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1. INTRODUCTION

Since the works by Monod (1950) and Novick and Szilard
(1950), bioreactors have been used to study microbial pop-
ulation dynamics, and the use of bioreactors for wastewa-
ter treatment and bioremediation has been widely studied
for the last 40 years. Typically, there are three types
of models for the analysis of a bioreactor-water resource
system: the simplest from the mathematical point of view,
that relies on the hypotheses of homogeneity of the con-
centrations in the resource and/or in the bioreactor as well
as instant mixing (among others), is a system of nonlinear
ordinary differential equations (ODE) (D’Ans et al. (1971,
1972); Smith and Waltman (1995)). Later, models with
partial differential equations (PDE) that take into account
fluid dynamics, mass conservation and pollutant diffusion
have been introduced to address the inhomogeneity of the
pollutant in the resource (Barbier et al. (2016)) or the
bioreactor vessel (Diehl and Far̊as (2013b,a)); this effect
naturally appears due to the speed of the reactions in the
bioreactor and the slow diffusion speed as well as the slow
mixing in large water resources; this is typically the situ-
ation of large scale reactors or large scale water resources,
fluidized beds, settlers among others. The third kind of
models are the stochastic models, that take into account
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the uncertainty of different types of variables (Imhof and
Walcher (2005); Campillo and Fritsch (2015); Collet et al.
(2013)).

There are two main operation modes of the bioreactor for
the water treatment. The sequencing-batch reactor (SBR)
consists of a tank which is fed with a supply of nutritive
elements at the beginning of and along the duration of the
process. This type of system is widely used in the industrial
and municipal wastewater treatment plants. With this
operation mode, the objective of the controller is usually
to attain a prescribed target in minimal time (Moreno
(1999); Gajardo et al. (2008); Bayen et al. (2013)) or to
maximize the production in a finite time interval (Hong
(1986); Kurtanjek (1991); Tsoneva et al. (1998); Mazouni
et al. (2010)). On the other hand, the chemostat mode
of operation is the most widely used in bioremediation
of water resources. The main characteristic is that the
culture volume is constant, water with nutrient being
added continuously to the system, and treated water being
removed at the same rate. The reactor is operated in such
a way to keep the system in a steady state by adding
a constant nutrient concentration at a fixed rate, but
the inflow rate can be controlled to change the desired
steady state. The control objectives are usually to steer
the system to a nominal point that maximizes a criterion
(Zhang et al. (2003); Marcos et al. (2004); Bastin et al.
(2009)) or to couple the reactor to a resource in order
to treat it in minimal time (Gajardo et al. (2011, 2012);
Ramı́rez et al. (2016)).

The deterministic model of bioreactor consists of the
variables x, s, and v that denote the biomass and substrate
concentration, and culture volume inside the bioreactor
vessel. We assume that water with a concentration of
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nutrient sin and without bacteria is poured into the
bioreactor at an inflow rate u ∈ [0, umax]. A standard
assumption on the growth rate of microorganisms is that
it is proportional to the mass of microorganisms and that
it depends on the substrate concentration by means of the
uptake function µ(·) (see Smith and Waltman (1995)). The
yield coefficient of the reaction Y , which is the quantity of
biomass produced when one unit of substrate is consumed
by the reaction, is a positive constant. For the SBR the
culture volume is bounded between a minimum volume
vmin assumed to be the lowest volume level of operation,
and a maximum volume vmax given by the maximum
operative capacity of the tank. The usual deterministic
model for the SBR is given by the equations



ẋ = µ(s)x−
u

v
x,

ṡ = −
1

Y
µ(s)x+

u

v
(sin − s),

v̇ = u.

(1)

For the chemostat the input and output flow rates are
equal, so the culture volume is assumed to be constant.
The usual deterministic model of the chemostat is given
by the equations


ẋ =

(
µ(s)−

u

v

)
x,

ṡ = −
1

Y
µ(s)x+

u

v
(sin − s).

(2)

In this work we extend these models to the stochastic
case when there exists demographic stochasticity, that
is, when the stochasticity comes from the randomness
induced by the births and deaths in a large population. In
the case of the stochastic SBR system, we show that the
minimum expected time problem is meaningless, because
with positive probability biomass extinction occurs. Thus,
we are naturally led to consider the problem of maximizing
the probability of reaching the target before extinction
occurs. We sketch the proof of a Dynamic Programming
Principle (DPP) for this problem. Analogous statements
can be proved for the stochastic chemostat model but, for
the sake of shortness, they will not be reproduced in this
article.

We point out that the stochastic model we obtain, based
on particle system approximations, allows us to justify the
description of the dynamics of the macroscopic variables
by means of a Stochastic Differential Equation (SDE).
This is an important step, since then standard methods
to dicretize SDEs can be implemented in order to approx-
imate the stochastic dynamics. These discretizations can
have a different scale than the original microscopic model,
the latter being be difficult to handle numerically.

2. STOCHASTIC MODELS OF SBR AND
CHEMOSTAT

In this section we want to establish continuous stochastic
models for the SBR and the chemostat. We deduce the
continuous model as a limit of individual-based birth
and death processes including a demographic stochasticity
parameter modelling fast birth and death rates of the
microorganisms.

In what follows we denote by x̂ and ŝ the masses of micro-
bial organism and substrate in the tank (in grams), and
v the culture volume (in liters). Suppose that water with

a concentration of substrate sin is injected to (extracted
from) the bioreactor’s tank with an input flow rate (output
flow rate) Qin (Qout). The mixture in the bioreactor is
continuously stirred by an agitator, so the distribution
of cells and molecules in the tank can be assumed to be
homogeneous. The changes of mass of each component are
given by microscopical changes in the numbers of bacterial
cells X and substrate molecules S, while the changes on
the culture volume v are given by the continuous variation
of the inflow and output flow rates. We suppose that the
rate of change of the system (X,S) depends only of the
current state of the system and of the volume at the
current time t, and that two of the following events cannot
occur at the same time: the division of a microbial cell,
the death of a cell, the entry of a substrate molecule into
the tank, and the consumption of a substrate molecule
by a cell. For these reasons we model (X,S) as a time
inhomogeneous birth and death process. Such process is
determined by its jumps rate scheme, which is described
as follows:

• the individual rate of the division of a cell depends of
the concentration of available substrate at the time
instant t by means of the growth function µ(ŝ/vt),

• the individual death rate of a cell is a constant β ≥ 0,
• the individual rate of exit of a cell (or a substrate
molecule) is Qout/vt,

• the rate of entry of a substrate molecule is QinsinKs,

where Ks is the amount of substrate molecules per gram,
and the process of volume v̂t that starts with an initial
volume v0 ≥ vmin > 0 is defined by

vt = v0 +

∫ t

0

(Qin −Qout)dr.

We will make the following assumption on the growth
function µ(·) :
Assumption 1. The growth function µ : [0,+∞[ �→ [0,+∞[
is Lipschitz continuous, it satisfies that µ(0) = 0 and it is
bounded by above by a constant µmax > 0.

Since the number of particles of the system (X,S) is large,
it is convenient to study the behavior of the system of mass
(x̂, ŝ). In order to do so, we introduce the scale parameter
K := (Kx,Ks) whose components denote the numbers
of cells and substrate molecules per gram respectively.
Then, we can consider a discretization of the biomass and
substrate mass given by x̂K := X/Kx and ŝK := S/Ks.
The process (x̂K , ŝK) defined in that way has transitions
in biomass (resp. substrate mass) of the size of 1/Kx (resp.
1/Ks) and the jump rates on the biomass (resp. substrate
mass) are of the order of Kx (resp. Ks). This process takes
values in the space D2

K := (Z/Kx) × (Z/Ks). When the
components of K are large enough, the time evolution
of the system of mass approaches to system that varies
continuously in time. By means of this scaling we obtain
a macroscopic limit model.

At the same time, due to the discrete nature of the individ-
uals and the stochastic character of the process, we expect
demographic randomness to occur at a macroscopic level.
We introduce a parameter of demographic randomness
γ ≥ 0 that models the variance of the birth and death rates
of the bacterial population (Foley (1994)). For the SBR
and the chemostat models, we introduce this demographic
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randomness as in Méléard and Villemonais (2012), where
the analysis is carried out for a one dimensional state
equation whose solution is conditioned to stay strictly
positive.

2.1 SBR model

In this case the mode of operation is such that u := Qin ∈
[0, umax] and Qout = 0 (until v = vmax), the rate scheme is

given by the following expressions: denote by ξ̂ = (x̂, ŝ) a
generic element in D2

K at a time instant t ≥ 0. The volume
process is given by

vt = v0 +

∫ t

0

urdr. (3)

The scheme of jumps of the process ηK can be summarized
as follows:

• (x̂, ŝ) →
(
x̂+

1

Kx
, ŝ

)
with rate Kxx̂

[
µ

(
ŝ

vt

)
+ γKx

]
,

• (x̂, ŝ) →
(
x̂−

1

Kx
, ŝ

)
with rate Kxx̂ [β + γKx],

• (x̂, ŝ) →
(
x̂, ŝ+

1

Ks

)
with rate Kssinu,

• (x̂, ŝ) →
(
x̂, ŝ−

1

Ks

)
with rate Kxx̂µ

(
ŝ

vt

)
.

This procedure generates a pure jump Markov process
ηKt := (x̂K

t , ŝKt ) that takes values in D2
K . This process

is characterized by its infinitesimal generator L K , which

is the operator defined as follows: for ξ̂ = (x̂, ŝ) ∈ D2
K ,

t ≥ 0, φ ∈ C (R2), and ei the components of the canonical
basis of R2,

L Kφ(t, ξ̂) = lim
h↘t

E(φ(ηKh ) | ηKt = ξ̂)− φ(ξ̂)

h− t
,

that in this case has the explicit formula

L Kφ(t, ξ̂) :=Kxx̂

[
µ

(
ŝ

vt

)
+ γKx

] [
φ

(
ξ̂ +

e1

Kx

)
− φ(ξ̂)

]

+Kxx̂ [β + γKx]

[
φ

(
ξ̂ −

e1

Kx

)
− φ(ξ̂)

]

+Kssinu

[
φ

(
ξ̂ +

e2

Ks

)
− φ(ξ̂)

]

+Kxx̂µ

(
ŝ

vt

)[
φ

(
ξ̂ −

e2

Ks

)
− φ(ξ̂)

]
.

(4)

Notice thatKs/Kx = 1/Kx

1/Ks
denotes the amount of biomass

generated by the consumption of one unit of substrate,
which is by definition the yield coefficient Y . The scale
parameters Kx,Ks can be expressed in terms of just one
scale parameter K := Kx and Y as Kx = K, Ks = Y K.

An explicit pathwise representation of ηK as a semimartin-
gale process can be obtained by applying Itô change of
variable formula (see e.g. Ikeda and Watanabe (1981)):



x̂K
t = x̂K

0 +

∫ t

0

[
x̂K
r µ

(
ŝKr
vr

)
− x̂K

r β

]
dr +M

γ,K,(x)
t ,

ŝKt = ŝK0 +

∫ t

0

[
usin −

1

Y
x̂K
r µ

(
ŝKr
vr

)]
dr +M

γ,K,(s)
t ,

(5)

where Mγ,K = (Mγ,K,(x),Mγ,K,(s)) is a discontinuous
local martingale associated to the process ηK whose
quadratic variation terms can be explicitly computed:

〈Mγ,K,(x)〉t =
∫ t

0

2γx̂K
r dr +

1

K

∫ t

0

x̂K
r

[
µ

(
ŝKr
vr

)
+ β

]
dr,

〈Mγ,K,(s)〉t =
1

Y K

∫ t

0

[
sinu+

1

Y
x̂K
r µ

(
ŝKr
vr

)]
dr,

〈Mγ,K,(x,s)〉t = 0.

(6)

It can be shown that ηK is non-explosive, i.e., almost
surely, ηKt is well-defined for all t ≥ 0. The only term that
is not divided by the scale parameter K is the first term
of 〈Mγ,K,(x)〉, and as K tends to infinity, it is the only
second order term that does not vanish. The limit process
η� := (x̂t, ŝt)t≥0 is shown to solve, in the weak sense, the
Stochastic Differential Equation (SDE)




dx̂t =

(
µ

(
ŝt

vt

)
− β

)
x̂tdt+

√
2γx̂tdWt,

dŝt =

(
−

1

Y
µ

(
ŝt

vt

)
x̂t + usin

)
dt,

(7)

where v is given by (3) and (Wt)t≥0 is a standard one-
dimensional Brownian motion. This result is stated in the
next proposition:

Proposition 2. Suppose Assumption 1 holds. The sequence
of processes (ηK)K∈N with infinitesimal generator (4), and

deterministic initial condition ηK0 = ξ̂0 = (ŷ, ẑ), is tight in
P(D([0,∞);R2)) (the space of r.c.l.l. functions with values
in R2), and converges in distribution to a weak solution η�

of the stochastic differential equation (7) with the same
initial condition η0.

Proof. [Sketch of proof] We prove that the sequence of
probability laws of the processes (ηK)K∈R is tight, and
then there exists a law P on D([0,∞);R2) that is a
weak limit of the sequence (ηK)K∈R. Using the pointwise
convergence of the generators L K to the generator of (7),
defined for ξ = (x, s) and φ ∈ C 2(R2) by the formula

L φ(t, ξ) =
∂

∂x
φ(ξ)

(
µ

(
s

vt

)
− β

)
x

+
∂

∂s
φ(ξ)

(
−

1

Y
µ

(
s

vt

)
x+ usin

)
+ γx

∂2

∂x2
φ(ξ),

we prove that the limit law P is a solution of the mar-
tingale problem associated to (7), see e.g. (Karatzas and
Shreve, 1991, Section 5.4), and thus, is a weak solution of
(7). �

Let us set γ̃ :=
√
2γ and define the limit process of

concentrations (ηt)t≥0 = (xt, st, vt)t≥0, where xt := x̂t/vt,
st := ŝt/vt. Using Itô’s formula (Ikeda and Watanabe,
1981, Theorem 1.5.5), we obtain that the dynamics of
(ηt)t≥0 is characterized by the following SDE




dxt =

[(
µ(st)− β −

u

vt

)
xt

]
dt+ γ̃

√
xt

vt
dWt, t ≥ 0,

dst =

[
−

1

Y
µ(st)xt +

u

vt
(sin − st)

]
dt,

dvt = udt.

(8)

Remark 3. If we suppose that γ̃ = γ = 0 (i.e. there is not
demographic randomness), we recover the deterministic
SBR model (1).

2.2 Chemostat model

For the chemostat model we follow a similar approach than
for the SBR case. In this case we have u := Qin = Qout, so
the culture volume v is constant. Let us define as before x̂K

t
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nutrient sin and without bacteria is poured into the
bioreactor at an inflow rate u ∈ [0, umax]. A standard
assumption on the growth rate of microorganisms is that
it is proportional to the mass of microorganisms and that
it depends on the substrate concentration by means of the
uptake function µ(·) (see Smith and Waltman (1995)). The
yield coefficient of the reaction Y , which is the quantity of
biomass produced when one unit of substrate is consumed
by the reaction, is a positive constant. For the SBR the
culture volume is bounded between a minimum volume
vmin assumed to be the lowest volume level of operation,
and a maximum volume vmax given by the maximum
operative capacity of the tank. The usual deterministic
model for the SBR is given by the equations



ẋ = µ(s)x−
u

v
x,

ṡ = −
1

Y
µ(s)x+

u

v
(sin − s),

v̇ = u.

(1)

For the chemostat the input and output flow rates are
equal, so the culture volume is assumed to be constant.
The usual deterministic model of the chemostat is given
by the equations


ẋ =

(
µ(s)−

u

v

)
x,

ṡ = −
1

Y
µ(s)x+

u

v
(sin − s).

(2)

In this work we extend these models to the stochastic
case when there exists demographic stochasticity, that
is, when the stochasticity comes from the randomness
induced by the births and deaths in a large population. In
the case of the stochastic SBR system, we show that the
minimum expected time problem is meaningless, because
with positive probability biomass extinction occurs. Thus,
we are naturally led to consider the problem of maximizing
the probability of reaching the target before extinction
occurs. We sketch the proof of a Dynamic Programming
Principle (DPP) for this problem. Analogous statements
can be proved for the stochastic chemostat model but, for
the sake of shortness, they will not be reproduced in this
article.

We point out that the stochastic model we obtain, based
on particle system approximations, allows us to justify the
description of the dynamics of the macroscopic variables
by means of a Stochastic Differential Equation (SDE).
This is an important step, since then standard methods
to dicretize SDEs can be implemented in order to approx-
imate the stochastic dynamics. These discretizations can
have a different scale than the original microscopic model,
the latter being be difficult to handle numerically.

2. STOCHASTIC MODELS OF SBR AND
CHEMOSTAT

In this section we want to establish continuous stochastic
models for the SBR and the chemostat. We deduce the
continuous model as a limit of individual-based birth
and death processes including a demographic stochasticity
parameter modelling fast birth and death rates of the
microorganisms.

In what follows we denote by x̂ and ŝ the masses of micro-
bial organism and substrate in the tank (in grams), and
v the culture volume (in liters). Suppose that water with

a concentration of substrate sin is injected to (extracted
from) the bioreactor’s tank with an input flow rate (output
flow rate) Qin (Qout). The mixture in the bioreactor is
continuously stirred by an agitator, so the distribution
of cells and molecules in the tank can be assumed to be
homogeneous. The changes of mass of each component are
given by microscopical changes in the numbers of bacterial
cells X and substrate molecules S, while the changes on
the culture volume v are given by the continuous variation
of the inflow and output flow rates. We suppose that the
rate of change of the system (X,S) depends only of the
current state of the system and of the volume at the
current time t, and that two of the following events cannot
occur at the same time: the division of a microbial cell,
the death of a cell, the entry of a substrate molecule into
the tank, and the consumption of a substrate molecule
by a cell. For these reasons we model (X,S) as a time
inhomogeneous birth and death process. Such process is
determined by its jumps rate scheme, which is described
as follows:

• the individual rate of the division of a cell depends of
the concentration of available substrate at the time
instant t by means of the growth function µ(ŝ/vt),

• the individual death rate of a cell is a constant β ≥ 0,
• the individual rate of exit of a cell (or a substrate
molecule) is Qout/vt,

• the rate of entry of a substrate molecule is QinsinKs,

where Ks is the amount of substrate molecules per gram,
and the process of volume v̂t that starts with an initial
volume v0 ≥ vmin > 0 is defined by

vt = v0 +

∫ t

0

(Qin −Qout)dr.

We will make the following assumption on the growth
function µ(·) :
Assumption 1. The growth function µ : [0,+∞[ �→ [0,+∞[
is Lipschitz continuous, it satisfies that µ(0) = 0 and it is
bounded by above by a constant µmax > 0.

Since the number of particles of the system (X,S) is large,
it is convenient to study the behavior of the system of mass
(x̂, ŝ). In order to do so, we introduce the scale parameter
K := (Kx,Ks) whose components denote the numbers
of cells and substrate molecules per gram respectively.
Then, we can consider a discretization of the biomass and
substrate mass given by x̂K := X/Kx and ŝK := S/Ks.
The process (x̂K , ŝK) defined in that way has transitions
in biomass (resp. substrate mass) of the size of 1/Kx (resp.
1/Ks) and the jump rates on the biomass (resp. substrate
mass) are of the order of Kx (resp. Ks). This process takes
values in the space D2

K := (Z/Kx) × (Z/Ks). When the
components of K are large enough, the time evolution
of the system of mass approaches to system that varies
continuously in time. By means of this scaling we obtain
a macroscopic limit model.

At the same time, due to the discrete nature of the individ-
uals and the stochastic character of the process, we expect
demographic randomness to occur at a macroscopic level.
We introduce a parameter of demographic randomness
γ ≥ 0 that models the variance of the birth and death rates
of the bacterial population (Foley (1994)). For the SBR
and the chemostat models, we introduce this demographic
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the discretized biomass and ŝKt the discretized substrate
mass at a time instant t. The scheme of jumps and rates of
the process ηK = (x̂K , ŝK) can be summarized as follows:

• (x̂, ŝ) →
(
x̂+

1

Kx
, ŝ

)
with rate Kxx̂

[
µ

(
ŝ

v

)
+ γKx

]
,

• (x̂, ŝ) →
(
x̂−

1

Kx
, ŝ

)
with rate Kxx̂

[
β + γKx +

u

v

]
,

• (x̂, ŝ) →
(
x̂, ŝ+

1

Ks

)
with rate Kssinu,

• (x̂, ŝ) →
(
x̂, ŝ−

1

Ks

)
with rate Kxx̂µ

(
ŝ

v

)
+

u

v
ŝKs.

This process is characterized by its infinitesimal generator

L Kφ(ξ̂) :=

[
φ

(
ξ̂ +

e1

Kx

)
− φ(ξ̂)

]
Kxx̂

[
µ

(
ŝ

v

)
+ γKx

]

+

[
φ

(
ξ̂ −

e1

Kx

)
− φ(ξ̂)

]
Kxx̂

[
β + γKx +

u

v

]

+

[
φ

(
ξ̂ +

e2

Ks

)
− φ(ξ̂)

]
usinKs

+

[
φ

(
ξ̂ −

e2

Ks

)
− φ(ξ̂)

] [
Kxx̂µ

(
ŝ

v

)
+

u

v
ŝKs

]
.

(9)

As before, we have that ηK admits the following pathwise
representation


x̂K
t =x̂K

0 +

∫ t

0

x̂K
r

[
µ

(
ŝKr
v

)
− β −

u

v

]
dr +M

γ,K,(x)
t ,

ŝKt =ŝK0 +

∫ t

0

[
−
x̂K
r

Y
µ

(
ŝKr
v

)
+ u

[
sin −

ŝKr
v

]]
dr

+M
γ,K,(s)
t ,

(10)

where Mγ,K = (Mγ,K,(x),Mγ,K,(s)) is a discontinuous
local martingale associated to the process ηK whose
quadratic variation is

〈Mγ,K,(x)〉t =
∫ t

0

2γx̂K
r dr

+
1

Kx

∫ t

0

x̂K
r

[
µ

(
ŝKr
v

)
+ β +

u

v

]
dr,

〈Mγ,K,(s)〉t =
1

Ks

∫ t

0

[
usin + u

ŝKr
v

+
1

Y
x̂K
r µ

(
ŝKr
v

)]
dr,

〈Mγ,K,(x,s)〉t =0.

(11)

It can be proved that the birth and death process ηK is
non explosive, and as K tends to infinity, the limit process
η� := (x̂t, ŝt)t≥0 is a weak solution to the SDE




dx̂t =

(
µ

(
ŝt

v

)
− β −

u

v

)
x̂tdt+

√
2γx̂tdWt,

dŝt =

(
−

1

Y
µ

(
ŝt

v

)
x̂t + u

(
sin −

ŝt

v

))
dt,

(12)

where (Wt)t≥0 is a standard Brownian motion in R. This
result is stated in the next proposition:

Proposition 4. Suppose Assumption 1 holds. The sequence
of processes (ηK)K∈N with infinitesimal generator (9), and

deterministic initial condition ηK0 = ξ̂0 = (ŷ, ẑ), is tight in
P(D([0,∞);R2)), and converges in distribution to a weak
solution η of (12) with the same initial condition η0.

Proof. Analogous to the proof of Proposition 2.

Define γ̃ =
√
2γ. The limit process of concentrations

(ηt)t≥0 = (xt, st)t≥0, where xt := x̂t/v and st := ŝt/v
solve the SDE




dxt =

[
µ(st)− β −

u

v

]
xtdt+

γ̃
√
v

√
xtdWt,

dst =

[
−

1

Y
µ(st)xt +

u

v
(sin − st)

]
dt.

(13)

Remark 5. (i) If we suppose that γ̃ = γ = 0 (i.e.
there is not demographic randomness), we recover the
deterministic chemostat model (2).

(ii) Note that in model (8) the form of the diffusion
coefficient shows that the amplitude of the variations
of the biomass decreases with the volume. This is an
interesting behaviour that cannot be observed in the
chemostat model (13), since there the culture volume
is maintained constant.

2.3 Control problem.

From now on, we consider in both stochastic models (8)
-(13) the variable u as a control process, instead of a con-
stant parameter. We assume that the death rate β is null
and, without loss of generality, the yield coefficient will be
assumed Y = 1. In order to provide a rigorous framework,
let (Ω,F ,P) be a complete probability space that supports
a one-dimensional Brownian motion W = (Wt)t≥0. We say
that the control process u : Ω× [0,+∞[→ R is admissible
if u(ω, t) ∈ U := [0, umax] for almost all (a.a.) (ω, t) and u
is adapted with respect to the natural filtration generated
by the Brownian motion W (·), completed with the P-null
sets, that we denote by (Ft)t≥0. Let us discuss now the
existence and uniqueness of solutions of the SDEs of the
SBR 



dxt =

[
µ(st)−

ut

vt

]
xtdt+ γ̃

√
xt

vt
dWt,

dst =

[
−µ(st)xt +

ut

vt
(sin − st)

]
dt,

dvt = utdt,

(14)

and of the chemostat


dxt =

[
µ(st)−

ut

v

]
xtdt+

γ̃
√
v

√
xtdWt,

dst =

[
−µ(st)xt +

u

v
(sin − st)

]
dt.

(15)

for any admissible control u. The coefficients of these
equations do not satisfy the standard Lipschitz condi-
tion w.r.t. the state variables (they are not even locally
Lipschitz continuous) and, as a consequence, existence of
solutions of (14) is not guaranteed by the usual results
(see for instance, Ikeda and Watanabe (1981)). In order to
study existence of solutions of (14) and (15) we consider
a regularization and a truncation on the coefficients. By
means of these approximations, we can prove the existence
and uniqueness of solutions of the controlled SDEs (14)
and (15) up to the extinction time, defined as the first
time that the biomass x(·) reaches 0, which, contrary to
the deterministic case, is finite with positive probability.
Indeed, the following result holds true:

Proposition 6. Let u = (ut)t≥0 be an admissible control
and ηu the solution of (14) (or (15)). Then, the probability
that xu = (xu

t )t≥0 hits 0 at some time instant is positive.

Proof. [Sketch of proof] For the SBR model we use the
controlled mass model



dx̂t = µ

(
ŝt

vt

)
x̂tdt+ γ̃

√
x̂tdWt,

dŝt =

(
−µ

(
ŝt

vt

)
x̂t + utsin

)
dt,

dvt = utdt.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

13149



 J. Fontbona  et al. / IFAC PapersOnLine 50-1 (2017) 12611–12616 12615

From comparison theorems such as (Ikeda and Watanabe,
1981, Theorem VI.1.1), we know that the biomass compo-
nent x̂ can be bounded by above uniformly in the control
by the process x̄t solution of the equation

dx̄t = µmaxx̄tdt+ γ̃
√
x̄tdWt,

which is a CIR process for which there exists strong
solutions defined for all t ∈ [0,∞) and pathwise uniqueness
holds, see (Ikeda and Watanabe, 1981, Theorem IV.3.2).
From (Lamberton and Lapeyre, 1996, Proposition 6.2.4)
we see that its probability of extinction is strictly positive,
which implies the same result for x̂t.

For the chemostat model, the same argument applies
directly comparing the concentration process xt with x̄t
solution of the equation

dx̄t = µmaxx̄tdt+
γ̃
√
v

√
x̄tdWt. �

2.4 Maximization of probability of attaining a target in the
SBR

Typically, the problem of depollution of wastewater with
the SBR consists of reaching a substrate concentration
level sout > 0 with the tank at full capacity vmax in
minimal time. A consequence of Proposition 6 is that the
problem of minimization of expected treatment time is not
well posed, since the expected treatment time will always
be infinite, no matter what the control is. An interesting
problem that arises is the maximization of the probability
of reaching the target before extinction of the biomass. We
consider the domain D := [0,∞) × [0, sin] × [vmin, vmax],
the target set C := (0,∞)× [0, sout]×{vmax}, the full tank
set V := (0,∞) × [sout, sin] × {vmax}, the extinction set
E := {0} × [0, sin] × [vmin, vmax], and an initial condition
ξ ∈ D. For any Borel measurable set A ⊆ R3 and control
u ∈ U , we define the hitting times τuA := inf{t ≥ 0 | ηut ∈
A}. We define the cost function

J(ξ;u) = Pξ [τ
u
C ≤ τuE ] ,

where Pξ(·) denotes the probability law under η0 = ξ. The
problem is

(P) V (ξ) := sup
u∈U

J(ξ;u). (16)

This is the reach-avoid problem, in which we try to avoid
the extinction of the biomass and reach the target set.
This problem is adressed in a more general manner in
Chatterjee et al. (2011) for the discrete time case and
Esfahani et al. (2016) for the continuous time setting.
Nevertheless, problem (16) does not satisfy the hypotheses
of the dynamic programming principle stated in Esfahani
et al. (2016), since the diffusion coefficient is degenerate,
the target set and the extinction set do not satisfy the
interior cone condition, and the payoff function is not
lower semicontinuous in the whole domain. Moreover,
this problem has a mixed control-state constraint; indeed,
when the tank is full (v = vmax) the control is forced to
take the value u = 0. Nevertheless, on this set the cost
does not depend of the controls, but of the initial condition
ξ ∈ V. We denote the cost function on V by ṽ(·).
Proposition 7. The function ṽ(·) is continuous on V.

We restate problem (P) as a problem without the mixed
control-state constraint. For this, we consider the cost
function ṽ(·) previously defined, and we define the set

Γ := C ∪ V ∪ E . For every t ≥ 0, define Ft = (F t
r )r≥0

where F t
r is the σ−field σ(Wθ − Wt : t ≤ θ ≤ r ∨

t), completed with the P-null sets. We define the set of
admissible controls

Ut =
{
u : R+ × Ω → [0, umax] : u is Ft − progresively measurable

}
,

where R+ := [0,∞), and denote ηt,ξ,u the solution of the
controlled stochastic differential equation (14) with control
u ∈ Ut and initial condition ξ at initial time t. Define
τu := τuΓ = τuC ∧ τuV ∧ τuE , the cost function

J(t, ξ;u) = Et,ξ [1C(X
u
τu ) + ṽ(Xu

τu )1V (X
u
τu )] . (17)

where Et,ξ(·) is the expectation under the initial condition
ηt = ξ, and the new value function

(Pt,ξ) V (t, ξ) = sup
u∈Ut

J(t, ξ;u). (18)

For t, t′ ≥ 0, ξ = (y, z, w), ξ′ = (y′, z′, w′), we say that
(t′, ξ′) � (t, ξ) if t′ ↗ t and w′ ↘ w. We introduce,
as in (Touzi, 2013, Section 3.2), the lower and upper
semicontinuous envelopes of V ,

V�(t, ξ) := lim inf
(t′,ξ′)�(t,ξ)

V (t′, ξ′),

V �(t, ξ) := lim sup
(t′,ξ′)�(t,ξ)

V (t′, ξ′).

Proposition 8. (Dynamic Programming Principle). Let the
initial condition (t, ξ) ∈ D be fixed. For every Ft-stopping
time h, the value function V (·) satisfies the dynamic pro-
gramming inequalities:

V (t, ξ) ≤ sup
u∈Ut

E
[
V �(h ∧ τu, ηt,ξ,u

h∧τu )
]
, (19)

V (t, ξ) ≥ sup
u∈Ut

E
[
V�(h ∧ τu, ηt,ξ,u

h∧τu )
]
. (20)

Proof. Similar to (Touzi, 2013, Theorem 3.3). A previous
step is to prove, for each control u ∈ U , the lower semi-
continuity in probability of the function (t, η) �→ J(t, ξ;u)
under the convergence �.

As we stressed in the introduction a similar result holds
true for the analogous problem involving the controlled
chemostat model (15).

3. CONCLUSION

In this work, we have proposed a stochastic model for the
SBR and for the chemostat. They are obtained from the
natural demographic stochasticity that arises in a large
bacterial population, leading to non-standard controlled
stochastic systems. For small population sizes the extinc-
tion of the biomass can occur, which is a phenomenon
that cannot be explained in the deterministic setting. This
phenomenon implies, in particular, that the problem of
minimal treatment time is not well defined. For this rea-
son, caution is advised when considering an optimization
criteria for the bioreactor in a stochastic framework. We
propose a reach-avoid problem similar to Esfahani et al.
(2016), consisting of the maximization of the probability
of attaining the target while avoiding extinction; the pro-
posed problem has several technical difficulties . We have
proved that the controlled SDE is well-posed and also we
have shown that the DPP (19)-(20) holds. From this result
it is possible to show that V is a discontinuous viscosity
solution of an associated Hamilton-Jacobi-Bellman (HJB).
However, we are not aware of uniqueness principles for
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the discretized biomass and ŝKt the discretized substrate
mass at a time instant t. The scheme of jumps and rates of
the process ηK = (x̂K , ŝK) can be summarized as follows:

• (x̂, ŝ) →
(
x̂+

1

Kx
, ŝ

)
with rate Kxx̂

[
µ

(
ŝ

v

)
+ γKx

]
,

• (x̂, ŝ) →
(
x̂−

1

Kx
, ŝ

)
with rate Kxx̂

[
β + γKx +

u

v

]
,

• (x̂, ŝ) →
(
x̂, ŝ+

1

Ks

)
with rate Kssinu,

• (x̂, ŝ) →
(
x̂, ŝ−

1

Ks

)
with rate Kxx̂µ

(
ŝ

v

)
+

u

v
ŝKs.

This process is characterized by its infinitesimal generator

L Kφ(ξ̂) :=

[
φ

(
ξ̂ +

e1

Kx

)
− φ(ξ̂)

]
Kxx̂

[
µ

(
ŝ

v

)
+ γKx

]

+

[
φ

(
ξ̂ −

e1

Kx

)
− φ(ξ̂)

]
Kxx̂

[
β + γKx +

u

v

]

+

[
φ

(
ξ̂ +

e2

Ks

)
− φ(ξ̂)

]
usinKs

+

[
φ

(
ξ̂ −

e2

Ks

)
− φ(ξ̂)

] [
Kxx̂µ

(
ŝ

v

)
+

u

v
ŝKs

]
.

(9)

As before, we have that ηK admits the following pathwise
representation


x̂K
t =x̂K

0 +

∫ t

0

x̂K
r

[
µ

(
ŝKr
v

)
− β −

u

v

]
dr +M

γ,K,(x)
t ,

ŝKt =ŝK0 +

∫ t

0

[
−
x̂K
r

Y
µ

(
ŝKr
v

)
+ u

[
sin −

ŝKr
v

]]
dr

+M
γ,K,(s)
t ,

(10)

where Mγ,K = (Mγ,K,(x),Mγ,K,(s)) is a discontinuous
local martingale associated to the process ηK whose
quadratic variation is

〈Mγ,K,(x)〉t =
∫ t

0

2γx̂K
r dr

+
1

Kx

∫ t

0

x̂K
r

[
µ

(
ŝKr
v

)
+ β +

u

v

]
dr,

〈Mγ,K,(s)〉t =
1

Ks

∫ t

0

[
usin + u

ŝKr
v

+
1

Y
x̂K
r µ

(
ŝKr
v

)]
dr,

〈Mγ,K,(x,s)〉t =0.

(11)

It can be proved that the birth and death process ηK is
non explosive, and as K tends to infinity, the limit process
η� := (x̂t, ŝt)t≥0 is a weak solution to the SDE




dx̂t =

(
µ

(
ŝt

v

)
− β −

u

v

)
x̂tdt+

√
2γx̂tdWt,

dŝt =

(
−

1

Y
µ

(
ŝt

v

)
x̂t + u

(
sin −

ŝt

v

))
dt,

(12)

where (Wt)t≥0 is a standard Brownian motion in R. This
result is stated in the next proposition:

Proposition 4. Suppose Assumption 1 holds. The sequence
of processes (ηK)K∈N with infinitesimal generator (9), and

deterministic initial condition ηK0 = ξ̂0 = (ŷ, ẑ), is tight in
P(D([0,∞);R2)), and converges in distribution to a weak
solution η of (12) with the same initial condition η0.

Proof. Analogous to the proof of Proposition 2.

Define γ̃ =
√
2γ. The limit process of concentrations

(ηt)t≥0 = (xt, st)t≥0, where xt := x̂t/v and st := ŝt/v
solve the SDE




dxt =

[
µ(st)− β −

u

v

]
xtdt+

γ̃
√
v

√
xtdWt,

dst =

[
−

1

Y
µ(st)xt +

u

v
(sin − st)

]
dt.

(13)

Remark 5. (i) If we suppose that γ̃ = γ = 0 (i.e.
there is not demographic randomness), we recover the
deterministic chemostat model (2).

(ii) Note that in model (8) the form of the diffusion
coefficient shows that the amplitude of the variations
of the biomass decreases with the volume. This is an
interesting behaviour that cannot be observed in the
chemostat model (13), since there the culture volume
is maintained constant.

2.3 Control problem.

From now on, we consider in both stochastic models (8)
-(13) the variable u as a control process, instead of a con-
stant parameter. We assume that the death rate β is null
and, without loss of generality, the yield coefficient will be
assumed Y = 1. In order to provide a rigorous framework,
let (Ω,F ,P) be a complete probability space that supports
a one-dimensional Brownian motion W = (Wt)t≥0. We say
that the control process u : Ω× [0,+∞[→ R is admissible
if u(ω, t) ∈ U := [0, umax] for almost all (a.a.) (ω, t) and u
is adapted with respect to the natural filtration generated
by the Brownian motion W (·), completed with the P-null
sets, that we denote by (Ft)t≥0. Let us discuss now the
existence and uniqueness of solutions of the SDEs of the
SBR 



dxt =

[
µ(st)−

ut

vt

]
xtdt+ γ̃

√
xt

vt
dWt,

dst =

[
−µ(st)xt +

ut

vt
(sin − st)

]
dt,

dvt = utdt,

(14)

and of the chemostat


dxt =

[
µ(st)−

ut

v

]
xtdt+

γ̃
√
v

√
xtdWt,

dst =

[
−µ(st)xt +

u

v
(sin − st)

]
dt.

(15)

for any admissible control u. The coefficients of these
equations do not satisfy the standard Lipschitz condi-
tion w.r.t. the state variables (they are not even locally
Lipschitz continuous) and, as a consequence, existence of
solutions of (14) is not guaranteed by the usual results
(see for instance, Ikeda and Watanabe (1981)). In order to
study existence of solutions of (14) and (15) we consider
a regularization and a truncation on the coefficients. By
means of these approximations, we can prove the existence
and uniqueness of solutions of the controlled SDEs (14)
and (15) up to the extinction time, defined as the first
time that the biomass x(·) reaches 0, which, contrary to
the deterministic case, is finite with positive probability.
Indeed, the following result holds true:

Proposition 6. Let u = (ut)t≥0 be an admissible control
and ηu the solution of (14) (or (15)). Then, the probability
that xu = (xu

t )t≥0 hits 0 at some time instant is positive.

Proof. [Sketch of proof] For the SBR model we use the
controlled mass model



dx̂t = µ

(
ŝt

vt

)
x̂tdt+ γ̃

√
x̂tdWt,

dŝt =

(
−µ

(
ŝt

vt

)
x̂t + utsin

)
dt,

dvt = utdt.
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this equation in the literature and so a characterization of
the value function as the unique discontinuous viscosity
solution of the associated HJB equation remains as a
difficult and interesting subject of research.

The perspectives of future work are the proof of the exis-
tence of a (relaxed) optimal solution of problem (P) (see
(16)), as well as the study of Markov chains approxima-
tions of the continuous problem, in the spirit of Kushner
and Dupuis (2001).
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