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Abstract. The evolution of cellular automata and of finitely anticipative transformations is
studied by using right sets. These are the sets of symbols that are compatible with a past
of a position and the respective coordinate of the transformation. Our main result shows,
under some suitable conditions, that if the entropy converges to zero then the right sets
increase towards the whole alphabet. We discuss these concepts with Wolfram automata.

1. Main concepts
Here we study explicit and computable necessary conditions in order that the entropy
of iterated cellular automata—or more generally the iterated of finitely anticipative
transformations—converges to zero.

The evolution of cellular automata has been widely studied. Many of these works dealt
with the limit set, which is the intersection of all the iterated sets of the cellular automaton,
see for example [11].

When the iterated sets of a cellular automaton starting from a fullshift stabilize after
a finite number of steps, the automaton is called stable, and the limit set is a factor of a
fullshift. Hence, it is a sofic system and the set of its words is a regular language. In [9] it
was shown that any subshift of finite type with a fixed point can be the limit set of a stable
cellular automaton and an analogous result is proved for a sofic system of almost of finite
type.

We focus on the case of unstable limit sets, that is when the sequence of iterated sets
of a cellular automaton is strictly decreasing. In this case the language of the limit set
cannot be the one of a subshift of finite type, see [6]. In [5] there are given examples of
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limit sets having non-regular-context-free, or non-context-free context-sensitive, or non-
recursive enumerable languages. This complexity was also studied in [2]. Several works
have been devoted to study the limit sets of particular rules, thus in [12] it is shown that
the limit set of Wolfram rule 122 is neither regular nor context-free.

In §§1.1 and 1.2 we introduce cellular automata and finitely anticipative shift-
commuting measurable transformations. For these last mappings there exists some fixed
number r such that, for all q, the past of the image point up to coordinate q only depends
on the past of the point up to coordinate q + r . This class of mappings is considerably
larger than cellular automata because they are not necessarily continuous.

In §2 we introduce right sets and right events for finitely anticipative shift-commuting
measurable transformations. Right sets are the sets of symbols that are compatible with
the past of a point and the respective coordinate of the automaton. They correspond to
the compatible right extensions of length 1, introduced in [3] for surjective automata, see
[4, §2].

For finitely anticipative mappings starting from a shift-invariant probability µ having
lower bounded transition probabilities, we show in Theorem 3.1 that a necessary condition
in order that the entropy converges to zero is that the right set converges to the whole
alphabet µ-a.e. (almost everywhere), that is if any letter is compatible with the past of a
point and the respective symbol of the mapping µ-a.e.

We note that the right set is a useless notion for right permutative cellular automata
because the right set remain fixed along the iterations; in fact at any time it is a singleton.
So, for these transformations our result does not apply.

1.1. Shift-commuting, continuous and measurable transformations. Let A be a finite
non-empty alphabet; to avoid trivial situations we assume it is not a singleton. We fix
3 := AZ the fullshift space and F :3→3 a transformation, which is assumed to be non-
constant, that there it does not exist y∗ ∈3 such that F(x)= y∗ for all x ∈3.

The set 3 endowed with the usual metric is a compact metric space. We denote
by B its Borel σ -field. An element of 3 is denoted by x = (x(n) : n ∈ Z). Let σ :
3→3, x→ (σ x)(n)= x(n + 1), for all n ∈ Z, be the shift transformation which is an
homeomorphism, so it is bimeasurable with respect to B.

From now on, the transformation F :3→3 is assumed to be shift-commuting, that
is it satisfies F ◦ σ = σ ◦ F . Note that this implies F i

◦ σ j
= σ j

◦ F i for all i ≥ 1 and
j ∈ Z, in particular F i

:3→3 is shift-commuting for all i ≥ 1.
For −∞≤ p ≤ q ≤∞ define Zq

p = {m ∈ Z : p ≤ m ≤ q} and for x ∈3 denote xq
p =

(x(n) : n ∈ Zq
p) ∈ AZq

p . When p ≤ q are finite, we identify AZq
p with Aq−p+1.

The transformation F is a cellular automaton (c.a.) if it is continuous. In [3] this is
shown to be equivalent to the existence of integers l ≤ r and f : AZr

l → A, called a local
rule, that satisfies

for all x ∈3, for all n ∈ Z : Fx(n)= f (xn+r
n+l ).

Let us discuss measurability of F in the following framework. Let µ be a fixed σ -
invariant probability measure on (3, B), so it satisfies µ= µ ◦ σ−1. We will always
assume that B has been µ-completed with the µ-negligible sets and by an abuse of notation
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we will continue to denote it by B. From Lusin’s theorem, see [1, p. 69], we have that
F :3→3 is a measurable transformation with respect to the µ-completed σ -field, if and
only if, for all m > 0, there exists a compact set K (m)⊆3 such that µ(3\K (m)) < 1/m
and the restriction F : K (m)→3 is continuous.

Note that µ(
⋃

m>0 K (m))= 1. Since F : K (m)→3 is continuous, the shift-
commuting property implies F : σ j K (m)→3 is also continuous. Then, in our framework
the set

⋃
m>0 K (m) can be assumed to be a σ -invariant set (of full probability).

Let 30 ∈ B. We have that the restriction F :30→3 is continuous at some point x ∈
30 if and only if, for all k ≥ 0, there exists lx (k) and rx (k) with lx (k)≤ rx (k) and such
that

for all y ∈30, y( j)= x( j) for all j ∈ {lx (k), . . . , rx (k)}

implies Fy( j)= Fx( j) for all | j | ≤ k. (1)

If F :30→3 is continuous for some 30 ∈ B with µ(30)= 1, then F is said to be
µ-almost surely (a.s.) continuous. In this case F is measurable because 30 can be
interiorly approximated by compact sets. In §1.2.1, we will describe the µ-a.s. continuous
transformations by using trees. We note that if F :30→3 is continuous, then F :⋃

j∈Z σ
j (30)→3 is also continuous, and so 30 can be assumed to be σ -invariant.

From now on we assume that

F :3→3 is a shift-commuting measurable transformation.

1.2. Finitely anticipative transformations. The transformation F is said to be finitely
anticipative (f.a.) if there exists r ∈ Z, called an anticipation (of F), such that

for all x ∈3, for all n ∈ Z : the coordinate (Fx)(n) only depends on xn+r
−∞ . (2)

We also say that F has anticipation r .

Remark 1.1. In the definition of anticipation we are not requiring that it satisfies some sort
of minimality. That is, an anticipation is not a unique number but any of the numbers that
satisfies (2). Indeed, if r is an anticipation of F then any r ′ ≥ r is also an anticipation.

Let F be f.a. having anticipation r . We define the mapping

f +r : AZr
−∞→ A, xr

−∞→ f +r (x
r
−∞)= (Fx)(0). (3)

For any other anticipation r ′ of F we have

f +r ′ (x
r ′
−∞)= (Fx)(0)= f +r (x

r
−∞). (4)

The shift-commuting property implies

(Fx)(n)= (Fσ n x)(0)= f +r ((σ
n x)r−∞)= f +r (x

n+r
−∞).

For all q ∈ Z, we define a one-sided map denoted F+r by

F+r : AZq+r
−∞ → AZq

−∞ with (F+r xq+r
−∞ )(n)= f +r (x

n+r
−∞) for n ≤ q. (5)
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This definition strongly depends on the fixed anticipation r . Note that the notation F+r does
not mention explicitly the dependence on q, which is through the domain of definition and
the range AZq+r

−∞ and AZq
−∞ , respectively.

An inductive argument implies that, for i ≥ 1, the iterated transformation F i
:3→3

is also f.a. having ir as an anticipation (which may not be a minimal anticipation for F i ).
As before we can define

f (i)+ir : AZ ir
−∞→ A by f (i)+ir (x ir

−∞)= (F
i x)(0).

We have the recursive relation

f (i)+ir (x ir
−∞)= f +r ( f (i−1)+(xq+(i−1)r

−∞ ) : q ≤ r). (6)

The associated one-sided map (similar to (5)), denoted by F i+
ir , is given by

F i+
ir : AZq+ir

−∞ → AZq
−∞ with (F i+

ir xq+ir
−∞ )(n)= f (i)+ir (xn+ir

−∞ ) for n ≤ q. (7)

Relation (6) can be written as

F i+
ir (x

m+ir−1
−∞ )= F+r (F

(i−1)+
(i−1)r (x

m+ir−1
−∞ )). (8)

Similarly, we say F is finite memory (f.m.) if there exists l ∈ Z (−l is called a memory)
such that, for all n ∈ Z, the coordinate Fx(n) only depends on x∞n+l . A similar observation
to Remark (1.1) can be stated. In the previous definitions the anticipation and memory, r
and −l respectively, have intuitive meaning when l ≤ 0 and r ≥ 0, but we do not impose
these conditions.

We will only focus on f.a. transformations because all the notions and results we shall
obtain for them can be also rephrased for f.m. transformations.

We will choose the minimal anticipation r for the transformation F (that is r is an
anticipation and r − 1 is not). The anticipation of F i will be fixed as ir . Hence, in all the
previous notions we will not mention explicitly the dependence on the anticipation, so we
write f +, F+ instead of f +r , F+r and f (i)+, F i+ instead of f (i)+ir , F i+

ir .

Remark 1.2. Let F be an f.a. transformation. One could ask why, if we have fixed the
minimal anticipation r for F , we do not fix the minimal anticipation for F i instead of
taking it as ir . This question is at the core of our work. In fact, the anticipation of F i

could be strictly smaller than ir for some i . More precisely, when µ is an ergodic σ -
invariant probability measure having lower bounded transition probabilities, in our main
result, which is Theorem 3.1, we show that if the entropy of the shift with respect to
µ ◦ F−i goes to zero, then for almost all points the anticipation of F i is smaller than ir
for i big enough (but this is not necessarily fulfilled in a uniform way).

Let F be a cellular automaton, so there exists integers l ≤ r defining a local rule f :
AZr

l → A. If we fix −l and r as the minimal ones, F is f.a. and f.m. with anticipation r
and memory −l. For q ∈ Z, the mapping F+ : AZq

−∞→ AZq−r
−∞ satisfies (F+xq

−∞)(n)=
f (xn+r

n+l ) for all n ≤ q − r .
Let p, q ∈ Z with p ≤ q and such that q − p ≥ r − l, then we can define

f (xq
p)= ( f (x p+r−l

p ), . . . , f (xq
q−(r−l))) ∈ AZq−r

p−l .
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Let i ≥ 1. The iterated F i
:3→3 is also a c.a. with local rule f (i) : Ai(r−l)+1

→ A.
Here, ir and −il are the anticipation and memory fixed for F i . These rules satisfy the
recursive relation

f (1) = f and f (i)(ai(r−l)+1
1 )= f (i−1)(b(i−1)(r−l)+1

1 ) for i ≥ 1, where

b( j (r − l)+ k)= f (a j (r−l)+k
( j−1)(r−l)+k), k = 1, . . . , r − l; j = 0, . . . , i − 1.

1.2.1. Description of µ-a.s. continuous transformations by trees. Let µ be a σ -
invariant probability measure on (AZ, B). We will characterize µ-a.s. continuous f.a.
transformations by means of trees. Only to have simple notation, we assume that µ has
complete support, that is it satisfies µ{x ∈ AZ

: xl = il , l ∈ J }> 0 for all finite subsets
J ⊂ Z.

For convenience, the nodes of the trees will be indexed by finite sequences of negative
numbers. Denote −N= Z−1

−∞. Let µ− be the induced σ−1-invariant probability measure
on A−N that satisfies µ−{x ∈ A−N : xl = il , l ∈ J } = µ{x ∈ AZ

: xl = il , l ∈ J } for every
finite subset J ⊂−N.

For k ≥ 1 the product space A{−k,...,−1} is simply denoted by A−k . Let Ev−k =

(v−k, . . . , v−1) ∈ A−k . The set A0 is defined as the singleton containing the empty
word Ev0 = ∅. For Ev−k ∈ A−k and a ∈ A, we set aEv−k = (a, v−k, . . . , v−1) ∈ A−(k+1). For
v= (vn : n ≤−1) ∈ A−N and k ≤−1, we put Ev−k = (v−k, . . . , v−1) ∈ A−k .

Let T ⊂
⋃

k≤0 A−k be a rooted tree graph with root ∅. We assume that T satisfies

for all Ev−k ∈ T either [∀a ∈ AaEv−k ∈ T ] or [∀a ∈ AaEv−k 6∈ T ]. (9)

When the second case occurs Ev−k ∈ T is called a leaf. We denote by L the set of all leaves.
We assume that Ev0 = ∅ is not a leaf:

Ev0 6∈ L. (10)

Note that we can have sequences (vn : n ≤−1) ∈ A−N for which no Ev−k =

(v−k, . . . , v−1) ∈ A−k is a leaf. We will assume that

µ−{v= (vn : n ≤−1) ∈ A−N : ∃`(v)≤−1 such that Ev`(v) ∈ L} = 1. (11)

From (9), the integer `(v) is necessarily unique. Let Ev−k ∈ T . We denote by Succ*(Ev−k)=

{Ev−(k+ j) ∈ T : j ≥ 0} the set of nodes of T hanging from Ev−k . The above assumptions,
(11) and µ with complete support, imply that L ∩ Succ*(Ev−k) is a singleton if and only if
Ev−k ∈ L.

Let fL : L→ A be a function satisfying the following condition: for all Ev−k ∈ T the
restriction fL : L ∩ Succ*(Ev−k)→ A is constant if and only if Ev−k ∈ L (that is when
L ∩ Succ*(Ev−k)= {Ev−k}). This is a minimality condition on the tree for representing fL,
because when the restriction fL : L ∩ Succ*(Ev−k)→ A is constant then all the nodes of
the tree hanging from Ev−k can be collapsed into a unique leaf.

Define
3−0 = {y ∈3 : ∃k ≥ 1, (y−k, . . . , y−1) ∈ L}.

By (11) we have µ(3−0 )= 1. Then, the shift-invariant set 30 =
⋂

n∈Z σ
j3−0 satisfies

µ(30)= 1.
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Let r be a fixed number. We can define FL :30→3 by:

for all m ∈ Z, FLx(m)= fL(Ev`(v)) where

v= (vn : n ≤−1) ∈ A−N is such that vn = x(m + r + 1+ n) for all n ≤−1.

Let us prove that FL :30→3 is continuous. Let k ≥ 0 be fixed and x ∈30. We have
FLx( j)= fL(Ev`(v j )), where v j

=(v
j
n : n ≤−1) ∈ A−N is such that v j

n=x( j + r + 1+ n)
for n ≤−1 and | j | ≤ k. Take

rx (k)= k + r and lx (k)=min{ j + r + `(v j ) : | j | ≤ k}.

By definition, when y ∈30 satisfies y( j)= x( j), for all j ∈ {lx (k), . . . , rx (k)}, we get
FLx( j)= FLy( j), for all | j | ≤ k. From (1) the continuity of FL :30→3 follows.

Since 30 is shift-invariant, we can extend FL to 3 by simply setting FL(x)= y∗, for
all x ∈3\30, where y∗ ∈3 is a fixed element. This extension FL is shift-commuting and
µ-a.s. continuous, and so also measurable. From definition FL is f.a. and the minimality
condition of the tree implies that r is the minimal anticipation of F .

It can be shown that every f.a. measurable shift-commuting f.a. transformation F :3→
3 is equal, µ-a.s., to some FL :3→3. We note that the assumption (10), Ev0 = ∅ is not a
leaf, is consistent with the fact that the transformation F is not constant.

When µ does not have complete support, in the above construction we must only take
care that all the branches v= (vn : n ≤−1) ∈ A−N containing a cylinder whose µmeasure
vanishes, do not have leaves.

1.3. Additional facts on measurability. Let us make further considerations on
measurability. As introduced, µ is a σ -invariant probability measure on (3, B) and B is
the µ-completed Borel σ -field. As usual, all the sub-σ -fields of B are assumed to contain
all the µ-negligible sets.

Every sub-σ -field C induces a measurable partition 3̂C of 3 whose elements are called
fibers and denoted by ξC . The fiber that contains a point x ∈3 is denoted by ξC(x). We
denote by µ̂ the measure induced by µ on 3̂C . Let Eµ(·|C)(x) be the mean expected value
with respect to C, which is defined µ-a.e. in x . We have that, µ̂-a.e. in ξC , there exist
probability measures µξC supported on ξC such that, for every Borel set B ⊆3, we have

Eµ(1B |C)(x)=
∫
ξC(x)

1B(z) dµξC(x)(z)µ-a.e. in x ∈3. (12)

See [10] and [7, §3.5]. The measure µ̂ will be simply denoted by µ.
Let Y be a family of functions with domain 3 and with range in some complete

separable metric space. We denote by σ (Y) the σ -field generated by Y , that is the smallest
σ -field on 3 such that all Y are measurable.

We define X (n) :3→ A, x→ X (n)(x)= x(n) the nth coordinate function and, for
q ≤ n, we put Xn

q = (X (m) : q ≤ m ≤ n). Also set Xn
−∞ = (X (m) : m ≤ n).

Let F :3→3 be a measurable shift-commuting transformation. We define (F X)nq =
((F ◦ X)(m) : q ≤ m ≤ n) and (F X)n−∞ = ((F ◦ X)(m) : m ≤ n). In these expressions
(F ◦ X)(m)(x)= (Fx)(m) for x ∈3. In particular, for the shift σ j we have (σ j

◦ X)
(m)(x)= (σ j x)(m)= x(m + j).
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On the variables X we use all the notation already introduced for points x . For q ≤ m
we define the following sub-σ -fields:

Gm
q = σ (Xm

q ), Gm
−∞ = σ (Xm

−∞),

[FG]mq = σ ((F X)mq ), [FG]m−∞ = σ ((F X)m−∞).

Note that
[FG]mq = F−1(Gm

q ), [FG]m−∞ = F−1(Gm
−∞).

The fibers ξC(x) of these sub-σ -fields C, which contain the point x ∈3, are identified with

ξC(x)= {z ∈3 : zm
−∞ = xm

−∞} when C =Gm
−∞,

ξC(x)= {z ∈3 : (Fz)m−∞ = (Fx)m−∞} when C = [FG]m−∞. (13)

When F is f.a. with anticipation r we have the inclusion

for all m ∈ Z, [FG]m−∞ ⊆Gm+r
−∞ .

For any sub-σ -field C on 3 we put σ j (C)= {σ j (B) : B ∈ C}. By using that F is σ -
commuting, we get

σ j (Gm+r
−∞ )=Gm+r− j

−∞ , σ j ([FG]m−∞)= [FG]m− j
−∞ . (14)

Recall the notation µ(B|Gm
−∞)= Eµ(1B |Gm

−∞) for B ∈ B. For c ∈ A we put

µ(c|xm
−∞)= µ(X (m + 1)= c|Gm

−∞)(x). (15)

Then µ(x(m + 1)|xm
−∞) is well defined by taking c = x(m + 1) in (15).

For every measurable bounded function g :3→ R and every sub-σ -field C the
following holds:

Eµ(g ◦ F |F−1(C))(x)= Eµ◦F−1(g|C)(Fx)µ-a.e. in x ∈3.

By using that [FG]−1
−∞ = F−1(G−1

−∞) we deduce

Eµ◦F−1(g|G−1
−∞) ◦ F = Eµ(g ◦ F |[FG]−1

−∞)µ-a.e.

When y = Fx , we have

µ ◦ F−1(X (m)= y(m + 1)|Gm−1
−∞ )(y)= µ((F X)(m)= y(m)|[FG]m−1

−∞ )(x). (16)

1.4. Measurable dynamics. Let µ be a σ -invariant probability measure on (3, B), so
it satisfies µ= µ ◦ σ−1. The entropy of σ with respect to µ is

hµ(σ )=− lim
n→∞

1
n

∑
xn−1

0 ∈An

µ(Xn−1
0 = xn−1

0 ) · log µ(Xn−1
0 = xn−1

0 ).

The measure µ is ergodic if every σ -invariant function g ∈ L1(µ) (so g = g ◦ σ µ-a.e.) is
necessarily constant µ-a.e. Since F is measurable shift-commuting, we get that µ ◦ F−1

is σ -invariant because

µ ◦ F−1
◦ σ−1

= µ ◦ (σ ◦ F)−1
= µ ◦ (F ◦ σ)−1

= µ ◦ σ−1
◦ F−1

= µ ◦ F−1.

When µ is ergodic then µ ◦ F−1 is also ergodic.
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Let i ≥ 1. Since F i
:3→3 is also measurable shift-commuting, then µ ◦ F−i is

σ -invariant and if µ is ergodic then µ ◦ F−i is also ergodic. Then F i is a measurable
factor from (3, µ, σ ) on (3, µ ◦ F−i , σ ). Moreover, for all j ≥ 1, F j is a measurable
factor from (3, µ ◦ F−i , σ ) on (3, µ ◦ F−(i+ j), σ ). Then, the entropy decreases with
the evolution of the automata,

· · · hµ◦F−(i+1)(σ )≤ hµ◦F−i (σ )≤ · · · ≤ hµ(σ ). (17)

If F is a c.a., the sets F i (3) are compact σ -invariant and they decrease with i ≥ 1.
The map F : F i (3)→ F i+1(3) is onto and shift-commuting, so it is a topological factor
between (F i (3), σ ) and (F i+1(3), σ ).

We shall be interested in understanding what kind of phenomenon occurs when
hµ◦F−i (σ ) decreases to zero. To this purpose we will introduce some concepts. For a
σ -invariant probability measure µ, define the lower bound of its transition probabilities
given the whole past:

χ+µ := inf{µ(x(m + 1)= a|xm
−∞) : a ∈ A, x ∈3}. (18)

Since µ is σ -invariant, the above definitions do not depend on m. In our main result we
assume χ+µ > 0. In this case, when µ(X (m + 1) ∈ D|xm

−∞) is arbitrary close to 1 then
we have D = A. This last fact will be used in the proof of Theorem 3.1. The class of
measures satisfying χ+µ > 0 contains the Markov measures on finite states with strictly
positive transition matrices and so the Bernoulli measures with strictly positive weights.

We note that if µ= λ is the uniform Bernoulli measure and F is surjective, then λ is
F-invariant, so it is also F i -invariant, λ ◦ F−i

= λ for i ≥ 1, and our main result will not
apply. For a deep study of entropy in the surjective case see [4].

2. Right sets and events
2.1. Right sets. Let F be an f.a. transformation. We denote by r the fixed anticipation
for F , which is the minimal one. The right set of xr−1

−∞ and c ∈ A is defined by

R f +(xr−1
−∞, c)= {b ∈ A : f +(xr−1

−∞b)= c}, (19)

which is an element in ℘(A)= {D : D ⊆ A}.
When c = (Fx)(0), R f +(xr−1

−∞, (Fx)(0)) is the set of compatible right extensions of
length 1, see [3] and [4]. We denote it by R f +(x)= R f +(xr−1

−∞, (Fx)(0)). Note that
R f +(x) ∈ ℘∗(A)= {D : D ⊆ A, D 6= ∅}.

We have R f +((σ j x)r−1
−∞, c)= {b ∈ A : f +(x j+r−1

−∞ b)= c}, and so

R f +(σ j x)= {b ∈ A : f +(x j+r−1
−∞ b)= (Fx)( j)}. (20)

Let i ≥ 1. The transformation F i
:3→3 is f.a. and has anticipation chosen to be

ir . We have R f (i)+(x ir−1
−∞ , c)= {b ∈ A : f (i)+(x ir−1

−∞ b)= c} and we put R f (i)+(x)=
R f (i)+(x ir−1

−∞ , (F i x)(0)). From (6) we get

f (i−1)+(x ir−1
−∞ a)= f (i−1)+(x ir

−∞)⇒ f i+(x ir−1
−∞ a)= f i+(x ir

−∞). (21)

From relations (20) and (21) we obtain the pointwise inclusion

for all i ≥ 2, R f (i−1)+
◦ σ r
⊆ R f (i)+ .
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Then,
for all i ≥ 2, R f (i−1)+

⊆ R f (i)+
◦ σ−r .

Hence, the following limit is increasing and defines an element of ℘∗(A):

R∞(x)= lim
i→∞

R f (i)+
◦ σ−ir (x). (22)

For each x , the limit is obviously attained after a finite number of steps.
For c ∈ A the random variable R f +(Xr−1

−∞, c) is well defined, as well as R f +(X), and
they take values in ℘(A). The function R f +((σ j

◦ X)r−1
−∞, c) is G j+r−1

−∞ -measurable and
R f +(σ j

◦ X) is G j+r−1
−∞ ∨ σ ((F X)( j))-measurable.

Note that from the definition we have

(R f +(x)= A)⇔ (∀z ∈3 with zr−1
−∞ = xr−1

−∞ : (Fz)(0)= (Fx)(0)).

Let F be a c.a. given by a local function f having −l, r as the minimal memory and
anticipation values. Recall that f (i) denotes the local rule of the c.a. F i .

LEMMA 2.1. Let F be a c.a. Assume that, for some integer i ≥ 1, R f (i)(σ−ir z)= A.
Then, for any x i(l−r)−1

−∞ , the right sets satisfy R f (i)(σ−ir (x i(l−r)−1
−∞ z∞i(l−r)))= A. Moreover,

{R∞ = A} is an open set.

Proof. The first statement follows immediately from the definition. Let us show {R∞ = A}
is open. Take z ∈3 with R∞(z)= A. Then there exists î ≥ 1 such that R f (i)

◦ σ−ir (z)=
A for all i ≥ î . Note that, for all x ∈3 such that xr

l−i(r−l) = zr
l−i(r−l), we have

for all j ≤ i : R f ( j)
◦ σ− jr (x)= R f ( j)

◦ σ− jr (z).

Then V (z)= {x : xr
l−̂i(r−l)

= zr
l−̂i(r−l)

} is a open neighborhood of z such that R f (̂i)
◦

σ −̂ir (x)= A for all x ∈ V (z). �

2.2. Right events. We define the right event at coordinate m by

RF
m(x

m+r−1
−∞ , c) = {z ∈3 : zm+r−1

−∞ = xm+r−1
−∞ , zm ∈ R f +(xm+r−1

−∞ , c)}

= {z ∈3 : zm+r−1
−∞ = xm+r−1

−∞ , (Fz)(m)= c}. (23)

So RF
m(x

m+r−1
−∞ , c) is an event belonging to B. If c = (Fx)(m) we write

RF
m(x)=RF

m(x
m+r−1
−∞ , (Fx)(m)).

For every xm+r−1
−∞ ∈ Am+r−1

−∞ and c ∈ A, and for all x ∈3, we have that {X ∈
RF

m(x
m+r−1
−∞ , c)} is Gm+r−1

−∞ -measurable and {X ∈RF
m(x)} is Gm+r−1

−∞ ∨ σ ((F X)(m))-
measurable. Note that

{X ∈RF
m(x)} = {RF

m(X)=RF
m(x)} ⊆ {(F X)(m)= (Fx)(m)}. (24)

The function 3→ B, x→RF
m(x), satisfies

for all j ∈ Z : RF
m ◦ σ

j
=RF

m+ j . (25)
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Let i ≥ 1. The transformation F i
:3→3 has anticipation ir . We have

RF i

m (x
m+r−1
−∞ , c)= {z ∈3 : zm+ir−1

−∞ = xm+ir−1
−∞ , (F i z)(m)= c},

and when c = (F i x)(m) we put

RF i

m (x)=RF
m(x

m+ir−1
−∞ , (F i x)(m)).

Let µ be a σ -invariant probability measure. From (25) we have, for all m, q ∈ Z and all
B ∈ B,

µ(RF i

m (X)= B)= µ(RF i

q (X)= B).

Let us state a relation between right sets and right events.

LEMMA 2.2. Let C =Gm+ir−1
−∞ . Then

RF i

m (x)= {z ∈ ξC(x) : z(m + ir) ∈ R f (i)+(x)}. (26)

Proof. From (13) we have ξC(x)= {z ∈3 : z
m+ir−1
−∞ = xm+ir−1

−∞ }. Then,

RF i

m (x) = RF i

m (x
m+ir−1
−∞ , (F i x)(m))

= {z ∈ ξC(x) : f (i)+(zm+ir
−∞ )= (F i x)(m)}

= {z ∈ ξC(x) : z(m + ir) ∈ R f (i)+(xm+ir−1
−∞ , (F i x)(m))}

= {z ∈ ξC(x) : z(m + ir) ∈ R f (i)+(x)},

and the result follows. �

In a similar way as done with right sets and events, we could define the left sets and left
events for f.m. transformations, and we should obtain similar relations.

3. Main result
Let us state and prove our main result.

THEOREM 3.1. Let µ be an ergodic σ -invariant probability measure. Let F :3→3 be
an f.a. measurable shift-invariant transformation and χ+µ > 0. Then

lim
i→∞

hµ◦F−i (σ )= 0 implies R∞ = Aµ-a.e.

Proof. Let r be the minimal anticipation of F . Let c ∈ A and C =Gr+m−1
−∞ . From (12) and

(24) we have

µ((F X)(m)= c|C)(z)=
∫
ξC(z)

1{(Fu)(m)=c} dµξC(z)(u)

=

∫
{u∈3:um+r−1

−∞ =zm+r−1
−∞ ,(Fu)(m)=c}

dµξC(z)(u)=
∫
RF

m (z,c)
dµξC(z)(u)

= µξC(z)(R
F
m(z, c))= µ(RF

m(z, c)|C)(z). (27)
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Then, by using (13) and (16), we get, for y = Fx ,

µ ◦ F−1(X (m)= y(m)|ym−1
−∞ )

= µ ◦ F−1(Y (m)= y(m)|Gm−1
−∞ )(y)

= µ((F X)(m)= (Fx)(m)|[FG]m−1
−∞ )(x)

= µ(µ((F X)(m)= (Fx)(m)|Gm+r−1
−∞ )|[FG]m−1

−∞ )(x)

= µ(RF
m(X

r+m−1
−∞ , (Fx)(m))|[FG]m−1

−∞ )(x). (28)

It is known, for instance see [8, §4.3], that every ergodic σ -invariant probability measure
ρ satisfies

hρ(σ )=−
∫
3

log ρ(X (m)= x(m)|xm−1
−∞ ) dρ(x).

From the hypothesis we get that µ ◦ F−1 is an ergodic σ -invariant probability measure.
Then, from (28) we get, for all m ∈ Z,

hµ◦F−1(σ ) = −

∫
3

log µ ◦ F−1(X (m)= y(m)|ym−1
−∞ ) dµ ◦ F−1(y)

= −

∫
3

log µ(RF
m(X

m+r−1
−∞ , (Fx)(m))|[FG]m−1

−∞ )(x) dµ(x).

Then

hµ◦F−i (σ )=−

∫
3

log µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x),

and so

lim
i→∞

hµ◦F−i (σ )

=− lim
i→∞

∫
3

log µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x). (29)

Assume now limi→∞ hµ◦F−i (σ )= 0. By (29), this implies

lim
i→∞

∫
3

log µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x)= 0.

By Jensen’s inequality we get

lim inf
i→∞

log
∫
3

µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x)≥ 0.

Then
lim inf

i→∞

∫
3

µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x)≥ 1. (30)

Observe that

lim inf
i→∞

∫
3

µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x)

= lim inf
i→∞

∫
3

µ(RF i

m (X
m+ir−1
−∞ , (F i x)(m))|Gm+ir−1

−∞ )(x) dµ(x).
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Let C =Gm+ir−1
−∞ . From (13) and (26), ξC(x)= {w ∈3 : z

m+ir−1
−∞ = xm+ir−1

−∞ } and
RF i

m (x)= {z ∈ ξC(x) : z(m + ir) ∈ R f (i)+(x)}. Therefore,

µ(RF i

m (X
m+r−1
−∞ , (F i x)(m))|Gm+ir−1

−∞ )(x)= µξC(x)(X (m + ir) ∈ R f (i)+(x)).

We have shown

lim inf
i→∞

∫
3

µ(RF i

m (X
m+r−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x)

= lim inf
i→∞

∫
3

µξC(x)(X (m + ir) ∈ R f (i)+(x)) dµ(x). (31)

For i ≥ 1, define

3i = {x ∈3 : ∀ j ≥ i R f ( j)+
◦ σ− jr (x)= R∞(x)}.

From (22) we have 3i ↗3, so for all ε > 0 there exists ĩ(ε) such that µ(3ĩ(ε)) > 1− ε.
Since 3i is increasing with i ,

for all i ≥ ĩ(ε) : µ(3i ) > 1− ε. (32)

Let us denote
36= = {x ∈3 : R∞(x) 6= A}.

Then
36= ◦ σ j

= {x ∈3 : R∞ ◦ σ− j (x) 6= A}.

Assume that
µ(36=) > 0.

Take ε ∈ (0, µ(3 6=)/2). From (32) and the shift invariance of µ we obtain, for all i ≥ ĩ(ε),

µ(3i ∩ σ
j (36=))≥ µ(3i )− µ(3\σ

j (3 6=))

≥ 1− ε − (1− µ(σ j (3 6=)))= (µ(36=)− ε). (33)

On the other hand, χ+µ defined in (18) can be written

χ+µ = inf{µξC(x)(X (q)= a) : a ∈ A, x ∈3}.

This does not depend on q ∈ Z because µ is σ -invariant. Then, the hypothesis χ+µ > 0 is
equivalent to

1− χ+µ = sup{µξC(x)(X (q) ∈ D) : D ∈ ℘(A)\{A}, x ∈3}< 1. (34)

(Note that ℘(A)\{A} = {D ⊆ A : D 6= A}.)
We have

lim inf
i→∞

∫
3

µξC(x)(X (m + ir) ∈ R f (i)+(x)) dµ(x)

= lim inf
i→∞

∫
3

µξC(σ−ir x)(X (m + ir) ∈ R f (i)+(σ−ir (x)) dµ(x)

≤ lim inf
i→∞

[
µ(3\(3i ∩ σ

ir (36=)))

+

∫
3i∩σ ir (36=))

µξC(σ−ir x)(X (m + ir) ∈ R f (i)+(σ−ir (x))) dµ(x)
]
.
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Since R f (i)+(σ−ir (x)) ∈ ℘(A)\{A}, for all x ∈3i ∩ σ
ir (3 6=), we can use the bound (34)

to obtain

lim inf
i→∞

∫
3

µξC(x)(X (m + ir) ∈ R f (i)+(x)) dµ(x)

≤ lim inf
i→∞

[(1− µ(3i ∩ σ
ir (36=)))+ (1− χ+µ )µ(3i ∩ σ

ir (36=))].

We have µ(3i ∩ σ
ir (36=))≤ µ(36=) and, from (33), µ(3i ∩ σ

ir (3 6=)) > (µ(3 6=)− ε).
This implies

lim inf
i→∞

∫
3

µξC(x)(X (m + ir) ∈ R f (i)+(x)) dµ(x)≤ 1− χ+µ µ(3
6=)+ ε.

Take 0< ε < χ+µ µ(3
6=) to have 1− χ+µ µ(3

6=)+ ε < 1. Hence, from (31) we obtain

lim inf
i→∞

∫
3

µ(RF i

m (X
m+r−1
−∞ , (F i x)(m))|[F iG]m−1

−∞ )(x) dµ(x) < 1,

which contradicts (30), hence µ(36=)= 0, and the proof of Theorem 3.1 is finished. �

Remark 3.2. It is easy to see that Theorem 3.1 holds trivially if, instead of choosing the
minimal anticipation r , we use a strictly bigger anticipation r ′ > r . In fact, when we take
f + = f +r ′ (see (3)), we find R f +

= A.

Let us write the statement of the main result for a finite sequence of symbols. Let F be
an f.a. transformation with minimal anticipation r . Let k be a fixed integer greater than or
equal to 1. We define the k-right set of xr−k

−∞ and c = (c1, . . . , ck) ∈ Ak by

R f +;k(xr−k
−∞, c)= {b ∈ Ak

: f +(xr−k
−∞b)= c}.

This is an element in ℘(Ak)= {D : D ⊆ Ak
}.

If c = (Fx)0
−(k−1), then R f +;k(xr−1

−∞, (Fx)0
−(k−1)) is the set of compatible right

extensions of length k; we denote it by R f +;k(x)= R f +;k(xr−1
−∞, (Fx)0

−(k−1)). We have

for all i ≥ 2, R f (i−1)+
;k
⊆ R f (i)+;k

◦ σ−r ,

and so the following limit is increasing and defines an element of ℘∗(Ak):

R∞;k(x)= lim
i→∞

R f (i)+;k
◦ σ−ir (x).

The following result is satisfied.

THEOREM 3.3. Let µ be an ergodic σ -invariant probability measure. Let F :3→3 be
an f.a. measurable shift-invariant transformation and χ+µ > 0. Then

lim
i→∞

hµ◦F−i (σ )= 0 implies R∞;k = Akµ-a.e.

The proof of this result can be done by following similar steps to those of the proof of
Theorem 3.1. Also it can be done by applying Theorem 3.1 to an increasing sequence of
f (iq ).

Analogous statements to those of Theorems 3.1 and 3.3 can be done for f.m.
transformations.
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4. Right sets for some Wolfram rules
We recall that these are cellular automata with l =−1 and r = 1 on the alphabet
{0, 1}, see [11]. There are 256 different Wolfram rules f : {0, 1}3→ {0, 1}. Each
rule is coded by some k ∈ {0, . . . , 255} whose dyadic decomposition is the 8-tuple
( f (111), f (110), f (101), f (100), f (011), f (010), f (001), f (000)).

In this section we treat several examples. We first give a general result useful for the
computation of right sets (a similar result holds of course for left sets). Recall from
Lemma 2.1 that, if for some integer p ≥ 1, R f (p)(σ−pr x)= A, then, for any y(l−r)p−1

−∞ ,
R f (p)(σ−pr (y(l−r)p−1

−∞ x∞(l−r)p))= A. Also, the set (R f (p))−1(A) is a union of cylinder sets.

Since the sequence of sets (R f (p)(σ−pr x)) is non-decreasing (see §2), we conclude that
(R∞)−1(A)= {x ∈3 : R∞(x)= A} is also a union of cylinder sets. It can be conveniently
described as a finite union of trees.

In the case of Wolfram rules, since the alphabet has cardinality two, it is enough to
compute the right set of sequences x with x0 = 0 (or x0 = 1). In order to construct the
corresponding tree, one can use the following algorithm.

The root of the tree is labeled 0. Each node is labeled by a string of the form y−1
−2p0.

A node is either pending or finished. If it is finished it has no descendant and the string
corresponds to a cylinder set belonging to (R∞)−1(A). If the node with string y−1

−2p0 is
pending it has four descendants:

00y−1
−2p0, 01y−1

−2p0, 10y−1
−2p0, 11y−1

−2p0.

For each of the four descendants aby−1
−2p0 (a, b ∈ {0, 1}), we compare F p+1(aby−1

−2p0)

and F p+1(aby−1
−2p1). If they are equal, the node aby−1

−2p0 is set to be finished. Otherwise,
it is set to be pending.

In practice we explore the tree by considering the nodes of successive depths.
In view of our main result, we are mostly interested in cases where µ(R∞ 6= A) > 0,

which implies limi→∞ hµ◦F−i (σ ) > 0.

4.1. Examples. In this section we give some examples of different behaviors in
increasing order of complexity. We also show some (partial) pictures of trees where
terminated nodes are drawn as squares while pending nodes are drawn as disks.

4.1.1. Rule 108. Certain rules give a finite tree. In this case R∞(x)= A for all x ∈3.
This is the case of rules 108, 201 and several other ones. The proof of finiteness of the tree
for these rules is left to the reader.

4.1.2. Rule 44. At each level, rule 44 has three new finished nodes and one pending
node. The sequence of strings of pending nodes is obtained as follows. The first one is 100.
One then prepends successively the prefixes 01, then 11, then 10, repeating this sequence
of prepending infinitely many times. It is left to the reader to prove that this is indeed the
tree of rule 44.

It follows at once that if µ is a non-atomic ergodic σ -invariant probability measure, the
right set is equal to A almost certainly. Figure 1 shows a piece of the tree for this rule.

Rules 32, 50, 62, 128, 131, 176, 179, 203, 224, 242, 248, 251 and 254 behave similarly.
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FIGURE 1. Part of the tree for rule 44.

4.1.3. Rule 34. It is easy to verify that if a string is of the form y−2
−2p00, with p ≥ 2,

its image F(y−2
−2p00) is of the form z−2

−2p00. This is because f (a, b, 0)= 0 for any a, b ∈

{0, 1}. Similarly, if a string is of the form y−2
−2p01, with p ≥ 2, its image F(y−2

−2p01) is

of the form z−2
−2p01. This is because f (a, 0, 1)= 1 for any a ∈ {0, 1}, and the previous

observation. This implies that the strings terminating with 000 and 100 form complete
subtrees of pending nodes. Therefore, the set R∞ 6= A has positive measure, and our main
theorem implies that the limit of the sequences of entropies is strictly positive.

Figure 2 shows a piece of the tree for this rule.

4.1.4. Right permutative rules. Recall that a rule is said to be right permutative if, for
any symbols a and b, the map c 7→ f (a, b, c) is a bijection of {0, 1}.
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FIGURE 2. Part of the tree for rule 34.

It follows easily from this definition that, for right permutative rules, the right set of any
sequence x0

−∞ is equal to x0. It follows that the tree is the complete 4-ary tree.
One can check by direct computation that rules 85, 86, 89, 90, 101, 102, 105, 106, 149,

150, 153, 154, 165, 166, 169, 170 are the only right permutative rules.
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