youtube
What’s
Cookin’

r 365K
videos

Video URL,
start/end
timestamps, event
name, tags

Microsoft Research

Flickr Visual
Annotations
[131]

Õ 500
images

Image URL;
100,000 labels for
objects in images

YouTube
Video
Description
[22]

r 2,000
videos

85,000 descriptions
about actions in
videos

Yahoo! Lab

YFCC100Ma Õ
r

100M
media
objects

Audio-visual
features

Comments and
favorites can be
obtained using
Flickr API

Id, user, URL,
camera,
timestamp,
location, title,
description, tags

Flickr
European
Cities
(EC1M)

Õ 910K
images

Visual features Image URL, image
relevance for 25
queries

Y! Musical
Artist
Ratings

g 10M
ratings

10M artist ratings

Y! Song
Ratings

É 717M
ratings

717M ratings of
136,000 songs

Song, artist,
album, genre

Y! Internet
Radio
Playlists

É 4,000
stations

Radio station,
track play,
local/system time
of play

Y! Movie
Ratings

r 220K
ratings

220,000 ratings of
14,000 movies

Cast, crew, awards,
synopsis, genre,
avg. rating

TVSum50
[104]

r 50 videos Video files Shot-level
importance scores

Video URL

a A subset of 200,000 images from YFCC100M with labels for 10 classes is also available.

Table 2.3: Datasets for benchmarking - Part 2
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2.6 Summary

First, we introduce the Triad of Search: user, query, document, and describe the main char-
acteristics of each entity from the triad. For example, based on the intention of the users
(as well as their interaction with the search engine), they can be classified into three (3)
main categories: searchers, surfers, and browsers. Each type of user has a different way of
interacting with the search engine, as well as representing their information needs. We find
that users can express their information need in different modes: text-based, with limited
vocabulary (keywords) or free-text; and content-based, with one or more modalities. Cur-
rently, the Web has a huge amount of multimedia resources available for users that combines
different modalities, such as posts in social platforms.

We found that there are big issues to be addressed for each of the entities in the triad of
search. Regarding the query, we find that the intention gap is the most challenging aspect.
Besides that, disambiguation of queries is extremely useful and most search engines have
implemented auxiliary functions such as automatic query expansion and query suggestion, in
order to improve the search experience. The main difference between these two procedures is
that while the former is invisible to the user and is usually done back-end, the later performs
front-end and requires user response.

With respect to multimedia documents, the semantic gap is the most challenging issue
faced by the multimedia research community, and there are plenty of approaches addressing
it. Recent proposals exploit machine learning techniques such as deep learning. We notice
that current state-of-the-art approaches also employ different modalities combined. Mainly,
we find that context data is a valuable source of information when attempting to understand
multimedia content itself. Context data can be found on Web document structure, social
platform posting metadata, and search engine query logs, to mention a few examples.

Regarding users, there are several ways in which they can interact with search engines.
For example, a user could search for specific documents, browse within a collection, or receive
personalized recommendations. In the past decade, search engine design has evolved to offer
a friendlier user experience, such as providing easy-to-browse search results. Besides the
interaction between search engine and user, the multimedia research community should be
able to reproduce experiments of other researchers, as well as compare their new proposals
with the state-of-the-art by using standard datasets and metrics. We find that initiatives
such as ImageCLEF and MediaEval do a great effort by building standard datasets, and
then designing challenges that use those datasets for solving problems of interest to the
community. Besides those initiatives, we find that the main commercial Web search engines
also provide some datasets with which the scientific community can benchmark state-of-the-
art approaches related to Web Multimedia IR.
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Chapter 3

Related Work

The main problems addressed in this thesis correspond to (1) discovering topics related to
multimedia search results; and (2) automatically tagging multimedia documents. Thus, we
describe state-of-the-art approaches for both topics. In addition, we also describe (3) user-
based evaluations which are relevant to assess performance in the absence of suitable ground-
truths.

3.1 Topic Discovery on Multimedia

Detecting topics associated with multimedia resources has been studied from different per-
spectives. In this section we focus on clustering search results, considering that each cluster of
multimedia documents potentially stands for a topic. The curse of dimensionality1 makes it
difficult to accurately find “good” clusters. Therefore, current approaches for topic discovery
model the data space as a graph and address the issue as a community detection problem.

3.1.1 Multimedia search results clustering

In recent years, Multimedia retrieval has become an important topic from the perspective of
the quality of results, as well as the quality of experience provided to users. This means that
a multimedia system must be easy to use and allow users to explore results seamlessly. Here
we focus on methods related to clustering multimedia content, which has applications, e.g.,
to help users make sense of search results, or to automatically annotate multimedia resources,
etc. Given the wealth of literature in this area, our goal is to provide a high-level summary
of the main trends to cluster multimedia content.

1The curse of dimensionality refers to the issues that arise when the dimensionality increases, and the
volume of the space increases so fast that the available data become sparse. The term was coined by Richard
Bellman in his book ”Dynamic programming” [8]
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• Content-based multimedia clustering relies on the extraction and analysis of
audio-visual features. Most approaches for visual clustering are based on machine
learning techniques, such as spectral clustering [73], manifold learning [132] and sup-
port vector machines [72]. In addition, sophisticated techniques [6, 30, 57, 70] for
extracting accurate audio-visual features are computationally expensive. For example,
spectral clustering can deal with data modeled in high dimensional spaces while a near
optimum result is guaranteed [81]. However, it is computationally costly to apply in
larger environments such as the Web. Hence, it is necessary to apply various heuristics
and optimization decisions to enable scalability. Zheng et al. [135] propose a clustering
algorithm named Locality Preserving Clustering (LPC) based on projections that map
multidimensional elements to lower spaces and therefore reduce the computational cost.

• Context-based multimedia clustering exploits information other than content to
discover partitions of similar multimedia documents. For example, the content of the
webpage in which a multimedia object is embedded is a rich source of context infor-
mation. The surrounding text, tags, and the page title are a suitable textual surro-
gate for multimedia descriptions [100] over which text clustering techniques can be ap-
plied. User-generated content, such as annotations, comments [31], and click-through
data [109], also plays an important role in understanding and clustering multimedia
content. Most text-based clustering methods are based on extensions of LDA [13]. For
instance, Blei & Jordan [13] work on correspondence LDA for modeling text fields, such
as captions, to employ them as annotations for images. Furthermore, there are variants
of LDA focusing on annotating [88] or understanding [108] multimedia content.
Within context-based clustering approaches, tag-based multimedia clustering leverages
collaborative tagging systems to cluster multimedia resources. Although tag-based
clustering could be seen as text-based clustering, using only tags we do not have the
notion of word position or proximity (resources are typically associated with an un-
ordered set of tags), nor we do have the notion of word frequency within a document
(each resource is associated with zero or one occurrences of a tag). Thus, many works
that proposed dedicated methods for clustering tags consider graph clustering methods
applied over the graph of co-occurrences of tags. Begelman et al. [7] cluster tags using
a graph clustering algorithm based on spectral bisection over a weighted version of the
tag co-occurrence graph. Moellic et al. [76] propose a shared-nearest-neighbor approach
to extract clusters based on both tags and content-based features. Gemmel et al. [38]
apply hierarchical agglomerative clustering over tags to enable personalization, match-
ing users with tags, clusters and resources they may be interested in. Papadopoulos et
al. [83] employ community-detection methods to perform clustering of tags.

• Hybrid multimedia clustering combine some of the above techniques; in fact, many
of the papers we discussed involve a combination of content, text, tags, etc. Some
hybrid techniques model content and context data in the same space – usually as a
graph structure [82, 117] or an embedded representation [42, 91, 108] – allowing for a
more holistic clustering process where information from multiple spaces is considered
together. Other methods process both types of data independently and subsequently
complement the results for each type of data [111]; in this case, it is possible to combine
the results of the specialized techniques previously discussed.
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3.1.2 Community detection for topic discovery

Real world network representations frequently have one or more underlying community struc-
tures. Finding these structures is important for several reasons. For instance, communities
may have different properties than the network that comprises them, or communities may
stand for functional units in the network system. Also, community structures influence the
speed at which information spreads on the network.

More formally, given a graph, a community is a sub-graph that is more densely connected
than the graph in which it is contained. Community detection might be considered a graph
partitioning problem where the goal is to identify the “densest” possible set of communities
that form a partition. As described in the surveys of Fortunato [34] and Papadopoulos et
al. [84], a variety of metrics and algorithms have been proposed to solve this problem. Initial
community detection approaches apply a standard minimum-cut method that partitions a
graph while reducing the cost of the cut (e.g., the number of edges broken). However,
minimum-cut methods do usually force a fixed number of cuts or partitions, rather than
identifying the “natural” communities in the graph.

More current community detection approaches are designed to achieve the goal of au-
tomatically identifying the best communities regardless of their number. One such way to
do this is to specify a general metric that the community detection method should try to
optimize (independent of how many communities are required). The most common metric
is modularity, which is used by a variety of methods to measure the quality of communities.
More specifically, modularity is the ratio of all edges in the graph that fall within the (can-
didate) communities, minus what would be expected in a graph with the same number of
vertices and edges but where edges are assigned randomly (typically preserving the degree of
vertices or the distribution from the original graph).

Community detection can then be posed as a modularity optimization problem. Although
modularity offers quite a general foundation for community detection, in practice, it is not
possible to compute it for most real world scenarios. First, the set of possible combinations
of partitions grows exponentially with respect to the amount of vertices in the graph and
thus finding the optimal community configuration is intractable, and indeed even computing
the global modularity of a particular partition can be expensive. Practical algorithms often
employ approximations such as local modularity measures [14], spectral analysis [80], and
so on. Another issue is the resolution limit of modularity. This means that in large graphs
with a relatively low mean vertex-degree even a single edge between two communities is seen
as an “unlikely event” (assuming edges are randomly assigned). Under this condition, small
communities end up merged (often unintuitively) into a few very large communities.

Given these practical issues with modularity, some authors have explored other options
for community detection. For example, Girvan & Newman [41] propose a divisive algorithm
that iteratively removes the edge with the highest betweenness (seen as a bridge between
two parts of the graph) and then recomputes betweenness to select the next edge; however,
this process of recomputing edge-betweenness is costly for large graphs. Other authors pro-
pose efficient algorithms that are more process- or structure-based. For example, Rosvall
and Bergstrom [92] propose an information theoretic approach to the problem, using efficient
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codings to identify communities. Raghavan et al. [90] model the community detection prob-
lem as a label propagation process, where closely-knit neighbors that eventually “vote” on
the same label are seen as communities.

In previously described works, any node in the graph is eventually assigned to a commu-
nity. As a result, it is possible to get groups of nodes that do not represent a real community.
Hence, there are techniques that do not have this problem since they dismiss some nodes
in the graph and consider only those that could belong to well-formed communities. Xu et
al. [127] propose a variation of the clustering algorithm DBSAN [32] for graphs. They define
a similarity metric based on a graph structure. They define cores (i.e., nodes in a strongly
connected neighborhood) as seeds for their clustering process. The novelty of this method is
that it labels nodes as hubs and outliers. Hubs are nodes with neighbors that belong to at
least two different clusters. Outliers are nodes that are not strongly connected to any node.
Both methods are able to detect cohesive substructures in a graph.

In recent years, Papadopoulos et al. [83] propose a clustering technique, called HGC, for
identifying related tags. Their proposal is inspired by the SCAN algorithm [127]. Similarly
to SCAN, the first step of HGC focuses on the discovery of core nodes, which are used as
seeds for detecting communities. The main difference with respect to the SCAN algorithm
is that HGC does not require any parameter set up. In addition, it automatically discards
all the nodes that are not relevant for any community.

In addition to ad-hoc algorithms for community detection, we consider general graph
clustering algorithms as a key to finding related tags at a query level. The graph partitioning
method proposed by Zavervsnik et al. [133] employs hierarchical clustering of connected
nodes to determine groups of locally relevant nodes (a.k.a. islands) in a graph. They propose
two different approaches to determine relevant elements in a graph. The first approach is
based on employing node properties and picking nodes from the graph in descending order
according to the value of this property. The second approach proceeds in a similar manner
using properties of the edges.

3.2 Automatic Multimedia Tagging

Usually commercial search engines rely on text descriptions associated with multimedia docu-
ments as a first source of data for indexing such resources. Nevertheless, text descriptions are
not always available and many Web resources might be left out. In this section we describe
approaches that address the issue of automatically annotating multimedia resources. Since
this thesis is oriented to analyze context data to enhance multimedia retrieval, our main
focus is automatic tagging approaches that exploit multimedia context data or the combina-
tion of multimedia content and context data. For a more extensive reading on the topic of
tag-related task, such as automatic tagging, tag refinement and tag retrieval, we refer to Li
et al. [66].
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3.2.1 Analyzing context data to tag multimedia

Understanding the context in which multimedia content is generated and consumed leads
to provide better textual descriptions that might turn into effective tags and therefore im-
prove the user search experience. There are many works that analyze explicit context data
to propose new annotations for unannotated multimedia content. Most of the works rely
on the soundness of the tagged dataset. However, building accurate tagged datasets with
diverse topics requires vast human editorial effort. To bridge this issue, some research works
(e.g., [23, 37, 68, 69, 101]) address the lack of huge training datasets using the wisdom of
crowds [106]. In this fashion, datasets can be generalized and the initial tagged dataset is
build upon collaborative work. Nevertheless, it requires a pre-processing stage at which the
most representative tags are selected, and irrelevant tags are dismissed. For instance, Sigur-
bjornsson and van Zwol [102] exploit co-occurrence of tags to recommend relevant tags for
images posted in online media sharing platforms. The proposed technique recommends a set
of tags that can be associated to a picture.

Although manually assigned annotations add context information to images, this context
information is constrained to the vocabulary of taggers. To bridge this problem, Antonellis
et al. [2] analyze the quality of queries as tags. They find that queries are a rich source of
information for tagging Web content. Also, Tsikrika et al. [109] propose to use clicks from
experts as a source of information about user agreement between the queries and the images
in the results list. Thus, clicks can simulate human annotations. Similarly, Leung et al. [62]
propose an architecture for an adaptive search engine that could improve multimedia search
results based on user feedback over the queries they submit.

Aside from annotations and queries, it is also possible to extract valuable context data from
comments in online multimedia sharing platforms. Eickhoff et al. [31] propose a technique
for identifying tags through the analysis of video comments from YouTube users. First,
the method detects “bursts” in comments, which are short peaks of activity. The selected
bursty comments are then used to infer the tags. They prove that comment streams are a
suitable source of information to get meaningful tags without exploiting other metadata, or
performing further multimedia content processing.

3.2.2 Combining content and context data to tag multimedia

The exploitation of context data along with content data boosts multimedia understanding.
Thus, combining both types of data enables a considerable improvement in the effectiveness
of tagging multimedia content. Content information employed in current automatic tagging
approaches may range from user identity information [64], to tagging preferences [97], to user
reliability [40], to image group memberships [54].

In recent years, research in the area has expanded rapidly. For instance, Li et al. [64]
propose to determine tag relevance using a voting scheme that can be generalized for multiple
features [65]. Every image gets a voting neighborhood (i.e., set of visually-similar image), and
every image in the voting neighborhood contributes with a vote to each tag that agrees with
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the target image. Also regarding image tagging, Wu et al. [123] propose to automatically
annotate objects inside images by building a codebook from the concepts detected inside
the images of their dataset. For most approaches that combine content and context data,
it is common to enforce that similarity derived from multiple resources must be somewhat
consistent with the image-tag association matrix [122, 126, 136].

Besides tag relevance, it is also important to focus on tag diversity. Qian et al. [89] propose
a method that leverages tag diversity, so proposed tags “are not only highly relevant to the
image but also have significant semantic compensations with each other” [89]. Furthermore,
Kannan et al. [55] propose a method that produces text snippets for images by looking for
near-duplicate images in Web pages, and then selecting the top-k snippets. As a result,
images get related to snippets that are both relevant to the images and show diversity.

Aside from image tagging, Turnbull et al. [110] propose to annotate songs. The annotations
they formulate take into consideration different objective and subjective aspects related to the
songs. More recent, there are approaches that focus on automatically refining tags for specific
frames inside a video [4] by exploiting user collective knowledge extracted from manual
annotations, and content-based similarity between frames and images available on the Web.
For a detailed literature review about recent approaches for automatic tagging, please see Li
et al. [66].

3.3 Human Evaluation in Multimedia-related Scenarios

The evaluation of IR systems has been a relevant topic of research since these systems were
first developed [3]. The Text Retrieval Conference2 (TREC) was established to join efforts in
order to benchmark IR systems, therefore improving search algorithms. The basic model for
IR evaluation makes use of a collection that contains: (1) a corpus, (2) a set of queries, and (3)
relevance assessments that indicate which documents are relevant to which queries. Using this
information, evaluation measures show how well an IR system performs. This performance
depends on the number of relevant documents retrieved and the position of these documents
within the search results. Common measures include Precision (P and P@k), Recall (R),
Mean Average Precision (MAP), and Discounted Cumulative Gain (DCG) [3].

In the early years of IR systems, evaluation frameworks were limited to user models based
on experienced searchers with clearly defined search tasks. Hence, evaluations mainly cen-
tered on the topical relevance of the documents for a given query [58]. Web IR systems should
not omit the strong influence of users in the quality of the results obtained. Nonetheless, when
performing evaluations, researchers prefer to narrow down user influence by contextualizing
search tasks. For instance, a researcher might define the level of experience a person requires
to complete a search task, or how much time is available to complete it. The widespread use
of commercial search engines provides valuable datasets that contain Web log data, which
can be used to automatically assess IR systems. This logged data contains billions of search
records, contributed by millions of users. This data is usually analyzed in an aggregated

2http://trec.nist.gov
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fashion in order to obtain valuable information about users’ opinions. However, these logs
are not always publicly available.

Using search engines logs is not always possible. Thus, obtaining large datasets that
combine information from corpus, queries, and relevance assessments is a challenging task.
Over recent years, crowdsourcing has emerged as a suitable platform to perform large-scale
relevance assessments [1]. Crowdsourcing was introduced by Jeff Howe [47] as the application
of principles from the open source movement (i.e., community collaboration) to traditional
jobs, in such a way that these jobs can be outsourced to a large group of people. The
main reason behind the widespread use of crowdsourcing is that it makes it possible to
conduct large experiments extremely fast, with good results, and at low cost. In spite of
the advantages brought by crowdsourcing-based evaluations, there are several details that
could make an experiment fail. For example, paying too little for time consuming tasks
might convey users to give low quality responses; similarly, providing vague instructions (or
not giving examples) could make it difficult for users to understand the requirements of
the task. Alonso [1] proposes that it is important to consider user interface guidelines and
inter-agreement metrics in order to gather useful results.

Amazon Mechanical Turk3 (AMT) has gained a lot of attention as a crowdsourcing plat-
form to perform large scale evaluations. The service provided by AMT allows unexperienced
users to easily design Human Intelligence Tasks (HITs) employing built-in templates. In
addition, experienced users can design more complex HITs using AMT’s API. This API pro-
vides a richer and more flexible service that can be accessed through the Command Line Tool
(CLT). Regardless of the method employed to design a HIT in AMT, it is important to pay
attention to the overall design of the experiment and its execution to gather useful results.
In addition, AMT allows a requester to accept or reject individual user responses in order to
reduce noise. When rejecting an assignment, it is important to explain to the user the reason
for this decision. Alonso [1] recommends to paying users (workers) even when the response
is not as good as one expected. We can always use a new qualification test to filter out lazy
workers or pay bonuses to good ones.

3.4 Summary

In this chapter we review the main topics related to this thesis. Regarding Topic Discovery,
we review approaches that address the problem of topic discovery as a clustering problem.
We find that initial approaches focus on clustering multimedia content using content or
context data, where recent approaches focus on leveraging the relationship between content
and context data to improving clustering results. Since determining the similarity between
two or more multimedia objects gets more difficult as the amount of dimensions included
to model multimedia increases4, we opt to study techniques that use a graph representation
to describe the relationship between multimedia documents. Specifically, we survey non-
overlapping community detection techniques given that for these types of communities each

3https://www.mturk.com/mturk/
4This problem is known as the curse of dimensionality [8]
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element in a graph belongs to a single community and it is not necessary to explicitly define
a degree of belonging to a element with respect to each of the communities.

We find that most community detection techniques are oriented to optimize the graph
partitioning based on modularity. Nevertheless, computing modularity cannot be done in
polynomial time, and many approaches are based on approximations. Thus, in this thesis
we extend the graph clustering approach based on islands [133], and propose a community
detection technique able to automatically detect communities that is focused on optimizing
the cohesion of each partition instead of its modularity.

Regarding Automatic Multimedia Tagging, we find that there are plenty of approaches
that address this problem, so we focus on reviewing approaches that exploit multimedia
context data, most of the time extracted from user-generated content. In the context of Web
Multimedia IR, we notice that initial approaches focus on tagging images by analyzing text
from Web pages and manual annotations as surrogates for image descriptions. Although
explicit context data is the major source of multimedia context data, it is usually biased and
loose, in the sense that user expertise directly impacts the quality of context data. Therefore,
some research works explore the potential of implicit context data (for example, queries, and
click-through data) and demonstrate the advantages of using it as a source of multimedia
descriptions.

We find that regardless the context data type, the evaluation of automatic tagging ap-
proaches usually generalizes tags and groups them into classes with wide semantics. Given
this scenario, our proposal in this topic (automatic tagging) focuses on leveraging implicit
context data, specifically queries. But, unlike current approaches, we do not aim to map
queries to classes which later may lose the semantics of what users wanted to express. Actu-
ally, we aim to generate long descriptions that support better indexing multimedia resources
later on.

Finally, about Human-based accuracy assessment we summarize the challenges of gath-
ering user opinions to assess multimedia-related systems. We review some good practices
about crowdsourcing, which has emerged as a suitable mechanism to gather a large amount
of responses for a wide range of tasks. As we notice from the list of datasets described in
Chapter 2, many of them are built upon crowdsourcing tasks. We realize that in the major-
ity of cases crowdsourcing was used as a mechanism for collecting initial context data, for
example long descriptions and bounding boxes for specific objects inside images show and
videos.

The use of human assessors’ opinion in this thesis is oriented in a slightly different direction:
we aim to collect opinions about the output of our framework, instead of using them as input
for them. This involves challenges such as selecting a relevant and unbiased subset of output
data to assess, as well as reducing spam in the responses and measuring their reliability.
Furthermore, analyzing the data collected for explaining the behavior of assessors, even
when responses are dissimilar, is also a challenging aspect of applying crowdsourcing to
assess multimedia related systems.
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Chapter 4

Topic Identification in Multimedia

Search Results

The deluge of multimedia data on the Web has raised the need for multimedia search engines
to provide mechanisms to improve user interaction with search results. Additionally, query-
by-keyword is inherently ambiguous, and in the specific case of multimedia searches it might
not depict the true user intention when they search for non-textual documents, such as
images. Thus, modern search engines take into account a variety of signals (e.g., similarity
measures over text) to make an accurate guess on what the user is most likely interested in.
To attempt to satisfy as many users as possible, a multimedia search engine needs to provide
a degree of diversity in the returned results, be it by visual diversity, topical diversity, or
both. Several studies have shown that grouping similar multimedia documents helps users to
quickly make sense of the search results. Indeed, users may browse different categories while
providing implicit feedback about the intention behind their initial request.

In this thesis, our focus is on topic-based clustering, which can help users make sense of
search results by making explicit the different interpretations of ambiguous textual queries,
or different aspects of the same interpretation. Topic-based clustering traditionally relies on
textual features, which are usually obtained from contextual information; for instance, the
text that surrounds an image in a Web page, or human annotations, also known as tags.
Regarding the wide adoption of multimedia social sharing platforms, specifically of the use
of tags as keys to describe multimedia content, we aim to use tags as surrogates for short
descriptions of the multimedia content returned by a search engine for a given query. We
propose an online query-centered framework for topic discovery which takes as input tagged
search results, and models tag relationships as a graph over which a community detection
technique is applied. As a result, the framework returns a set of topics, related to a given
query, represented by a set of tags.
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Initial Search Results
(with tagged items)

Tag Graph Community Detection Communities

Figure 4.1: Framework for topic detection: Given a set of images from a query search results,
it builds a tag co-occurrence graph over which a community detection algorithm is applied.
Each community returned by the community detection algorithm represents a concept asso-
ciated with the initial query.

The main characteristics of our framework are:

– Multimedia-type independence: We do not employ content-based features in the
tag graph construction process. Our model could potentially discover topics across
different types of multimedia resources in a transparent fashion.

– Tag and topic independence: Our framework does not require any training data,
it is not fixed to domain or language, nor to a limited or fixed number of topics.

– Query specific: Tag graphs are built with respect to a specific query, which helps
disambiguate (non-query) polysemous tags; e.g., the tag jaguar appearing on results
for a query “zoo” will (likely) only refer to the cat, not the car.

– Online detection of concepts: Given adequate physical infrastructure and optimized
community detection algorithms, it is possible to perform multimedia topic detection
in an online fashion (e.g., on the client side).

4.1 Framework for Detecting Multimedia-related Concepts

In this section we describe our framework for online topic detection. We first introduce the
general framework, specifically, we point out the input and output of each step. And, in
subsequent sections, we describe each step of the framework in detail.

4.1.1 Overview

We introduce a framework to detect semantically relevant groups of tags (“topics”) associated
with queries encoding user information needs. We are motivated by the use-case of performing
an online clustering of heterogeneous multimedia search results using only the tags in the
results. In Figure 4.1 we show the proposed framework, which consists of the following four
main stages:

1. Retrieval of multimedia resources based on a specific query: Search results are
the starting point for our framework. In order to keep our model as general as possible,
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Figure 4.2: Image search results for query “tiger” and a subset of images in the results with
their respective annotations.

we assume as input a collection of items (instead of a specific type of multimedia data)
associated with a set of tags, over which we perform clustering using tag co-occurrence
information. Since we only use tags to represent multimedia content, our framework
is able, in theory, to combine different types of multimedia resources (such as, images,
videos, audio) in a transparent fashion.

2. Construction of the Tag Co-Occurrence Graph (Tag Graph): The tag graph
is the key structure over which our framework works. Given a finite set of images R
retrieved for a given query, where each resource is associated with a set of tags, we
define the tag co-occurrence graph as

Gλ = (V,E, λ)

where:
V =

⋃

{r ∈ R} r are tags associated to resources, such as images, in R,
E = {(v, v′)| ∃r ∈ R such that v ∈ r, v′ ∈ r and v 6= v′} are edges that represent an
explicit relationship between tags in V , and
λ : E → R is a weighting function that labels each edge in E with a real value, such as
the number of co-occurrences, or the structural similarity between two tags in V .

In Figure 4.3 we show the tag graph for a partial set of annotations related to the
results for query “tiger”.

3. Tag Clustering based on Community Detection Algorithms: We employ com-
munity detection algorithms because of their flexibility to compute cohesive groups of
nodes in a graph without the explicit indication of the number of groups or the size of
them. Under this approach, no additional knowledge about the multimedia resources is
necessary to detect relevant groups of tags (other than the tag graph structure). Initial
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Figure 4.3: Tag Graph example for query “tiger”: nodes are tags associated to resources in
the search results and edges indicate co-occurrence of tags.

empirical experiences revealed that using existing community detection algorithms to
cluster search results from the Flickr image search engine often led to senseless topics
(e.g., we found clusters that were too large, and grouped unrelated terms). Hence, we
also propose two new community detection algorithms based on island cuts.

4. Topic representation using tags: Ideally, it would not be necessary to apply any
additional process to the output of the community detection algorithms. However, for
algorithms that return large communities, we would need to apply a ranking technique
in order to reduce the subset of tags to a manageable size. The simplest approach to
ranking tags inside a community would be sorting them by frequency or degree.

4.1.2 Tag Graph Construction

We now provide preliminary definitions relating to tag co-occurrence that we use throughout
the chapter.

(Weighted) Tag co-occurrence graph: connects two tags if and only if they are associ-
ated with a common resource (e.g., a common image, video, or music file). We define
the weighted tag co-occurrence graph G = (V,E, λ) of a bag1 of resources R where V
and E are defined as before, and where λ : E → R is a (total) weighting function that
assigns each edge in E with a real value.

1A bag is a set that allows duplicates. We need to consider a bag for the weighted version since, e.g., two
images may have the exact same set of tags.
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We can consider different weighting functions for λ, for our Tag Graph the simplest of
which counts the number of co-occurrences for a pair of tags:

λ(v, v′) = #{r ∈ R | v ∈ r and v′ ∈ r}

Here, #S denotes the cardinality of the set S. In this case, λ maps edges to positive
integers. We call this scheme cardinality-weighting, or c-weighting for short.

In initial experiments, we found that cardinality-based weights were sensitive to the
number of resources considered, and that isolated tag pairs can sometimes occur quite
frequently, perhaps due to the tagging preferences of a single user. Thus, we investigate
a more robust weighting scheme based on structural similarity [127], which is defined
for two nodes v and v′ as follows:

sim(v, v′) =
#(nv(v) ∩ nv(v′))

√

#nv(v)×#nv(v′)

where n(v) = {v′′ | (v, v′′) ∈ E} are the neighbors of v in the undirected graph and
nv(v) = n(v) ∪ {v} includes v; here v is included to count the case that v and v′ are
connected. Structural similarity is thus the number of neighbors the vertices share in
common divided by the geometric mean of the number of total neighbors they have.
The result is a value in the interval [0, 1] (inclusive): if the vertices share no neighbors,
the value is 0, whereas if they share all neighbors (and are connected), the value is 1. We
call the scheme where λ(v, v′) = sim(v, v′) similarity-weighting or simply s-weighting
for short.

For brevity, we refer to the ([c|s]-weighted) tag co-occurrence graph as simply the “([c|s]-
weighted) tag graph”. Both weighted graphs are undirected, edge-labeled graphs.

Example 4.1. A partial view of the tag graph for the query “tiger” is shown in Figure 4.3.
Vertices are individual tags. Edges between tags indicate that they are used as tags for at
least one common resource. Note that in the online clustering scenario, we remove tags that
match the query term itself since they conceptually belong to all clusters and are not useful
for detecting topics. Likewise, note from the graph that some vertices may connect with
multiple clusters; in some cases this is due to polysemy, or as in the case of orange, simply
because they relate to both topics.
In the same figure, we also encode c-weights using the boldness of the edge line: the more
frequently two tags co-occur, the heavier their line. Based on this graph, we could also
compute the s-weights of two nodes: for example, sim(detroit, zoo) = 2√

8×7
≈ 0.27, while

sim(detroit, city) = 5√
8×5
≈ 0.79.

4.1.3 Community Detection Algorithm

Community detection algorithms provide a suitable way to detect structurally cohesive graph
structures. In the literature we found two main types of community detection algorithms: (1)
non-overlapping community detection algorithms, and (2) overlapping community detection
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algorithms. The main difference between these approaches is that the former ones return
communities for which each node n belongs to a single community, while the latter consider
that a node might belong to multiple communities. Specifically, non-overlapping community
detection algorithms are a simple and effective tool to determine if the tag co-occurrence
structure represents a community. Nevertheless, in our preliminary analysis of community
detection techniques for topic discovery we found that techniques can behave in two different
ways: (1) some techniques return a few communities with a large amount of elements in
each one, and (2) other techniques return many communities with a smaller size than former
approaches. For the first group, methods do not return sets of terms from which topics can
be detected straightforward. This is mainly because the returned groups contain many noisy
terms. On the other hand, the second group of techniques offer the possibility to obtain
smaller groups, which can be easier to understand for humans, and thus could lead to topics
being quickly identified. However, it is also possible that some topics are split into several
clusters of terms. It is important to remark that the amount of terms related to a topic
cannot be generalized, and therefore state-of-the-art methods must be able to identify the
suitable size for each topic.

4.2 Adaptive Island Cuts for Topic Detection

In this section we describe the algorithm for topic detection based on island cut with an
adaptive size of clusters. First, we present the definition of island as introduced by Zaveršnik
and Batagelj [133]. Then, we describe two fashions to build a hierarchy of islands. Finally,
we describe the algorithm for adaptive selection of islands.

4.2.1 Islands

An island is a sub-graph that is maximal in its neighborhood for a given property of the
graph [5, 133]. Zaveršnik & Batagelj consider two types of islands: vertex islands and edge
islands. An island is defined relative to some vertex (or edge) property p, where no external
neighbor of the island has a higher value for p than any vertex (or edge) in the island. Also,
if no such neighbor has an equal p value to a vertex (or edge) within the island, that island
is regular.

We call a sub-graph of an (x-)island that is itself an (x-)island an (x-)sub-island, where
x could be vertex, regular vertex, edge, or regular edge. We call a vertex v′ ∈ V ′ a port of
a vertex island if it has the lowest value for p in that vertex island, and removing v′ and its
associated edges yields a vertex sub-island. A vertex island may have multiple ports. We
also call an edge e that can be removed from an edge island to yield an edge sub-island a
port ; it does not necessarily need to have the lowest value for the edge-property w.

Islands are built following a “greedy” algorithm that initializes islands with the vertices (or
edges) that have the highest values for the given property, and then enlarge and/or combine
those islands by traversing the graph from these starting points to include their neighbors.
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This process is similar to building a spanning tree, except that it records the order in which
the vertexes (or edges) are added to the solution. We now describe two greedy algorithms
for extracting islands and later discuss how we choose communities from those islands.

4.2.2 Island hierarchy based on edges

To build the hierarchyH = (VH , EH) based on an edge property for a given graph G = (V,E),
edges in G must be sorted in descending order with respect to their edge property p. First,
the hierarchy of islands is filled with single-vertex islands for each successive v ∈ V , and
adding it to VH . Next, for every edge e = (vi, vj) ∈ E, if vi and vj belong to different islands
Ii and Ij respectively, a new super island is created with all nodes Ii and Ij. This super
island replaces its sub-islands Ii and Ij in the hierarchy. The detailed process is described
in Algorithm 1. Furthermore, Example 4.2 illustrates the process based on the structure of
graph G shown in Figure 4.3. The final result for the example is depicted in Figure 4.4.

Algorithm 1 Algorithm for computing hierarchy of nodes based on edges property
1: procedure BuildEdgeHierarchy(G) ⊲ G is a tag graph
2: E ← edge_attributes(G,weight) ⊲ Tuples : (v1, v2, weight)
3: sort_reverse(E, key = weight)
4: hierarchy ← get_nodes(G)
5: for all island ∈ hierarchy do
6: island.port← NULL
7: end for
8: for all (v1, v2, weight) ∈ E do
9: i1 ← get_island(v1, hierarchy)

10: i2 ← get_island(v2, hierarchy)
11: island = [ ]
12: if i1 6= i2 then
13: i1.regular ← (i1.port = NULL or i1.port.weight > weight)
14: i2.regular ← (i2.port = NULL or i2.port.weight > weight)
15: island.port← (v1, v2)
16: island.subisland1 ← i1
17: island.subisland2 ← i2
18: hierarchy ← hierarchy ∪ [island]
19: hierarchy ← hierarchy − [i1, i2]
20: end if
21: end for
22: for all island ∈ hierarchy do
23: island.regular ← True
24: end for
25: return hierarchy
26: end procedure

Example 4.2. Let us assume we sort the edges in the tag graph of Figure 4.3 in descending
order with respect to the edge property w, in this case s-weighting:
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Step 1:Analyzing edge (worldseries, mlb) Step 2:Analyzing edge (series, city) Step 3:Analyzing edge (petal, macro) 

Step 4:Analyzing edge (petal, lily) Step 12:Analyzing edge (feline, bengal) Step 16:Analyzing edge (color, flower) 

Step 17:Analyzing edge (orange, cat) Step 18:Analyzing edge (usa, color) Final edge-based island hierarchy

Edges sorted by structural similarity value

Figure 4.4: Edge island hierarchy for annotations related to query “tiger” (see Tag Graph in
Figure 4.3). Each step processes an edge of the set sorted in descending order by structural
similarity value. If the edge being analyzed is connected to the port of any of the hierarchies,
it is added to such set; otherwise, a new hierarchy is built with such edge. (’*’ means that
we include an edge with equal value than the port.)
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E = {(worldseries, mlb), (city, series), (petal, macro),(petal, lily), . . . , (color, usa)}

This time, H = (V , E) where V ⊂ 2V – sets of vertices representing islands – and E ⊆
V × V . We initialize V with all singleton vertices and E as empty. We take the first edge
(worldseries, mlb). We retrieve the largest islands in V containing both nodes; in this case
{worldseries} and {mlb}. If they are the same islands, we continue to the next edge. If they
are not the same, we create a new island which is a union of the two – {worldseries, mlb} –
and add a directed edge from the new island to the two old sub-islands. Once all of the edges
are exhausted, H is a tree where all nodes in V are edge-islands and all edges in E represent a
sub-island relationship. We show the process to build the hierarchy in Figure 4.4. In practice,
we do not store the vertices representing larger islands, but instead store the hierarchy from
which the islands can be generated. Once again, for an edge-island to be regular, it cannot
have an incoming edge in H that was derived from an edge with the same value for w as
the outgoing edges of the island in H. To illustrate this, we provide an example: while
{petal, macro} is an edge-island, it is not regular, since the original edge (petal, macro) in
G had the same weight as (lily, petal) (and indeed (lily, macro)). On the other hand,
{petal, macro, lily} is regular.

4.2.3 Island hierarchy based on vertices

To build an island hierarchy H = (VH , EH) based on a vertex property for a given graph
G = (V,E), vertices in G must be sorted in descending order with respect to their vertex
property p. The process starts creating single-vertex islands for each successive v ∈ V , and
adding it to VH . Next, v is connected to all ports v′ (the last vertex added to an island) of
existing islands in H that are neighbors of v in G: we add the edge (vi, v′i) to EH , where v
now replaces each such v′ as a port for a new larger island. The detailed process is described
in Algorithm 2. Furthermore, Example 4.3 illustrate the process based on the structure of
graph G shown in Figure 4.3. The process described on the example is depicted in Figure 4.5.

Example 4.3. Let us assume we take PageRank [17] as the vertex property p. If we
compute the PageRank of every vertex in the tag graph in Figure 4.3 and sort them in
descending order we obtain:

V = (baseball, detroit, orange, cat, flower, . . . , color)

We start with H = (VH , EH) blank. Iterating over V, we first add baseball to VH . Next,
we add detroit, which is a neighbor of baseball w.r.t. G, where baseball is a port in H,
so we add the directed edge (baseball, detroit) to EH . Then, we add orange, but do not
connect it to anything since it has no neighbor w.r.t G already in H. We continue in this
manner until we reach the hierarchy shown in Figure 4.5. In the case of zoo, for example, we
can see that a vertex can be connected to two ports. In the case of feline, vertices are only
connected to ports. Likewise, nodes with the same value for p have bidirectional links. We
can get the vertices of an island by taking any vertex and retrieving all of its ancestors. For
an island to be regular, the ancestors must include vertices reachable through bidirectional
links.
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Algorithm 2 Algorithm for computing hierarchy of nodes based on vertex property
1: procedure BuildVertexHierarchy(G) ⊲ G is a Tag Graph
2: V ← node_attributes(G,weight) ⊲ Tuples : (v, weight)
3: sort_reverse(V, key = weight)
4: hierarchy ← [ ]
5: for all v ∈ V do
6: island← NULL?
7: island.port← v
8: neighbors← get_neighbors(G, v.node)
9: for all islandinhierarchy do

10: if island.port.node ∈ neighbors then
11: island.subislands← island.subislands ∪ [island]
12: end if
13: end for
14: hierarchy ← hierarchy ∪ island
15: for all isl ∈ island.subislands do
16: hierarchy ← hierarchy − isl
17: isl.regular ← island.port.weight > v.weight
18: end for
19: end for
20: for all island ∈ hierarchy do
21: island.regular ← True
22: end for
23: return hierarchy
24: end procedure
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Figure 4.5: Vertex island hierarchy for annotations related to query “tiger” (see Tag Graph
in Figure 4.3). Each step processes a tag of the set sorted in descending order by PageRank
value. If the tag being analyzed is connected to the port of any of the hierarchies, it is added
to such set; otherwise a new hierarchy is built using the tag as root. (’*’ means that two tags
with equal PageRank value are connected)
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4.2.4 Adaptive island cuts

Using information from the island hierarchy, we proceed to select sub-sets of nodes connected
through the hierarchy (sub-islands) which represent coherent concepts. The selection of
suitable islands from the hierarchy is not a straightforward task. There are some trivial
islands to be avoid, such as single-vertex islands, and an island that contains all vertices in
the graph. To simplify the selection of islands, Zaveršnik & Batagelj [5, 133] proposed a
simple criteria for islands of interest using a bound [k,K], where k is a lower bound on the
number of vertices of valid islands, and K is an upper bound.

In the context of topic discovery it is reasonable to assume a minimum island size of k = 3
given that a smaller size would not carry clear semantics. For example, a community of
size = 2 only reflects a co-occurrence of terms, and a community of size = 1 is trivial. Nev-
ertheless, specifying a maximum island size would be very restrictive, and it would constrain
the verbosity with which a concept is represented in a given query search results. Instead of
setting a fixed value for the upper bound K, we propose to set a threshold on the (sub-)graph
density (i.e., the ratio of edges to nodes) for what we consider to be semantically relevant
islands. The main intuition behind this idea is that the larger and the closer to a clique an
island is, the better: in this sense, there is a trade-off between the density and the size of the
island. This trade-off is captured using a density threshold:

δ(x) =
x(x− 1)

2
×max

(

log2

(

x+ k

x

)

, t

)

where x is the number of vertices in the island, k is the minimum number of vertices allowed
for an island (k = 3), and t is a fixed lower bound that we discuss presently. The left term of
the product is the number of edges in a clique with x vertices (excluding loops). Assuming
t = 0, the rightmost term is a logarithmically decaying ratio on the number of vertices in
the range (0, 1]. When x = 3, for example, the ratio is 1, meaning that the island must be
a clique. When x = 6, the ratio is approximately 0.58, requiring the island to have 9 edges
(versus a 6-clique of 15 edges). However, initial tests returned large islands with low density.
Thus, we added t as a practical compromise: it offers a parameterizable fixed lower bound
on the ratio, to ensure a minimal density for larger islands; for example, if t = 0.33, then the
right-hand side ratio remains fixed for islands larger than 12, and will not go lower. Figure 4.6
illustrates that our proposed density function, which is an adaptation of Benford’s law2, is
less restrictive than the well-known Zipf’s law. In the current scenario, we apply Benford’s
law as a normalization factor of our edge density coefficient because it will force communities
with smaller sizes to have a higher density than those with bigger sizes. Despite the fact
that Zipf’s law has a similar graph curve than Benford’s law, the slope of Benford’s law is
not so steep at the first positions. Furthermore, Figure 4.7 shows the difference between the
number of edges of an unbounded density function with respect to the clique distribution, as
well as our t-parameterized bounded density.

2See Appendix A for further information about Benford’s law and Zipf’s law
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Figure 4.6: Functions to determine expected density coefficients in a sub-graph. We compare
the curves for Zipf’s law, Benford’s law, and a proposed function based on Benford’s law.
The curve of coefficient values from our adapted version of Benford’s law is not as steep as
the others.

Given an island G′ = (V ′, E ′), in order to avoid outliers [127], we also require that all
vertices in the island have at least log2(#V

′) edges for it to be considered a community.
Summarizing, we consider an island G′ = (V ′, E ′) to be a community if:

1. the island is regular
2. #V ′ >= k (where we take k = 3)
3. #E ′ ≥ δ(#V ′)
4. no v′ ∈ V ′ such that #n(v′) < log2(#V

′)

Here, (1) and (2) correspond to the criteria proposed by Zaveršnik & Batagelj [5, 133],
whereas we add (3) and (4) to avoid the need for a fixed upper bound K and to correspond
with the intuition of a community as discussed previously. Based on these criteria, we select
communities from the hierarchy such that they are non-overlapping, but otherwise maximal,
while meeting the required criteria. More specifically, we begin at the most general island
containing all vertices, and then visit sub-islands, checking that the criteria is met.

Example 4.4. We return to the hierarchy shown in Figure 4.9 where the final communities
are highlighted with shaded boxes. These communities were computed by analyzing every
island in the hierarchy starting at the top (which corresponds to the bottom of the figure):
the first island that we evaluate corresponds to the full graph. We assess the graph using all
conditions previously defined, where Th. indicates the threshold value, Ob. the observed
value and Pass? whether the condition is satisfied or not.
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Figure 4.7: Functions to determine minimum number of edges in a sub-graph. The plot
shows curves of functions that combine the expected size of clique with a given configuration
of our edge density function based on Benford’s law. For our experimental setup, we select
the curve “bounded*density”.

Th. Ob. Pass?

Regular? ✓ ✓ ✓

Min vertices (k) 3.0 19 ✓

Min edges (δ(#V )) 56.4 46 ✗

Min connectivity (log
2
(#V )) 4.2 3 ✗

Since the full graph does not satisfy all conditions, we proceed to analyze its sub-islands
independently. We first analyze the left sub-island with the vertices:

V ′ = {worldseries, mlb, baseball, detroit, series, city, usa}

Th. Ob. Pass?

Regular? ✓ ✓ ✓

Min vertices (k) 3.0 7 ✓

Min edges (δ(#V ′)) 10.8 15 ✓

Min connectivity (log
2
(#V ′)) 2.8 3 ✓

This sub-island satisfies all conditions, therefore it is accepted as a valid community. This
process continues, ultimately resulting in the final set of communities shaded in Figure 4.8.
Moreover, Figure 4.9 shows the distribution of the annotations on the actual tag graph.
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Figure 4.8: Edge island hierarchy showing the final set of topics found for query “tiger”.

Figure 4.9: Tag graph for query “tiger” colored according to the topics discovered using the
edge-based island hierarchy.
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Algorithm 3 Algorithm for computing clusters based on a (vertex/edge) island hierarchy.
1: procedure AdaptiveIslandCut(G, hierarchy, densityThreshold, sizeThreshold)
2: clusters← [ ]
3: while hierarchy 6= [ ] do
4:

5: island← hierarchy[0]
6: hierarchy ← hierarchy − island
7: elements← get_elements(island)
8: graphlet← subgraph(G, elements)
9: edgesIsland← |edges(graphlet)|

10: expectedDensity ← log
(

|elements|+minSize
|elements|

)

11: expectedDensity ← max(expectedDensity, densityThreshold)
12:

13: minEdges← expectedDensity×|elements|×(|elements|−1)
2

14:

15: D ← node_attributes(graphlet, degree)
16: lowerDegree← [(node, degree) ∈ D if degree < log(|island|)]
17:

18: if edgesIslands ≥ minEdges and |elements| > 2 then
19: clusters← clusters ∪ elements
20: else
21: if lowerDegree 6= [ ] or edgesIslands < minEdges or island.regular then
22: hierarchy ← hierarchy ∪ get_subislands(island)
23: end if
24: end if
25: end while
26: return clusters
27: end procedure

4.3 Experiments

In this section we describe the experiments and results of the automatic and user-based
evaluation of various well-known methods for community detection, as well as our proposed
methods based on adaptive island cuts. First, we describe the dataset and algorithms included
in the comparison. Then, we describe an evaluation based on WordNet ontologies and provide
the main results and drawbacks. Finally, we present the user study designed to compare the
topics detected for the different methods included in the comparison.

4.3.1 Dataset

To assess our method, we need to obtain a dataset that contains a set of query search results
in which every element in the list is associated with a set of tags. Social20 [64] is a dataset
extracted from Flickr that contains 20 queries, for which the top 1000 results have been re-
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Query Users Tags Avg.Tags Top-5 tags (6= query)

airplane 430 2,267 9.08 airport, plane, aircraft, flight, aviation
beach 738 2,910 8.03 ocean, sea, sand, water, sunset
boat 661 2,872 9.83 water, sea, ship, lake, boating
bridge 776 5,493 19.51 river, water, night, reflection, hdr
bus 690 5,088 14.18 stop, transit, transport, city, street
butterfly 519 2,197 8.43 nature, flower, insect, macro, 2008
car 619 3,719 11.23 auto, show, 2006, classic, racing
cityscape 645 3,707 15.53 city, building, night, skyline, 2008
classroom 631 3,153 9.97 school, student, teacher, high, class
dog 866 5,721 14.79 pet, animal, puppy, white, the
flower 863 2,898 8.15 macro, nature, garden, yellow, plant
harbor 624 3,940 17.50 harbour, boat, water, lake, bay
horse 169 1,699 16.87 caballo, cheval, paard, pferd, equus
kitchen 769 4,059 10.98 house, home, s, interior, remodel
lion 522 2,582 10.27 zoo, animal, cat, safari, park
mountain 622 2,986 12.26 hiking, snow, nature, lake, landscape
rhino 389 1,898 14.38 zoo, animal, lion, elephant, bird
sheep 557 2,730 9.71 animal, farm, 2008, barn, vermont
street 785 6,061 17.98 city, art, new, night, people
tiger 189 1,448 12.62 sport, ice, icehockey, hockey, csaha

Table 4.1: Social20 Dataset Summary.

ranked with the state-of-art algorithm for tag ranking, according to the benchmark described
by Li et al. [66]. In Table 4.1 we list the queries included in the dataset, and present the
main statistics from the dataset.

4.3.2 Algorithms

Given that one of our evaluation frameworks relies on human judgment, we limit our evalu-
ation to two settings, which were chosen based on preliminary experiments:

1. Adaptive Island Cut based on edge property (abbr. AIC-edge): With structural sim-
ilarity as edge property; and k = 3, t = 0.33 for the density function.

2. Adaptive Island Cut based on vertex property (abbr. AIC-vertex): With PageRank
(w.r.t. structural similarity weights) as vertex property; and k = 3, t = 0.33 for the
density function.

In order to compare the performance of our community detection algorithm based on
adaptive islands cuts, we select a set of well-known algorithms for community detection.

3. Eigenvector [80] (abbr. Eigenvec) aims to maximize modularity by partitioning the
graph based on a modularity matrix. After repeated divisions, the algorithm returns a
k-partite structure.
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4. Infomap [92] (abbr. Infomap) uses random walks to emulate information flow in a
network. Efficiently coding the information flow is equivalent to finding communities
in a graph.

5. Label propagation [90] (abbr. LblProp) uses a recursive voting scheme until it reaches
a fix-point. First, each vertex is assigned a unique label. In subsequent iterations, each
node takes the label that most of its neighbors have, until a fix-point is reached.

6. Multilevel [14] (abbr. MultiLvl) is similar to a hierarchical agglomerative clustering
technique. First, vertices for which the modularity gain is maximal are put together in
the same community. Next, communities of the graph are re-indexed as if they were
vertices, and then edges are re-weighted based on the links between communities.

7. SCAN [127] (abbr. mSCAN) is a variation of the clustering algorithm DBSCAN [32]
for graphs. The algorithm defines cores (vertices forming a densely-connected neigh-
borhood) as seeds for their clustering process. Core nodes are expanded into their
neighborhoods, identifying communities.

Every algorithm in the dataset receives the same data as input, and do not require any
additional information nor setup tuning to perform the community detection task. The
implementation employ for algorithms (3) to (6) is available in the library igraph for the
Python programming language3. For our experiments, we used a java implementation of the
SCAN algorithm4 developed by Papadopoulos et al. [83]. Table 4.2 shows statistics for each
algorithm on the communities identified for the tag graphs. After applying the community
detection algorithms in our dataset, we see a split of the algorithms into two groups based
on an order of magnitude difference in the average community size computed: LblProp,
Eigenvec and MultiLvl produce much larger/fewer communities than AIC-*, Infomap

or mSCAN. In fact, the former algorithms tended to produce one “super-community” with
the vast majority of tags, and a few other small communities.

Method Total
Community Size

Max Min Avg S.Dev

AIC-edge 649 216 3 7.33 17.94
AIC-vertex 533 142 3 6.47 15.27

Eigenvec 157 542 4 81.91 107.43
Infomap 906 79 4 6.54 17.93
LblProp 123 1446 4 104.58 4.87
MultiLvl 189 393 4 68.17 82.80
mSCAN 1,269 166 4 7.31 8.24

Table 4.2: Statistics about communities computed by different methods across all 20 queries

Runtimes: Community detection was run on a MacBook Pro, with an Intel Core i7 (3 GHz)
processor and 8 GB of RAM. Taking the mean and standard deviation of runtimes of each
algorithm across the twenty queries, the fastest were LblProp (11.3 ms ±10.2), MultiLvl

3Documentation at http://igraph.org/python/doc/igraph.Graph-class.html (accessed on June,
2018)

4Code available at https://users.dcc.uchile.cl/~tbracamo/mscan_dawak2010/sourcecode.zip
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Query AIC-edge AIC-vertex Eigenvec Infomap LblProp MultiLvl mSCAN

airplane 204.60 46.05 42.00 220.00 2.73 3.13 328.00
beach 1729.70 428.33 116.00 363.00 7.08 9.42 566.00
boat 574.70 100.99 76.30 254.00 4.32 4.29 367.00
bridge ↑ 10926.00 1259.62 380.00 1750.00 37.80 35.90 13590.00
bus 3975.00 549.52 209.00 1380.00 20.40 18.50 2423.00
butterfly 561.50 93.83 97.20 164.00 4.40 4.47 403.00
car 2690.20 747.78 61.60 325.00 7.98 12.80 534.00
cityscape 5203.00 683.85 266.00 927.00 17.30 19.60 5376.00
classroom 1197.60 192.02 83.10 489.00 7.65 7.26 773.00
dog 6111.00 776.98 317.00 1740.00 26.70 26.70 4388.00
flower 2166.90 653.30 67.30 268.00 6.69 9.58 658.00
harbor 4034.00 504.38 184.00 1810.00 19.00 19.90 4010.00
horse ↓ 78.13 21.40 167.00 89.50 1.41 1.43 171.00
kitchen 1731.60 258.37 193.00 773.00 12.90 11.60 1203.00
lion 510.80 100.14 222.00 324.00 6.11 4.76 469.00
mountain 1991.70 645.86 72.90 362.00 6.75 9.04 865.00
rhino 258.90 54.59 87.90 186.00 2.97 3.23 313.00
sheep 448.20 89.12 148.00 250.00 4.59 4.49 451.00
street 7106.00 763.15 382.00 2210.00 28.10 25.70 9141.00
tiger 121.31 29.07 76.00 98.00 1.80 1.75 204.00

Mean 2581.04 399.92 162.42 699.13 11.33 11.68 2311.65
St.Dev 2880.86 350.31 105.73 683.45 10.22 9.67 3526.64

Table 4.3: Runtime (in ms.) for the algorithms included in the user study. horse and bridge
are the queries with lowest, and highest runtime, respectively. AIC-edge and LblProp are
the algorithms with lowest, and highest average runtime accross queries, respectively.

(11.9 ms ±9.7), followed by Eigenvec (162.4 ms ±105.7), AIC-vertex (399.9 ms ±350.3,
incl. s-weighting and PageRank computation) and InfoMap (699.1 ms ±683.5). The slowest
method was AIC-edge (2, 581.0 ms ±2, 880.9, incl. s-weighting), where the worst case was a
query that took 10.9 seconds to run; we found that most of this cost came after computing the
hierarchy when selecting the islands (which took 9.8 seconds in the worst case). This would
be prohibitive for online clustering in particular, but we are not focused on optimizing our
methods. However, revising the implementation of the traversal of the edge-island hierarchy
in future work is something we can identify as a priority from these results, especially for
online scenarios.

4.3.3 User study design

Task: We designed a user evaluation to measure how well community detection algorithms
identify topics from the tag graphs in query results. Each user is presented with a set of tags
from a cluster that has been created using one of the community detection algorithms. Users
are given the option to remove terms that they do not understand. The user is then asked
to choose the largest subset of tags that they (subjectively) consider semantically related.
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Figure 4.10: Example of task shown to assessors during the user study. For instance, an
assessor could select the terms “sailing” and “yacht” to represent the concept sailing. The UI
allows users to remove terms that they do not know, and therefore cannot judge by clicking
on the sign to the left of each terms. To select terms associated with a concept (not explicitly
stated), users should click on the terms.

In addition, the user can state that they do not find any of the terms to be related. We
randomize the order in which tags are shown to remove any bias due to position. Figure 4.10
shows an example from which users could select different sets of tags based on the concept
they infer. Internally, every assessment assigns a category (and value) to each tag in the
current set:

• Relevant (1): if the tag is relevant for the detected concept.
• Unknown (0) : if the user does not know the meaning of the tag.
• Not relevant (−1): if the tag is not relevant for the detected concept.

Sample: As we mentioned earlier, some of the resulting clusters contain over a hundred
tags, and the complete set of clusters produced by all algorithms is too large for human
evaluation. To mitigate this problem, we designed the following sampling method that we
applied to the results of all algorithms:

1. For each query we identify the subset of tags assigned to a cluster for each of the
algorithms (not all the tags are assigned to clusters). We refer to these tags as the seed
set for the query. In addition, we remove tags that have one character and those that
have non-ASCII encoded characters.

2. We randomly select 10 terms from the seed set and retrieve the community that they
belong to, according to each algorithm.
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3. For each community we show at most 10 tags for user evaluation. If the community
contains more than 10 elements, we first add the tags that appear in the seed set, and
then randomly select from the remaining tags until we reach a total of 10. With this
sampling approach, we ensure that we are evaluating similar topics for each algorithm.

In Table 4.4, we show some of the characteristics of the sample dataset that is evaluated
by users. In total, we are left with 660 communities (17.3% of all communities), of which
633 correspond to unique sets of tags (27 identical communities were identified by more than
one algorithm).

Method Count
Community Size

Max Min Avg S.Dev

AIC-edge 89 10 3 6.06 2.93
AIC-vertex 81 10 3 5.64 3.00

Eigenvec 66 10 4 9.67 1.27
Infomap 167 10 4 6.05 2.20
LblProp 39 10 4 9.33 1.69
MultiLvl 86 10 5 9.80 0.87
mSCAN 132 10 4 7.24 2.34

Table 4.4: Statistics about communities sampled for the user study across all 20 queries

Assessors: We recruited 40 students from two engineering schools in Santiago, Chile. Most
of the tags in our evaluation were in English; therefore, participants were required to have
at least an intermediate level of English (i.e., to normally read and understand news and
non-technical books in English). Evaluations were split into 3 sessions. We collected 3,165
evaluations, averaging 79.1 (±40.4) assessments per user, and 23.8 (±22.2) seconds per ques-
tion. We found that 50% of users knew the meaning of at least 90% of the tags in the
communities they evaluated, whereas all users knew the meaning of more than 67% of the
tags. Figure 4.11 shows the distribution of users versus the rate of terms (in the user study)
they knew.

4.3.4 Inter-assessors agreement

A key question is how consistently different users agree on which terms are related given
the same question but with the terms in a randomized order. We measure agreement with
Krippendorff’s alpha (α) [61] since, unlike other agreement metrics such as the more well-
known Fleiss’ kappa (κ) [33], Krippendorff’s α can be computed in cases where some responses
are blank (in our case, where users did not understand a term). We compute the coefficient
as

α = 1−
Do

De

where Do is the observed disagreement, and
De is the expected disagreement based on an interpretation of chance (see [61] for more
details).
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Figure 4.11: Distribution of rates of terms known with respect to rate of assessors. 50% of
assessors in our user study knew the meaning of at least 90% of the tags in the communities
they evaluated, whereas all users knew the meaning of more than 67% of the tags.

Tag Unkown Tag Unknown

xc3 29 petronas 13
bw 27 d300 13
wm 22 dundee 12
vlinder 21 wasser 12
nyclpc 20 ii 12
pupazzo 19 a38 11
abigfave 18 xaate 11
pferd 18 lca 11
lon 18 xa0 11
s 17 thed 10
hob 16 etsy 10
pecora 16 xa9 10
ca 16 ed 10
vitulina 16 d80 10
s5is 13 kl 10
d200 13 xb6we 10
t 13 350d 10
f 13

Table 4.5: List of tags marked as unknown 10 or more times.
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Figure 4.12: Krippendorf’s α values by size of sampled community shown to assessors. Sam-
ples with fewer terms have a higher variance of Krippendorf’s α values. Assessors’ agreement
is higher for concepts inferred from samples of 7 terms.

We show box-plots5 for Krippendorff’s α values distributed by size of communities in
Figure 4.12. We notice that for most community sizes the median value of α fall into the
range 0.2 < α ≤ 0.4. Agreement is poorer for communities of size 3, presumably because it
is more difficult for users to pick up a consistent “theme” with fewer terms. We noted that
the mean and median values of Krippendorff’s α do not vary significantly across different
methods.

In our user study, participants can indicate if they do not find at least two related terms.
In Table 4.6 we show the rate of clusters for which users find at least two related terms.
For comparison, we also provide the average size of communities from Figure 4.12, since the
probability that a user finds at least two related terms from a set of three is much lower
than from a set of ten, even if said terms were selected randomly. Thus, we see an expected
correlation between algorithms returning larger communities and having higher rates. We
list the most unknown terms in Table 4.5.

5The box-plots of this paper are Tukey box-plots where the solid line denotes median, the dashed line
denotes mean, box-edges denote quartiles, whiskers denote the lowest/highest observation with 1.5 IQR of
the box-edges, and other points denote outliers.
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Method Rate Avg Size

AIC-edge 0.79 6.06
AIC-vertex 0.79 5.64

Eigenvec 0.95 9.67
Infomap 0.69 6.05
LblProp 0.86 9.33
MultiLvl 0.92 9.80
mSCAN 0.84 7.24

Table 4.6: Rate of communities for which the majority of assessors found at least two related
terms

4.3.5 Majority-voting Precision

To compute the majority-voting precision of a set of terms T sampled from a community
relative to a single user assessment, we consider each term as: relevant (TR or 1: selected
as related), unknown (TU or 0: marked as not understood) and irrelevant (TI or −1: not
selected or no pair of related terms found). We then consider TR as true positives, TI as false
positives, and discard TU ; thus we compute the majority-voting precision as:

MV P (T ) =
#TR

#TI −#TU

When considering multiple assessors, we apply a majority voting for which terms are
relevant, unknown, or irrelevant. Majority-voting precision is calculated on the consensus
assessment.

Example 4.5. Let’s assume we have the following assessments from users u1 to u5 for a
set of tags T = {t1, . . . , t5}

t1 t2 t3 t4 t5

u1: 1 0 −1 −1 0
u2: 1 1 0 −1 0
u3: 1 0 0 −1 1
u4: 1 1 1 0 0
u5: 1 1 1 1 0

consensus: 1 1 1 −1 0

The majority-voting precision is MV P (T ) = 3
5−1

= 0.75.

In Figure 4.13 we show the precision values of all sampled communities for each algorithm.
For this figure, we consider all communities assessed in our user study. This means we include
communities with low agreement, and also communities for which users do not find a relevant
concept. We see that the proposed methods based on Adaptive Island Cuts (AIC-*) perform
better on average than those we compare against. Also, the maximum and minimum values
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Figure 4.13: Comparison of Majority-voting Precision for the methods considering all sampled
communities. AIC-* methods have a higher majority-voting precision than others. mSCAN

is the method with second highest majority-voting precision, but its variance is lower than
AIC-* methods. This means that communities detected using mSCAN are less likely to
include terms that assessors consider irrelevant for the detected concept.

of their quartiles are higher than the values returned by other methods. However, the mean
majority-voting precision of all methods is lower than 0.6, which implies that many of the
terms in the computed communities are noisy, regardless of the method employed.

Nevertheless, the majority-voting precision measure has some weaknesses. First, it does
not distinguish cases where three users found a term (ir)relevant vs. cases where five users
found a term (ir)relevant. Second, even if the terms selected as relevant by different users
overlap, they may still have different topics in mind; subsequently taking the consensus
assessment may then not make sense for any topic. Thus, we performed the same majority-
voting precision analysis, but only considering sets of terms with agreement (α > 0.4),
where we consider 263 (39.8%) of the 660 sampled communities. Figure 4.14 compares
the majority-voting precision values for all methods. We notice that after removing low-
agreement communities, mean and median majority-voting precision values tend to increase
and the quartiles shrink. However, the relative performance of methods tends to stay about
the same.
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Figure 4.14: Comparison of Majority-voting Precision for the methods considering only sam-
pled communities for which an agreement of α > 0.4 (fair agreement) was found. Our
proposed methods AIC-* have a higher majority-voting precision than others, and its vari-
ance is comparable to other methods. There is a fair agreement that at least 60% of the
terms included in the communities detected using AIC-* represent a concept.

4.3.6 Data-driven Recall

An algorithm that creates smaller communities will tend to have higher majority-voting pre-
cision, but will also tend to split related terms into different communities. Hence, majority-
voting precision only tells one side of the story: we must also consider recall. However,
measuring true recall appears complex in this setting. Instead we consider a relative recall
measure, where we take pairs of terms that users agree to be related and then, for each
algorithm, we check what ratio of these pairs appear in the same community (true positives)
versus the ratio of all such pairs (true positives and false negatives).

To identify pairs of related tags, given a user assessment for a set of tags T = {t1, . . . , tn},
we first use the following function:

rel(ti, tj) =







1 ti = 1 ∧ tj = 1
0 ti = 0 ∨ tj = 0 ∨ (ti = −1 ∧ tj = −1)
−1 otherwise

where:
1 indicates terms ti and tj are related,
0 indicates it cannot be determine if terms ti and tj are related or not, and
−1 indicates terms are not related.
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Example 4.6. Let us assume we have the following assessments from users u1 to u4 for a
set of tags T = {t1, . . . , t4}

t1 t2 t3 t4

u1: 1 0 −1 −1
u2: 1 1 0 −1
u3: 1 0 0 −1
u4: 1 1 1 0

The rel(•, •) values for all the combinations of tags in T are:

rel(t1, t2) rel(t1, t3) rel(t1, t4) rel(t2, t3) rel(t2, t4) rel(t3, t4)

u1: 0 1 −1 0 0 0
u2: 1 0 −1 0 −1 0
u3: 0 0 −1 0 0 0
u4: 1 1 0 1 0 0

consensus: 2 2 −3 1 −1 0

In this example, we show the relatedness between pairs of terms in a specific cluster.

We then take the sum of this rel(•, •) for all pairs across all user assessments for a specific
query and algorithm. To compute the relative recall of a particular algorithm and query, we
take the sum of all such pairs for all other algorithms and select those with a positive score
(> 0) as related pairs by consensus.6 We compute the relative recall for that algorithm and
query as the ratio of related pairs appearing in the same community vs. all such pairs.

One concern using related terms selected by consensus is again that users may have dif-
ferent topics in mind for why terms are related. To help mitigate this issue, we compute
relative recall on a per-query basis. We also compute a weighted version of relative recall
where we take the sum of the rel function for all positive pairs appearing in the same com-
munity, divided by the sum for all such pairs. This way, we give more weight in the recall
measure to pairs that were repeatedly considered related by different users for that query.
In the end, both the weighted and non-weighted results were very similar, hence we present
only the weighted results.

We present weighted relative recall for each algorithm across all queries as a box-plot in
Figure 4.15. Unsurprisingly we see that algorithms producing much larger average community
sizes (see Table 4.2) have much higher relative recall: LblProp (average community size
104.58), Eigenvec (81.91) and MultiLvl (68.17), have larger communities and higher
relative recall than AIC-edge (7.33), AIC-vertex (6.47), mSCAN (7.31), and Infomap

(6.54). On the other hand, amongst the four algorithms producing smaller communities, we
see that AIC-edge and AIC-vertex have better recall (and precision) than mSCAN or
Infomap.

6Unlike typical relative recall measures in IR, we do not include the pairs of the algorithm under test-
ing, since different algorithms may have different numbers of related pairs associated with them, and each
algorithm has a recall of 1 for its own pairs.
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Figure 4.15: Comparison of relative recall for the methods in our user study. Methods that
tend to return communities with bigger sizes (Eigenvec, LblProp, and MultiLvl) have
higher relative recall values than those that tend to return communities with smaller sizes
(Infomap, mSCAN, and AIC-*). Proposed methods AIC-* have higher relative recall than
other methods that return communities of similar characteristics.

4.3.7 Ontology-based Cohesion

For the automatic evaluation, our goal is to measure how semantically close the terms included
in each clusters are. To achieve our goal, we define cohesion as our main metric. Cohesion
is the average similarity between pairs of different terms in a set. More formally,

cohesionS =

∑

ti∈S (avgtj∈S,ti 6=tj sim(ti, tj))

nS

where: S is the set of terms, ti is a term in the set, nS is the size of the set.

For our ontology-based cohesion, we measure how similar two terms are using the Wu-
Palmer Similarity [125]. Specifically, we employ the implementation of Wu-Palmer Similarity
in WordNet. We choose this metric because it is corpus-independent, which means that we
do not require to train the similarity measure using a specific corpus. Furthermore, the
WordNet implementation of Wu-Palmer allows comparing synsets7 from different part-of-
speech8. Wu-Palmer similarity value is normalized by definition, which makes it easy to
compare and aggregate similarity values between different pairs of terms. The Wu-Palmer
similarity calculates relatedness by considering the depths of the two synsets in the WordNet
taxonomies, along with the depth of the LCS (Least Common Subsumer). Given two synsets
si and sj, the Wu-Palmer similarity is computed:

Wu-Palmer(si, sj) =
2 ∗ depth(lcssi,sj)

depth(si) + depth(sj)

7Set of synonyms of a given term.
8A category to which a word is assigned in accordance with its syntactic functions. The parts-of-speech

recognized by WordNet are noun, adjective, verb, adverb.
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Cohesion

High Low

Coverage
High (animal, gull, mammal, nature,

seal)
(britain, england, thames, uk)
(backpacking, countryside, dis-
trict, walking)

(airway, american, international,
taxiing)
(all, reserved, rights, xa9)
(brown, canon, canonpowershot,
scary)

Low (awesomeshot, animal, flickrdia-
mond, superplus, wildlife)
(busch, buschgardens, gardens,
tampa)
(747, aeroplane, flight, flughafen,
flugzeug)

(cambridge, platinumaward, su-
peraplus, walking)
(aula, luz, shadow, spain, ven-
tana)(california, diego, san)

Table 4.7: Example of communities with different degree of coverage and cohesion according
to WordNet. Communities with high coverage are the ones for which more than 50% of terms
are recognized by WordNet. Similarly, cohesion values above 0.5 are considered high.

This means that 0 < Wu-Palmer <= 1. The Wu-Palmer similarity can never be zero
because the depth of the LCS is never zero (the depth of the root of a taxonomy is one). The
Wu-Palmer similarity is one if the two input concepts are the same.

The simWordNet is the similarity measure apply on the cohesion equation we defined above.
The similarity measure based on WordNet aims to maximize the similarity with respect to
the synsets associated with two given terms.

simWordNet(ti, tj) = max
si∈ti,sj∈tj

Wu-Palmer(si, sj)

Vocabulary Coverage: Since the terms in our set are originally annotations from an online

social network, we measure the coverage of WordNet dictionary over the vocabulary of the
clusters we detect using the algorithms we list in Section 4.3.2. We define coverage as
follows,

coverageS =

∑

ti∈S f indWordNet(ti)

nS

where f indWordNet(ti) returns 1 iff ti ∈ WordNet, else returns 0.

Table 4.7 shows examples of communities that have high or low coverage. From these
examples we notice that WordNet does not contain terms specific to the Flickr community,
such as ’flickrdiamond’, and ’wesomeshot’. Also, there are sets of terms that human assessors
could identify easily as related, but WordNet taxonomy does not recognize because those sets
include multi-term entity names, such as (’california’, ’diego’, ’san’) which refers to the city
“San Diego, California”.

Correlation between automatic evaluation and user study: Figure 4.17 shows that
there is no correlation between the metric proposed for assessing the quality of clusters
of terms based on user opinion, and the attempt of automatic assessment performed using
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Figure 4.16: WordNet Cohesion vs. WordNet Coverage. There is a low positive correlation
between cohesion and coverage values. The majority of communities have a coverage higher
or equal than 0.7, and a cohesion between 0.5 and 0.8.

WordNet similarity metrics. WordNet offers different similarity metrics, from which we chose
the corpus-independent metric Wu-Palmer. We opted to analyze only the results returned
using this metric because all corpus-independent metrics follow similar strategies to compute
similarity between terms. From our initial inspection on WordNet results, we noticed that
it does not provide a full coverage of the terms. WordNet coverage is lower than the rate of
terms assessors recognized in the user study. The same experimental setup with a different
source of information would lead to a higher WordNet coverage, which would give more
confidence on the similarity values obtained using this resource.

We infer the lack of correlation as a result of the different nature of the metrics employed
in both scenarios, and the source of information. In the user study, assessors represent a
knowledge base able to effectively identify polysemic terms and to pick the meaning of a
term that fits better the current topic. On the other side, WordNet vocabulary is fixed and
the list of meanings is bounded to a standard dictionary which does not include slang. Also,
many tags are proper nouns, which WordNet does not cover either. Hence, designing an
automatic assessment on the cohesion of terms that comprise a concept is not a trivial task.
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Figure 4.17: Correlation between WordNet Cohesion and Majority-voting Precision. There
is no correlation between the Majority-voting Precision computed based on user opinion, and
the cohesion values computed using Wu-Palmer implementation in WordNet.

4.3.8 Correlation between User Opinion and Tag Graph

We employ the Spearman’s ρ correlation metric to determine if a correlation exists between
the co-occurrence of terms in the search results, the structural similarity of their neigh-
borhoods based on the Tag Graph structure, and the opinion of users obtained from the
user study. Table 4.8 shows the correlation values between user opinions, and the Tag Graph
structure. Results show that user opinion with respect to pairs of terms is not correlated with
the co-occurrence of terms (ρ = 0.131, p-value < 0.001), nor with the structural similarity
(ρ = 0.135, p-value < 0.001). Low correlation between user opinion and term co-occurrence
is due to computing user opinion requiring that we aggregate opinions for and against the
topical relationship between terms, while term co-occurrence only considers explicit positive
opinions. Besides we found that structural similarity and co-occurrence values are highly
correlated (ρ = 0.966, p-value < 0.001).

74



Spearman’s ρ*

User Opinion ∼ Co-occurrence = 0.131
User Opinion ∼ Str. Similarity = 0.135
User Opinion ∼ Co-occurrence (Prob.) = 0.146
User Opinion ∼ Str. Similarity (Prob.) = 0.144
Co-occurrence ∼ Str. Similarity = 0.966

* p-value< 1e−6

Table 4.8: Spearman’s rho correlation values between users’ opinions and Tag Graph prop-
erties value. Co-occurrence values and structural similarity are highly correlated because
structural similarity values are computed based on co-occurrence. Low correlation between
user opinion and metrics from the Tag Graph is because user opinion is obtained by ag-
gregating positive and negative opinions (by majority-voting), while the other metrics only
consider positive opinions.

.

4.3.9 Discussion

One of the benefits of community detection algorithms is that one need not provide a number
of expected clusters a priori. However, without this fixed criterion, different algorithms
can produce very different results; particularly, we found two well-distinguished types of
algorithm: three algorithms that produced large communities (avg. size > 68), and four
algorithms that produced small communities (avg. size < 8), including the two we propose.
From our user study, we found that evaluators had mixed agreement on which tags were
related in the provided set. Looking at first at all assessments, and then only to those
with agreement (α > 0.4), in both cases the two methods we propose had the highest mean
precision. Considering relative recall, our methods were beaten by those producing large
communities, but our methods outperformed the other two that produce equivalently-sized
communities.

In this sense, our results show that for the twenty queries considered, our methods out-
perform mSCAN and Infomap for grouping terms that users consider related into the same
communities, both in terms of precision and recall. However, the comparison with large-
community methods is inclusive; our methods are better in precision but much worse in
recall. Thus, the question of which is better depends on the relative importance of precision
vs. recall for the application in mind. We do note, however, that the LblProp method has
a small cost in precision relative to our methods when considering its gain in recall. When
comparing our two proposed methods based on edge-islands and vertex-islands, the latter
has a slight edge in precision, but a slight cost in recall. Nonetheless, overall results are
quite similar, with the single exception that our current edge-island implementation incurs a
significantly higher runtime cost than that of vertex-islands.
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4.4 Conclusions

The work presented in this chapter is motivated by the goal of producing a topical clustering of
multimedia resources based on tags. We focus on community detection techniques, since there
is a variety of established methods proposed in the literature, and they have the significant
benefit of not requiring a fixed number of clusters to be provided beforehand. However,
without this fixed criterion, different algorithms can produce very different results. We found
two well-distinguished types of algorithm: three algorithms that produced large communities
(avg. size > 68), and four algorithms that produced small communities (avg. size < 8)
including the two we propose.

One major obstacle faced in this work was deciding on appropriate methods for evaluation.
Our user evaluation was a costly process in terms of manual effort performed by human
assessors. Our evaluation methodology limits the variety of algorithms, configurations, and
datasets, which can be considered for assessment. On the other hand, it is not clear how a
gold standard for tag clusters could be created a priori, particularly when users may often
disagree on the relatedness of sets of terms, as we have seen from the results herein. From
our user study, we found that assessors had mixed agreement on which tags were related in
the presented set.

Query-dependent annotation clustering has some unique benefits: it is applied on smaller
graphs, and since it can be applied client-side, it could reduce server load, and could even be
used to aggregate results from multiple servers. Also, by only clustering resources relevant
to a specific topic, it is possible that the quality of clusters is improved with respect to that
topic, given that polysemous tags are more likely be used in the sense captured by the query.

There are still some open questions about which resolution of community detection is
the most desirable for clustering multimedia resources. Our results are still inconclusive as
to which community size is more useful when clustering search results themselves– whether
smaller communities with better precision, or larger communities with better recall. Also,
when considering online clustering, an important consideration is the number of results re-
turned by the search engine.

Our next major step is to use the results of our tag-clustering methods to investigate
clustering on the level of resources, asking users to evaluate the topic relatedness of image
clusters or video clusters rather than the tags with which they are annotated. We also plan to
investigate the effectiveness of community detection techniques for identifying topics in other
datasets with tagged multimedia search results. As for our current research, we make datasets
and evaluations, available for download at: http://dcc.uchile.cl/ tbracamo/communities/.
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Chapter 5

Automatic Tagging of Multimedia

Resources

Searching multimedia resources using query-by-keywords is one of the most common tasks
users perform on the Web. Although the nature of a query and the content being searched
are not directly comparable, users still see query-by-keyword as a natural way to express
their information needs. In recent years, search engines have significantly improved the
accuracy of retrieved results for multimedia searches, driven by state-of-the-art classification
algorithms that reduce the search problem to a labeling approach. This boost in the accuracy
of results is also supported by the fact that current search engines count on more data to train
better models. Nevertheless, many state-of-the-art algorithms still fail on returning relevant
multimedia results for queries that represent complex ideas, as well as novel concepts.

To address this problem, in this thesis we focus on the automatic labeling problem that
supports multimedia search. Traditionally, algorithms that automatically label items rely on
a curated training dataset. Nevertheless, most public datasets only cover a small subset of the
concepts found on the Web. Hence, we propose a framework that leverages user-generated
data (a.k.a. context data) as well as audio-visual features of multimedia content, in order to
build datasets with high quality that are not restricted to predefined concepts. Specifically,
we propose using a graph representation to model content similarity and semantic relation-
ships that exist among multimedia resources found on the Web. Our representation aims to
combine seemingly unrelated metrics into a unique graph structure, to support a framework
for the automatic tagging of multimedia resources based on information propagation.

The main features of our framework are:

– Multimedia-type independence: We do not employ specific content-based features
in the graph construction process. Our model could potentially use a single feature,
or combine multiple audio-visual features to represent relationship between multimedia
resources.

– Language independence: Our framework does not require any training data, and it
is not fixed to language nor domain.
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Figure 5.1: Framework for automatic tagging:: Given a set of queries and their clicked images
from a search engine log, a Visual-Semantic graph is built, and a tag propagation algorithm
is applied over it. Each query is assigned to multiple images based on their audio-visual
similarity with respect to the originally clicked images.

– Multilabel assignment: Our framework is able to assign more than one label to the
same multimedia resource. Furthermore, these labels might be complete descriptions
on natural language, instead of sets of one-term labels.

5.1 Framework for Automatic Multimedia Tagging

In this section we describe the framework we propose to perform automatic multimedia
tagging based on information propagation over a graph structure. First, we introduce the
general framework, pointing out the input and output of each step. In subsequent sections,
we describe in detail each step of the framework.

5.1.1 Overview

We introduce a framework to automatically label multimedia resources that have already
been indexed by a search engine. Our proposal is motivated by the idea of enhancing search
engine results by leveraging user-generated content (UGC), such as click-through data. In
Figure 5.1 we show the proposed framework, which consists of the following stages:

1. Selection and gathering of multimedia+UGC source: Our starting point is
multimedia data that has had some user interaction. For example, videos posted on
multimedia sharing platforms and tagged by their publishers, or images indexed by
search engines with some associated searches.

2. Construction of the Visual-Semantic graph: The Visual-Semantic graph is the
key structure over which our framework works. Given a finite set of multimedia re-
sources R, where each resource is represented by an audio-visual feature signature, and
a set of labels, the Visual-Semantic graph is the union of the graph that represents
the visual similarity between the resources, and the graph that represents the semantic
relationship between labels and resources.
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3. Automatic Tagging Algorithm: We employ an information propagation approach
to broadcast labels initially associated with some multimedia resources towards new re-
sources that are visually similar. Under this approach, we do not need additional infor-
mation to the one represented on the Visual-Semantic graph. Given that initial runs on
propagating information show noise propagation (i.e., irrelevant labels are propagated
through the graph), we propose a boosting heuristic that exploits the Visual-Semantic
graph structure in order to reduce the effect of what we call “stop images”.

4. Multimedia description using tags: Ideally, it would not be necessary to apply
any additional process to the output of the automatic tagging algorithm. However,
the labels propagated might contain redundant information, which should be filtered
before re-indexing the results in the search engines.

5.1.2 Visual-Semantic graph

The Visual-Semantic graph is built upon two main components: (1) a visual similarity graph,
which represents the relationship between images based on visual descriptors; and (2) a se-
mantic similarity graph, which depicts the relationship between images and candidate anno-
tations. In our specific case, we use click-through data to define this relationship.

Visual Similarity Graph: The visual similarity graph represents content-based similarity
relationships in a collection of images. Each image is represented using a visual descrip-
tor, and the similarity between images is computed using a measure δ. In this graph,
the nodes and edges represent the images and their similarity, respectively. The weight
of the edges is high if the images connected are similar. To normalize the distance
between images for a given descriptor, we compute its associated maximum distance
M (the largest distance between two images using that descriptor). Also, we define a
threshold value τ that indicates which images must be connected.

Finally, we define the visual similarity graph Gν = (I, E), where I is the set of images
and E is the set of edges of Gν . An edge (i, j) ∈ E is defined if δ(i, j) ≤ τ . To each
edge (u, v), we associate a weight w(i, j) = δ(i, j) that represents the content-based
similarity between both images. For our study, we compute the descriptors listed in
Table 5.1.2, but our approach is not limited to them.

Semantic Similarity Graph: We define the semantic similarity graph as an undirected
bipartite graph that represents semantic-based similarity relationships between a col-
lection of term-sets (sets of words) and a collection of images. The nodes in this graph
represent two types of objects: term-sets and images. The edges in this graph connect
term-sets with images that have a semantic relationship with them. Each edge has
a weight associated to it which is a measure of the relevance of the term-set to the
connected image.

For this work in particular, we consider the click graph as our semantic similarity
graph. The click graph is a bipartite graph of queries and images which denotes user
searching behavior extracted from a search engine query log. Therefore, in our bipartite
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Visual
Descriptor

Description
Size

(bytes)
Similarity
Measure

Edge Histogram
(EHD) [75]

It represents the spatial
distribution of the
direction of the edges.

80
Manhattan
(L1)

Color Histogram
(HSV) [75]

It quantifies the HSV
(Hue-Saturation-Value)
color space.

256
Manhattan
(L1)

Ordinal Measure
(OMD) [11]

It represents the order of
the average intensities in
descending order.

81
Hamming
(H)

Table 5.1: Descriptors employed to represent images in the Visual Similarity Graph.

Figure 5.2: Visual-Semantic graph [16]: The edges between queries and images are added
based on aggregated data from query logs, and edges between images are added based on
their visual similarity.

semantic graph structure, search engine queries are the term-set type nodes and the
images clicked by users are the image type nodes. Edges in this graph connect queries
to the images selected by users in their searches. The weight of an edge corresponds
to the number of clicks that an image registers in a specific period of time for a given
query.

It should be noted that other types of user generated annotations of images can be used
to generate a semantic similarity graph; for example, terms in metadata, such as user
tags. Our selection of the click graph in this case is related to two characteristics which
make it appropriate: 1) It gives a measure of relevance of term-sets to images, which
is the click frequency, 2) it conveys user-relevance feedback, i.e. users select (click) on
images which match their information need.

The Visual-Semantic graph We define the Visual-Semantic graph Gν,S as the union of
the visual similarity graph and the semantic graph. There is an undirected weighted
edge between two images i1 and i2 of weight w(i1, i2) if both images are similar according
to the visual similarity graph. There is an undirected weighted edge between a term-
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set t and an image i if there is a user defined semantic relationship between q and
i. The weight of this edge is given by w(t, i). In Figure 5.2, we show an example of
Visual-Semantic graph.

For simplicity, in this work we have only considered images that register at least one
click in the query log. Additionally, for computational complexity reasons, we only
consider a random partial cover of the visual similarity graph. We also consider three
image descriptors, so in fact we obtain three different similarity graphs. To combine
these graphs, we perform a union between each similarity graph and the click graph,
achieving three possible unified graphs. This combination will be explained with more
detail in our experimental evaluation.

5.2 Characterizing Visual Information Needs

In this section we focus on the potential of the Visual-Semantic graph to address the problem
of understanding user visual information needs. We also describe the importance of including
the analysis of visual information needs in order to diversify the test cases in the evaluation
process.

We define a User Visual Information Need as a user requirement to obtain visual infor-
mation, which is biased by a main physical attribute such as color, texture or shape, or a
combination of them. Thus, it is possible to establish a relationship between computational
representations of objects selected as relevant, for visual information needs extremely linked
to physical attributes. In addition, it is possible to determine whether a request is associated
to a visual information need.

We introduce the notion of visual information need in the Visual-Semantic graph structure,
based on the distribution of connected components comprised by queries and images. We
analyze the distribution of query terms and the neighborhood of images inside each connected
component. Intuitively, we establish 4 different categories of queries and images:

Queries with narrow visual information need: Queries related to a set of images with
strong visual similarity that belong to the same neighborhood1 in the Visual-Semantic
graph.

Queries with wide visual information need: Queries related to sets of images that be-
long to different neighborhoods in the Visual-Semantic graph.

Images with accurate textual description: Images related to queries for which neigh-
boring images were also clicked.

Images with loose textual description: Images related to queries for which no neigh-
boring images were clicked.

1Connected components are referred to as neighborhoods.
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Figure 5.3: Visual-Semantic graph image nodes ranked by connections (edges). The image
nodes ranked by amount of edges follow Zipf’s law. We infer that nodes with a high number
of edges have a behavior similar to that of “stop-images”, so we define them as “stop-images”.

5.3 Propagating Tags on the Visual-Semantic graph

In this section we describe how to employ the Visual-Semantic graph structure to propagate
the semantics of the queries to the images. We use a scheme based on information propagation
to automatically tag unlabeled images. We work under the assumption that the queries and
their corresponding clicked images are highly related. Thus, we have a strong semantic
relationship between a textual description (query) and an image. Note that the relationship
between images is not as reliable as the relationship between queries and clicked images.

To tag images, we propagate queries through the Visual-Semantic graph by following
a breadth-first traversal. In our scheme, we assume that each query node q is a source of
energy ξ which is propagated to image nodes i. We state that at each step of the breadth-first
traversal the query q loses an amount of energy. Also, the new energy value is proportional
to the weight of the edge that connects the nodes that are traversed. We provide more details
of this process in the following sections.

5.3.1 Stop-images

In a previous study [16], we show that every visual descriptor has a Zipf-like distribution of
connections between images that appear in the Visual-Semantic graph. Indeed, we define
stop-images as images within large image neighborhoods. The main characteristic of stop-
images is that, similar to stop-words, they do not carry any relevant semantics. Structurally,
we can identify stop-images by filtering image nodes with a number of connections higher
than a given threshold. We consider that stop-images are likely to propagate noisy tags,
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Figure 5.4: Graph pre-processing: (a) original edges, (b) re-weighted edges. Original edge
weights are result of stochastic normalization, while re-weighted edges of a node are normal-
ized with respect to the node highest edge weight.

and are in fact the biggest problem in our propagation scheme. Figure 5.3 shows the ranked
number of edges in a Visual-Semantic graph. As we can see, there is a huge difference between
the number of connection from images in the first 10% and images in the last 10% of the
curve.

5.3.2 Weighting schema and pruning indicators

Since the original weight of a nodes’ output edges is stochastic-normalized [86], there is an
inversely proportional relationship between the maximum weight of the output edges of a
node, and the number of output edges of a node. We re-weight the edges of the graph in
order to reduce the effect of edge weight minimization in nodes with many connections.

Let wi,j and w′
i,j be the original and new weight, respectively, of the edge that connects

nodes i and j. w′
i,j is inversely proportional to the max value of all output edges of node i

(wi,k), and proportional to the sum of all the output edges of node i. Formally, each node’s
output edge is normalized using:

w′
i,j =

wi,j ·
∑

wi,k

max wi,k

This equation maintains the idea that the edges’ weights are probabilities and it adds weight
independence to edges. Weight independence is required to propagate tags uniformly. Fig-
ure 5.4 shows the application of our re-weighting scheme. Once we have re-weighted the
Visual-Semantic graph, we perform our method.

Since our approach focuses on providing an approximation to the automatic tagging prob-
lem, in our algorithm we define two pruning variables which allow us to filter edges which
do not contribute to a good tag assignment.

Edge probability threshold(α): This variable allows to determine the number of nodes
connected to a current node that are suitable for the next propagation level. A low
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value is not recommended for this variable, to avoid propagating tags between images
with low similarity. Since the Visual-Semantic graph’s edges represent the normalized
jumping probability from one node to another, this probability does not reflect an
accurate similarity metric. We cannot assure that a higher probability implies higher
similarity, but a higher similarity metric can assure higher probability.

Tagging energy threshold(ε): The Visual-Semantic graph contains cycles so that a stop
condition is necessary to finish the breadth-first traversal our algorithm requires. This
variable represents the minimum energy value required to propagate a tag from the cur-
rent node to its descendants. The value of ε is inversely proportional to the propagation
path length. Therefore, lower values of ε imply longer paths.

To reduce the noise generated by the propagation of tags through stop-images, we propose
a weighting scheme based on two aspects: (1) the likelihood of two nodes representing the
same semantics, and (2) the similarity of two nodes based on their neighborhoods. For the
first aspect, we denormalize the stochastic weight between two nodes, so the probabilities do
not decrease while the number of neighbors of a node increases. For the second aspect, we
use the structure similarity [83] to measure the percentage of neighbors shared by two nodes.
We combine these assumptions in the following equation:

ψi,j =
ωi,j

max ωi,k

∗
|nv(i) ∩ nv(j)|

√

|nv(i)| ∗ |nv(j)|

where:
ωi,j and ψi,j are the original and new weight of the edge that connects nodes i and j;
maxωi,k is the maximum value of all output edges of node i;
nv(x) = n(x) ∪ x; and n(x) is the set of neighbors of x.

In Figure 5.5-5.7, we show the distribution of the mean weight according to the degree of
nodes. We notice that for the HSV (Figure 5.6) and OMD (Figure 5.7) descriptors there is
a crosspoint between the curves of the original weight and the new weight. We define the
crosspoint value as the maximum degree for nodes with information suitable to be propagated
(i.e. not stop-images). We observe that the structural similarity influences the weight of the
edges, by increasing the value of nodes with similar neighbors and penalizing the weight of
edges from potential stop-images.

5.3.3 Bounded propagation of tags

Once we have re-weighted the Visual-Semantic graph, we execute our proposed method,
which consists on traversing the graph. This traversal process starts at each query and is
independent of other queries’ traversal processes. Our method can be easily parallelized
since the propagation of every query is independent. For each query q, we propagate it to
its connected images i, passing as much energy as the edge’s weight. Let, tq,i be the energy
of tag q with respect to an image i, then the first propagation step consists of:

tq,i = w′
q,i
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Figure 5.5: Weight comparison for EHD descriptor. The dash curve on the bottom represents
the original edge weights for the Visual-Semantic graph that uses EHD. The dash curve on
the top represents the structural similarity between image nodes. The line in the middle
represents the final weights of the edges connecting images that result from multiplying the
original weight and the structural similarity.

Then, we propagate the tag q associated to an image j to all its neighbors i. We choose
only the neighbors that fulfill the edge connectivity threshold (α). If there are nodes that
have been already tagged with q, we keep the one with the maximum value. Formally, each
image i is tagged with q using the following expression:

tq,i = max(tq,j · w
′
j,i, tq,i

We repeat this propagation scheme following a breadth-first traversal until the energy of
the tag associated to an image does not reach the tagging energy threshold (ε). The variables
α and ε are employed to prune the graph’s traversal path. Figure 5.8 shows the propagation
process performed by our algorithm. Tags marked with LS are discarded because they have
already been assigned to the target images with an energy value higher than the one in the
current propagation step. Additionally, tags marked with LW are not propagated a step
further, because their energy value is lower than the threshold ε.
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Figure 5.6: Weight comparison for HSV descriptor. The dash curve on the bottom represents
the original edge weights for the Visual-Semantic graph that uses HSV. The dash curve on
the top represents the structural similarity between image nodes. The line in the middle
represents the final weights of the edges connecting images that result from multiplying the
original weight and the structural similarity. The cross-point between the curves of the
original and the normalized weights represents the threshold number of edges from which an
image is considered a “stop-image” for the HSV descriptor.

5.4 Experiments

In this section we describe the exploratory analysis performed to determine whether the ini-
tial algorithm proposed to propagate tags and the respective pruning variables had an actual
impact on the quality of the information propagated with respect to a naïve approach based
on breadth-first traversal. The goal of our initial exploratory analysis is assessing the descrip-
tiveness of the tags generated by our algorithm against a baseline approach. Specifically, we
aim to measure the precision2 of the queries automatically assigned to multimedia resources.

5.4.1 Dataset

To assess the performance of our proposed solution inspired by the Visual-Semantic graph,
we use the following dataset:

2We define Precision as the rate of relevant queries over the total amount of queries associated with an
image.
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Figure 5.7: Weight comparison for OMD descriptor. The dash curve on the bottom represents
the original edge weights for the Visual-Semantic graph that uses OMD. The dash curve on
the top represents the structural similarity between image nodes. The line in the middle
represents the final weights of the edges connecting images that result from multiplying the
original weight and the structural similarity. The cross-point between the curves of the
original and the normalized weights represents the threshold number of edges from which an
image is considered a “stop-image” for the OMD descriptor.

• Yahoo! Image Search query log: This collection contains a two-weeks period of activity,
from March 1st 2010 to March 13 2010. In addition, each week contains approximately
7 million unique clicked images (images clicked in at least one session) and 11.2 million
unique-session clicks on images. For further details on the original collection we refer
to Poblete et al. [86].

We compute the number of connected components and the bucket sets in order to under-
stand how the queries and images distribute along our graph structure. In Table 5.2, we show
the total number of connected components of the Visual-Semantic graph and its sub-graphs
(OMD graph and ClickGraph). We also show the total number of non-trivial components
for each part of the graph. In the visual graph, a trivial connected component has only one
element (image). And in the semantic and Visual-Semantic graphs, a trivial component has
only two elements (one image and one query).
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Figure 5.8: Automatic tag propagation on the Visual-Semantic graph: The image on the left
shows the result of the first step, in which queries are passed to their corresponding clicked
images. The image on the right shows the second step, in which the energy maximization,
and energy threshold (ε) validations are applied (LS: propagated tag does not maximize energy
for target image, LW: energy value of propagation is lower than the energy threshold). Edges with
a weight lower than the edge probability threshold (α) are dismissed.

Graph
Connected Components

Total Non-Trivial
Semantic Graph (ClickGraph) 1,994,335 660,028
Visual Graph with EHD 7,097,172 3,364
Visual Graph with HSV 7,018,763 13,710
Visual Graph with OMD 6,926,696 35,237
Visual-Semantic graph (EHD+ClickGraph) 1,979,629 652,731
Visual-Semantic graph (HSV+ClickGraph) 1,926,628 625,622
Visual-Semantic graph (OMD+ClickGraph) 1,866,981 598,779

Table 5.2: Number of connected components in the Visual-Semantic graphs and the inde-
pendent Visual graphs, and Semantic graph. The number of connected component decreases
after filtering out trivial components, which correspond to graphs with number of nodes less
than 3. The ratio between trivial and non-trivial components in Visual graphs gives an
insight of the sparseness of such graphs.

5.4.2 Sample selection

Manual validation consisted in: (1) extracting a sub-graph from the Visual-Semantic graph,
(2) applying our algorithm over some queries of this graph, and (3) evaluating the main
outcomes in the case of study.

First, we select an image from the dataset as a seed and extract the queries directly related
to the image. Then, we extract the images connected to the seed and also extract the queries
related to these images. Based on visual similarity, we extend the maximum path length
between neighbors to up to three nodes. In order to select a seed that allows a representative
case of study, we randomly select an image connected with up to other five images. Our goal
is to extract and assess the annotations from a cluster of content-related images.

88



We choose a subset of queries from the extracted sub-graph. We select content-related
and content-unrelated queries with respect to the content of the seed image. We perform our
propagation algorithm using these queries as starting points. We aim at testing the efficiency
of our pruning criteria and the soundness of the propagated tags.

5.4.3 Automatic Tagging Exploratory Analysis

Table 5.3 summarizes the Precision values obtained when evaluating the accuracy of the tags
associated to a sample of images, after executing our algorithm and the naïve approach. First,
we notice that the pruning variables have an immediate effect improving the Precision of the
tags assigned. Also, we notice that as the values assigned to the pruning variables increase,
the effect of these variables in the Precision measure decreases. The maximum Precision
value our approach achieves is about 0.8. Even increasing the pruning of the propagation of
tags set we do not improve the Precision.

We notice that increasing α improves Precision quicker than increasing ε. However, ε
provides good improvements when the value of α is small. As a matter of fact, these pruning
variables represent a suitable complement for effectively propagating tags in a graph struc-
ture. In our propagation algorithm, α controls the width of the spanning tree resulting from
the breadth-first traversal, and ε controls the depth of the propagation paths.

Variables ε = 0.125 ε = 0.1875 ε = 0.25
α = 0.25 0.398 0.415 0.488
α = 0.375 0.526 0.717 0.810
α = 0.5 0.730 0.798 0.799
Baseline 0.357

Table 5.3: Precision values of the baseline algorithm vs. our propagation algorithm with
different combination of values for variables α and ε. The highest Precision value correspond
to α = 0.375 and ε = 0.25. Increasing α improves Precision quicker than increasing ε. The
baseline algorithm consists on a 3-step breadth-first propagation.

5.5 Conclusions

The framework described in this chapter is motivated by the goal of providing long natural-
language descriptions to multimedia resources. Our framework is flexible enough to support
annotations on different multimedia data types, as well as using different sources for mul-
timedia context data. We specifically develop the use case of using queries to tag images
found on the Web. We use click-through data from query logs as a knowledge repository for
describing the relationship between descriptions and images.

In addition to our framework, we introduce an automatic tagging algorithm based on
tag propagation over the Visual-Semantic graph. Our method considers that queries from
query logs are good candidate annotations for the images that users clicked for such queries.
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The propagation scheme starts on the semantic section of the Visual-Semantic graph, and
propagates queries to the visual section based on visual similarity. We perform an initial ex-
ploratory analysis to determine the impact of the pruning criteria applied on our propagation
scheme.

We conclude that the use of good pruning criteria improves the quality of the results.
Therefore, the values of α and ε are important for the efficiency of our algorithm. We propose
a re-weighting scheme that simplifies the generalization of the variable values, depending
on the visual similarity measure used to build the graph. We believe that the Precision
values obtained can be improved by using a combination of visual descriptors to determine
edges between images, as opposed to only one descriptor. Additionally, the combination of
descriptors could contribute to smoothing the long tail distribution we found in the number
of image edges.

As a result of the analysis of query logs and their conversion to Visual-Semantic graphs, we
found that queries and images connect to each other following different trends based on the
specificity of their semantics. For example, queries with broad semantics pointing to abstract
ideas are prone to be related to images that are not visually similar, and hence disconnected
in the Visual-Semantic graph. On the other side, very specific queries tend to be related
to neighboring images in the Visual-Semantic graph. An open question around this topic is
how to use the graph structure to automatically determine which class of semantics (broad
or specific) are carried by queries and images.

One of the main challenges to properly assess our proposed algorithm for propagating
context data on the Visual-Semantic graph is determining the optimal configuration setup
of pruning variables, as well as a suitable visual descriptor. Currently, the descriptor with
better performance is OMD, which is a global descriptor that has been mainly used to detect
near duplicates. Nevertheless, we have not explored the potential of local descriptors to build
the visual part of the graph. We believe that despite the higher cost of computation, local
descriptors are a good option, given that the Visual-Semantic graph is meant to be built
off-line.

Besides determining the optimal configuration for our algorithm, another main challenge
is assessing the performance of our proposal with respect to other approaches that also
address the problem of generating long descriptions for multimedia resources (similar to
dense annotations). For the assessment procedure, it is important to design a methodology
that includes user opinion, as well as selecting a diverse set of images and queries (with
different levels of specificity). Thus, the methodology would allow to compare approaches
under different scenarios and also determine which approach would be better in each case.

The next major step to advance in our research is to design a human-centered assessment,
and to investigate state-of-the-art approaches for generating dense annotations in order to de-
sign a methodology that supports assessments of large collections using only a representative
sample. Furthermore, we plan to analyze other datasets to determine common behaviors be-
tween multimedia content and context data that can be exploited to improve the generation
of long descriptions for multimedia resources.
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Chapter 6

Conclusions and Future Work

In this PhD. thesis we address two important aspects related to the challenge of retrieving
multimedia documents on the Web. First, we propose a framework to detect concepts asso-
ciated to multimedia-related queries based on community detection techniques. Second, we
propose a framework to combine content and context data to automatically tag multimedia
resources using a graph-based structure. We only assess the frameworks using images. In
addition to the main goal, we designed and deployed a user study that allows us to assess the
quality of concepts obtained from the first framework application.

This section provides a discussion of the main results obtained in this thesis work. In
addition, we detail the limitations of the proposed solutions, pointing out the impact of each
limitation on our research. Possible ways to overcome these limitations are described in
future work.

6.1 Main Results

As we stated early on this document, this thesis is focused on achieving two main goals and
a secondary goal, which we managed to accomplish in the following fashion:

• Goal 1: Identify concepts in multimedia search results (Chapter 4)

We leveraged manually-generated annotations to discover concepts derived from a spe-
cific query, by proposing a framework that takes a set of multimedia resourcesM with
some context data, in order to build a graph of co-occurrences of terms (a.k.a. Tag
Graph). This framework then mines the structure of the Tag Graph to get a set of
groups of terms C that represents the concepts derived fromM, in which each concept
c is represented by a set of terms extracted from the context data.

The main advantage of our framework is its flexibility, because it is language and
multimedia type independent. Furthermore, it exploits the idea of islands [133] as a
community detection algorithm, which is a completely different approach to those found
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on the state-of-the-art. Using islands as a basis also provides flexibility with respect to
the metric employed to describe the relevance of each vertex or edge in the Tag Graph.

We demonstrate that by using our framework, it is possible to extract ad-hoc topics
for search results using community detection. In particular, our proposed island-based
methods produce more compact and less noisy clusters, as well as a lower relative recall
when compared to methods that produce much larger clusters. Nonetheless, when we
compared against methods of similar clustering resolution, our approach yielded the
highest recall.

Therefore, our proposal is able to effectively find coherent groups of terms that describe
different topics related to a given query. Although our assessment includes only an-
notated images, our methodology for processing data and assessing the results can be
applied to other multimedia types, as well as other sources of contextual data.

Unlike several state-of-the-art approaches oriented to detect relevant concepts in multi-
media resources, our framework does not require knowing the full multimedia collection,
since we do not perform any pre-computation over the full dataset. Our framework oper-
ates under the assumption that the results obtained for a given query are representative
for the most relevant concepts related to the query.

• Goal 2: Effectively annotate multimedia documents using queries (Chapter 5)

We leverage the relationship between multimedia content and context data to generate
relevant annotations to multimedia resources. We propose a framework that exploits
implicitly user-generated content (e.g., click-through data) as context data, along with
visual features extracted from images on the Web. Specifically, we use the structure of
the Visual-Semantic Graph [86] to propagate context data through edges that connect
visually similar images.

Our framework is characterized by its flexibility, which allows to use different types of
multimedia features to represent similarity between multimedia documents. For our as-
sessment, we used only images to build Visual-Semantic graphs. However, we detected
that not all images are good candidates for propagation of information given specific
features; we refer to these images as stop-images. In order to make our framework
more robust, our automatic tagging algorithm discards these stop-images, so that they
do not propagate noisy information across the graph. Although our first approach to
detect stop-images was strictly empirical, using images’ neighborhood information may
lead to detected stop-images. The definition of stop-images, as well as the mechanism
to detect them, are novel, and could be employed to boost other well-known approaches
for automatic tagging.

Moreover, unlike most current automatic tagging approaches, our framework is not
focused on annotating multimedia resources with single-term tags. Instead, we aim to
generate large descriptions similar to dense annotations. In our preliminary assessment,
we found that our proposed Visual-Semantic graph information propagation algorithm
outperforms a naïve approach based on breadth-first graph traversal. The difference
in performance is obtained thanks to the application of our pruning variables, which
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reduces the propagation of noisy descriptions (i.e., queries) between images in the
Visual-Semantic graph.

As a result of our analysis of query logs, we learned that queries provide a natural
way to describe image content in a concise fashion. Nevertheless, not all queries carry
the same level of specificity, nor are all images descriptions bounded to a small set of
concepts. On the query-side, we found that queries pointing to visually diverse images
are prone to represent abstract concepts, whereas queries related to visually similar
images are prone to represent specific physical entities. Regarding the multimedia-side,
specifically images, we found that images with broad semantics are usually related to
a large set of terms, while images with very specific semantics are related to queries
whose terms are likely to overlap. As far as we know, there’s no previous work that
presents this taxonomy to classify visual information needs.

• Goal 1.A: Design and deploy a human-centered evaluation (Chapter 4)

We focus on the evaluation of concepts extracted from a given query. Specifically, we
aim at gathering the opinion of users regarding sets of terms that are potentially related
to each other and that may represent a concept. Given the complexity of the task, we
designed a controlled user study following guidelines from crowdsourcing. For instance,
we assigned the questions in a random order, and also the terms were sorted differently
for different users. Furthermore, every task was assigned to multiple users, so we could
gather data about user agreement. We found that this task is not so easy for humans,
which leads to a low inter-assessor agreement.

Given that the amount of clusters returned by the algorithms in our evaluation is
in the order of hundreds, and that we aim to gather more than a single opinion per
cluster, we design a sampling schema to select comparable clusters returned by different
algorithms. Unlike previous human-centered evaluations aiming to measure the quality
of automatically generated clusters of terms, we do not ask users to manually simulate
the best partitioning of a set of terms. Based on our experience, this could have led to
an even lower agreement value.

It is important to remark that we could easily apply the same methodology in other
domains , given that our assessments are not bound to a specific multimedia type (i.e.,
we do not show any image or video that could biased the opinion of users with respect
to a concept), and we only rely on the expressiveness of the terms representing concepts.
In such a case, which is similar to what we do in our user study, we would only need to
instruct users about the resources from which the terms were taken, without listing the
queries we employed to gather them. Furthermore, to aggregate the opinion of multiple
users, we propose to use metrics inspired by well-known Precision and Recall.

Besides performing a human-centered evaluation, we designed an automated assess-
ment, which led to inconclusive results. We noticed that automated computation of
coherence between sets of terms does not correlate with human assessors’ opinions.
With current state-of-the-art knowledge bases, such as WordNet, mapping set of terms
to concepts is not feasible to assess, since most knowledge bases are not constantly
updated with the latest vocabulary and slang popular between Web user communities.
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Overall, in this PhD. thesis we show that multimedia context data plays an important role
for enhancing the quality of multimedia description. In addition, it becomes clear that graph
structures are key when developing techniques that seamlessly represent the relationship
between multimedia content and context. By using graph representations instead of vector
representations, we manage to bridge the curse of dimensionality.

6.2 Limitations

Despite the results we obtained for the topics covered in this thesis work, this research still
suffers from some limitations, which can be inferred by the assumptions that make feasible
the assessment of our proposed frameworks for concept detection and automatic tagging.

Regarding our framework for identifying concepts on multimedia search results, we assume
there is a large size of search results (for example, 1, 000) available to build our Tag Graph.
Although this gives a broader view of the different concepts we could find related to a
query, it does not simulate the amount of results common users would inspect on their daily
requests to any search engine. Note that we do not explore different setups to determine the
optimal amount of search results needed to build a relevant Tag Graph. Additionally, for our
community detection algorithm based on islands, our assessments only show results in which
we employ similarity structure and PageRank as edge and vertex properties, respectively.
We do not study the impact of other centrality metrics for graphs.

Apart from the limitations of our framework and algorithm for concept detection in multi-
media search results, it is important to mention that clustering multimedia documents using
the concepts found is out of our scope. The main reason for this distinction is that, al-
though our community detection algorithm returns non-overlapping communities, this does
not assure that the multimedia results will be partitioned without overlaps. Mapping mul-
timedia documents to concepts may generate one-to-many relationships for cases in which a
multimedia document is associated to terms from different concepts.

Related to our framework for annotating multimedia documents using queries, we do not
consider the effect of coordinated click-spam attacks on the performance of our automatic tag-
ging algorithm. However, we assume that multimedia resources that have been clicked only
once are not relevant and thus are not included in the dataset. Moreover, in the last stage of
our framework, in which we have a set of queries that describes a multimedia document with a
certain level of confidence, we do not remove near-duplicate descriptions. Although removing
duplicate information could improve the presentation and interpretation of our results. Nev-
ertheless, these redundant descriptions could be used as input data for more advanced deep
learning algorithms able to provide a more complex description of the multimedia documents.

The main limitation of our framework on the annotation of multimedia documents is that
our propagation algorithm only considers a phase in which we propagate information over
the full Visual-Semantic graph. We still need to extend our algorithm to support small in-
cremental changes in the Visual-Semantic graph. Under the current scenario, our framework
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would not be the best option to perform on-line automatic tagging, since it has been initially
designed for batch processing of queries and multimedia documents.

Finally, with respect to the human-centered evaluation designed and deployed to test
multimedia-related tasks, we focused on deploying a user-study for assessing the quality
of the clusters of terms obtained for a given query. We do not study the same task in an
open environment, such as a real crowdsourcing platform. Thus, we do not know the im-
pact on the complexity of this task in an environment prone to click-spam. Besides, in our
assessment we do not rank users by reliability, which means that the opinion of every user
is considered equally accurate regardless of their expertise. Deploying our assessment frame-
work in environments such as Amazon Mechanical Turk or CrowdFlower might require an
additional step to validate that the user is competent enough to understand the task and
complete the assessment.

6.3 Future Work

Future work involves researching how our frameworks for multimedia context data enrichment
impact the performance of search engines, measured in terms of Precision and User Engage-
ment. We aim to develop the architecture of a meta-searcher that provides more accurate
results, showing them in a more friendly fashion that does not expose users to overwhelming
amounts of multimedia.

To reach that long-term goal, we believe it is necessary to address the following challenges:

About concept discovery

• Determining the optimal number of search results required to build a representative
Tag Graph for a given query.
For this thesis, we assume that for every query in the dataset, there is a fixed large
amount of items returned by a search engine available to build a Tag Graph. In a
scenario in which we would have to gather query results in an online fashion, gathering
a large amount of search results is not adequate. Thus, it becomes relevant to determine
optimal amount of items to retrieve in order to build a Tag Graph that represents
relevant concepts in a query without requesting unnecessary elements.

• Determining the optimal resolution of clusters to represent concepts.
In our comparison of community detection approaches, we detect that most algorithms
follow one of two trends: (1) returning many small communities, or (2) returning a few
large communities. For assessment purposes, we sample communities to get summarized
versions that avoid that our assessors get unmanageable lists of annotations.

• Designing an algorithm to map multimedia documents to the concepts related to a
query.
The annotations related to a single document in the search result list may be distributed
in different concepts. The concepts detected do not contain overlapping terms, but a
single multimedia content may belong to multiple concepts, based on its annotations.
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About automatic annotations

• Designing a complementary mechanism to annotate small batches of multimedia doc-
uments requiring minimum re-computation of the Visual-Semantic graph.
The framework we propose for automatic tagging assumes that we know in advance the
full dataset to be tagged. Thus, the Visual-Semantic graph is built once, and then used
to propagate candidate labels to multimedia content. However, extending the dataset
with small batches of multimedia content has not been explored on this thesis. Given
that Web users are continuously publishing new content on the Web, it is extending the
algorithm becomes relevant, as well as formalizing a mechanism to annotate multimedia
content included after the first Visual-Semantic graph has been built.

• Using ImageNet as a complementary source to build the Visual-Semantic graph.
Query logs are a valuable source of data, and in this thesis work we exploit them in
order to build the Visual-Semantic graph that we use to automatically propagate tags.
Nonetheless, access to query logs is restricted, and sometimes only partial snapshots
are available. Thus, it is necessary to employ additional public resources that allow us
to boost query logs when they are limited to the general public.

• Designing an algorithm to generate long descriptions based on queries.
Creating verbose descriptions of images is a field that has gained more adepts in the
last few years. In this thesis, we explore the potential of queries to describe multimedia
content. Using visual similarity to propagate queries allows images to be tagged with a
diverse vocabulary, which could be employed to describe many different aspects of the
same document based on the aggregated perception of multiple users.

The most challenging aspect of future work is exploring other modalities of multimedia
data different to images.

96



Bibliography

[1] Omar Alonso and Matthew Lease. Crowdsourcing 101: Putting the wsdm of crowds
to work for you. In Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining, WSDM ’11, pages 1–2, New York, NY, USA, 2011. ACM.

[2] Ioannis Antonellis, Hector Garcia-Molina, and Jawed Karim. Tagging with queries:
How and why? In Second ACM International Conference on Web Search and Data
Mining WSDM 2009, Late Breaking Results Session. Infolab, February 2009.

[3] Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern information retrieval, volume
463. ACM press New York, 1999.

[4] Lamberto Ballan, Marco Bertini, Tiberio Uricchio, and Alberto Del Bimbo. Data-driven
approaches for social image and video tagging. Multimedia Tools and Applications,
74(4):1443–1468, Feb 2015.

[5] Vladimir Batagelj, Natasa Kejzar, Simona Korenjak-Cerne, and Matjaz Zaveršnik. An-
alyzing the structure of U.S. patents network. In Data Science and Classification, pages
141–148. 2006.

[6] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up robust features. Computer
Vision–ECCV 2006, pages 404–417, 2006.

[7] Grigory Begelman, Philipp Keller, and Frank Smadja. Automated Tag Clustering:
Improving search and exploration in the tag space. In Collaborative Web Tagging
Workshop at WWW’06, 2006.

[8] Richard Bellman. Dynamic programming. Courier Corporation, 2013.

[9] Frank Benford. The law of anomalous numbers. Proceedings of the American Philo-
sophical Society, 78(4):551–572, 1938.

[10] Tim Berners-Lee, James Hendler, Ora Lassila, et al. The semantic web. Scientific
american, 284(5):28–37, 2001.

[11] D. N. Bhat and S. K. Nayar. Ordinal measures for image correspondence. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(4):415–423, Apr 1998.

[12] Henk M Blanken, Henk Ernst Blok, Ling Feng, and Arjen P Vries. Multimedia retrieval.

97



Springer, 2007.

[13] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[14] V.D. Blondel, J.L. Guillaume, R. Lambiotte, and E. Lefebvre. Fast unfolding of com-
munities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008:P10008, 2008.

[15] Paolo Boldi, Francesco Bonchi, Carlos Castillo, Debora Donato, Aristides Gionis, and
Sebastiano Vigna. The query-flow graph: Model and applications. In Proceedings of the
17th ACM Conference on Information and Knowledge Management, CIKM ’08, pages
609–618, New York, NY, USA, 2008. ACM.

[16] Teresa Bracamonte and Barbara Poblete. Automatic image tagging through informa-
tion propagation in a query log based graph structure. In Proceedings of the 19th ACM
international conference on Multimedia, MM ’11, pages 1201–1204. ACM, 2011.

[17] Sergey Brin and Lawrence Page. Reprint of: The anatomy of a large-scale hypertextual
web search engine. Computer Networks, 56(18):3825 – 3833, 2012. The {WEB} we live
in.

[18] Andrei Broder. A taxonomy of web search. SIGIR Forum, 36(2):3–10, September 2002.

[19] Benjamin Bustos, Daniel A. Keim, Dietmar Saupe, Tobias Schreck, and Dejan Vranic.
Feature-based similarity search in 3d object databases. ACM Comput. Surv., 37(4):345–
387, 2005.

[20] Claudio Carpineto and Giovanni Romano. A survey of automatic query expansion in
information retrieval. ACM Comput. Surv., 44(1):1:1–1:50, January 2012.

[21] Stefano Ceri, Alessandro Bozzon, Marco Brambilla, Emanuele Della Valle, Piero Fra-
ternali, and Silvia Quarteroni. Web information retrieval. Springer, 2013.

[22] David L. Chen and William B. Dolan. Collecting highly parallel data for paraphrase
evaluation. In Proc. of the 49th Annual Meeting of the Association for Computa-
tional Linguistics: Human Language Technologies, volume 1 of HLT ’11, pages 190–200,
Stroudsburg, PA, USA, 2011. Association for Computational Linguistics.

[23] Xiangyu Chen, Yadong Mu, Shuicheng Yan, and Tat-Seng Chua. Efficient large-scale
image annotation by probabilistic collaborative multi-label propagation. In Proceedings
of the international conference on Multimedia, MM ’10, pages 35–44, New York, NY,
USA, 2010. ACM.

[24] Yuxin Chen, Nenghai Yu, Bo Luo, and Xue-wen Chen. iLike: integrating visual and
textual features for vertical search. In Proc. of the 18th International Conference on
Multimedia, MM ’10, pages 221–230, New York, NY, USA, 2010. ACM.

[25] Jaeyoung Choi, Bart Thomee, Gerald Friedland, Liangliang Cao, Karl Ni, Damian

98



Borth, Benjamin Elizalde, Luke Gottlieb, Carmen Carrano, Roger Pearce, and Doug
Poland. The placing task: A large-scale geo-estimation challenge for social-media videos
and images. In Proc. of the 3rd ACM Multimedia Workshop on Geotagging and Its
Applications in Multimedia, GeoMM ’14, pages 27–31, New York, NY, USA, 2014.
ACM.

[26] O. Chum, A. Mikulik, M. Perdoch, and J. Matas. Total recall ii: Query expansion
revisited. In Proceedings of the 2011 IEEE Conference on Computer Vision and Pattern
Recognition, CVPR ’11, pages 889–896, Washington, DC, USA, 2011. IEEE Computer
Society.

[27] W Bruce Croft, Donald Metzler, and Trevor Strohmann. Search engines. Pearson
Education, 2010.

[28] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. Image retrieval. ACM
Comput. Surv., 40(2):1–60, 2008.

[29] Maaike de Boer, Klamer Schutte, and Wessel Kraaij. Knowledge based query ex-
pansion in complex multimedia event detection. Multimedia Tools and Applications,
75(15):9025–9043, 2016.

[30] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. Decaf: A deep convolutional activation feature for generic visual
recognition. arXiv preprint arXiv:1310.1531, 2013.

[31] Carsten Eickhoff, Wen Li, and Arjen P. de Vries. Exploiting user comments for audio-
visual content indexing and retrieval. In Proc. of the 35th European Conference on
Advances in Information Retrieval, ECIR’13, pages 38–49, Berlin, Heidelberg, 2013.
Springer-Verlag.

[32] M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering
clusters in large spatial databases with noise. In Proceedings of the 2nd International
Conference on Knowledge Discovery and Data mining, volume 1996, pages 226–231.
AAAI Press, 1996.

[33] Joseph L Fleiss. Measuring nominal scale agreement among many raters. Psychological
bulletin, 76(5):378, 1971.

[34] S. Fortunato. Community detection in graphs. Physics Reports, 486(3-5):75–174, 2010.

[35] R. Fournier-S’niehotta, P. Rigaux, and N. Travers. Querying music notation. In 2016
23rd International Symposium on Temporal Representation and Reasoning (TIME),
pages 51–59, Oct 2016.

[36] Bin Gao, Tie-Yan Liu, Tao Qin, Xin Zheng, Qian-Sheng Cheng, and Wei-Ying Ma.
Web image clustering by consistent utilization of visual features and surrounding texts.
In Proc. 13th Annual ACM International Conference on Multimedia, MM ’05, pages
112–121, New York, NY, USA, 2005. ACM.

99



[37] Shenghua Gao, Zhengxiang Wang, Liang-Tien Chia, and Ivor Wai-Hung Tsang. Auto-
matic image tagging via category label and web data. In Proceedings of the international
conference on Multimedia, MM ’10, pages 1115–1118, New York, NY, USA, 2010. ACM.

[38] Jonathan Gemmell, Andriy Shepitsen, Bamshad Mobasher, and Robin D. Burke. Per-
sonalizing Navigation in Folksonomies Using Hierarchical Tag Clustering. In Data
Warehousing and Knowledge Discovery (DaWaK), pages 196–205, 2008.

[39] Andrew Gilbert, Luca Piras, Josiah Wang, Fei Yan, Emmanuel Dellandrea, Robert
Gaizauskas, Mauricio Villegas, and Krystian Mikolajczyk. Overview of the imageclef
2015 scalable image annotation, localization and sentence generation task. In CLEF
(Online Working Notes/Labs/Workshop), 2015.

[40] Alexandru Lucian Ginsca, Adrian Popescu, Bogdan Ionescu, Anil Armagan, and Ioan-
nis Kanellos. Toward an estimation of user tagging credibility for social image retrieval.
In Proceedings of the 22Nd ACM International Conference on Multimedia, MM ’14,
pages 1021–1024, New York, NY, USA, 2014. ACM.

[41] M. Girvan and M.E.J. Newman. Community structure in social and biological networks.
Proceedings of the National Academy of Sciences, 99(12):7821, 2002.

[42] Yunchao Gong, Qifa Ke, Michael Isard, and Svetlana Lazebnik. A multi-view em-
bedding space for modeling internet images, tags, and their semantics. International
Journal of Computer Vision, 106(2):210–233, 2014.

[43] C. Gui, J. Liu, C. Xu, and H. Lu. Web image retrieval via learning semantics of query
image. In Proc. of the IEEE International Conference on Multimedia and Expo, ICME
’09, pages 1476–1479. IEEE, 2009.

[44] Alan Hanjalic, Christoph Kofler, and Martha Larson. Intent and its discontents: The
user at the wheel of the online video search engine. In Proceedings of the 20th ACM
International Conference on Multimedia, MM ’12, pages 1239–1248, New York, NY,
USA, 2012. ACM.

[45] Bernhard Haslhofer, Robert Sanderson, Rainer Simon, and Herbert van de Sompel.
Open annotations on multimedia web resources. Multimedia Tools and Applications,
70(2):847–867, 2014.

[46] Christoph Hölscher and Gerhard Strube. Web search behavior of internet experts and
newbies. Computer Networks, 33(1–6):337 – 346, 2000.

[47] Jeff Howe. Crowdsourcing: A definition. http://www.crowdsourcing.com/.

[48] Dong-Hyuk Im and Geun-Duk Park. Linked tag: image annotation using semantic
relationships between image tags. Multimedia Tools and Applications, 74(7):2273–2287,
2015.

[49] Bogdan Ionescu, Adrian Popescu, Mihai Lupu, Alexandru L Gınsca, and Henning
Müller. Retrieving diverse social images at mediaeval 2014: Challenge, dataset and

100



evaluation. In MediaEval 2014 Workshop, 2014.

[50] Vidit Jain and Manik Varma. Learning to re-rank: query-dependent image re-ranking
using click data. In Proc. of the 20th International Conference on World Wide Web,
WWW ’11, pages 277–286, New York, NY, USA, 2011. ACM.

[51] Bin Jiang, Jiachen Yang, Zhihan Lv, Kun Tian, Qinggang Meng, and Yan Yan. Internet
cross-media retrieval based on deep learning. Journal of Visual Communication and
Image Representation, pages –, 2017.

[52] Di Jiang, Kenneth Wai-Ting Leung, and Wilfred Ng. Query intent mining with multiple
dimensions of web search data. World Wide Web, 19(3):475–497, 2016.

[53] Lu Jiang, Shoou-I Yu, Deyu Meng, Teruko Mitamura, and Alexander G. Hauptmann.
Bridging the ultimate semantic gap: A semantic search engine for internet videos.
In Proceedings of the 5th ACM on International Conference on Multimedia Retrieval,
ICMR ’15, pages 27–34, New York, NY, USA, 2015. ACM.

[54] J. Johnson, L. Ballan, and L. Fei-Fei. Love thy neighbors: Image annotation by ex-
ploiting image metadata. In 2015 IEEE International Conference on Computer Vision
(ICCV), pages 4624–4632, Dec 2015.

[55] Anitha Kannan, Simon Baker, Krishnan Ramnath, Juliet Fiss, Dahua Lin, Lucy Van-
derwende, Rizwan Ansary, Ashish Kapoor, Qifa Ke, Matt Uyttendaele, Xin-Jing Wang,
and Lei Zhang. Mining text snippets for images on the web. In Proc. of the 20th In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
1534–1543, New York, NY, USA, 2014. ACM.

[56] Andrej Karpathy and Li Fei-Fei. Deep visual-semantic alignments for generating image
descriptions. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015.

[57] Yan Ke and Rahul Sukthankar. Pca-sift: A more distinctive representation for local
image descriptors. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.
Proceedings of the 2004 IEEE Computer Society Conference on, volume 2, pages II–506.
IEEE, 2004.

[58] D. Kelly, S. Dumais, and J.O. Pedersen. Evaluation challenges and directions for
information-seeking support systems. Computer, 42(3):60–66, 2009.

[59] Christoph Kofler, Martha Larson, and Alan Hanjalic. User intent in multimedia search:
A survey of the state of the art and future challenges. ACM Comput. Surv., 49(2):36:1–
36:37, August 2016.

[60] Beate Krause, Robert Jäschke, Andreas Hotho, and Gerd Stumme. Logsonomy - social
information retrieval with logdata. In Proceedings of the Nineteenth ACM Conference
on Hypertext and Hypermedia, HT ’08, pages 157–166, New York, NY, USA, 2008.
ACM.

101



[61] Klaus Krippendorff. Reliability in content analysis. Human Communication Research,
30(3):411–433, 2004.

[62] Clement H. C. Leung, Alice W. S. Chan, Alfredo Milani, Jiming Liu, and Yuanxi Li.
Intelligent social media indexing and sharing using an adaptive indexing search engine.
ACM Trans. Intell. Syst. Technol., 3(3):47:1–47:27, May 2012.

[63] S. Li, S. Purushotham, C. Chen, Y. Ren, and C. C. J. Kuo. Measuring and predict-
ing tag importance for image retrieval. IEEE Transactions on Pattern Analysis and
Machine Intelligence, PP(99):1–1, 2017.

[64] X. Li, C. G. M. Snoek, and M. Worring. Learning social tag relevance by neighbor
voting. IEEE Transactions on Multimedia, 11(7):1310–1322, Nov 2009.

[65] Xirong Li, Cees G. M. Snoek, and Marcel Worring. Unsupervised multi-feature tag
relevance learning for social image retrieval. In Proceedings of the ACM International
Conference on Image and Video Retrieval, CIVR ’10, pages 10–17, New York, NY,
USA, 2010. ACM.

[66] Xirong Li, Tiberio Uricchio, Lamberto Ballan, Marco Bertini, Cees G. M. Snoek, and
Alberto Del Bimbo. Socializing the semantic gap: A comparative survey on image
tag assignment, refinement, and retrieval. ACM Comput. Surv., 49(1):14:1–14:39, June
2016.

[67] Xirong Li, Tiberio Uricchio, Lamberto Ballan, Marco Bertini, Cees G. M. Snoek, and
Alberto Del Bimbo. Socializing the semantic gap: A comparative survey on image
tag assignment, refinement, and retrieval. ACM Comput. Surv., 49(1):14:1–14:39, June
2016.

[68] Dong Liu, Xian-Sheng Hua, Meng Wang, and Hong-Jiang Zhang. Image retagging.
In Proceedings of the international conference on Multimedia, MM ’10, pages 491–500,
New York, NY, USA, 2010. ACM.

[69] Dong Liu, Shuicheng Yan, Yong Rui, and Hong-Jiang Zhang. Unified tag analysis with
multi-edge graph. In Proceedings of the international conference on Multimedia, MM
’10, pages 25–34, New York, NY, USA, 2010. ACM.

[70] D.G. Lowe. Object recognition from local scale-invariant features. In The Proceedings
of the Seventh IEEE International Conference on Computer Vision, 1999, pages 1150–
1157, 1999.

[71] Mathias Lux, Christoph Kofler, and Oge Marques. A classification scheme for user
intentions in image search. In CHI ’10 Extended Abstracts on Human Factors in Com-
puting Systems, CHI EA ’10, pages 3913–3918, New York, NY, USA, 2010. ACM.

[72] Lianze Ma, Lin Lin, and Mitsuo Gen. A pso-svm approach for image retrieval and
clustering. In 41st International Conference on Computers and Industrial Engineering,
pages 629–634, 2012.

102



[73] Konstantinos Makantasis, Anastasios Doulamis, and Nikolaos Doulamis. A non-
parametric unsupervised approach for content based image retrieval and clustering.
In Proceedings of the 4th ACM/IEEE International Workshop on Analysis and Re-
trieval of Tracked Events and Motion in Imagery Stream, ARTEMIS ’13, pages 33–40,
New York, NY, USA, 2013. ACM.

[74] Anupama Mallik, Hiranmay Ghosh, Santanu Chaudhury, and Gaurav Harit. Mowl: An
ontology representation language for web-based multimedia applications. ACM Trans.
Multimedia Comput. Commun. Appl., 10(1):8:1–8:21, December 2013.

[75] B. S. Manjunath, J. R. Ohm, V. V. Vasudevan, and A. Yamada. Color and tex-
ture descriptors. IEEE Transactions on Circuits and Systems for Video Technology,
11(6):703–715, Jun 2001.

[76] Pierre-Alain Moëllic, Jean-Emmanuel Haugeard, and Guillaume Pitel. Image cluster-
ing based on a shared nearest neighbors approach for tagged collections. In ACM
International Conference on Image and Video Retrieval (CIVR), pages 269–278, 2008.

[77] André Mourão and Flávio Martins. Novamedsearch: A multimodal search engine for
medical case-based retrieval. In Proceedings of the 10th Conference on Open Research
Areas in Information Retrieval, pages 223–224, 2013.

[78] Apostol (Paul) Natsev, Alexander Haubold, Jelena Tešić, Lexing Xie, and Rong Yan.
Semantic concept-based query expansion and re-ranking for multimedia retrieval. In
Proceedings of the 15th ACM International Conference on Multimedia, MM ’07, pages
991–1000, New York, NY, USA, 2007. ACM.

[79] Mark EJ Newman. Power laws, pareto distributions and zipf’s law. Contemporary
physics, 46(5):323–351, 2005.

[80] Mark EJ Newman. Finding community structure in networks using the eigenvectors of
matrices. Physical review E, 74(3):036104, 2006.

[81] Andrew Y Ng, Michael I Jordan, and Yair Weiss. On Spectral Clustering: Analysis
and an algorithm. Adv. Neural Inf. Process. Syst., pages 849–856, 2001.

[82] S. Papadopoulos, C. Zigkolis, G. Tolias, Y. Kalantidis, P. Mylonas, Y. Kompatsiaris,
and A. Vakali. Image clustering through community detection on hybrid image simi-
larity graphs. In Image Processing (ICIP), 2010 17th IEEE International Conference
on, pages 2353–2356, Sep 2010.

[83] Symeon Papadopoulos, Yiannis Kompatsiaris, and Athena Vakali. A graph-based clus-
tering scheme for identifying related tags in folksonomies. In Data Warehousing and
Knowledge Discovery (DAWAK), pages 65–76, 2010.

[84] Symeon Papadopoulos, Yiannis Kompatsiaris, Athena Vakali, and Ploutarchos Spyri-
donos. Community detection in social media. Data Mining and Knowledge Discovery,
24(3):515–554, 2012.

103



[85] Georgios Petkos, Symeon Papadopoulos, Vasileios Mezaris, and Yiannis Kompatsiaris.
Social event detection at mediaeval 2014: Challenges, datasets, and evaluation. In
MediaEval 2014 Workshop, 2014.

[86] Barbara Poblete, Benjamin Bustos, Marcelo Mendoza, and Juan Manuel Barrios.
Visual-semantic graphs: using queries to reduce the semantic gap in web image re-
trieval. In Proceedings of the 19th ACM international conference on Information and
knowledge management, CIKM ’10, pages 1553–1556, New York, NY, USA, 2010. ACM.

[87] Mohan Ponnada and Nalin Sharda. Model of a semantic web search engine for multime-
dia content retrieval. In Proc. 6th IEEE/ACIS International Conference on Computer
and Information Science (ICIS’07), pages 818–823. IEEE Computer Society, July 2007.

[88] Duangmanee Putthividhya, Hagai Thomas Attias, and Srikantan S. Nagarajan. Topic
regression multi-modal Latent Dirichlet Allocation for image annotation. In IEEE
Conference on Computer Vision and Pattern Recognition, (CVPR), pages 3408–3415,
2010.

[89] X. Qian, X. S. Hua, Y. Y. Tang, and T. Mei. Social image tagging with diverse
semantics. IEEE Transactions on Cybernetics, 44(12):2493–2508, Dec 2014.

[90] Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time al-
gorithm to detect community structures in large-scale networks. Physical Review E,
76(3):036106, 2007.

[91] Nikhil Rasiwasia, Jose Costa Pereira, Emanuele Coviello, Gabriel Doyle, Gert R.G.
Lanckriet, Roger Levy, and Nuno Vasconcelos. A new approach to cross-modal mul-
timedia retrieval. In Proc. of the International Conference on Multimedia, MM ’10,
pages 251–260, New York, NY, USA, 2010. ACM.

[92] M. Rosvall and C.T. Bergstrom. Maps of random walks on complex networks reveal
community structure. Proceedings of the National Academy of Sciences, 105(4):1118,
2008.

[93] Eldar Sadikov, Jayant Madhavan, Lu Wang, and Alon Halevy. Clustering query refine-
ments by user intent. In Proceedings of the 19th International Conference on World
Wide Web, WWW ’10, pages 841–850, New York, NY, USA, 2010. ACM.

[94] Tefko Saracevic. Relevance: A review of and a framework for the thinking on the
notion in information science. Journal of the American Society for information science,
26(6):321–343, 1975.

[95] Tefko Saracevic. Relevance: A review of the literature and a framework for thinking
on the notion in information science. part ii: nature and manifestations of relevance.
Journal of the American Society for Information Science and Technology, 58(13):1915–
1933, 2007.

[96] Tefko Saracevic. Relevance: A review of the literature and a framework for thinking on
the notion in information science. part iii: Behavior and effects of relevance. Journal of

104



the American Society for Information Science and Technology, 58(13):2126–2144, 2007.

[97] Neela Sawant, Ritendra Datta, Jia Li, and James Z. Wang. Quest for relevant tags
using local interaction networks and visual content. In Proceedings of the International
Conference on Multimedia Information Retrieval, MIR ’10, pages 231–240, New York,
NY, USA, 2010. ACM.

[98] Markus Schedl, Nicola Orio, Cynthia C. S. Liem, and Geoffroy Peeters. A professionally
annotated and enriched multimodal data set on popular music. In Proc. of the 4th
Multimedia Systems Conference, MMSys ’13, pages 78–83, New York, NY, USA, 2013.
ACM, ACM.

[99] Sebastian Schmiedeke, Peng Xu, Isabelle Ferrané, Maria Eskevich, Christoph Kofler,
Martha A. Larson, Yannick Estève, Lori Lamel, Gareth J. F. Jones, and Thomas Sikora.
Blip10000: A social video dataset containing spug content for tagging and retrieval. In
Proc. of the 4th ACM Multimedia Systems Conference, MMSys ’13, pages 96–101, New
York, NY, USA, 2013. ACM.

[100] Heng Tao Shen, Beng Chin Ooi, and Kian-Lee Tan. Giving meanings to www images.
In Proc. of the 8th International Conference on Multimedia, MM ’00, pages 39–47, New
York, NY, USA, 2000. ACM.

[101] Yi Shen and Jianping Fan. Leveraging loosely-tagged images and inter-object cor-
relations for tag recommendation. In Proceedings of the international conference on
Multimedia, MM ’10, pages 5–14, New York, NY, USA, 2010. ACM.

[102] Börkur Sigurbjörnsson and Roelof van Zwol. Flickr tag recommendation based on
collective knowledge. In Proceedings of the 17th international conference on World
Wide Web, WWW ’08, pages 327–336, New York, NY, USA, 2008. ACM.

[103] Arnold W. M. Smeulders, Marcel Worring, Simone Santini, Amarnath Gupta, and
Ramesh Jain. Content-based image retrieval at the end of the early years. IEEE
Trans. Pattern Anal. Mach. Intell., 22(12):1349–1380, December 2000.

[104] Yale Song, J. Vallmitjana, A. Stent, and A. Jaimes. Tvsum: Summarizing web videos
using titles. In IEEE Conference on Computer Vision and Pattern Recognition, CVPR
’15, pages 5179–5187. IEEE, June 2015.

[105] Umberto Straccia. An ontology mediated multimedia information retrieval system.
In Proc. of the 40th IEEE International Symposium on Multiple-Valued Logic, pages
319–324. IEEE, May 2010.

[106] James Surowiecki. The wisdom of crowds. Anchor Books, 2005.

[107] Johan W. Tangelder and Remco C. Veltkamp. A survey of content based 3d shape
retrieval methods. Multimedia Tools Appl., 39(3):441–471, September 2008.

[108] Jing Tian, Tinglei Huang, Yu Huang, Zi Zhang, Zhi Guo, and Kun Fu. A new method
for image understanding and retrieval using text-mined knowledge. In Advanced Data

105



Mining and Applications, pages 684–694. Springer, 2014.

[109] Theodora Tsikrika, Christos Diou, Arjen de Vries, and Anastasios Delopoulos. Reliabil-
ity and effectiveness of clickthrough data for automatic image annotation. Multimedia
Tools and Applications, 55:27–52, 2011.

[110] D. Turnbull, L. Barrington, D. Torres, and G. Lanckriet. Semantic annotation and re-
trieval of music and sound effects. IEEE Transactions on Audio, Speech, and Language
Processing, 16(2):467–476, 2008.

[111] Arash Vahdat, Guang-Tong Zhou, and Greg Mori. Computer Vision – ECCV 2014:
13th European Conference, chapter Discovering Video Clusters from Visual Features
and Noisy Tags, pages 526–539. Springer International Publishing, Sep 2014.

[112] Reinier H. van Leuken, Lluis Garcia, Ximena Olivares, and Roelof van Zwol. Visual
diversification of image search results. In Proc. of the 18th International Conference
on World Wide Web, WWW ’09, pages 341–350, New York, NY, USA, 2009. ACM.

[113] Thomas Vander Wal. Folksonomy, 2007.

[114] Mauricio Villegas and Roberto Paredes. Overview of the imageclef 2012 scalable web
image annotation task. In CLEF (Online Working Notes/Labs/Workshop), 2012.

[115] Ji Wan, Dayong Wang, Steven Chu Hong Hoi, Pengcheng Wu, Jianke Zhu, Yongdong
Zhang, and Jintao Li. Deep learning for content-based image retrieval: A comprehensive
study. In Proceedings of the 22Nd ACM International Conference on Multimedia, MM
’14, pages 157–166, New York, NY, USA, 2014. ACM.

[116] Avery Wang. The shazam music recognition service. Commun. ACM, 49(8):44–48,
August 2006.

[117] Dingding Wang, Tao Li, and Mitsunori Ogihara. Are tags better than audio features?
the effect of joint use of tags and audio content features for artistic style clustering. In
11th International Society on Music Information Retrieval Conference, ISMIR, pages
57–62, 2010.

[118] Liwei Wang, Yin Li, and Svetlana Lazebnik. Learning deep structure-preserving image-
text embeddings. In The IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), June 2016.

[119] Wei Wang, Xiaoyan Yang, Beng Chin Ooi, Dongxiang Zhang, and Yueting Zhuang.
Effective deep learning-based multi-modal retrieval. The VLDB Journal, 25(1):79–101,
2016.

[120] Xinggang Wang, Xiong Duan, and Xiang Bai. Deep sketch feature for cross-domain
image retrieval. Neurocomputing, 207:387 – 397, 2016.

[121] F Wiering. Can humans benefit from music information retrieval? In Proc. 4th Int.
Conf. Adapt. Multimed. Retr. user, Context. Feed., pages 82–94, Berlin, Heidelberg,

106



2006. Springer-Verlag.

[122] L. Wu, R. Jin, and A. K. Jain. Tag completion for image retrieval. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(3):716–727, March 2013.

[123] Lei Wu, S.C.H. Hoi, and Nenghai Yu. Semantics-preserving bag-of-words models and
applications. Image Processing, IEEE Transactions on, 19(7):1908 –1920, july 2010.

[124] Lei Wu, Steven Hoi, and Nenghai Yu. Semantics-preserving bag-of-words models for
efficient image annotation. In Proc. 1st ACM Workshop on Large-Scale Multimedia
Retrieval and Mining, LS-MMRM ’09, pages 19–26, New York, NY, USA, 2009. ACM.

[125] Zhibiao Wu and Martha Palmer. Verbs semantics and lexical selection. In Proceedings
of the 32Nd Annual Meeting on Association for Computational Linguistics, ACL ’94,
pages 133–138, Stroudsburg, PA, USA, 1994. Association for Computational Linguis-
tics.

[126] X. Xu, A. Shimada, and R. i. Taniguchi. Tag completion with defective tag assignments
via image-tag re-weighting. In 2014 IEEE International Conference on Multimedia and
Expo (ICME), pages 1–6, July 2014.

[127] Xiaowei Xu, Nurcan Yuruk, Zhidan Feng, and Thomas A. J. Schweiger. Scan: a
structural clustering algorithm for networks. In Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data mining, KDD ’07, pages
824–833, New York, NY, USA, 2007. ACM.

[128] Rong Yan and Alexander Hauprmann. Query expansion using probabilistic local feed-
back with application to multimedia retrieval. In Proceedings of the Sixteenth ACM
Conference on Conference on Information and Knowledge Management, CIKM ’07,
pages 361–370, New York, NY, USA, 2007. ACM.

[129] Christopher C. Yang and K. Y. Chan. Retrieving multimedia web objects based on
pagerank algorithm. In Special Interest Tracks and Posters of the 14th International
Conference on World Wide Web, WWW ’05, pages 906–907, New York, NY, USA,
2005. ACM.

[130] Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Ballas, Christopher Pal, Hugo
Larochelle, and Aaron Courville. Describing videos by exploiting temporal structure.
In The IEEE International Conference on Computer Vision (ICCV), December 2015.

[131] Mark Yatskar, Lucy Vanderwende, and Luke Zettlemoyer. See no evil, say no evil: De-
scription generation from densely labeled images. Lexical and Computational Semantics
(*SEM 2014), page 110, 2014.

[132] Jun Yu, Richang Hong, Meng Wang, and Jane You. Image clustering based on sparse
patch alignment framework. Pattern Recognition, 47(11):3512 – 3519, 2014.

[133] M. Zaveršnik and V. Batagelj. Islands. International Sunbelt Social Network Confer-
ence, 2004.

107



[134] Zheng-Jun Zha, Linjun Yang, Tao Mei, Meng Wang, Zengfu Wang, Tat-Seng Chua,
and Xian-Sheng Hua. Visual query suggestion: Towards capturing user intent in inter-
net image search. ACM Trans. Multimedia Comput. Commun. Appl., 6(3):13:1–13:19,
August 2010.

[135] Xin Zheng, Deng Cai, Xiaofei He, Wei-Ying Ma, and Xueyin Lin. Locality Preserving
Clustering for Image Database. In Proceedings of the 12th Annual ACM Int. Conf.
Multimedia, pages 885–891. ACM, 2004.

[136] Guangyu Zhu, Shuicheng Yan, and Yi Ma. Image tag refinement towards low-rank,
content-tag prior and error sparsity. In Proceedings of the 18th ACM International
Conference on Multimedia, MM ’10, pages 461–470, New York, NY, USA, 2010. ACM.

108



Appendix A

Benford’s Law and Zipf’s Law

A.1 Benford’s Law

Benford’s law, also know as law of anomalous numbers, and first-digit law, is an observation
about the frequency distribution of leading digits in many real-life sets of numerical data.
Benford’s law states that in listings, tables of statistics, etc., the digit 1 tends to occur with
probability about 30%, much greater than the expected 11.1% (i.e., one digit out of nine).
Benford’s law also makes predictions about the distribution of second digits, third digits,
digit combinations, and so on. The implications of the digit rule are significant as not only
is the distribution not uniform, implying that digit frequencies are not independent, but to
be true it must also hold irrespective of the units of the data as well as their source. Hence
a universal property of real world measurements is implied.

The law applies to budget, electricity bills, street addresses, stock prices, house prices,
population numbers, death rates, lengths of rivers and processes described by power laws. In
the face of such universality of the law, it’s quite astonishing that there exists a more general
framework, Zipf’s Law, which falls under a more general rubric of scaling phenomena. It
is named after physicist Frank Benford, who stated it in 1938 in a paper titled “The Law
of Anomalous Numbers” [9], although it had been previously stated by Simon Newcomb in
1881. A set of numbers is said to satisfy Benford’s law if the leading digit d(d ∈ 1, ..., 9)
occurs with probability:

P (d) = log10(d + 1)− log10(d) = log10

(

d + 1

d

)

= log10

(

1 +
1

d

)

An extension of Benford’s law predicts the distribution of first digits in other bases besides
decimal; in fact, any base b ≥ 1. The general form is:

P (d) = logb(d + 1)− logb(d) = logb
(

1 + 1
d

)

For b = 2 (the binary number system), Benford’s law is true: All binary numbers (except
for 0) start with the digit 1. Nevertheless, the generalization of Benford’s law to second and
later digits is not trivial, even for binary numbers.
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A.2 Zipf’s Law

Zipf’s law [79] is an empirical law formulated using mathematical statistics that refers to the
fact that many types of data studied in the physical and social sciences can be approximated
with a discrete power law probability distributions. Zipf’s law states that given a large sample
of words used, the frequency of any word is inversely proportional to its rank in the frequency
table. So word number N has a frequency proportional to 1/N. For example, Zipf claimed
that the largest city in a country is about twice the size of the next largest, three times the
size of the third largest, and so forth. While the fit is not perfect for languages, populations,
or any other data, the basic idea of Zipf’s law is useful in schemes for data compression and
in allocation of resources by urban planners.

The law is named after the linguist George Kingsley Zipf, who popularized it and sought to
explain it, though he did not claim to have originated it. Zipf’s law is most easily observed by
plotting the data on a log-log graph, with the axes being log (rank order) and log (frequency).
The data conform to Zipf’s law to the extent that the plot is linear. Zipf’s law predicts that
out of a population of N elements, the frequency of elements of rank k, f(k, s,N), is:

f(k, s,N) =
1/ks

N
∑

n=1

(1/ns)

where: N is the number of elements, k is their rank, and s is the value of the exponent
characterizing the distribution.

Zipf’s law holds if the number of elements with a given frequency is a random variable
with power law distribution p(f) = αf−1−1/s. It has been claimed that this representation
of Zipf’s law is more suitable for statistical testing. If we use the classic version of Zipf’s law
to analyze more than 30,000 English texts, the exponent s = 1. f(k; s,N) will then be the
fraction of the time the kth most common word occurs.
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