
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/310790045

FIFO Queues are Bad for Rumor Spreading

Article in IEEE Transactions on Information Theory · November 2016

DOI: 10.1109/TIT.2016.2632153

CITATIONS

0
READS

44

2 authors, including:

Marcos Kiwi

University of Chile

54 PUBLICATIONS 543 CITATIONS

SEE PROFILE

All content following this page was uploaded by Marcos Kiwi on 10 November 2017.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/310790045_FIFO_Queues_are_Bad_for_Rumor_Spreading?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/310790045_FIFO_Queues_are_Bad_for_Rumor_Spreading?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_Kiwi?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_Kiwi?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_Chile?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_Kiwi?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Marcos_Kiwi?enrichId=rgreq-627bdb3b29a780d0dccb13c90c52158c-XXX&enrichSource=Y292ZXJQYWdlOzMxMDc5MDA0NTtBUzo1NTkyMDM5MjUxNTE3NDRAMTUxMDMzNjAxMzU1Ng%3D%3D&el=1_x_10&_esc=publicationCoverPdf

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017 1159

FIFO Queues Are Bad for Rumor Spreading
Marcos Kiwi and Christopher Thraves Caro

Abstract— The two most intensively studied communication
paradigms for spreading rumors are the so-called PUSH and
PULL algorithms. The previous analysis of these protocols
assumed that every node could process all such push/pull
operations within a single step, which could be unrealistic in
practical situations. We propose a new framework for the analysis
of rumor spreading accommodating buffers, in which a node
can process only few push/pull messages at a time. We develop
time complexity upper and lower bounds for randomized rumor
spreading in the new framework, and compare the results with
analogous ones in the classical setting. Our results highlight that
there might be a very significant performance loss if messages
are processed at each network node in first-in first-out order.

Index Terms— Randomized rumor spreading, FIFO queues,
graph conductance.

I. INTRODUCTION

RUMOR spreading is a fundamental concept in ad hoc
communication, databases and systems: a rumor, initially

stored in one node, is delivered to all other nodes in the
network by passing it along available links. Some appealing
applications of randomized rumor spreading are data aggre-
gation [2], maintenance of replicated databases [8], resource
discovery [18] and failure detection [24], among others.

Randomized and distributed spreading algorithms are of
special interest due to their simplicity, robustness and local-
ity [13], [19]. A well known such algorithm is PUSH [8] which
is executed in each node at discrete time steps. If a node holds
the rumor at a given time slot, then it chooses uniformly
at random one neighbor with whom to establish a point-to-
point communication. If the chosen neighbor does not hold
the rumor, then it is pushed through and the neighbor becomes
a holder of the rumor at the same step. If a node does not
hold the rumor, it waits until it becomes a holder. The PUSH

algorithm (or just PUSH for short) has a counterpart known
as PULL algorithm (henceforth, PULL for short) which is also
executed in each node and evolves in steps. Now, however, if
a node does not hold the rumor at a given step, then it chooses
uniformly at random one neighbor to establish a point-to-point

Manuscript received February 1, 2016; revised July 25, 2016; accepted
November 6, 2016. Date of publication November 23, 2016; date of current
version January 18, 2017. M. Kiwi was supported by the Millennium Nucleus
Information and Coordination in Networks ICM/FIC RC130003 and
CONICYT via Basal in Applied Mathematics. C. Thraves Caro was supported
by the Spanish MICINN Grant Juan de la Cierva.

M. Kiwi is with the Depto. de Ingeniería Matemática and Ctr. de
Modelamiento Matemático, Fac. de Cs. Físicas y Matemáticas, U. de Chile,
Santiago 837-0456, Chile (e-mail: mk@dim.uchile.cl).

C. Thraves Caro is with the Depto. Ing. Matemática, Facultad de Ciencias
Físicas y Matemáticas, University of Concepción, Concepción, Chile (e-mail:
cthraves@ing-mat.udec.cl).

Communicated by C. E. Koksal, Associate Editor for Communication
Networks.

Digital Object Identifier 10.1109/TIT.2016.2632153

communication. If the chosen neighbor holds the rumor, then
the rumor is pulled through and the node becomes a holder
of the rumor during that same step. A third well studied
randomized rumor spreading algorithm is a combination of
PUSH and PULL, called PUSH&PULL, in which every node
that holds the rumor acts according to PUSH, and every node
that does not hold the rumor performs PULL.

The classical framework in which PUSH, PULL and
PUSH&PULL have been studied assumes that time evolves
in discrete steps. Furthermore, it assumes that at each time
step every node can establish many parallel point-to-point
communications if many neighbors request one. Hence, it is
implicitly assumed that, at every step, each node is able to
process every received (pushed) and requested (pulled) mes-
sage. Therefore, if a node that holds the rumor is contacted by
many neighbors at the same time step, the classical framework
allows this node to process all messages and answer requests
during the same time step. Such a strong assumption fails
to capture some important phenomena occurring in practical
situations. For instance, if the graph consists of one central
node connected to n leaves and the spreading algorithm is
PUSH&PULL, then the rumor spreads in at most 2 steps. While
even if the central node can send n messages at the same time,
assuming processors can service O(1) requests per time step,
it may take �(n) steps to process all the incoming messages
sent by the n leaves. Therefore, if the source node is one of the
leaves, in the worst case, the central node may learn the rumor
after �(n) steps (after processing all the n messages sent by
the leaves). This fact is not captured by the analyses performed
so far concerning randomized rumor spreading processes.

In order to address the aforementioned phenomena, we
introduce a new framework to study the time complexity of
rumor spreading algorithms, i.e., the number of steps required
by the rumor to propagate to all nodes. The model we
propose can be understood as an extension of the phone call
model [6], [20] where every node has a telephone answering
machine (the buffer). If a node receives a call while it is
already in a different call, the buffer takes the message.
In one time step nodes are allowed to perform one call to
one neighbor, and one access to its buffer to retrieve a single
messages (if any) and copy it to the buffer’s local memory.1

If the buffer is empty at some step, one incoming call goes
directly to the node and the other incoming calls (if any)
go to the buffer (the call that goes directly to the node is
chosen uniformly at random). In a step where the buffer is
not empty, given that the node accesses its buffer to retrieve

1Further on, we argue that restricting the nodes to accessing either 1 or
O(1) messages from the buffer is irrelevant.

0018-9448 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

1160 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017

a message, every incoming call goes directly to the buffer.
Messages that can not be stored due to insufficient buffer space
are dropped. For the model to be unambiguously determined,
one needs to fix the buffer scheduling policy which specifies,
for each buffer, the set of stored messages (if any) that can
be accessed by the buffer’s processor upon the next request.
A typical and popular choice of scheduling policy is First-In
First-Out (FIFO). We argue that when messages are locally
enqueued, FIFO might not be a good choice of scheduling
policy.

1) Main Contributions: An immediate consequence of our
proposed model setup will be that rumors will always prop-
agate slower through the network in comparison with the
classical setting. This is natural giving that we only add
restrictions to how network nodes interact. Thus, the best we
can hope is for no slowdown.

We establish similarities and, most importantly, crucial
differences between the performance of PUSH and PULL when
they are analyzed under the new framework as opposed to
the classical one. In particular, we first observe that there
is no difference between the classical setting and our new
framework when the spreading algorithm is PUSH.

In contrast, when the spreading algorithm is PULL, the
time complexity increases considerably, mostly because the
amount of messages stored at each buffer may grow rapidly.
Specifically, we consider two cases when we analyze the time
complexity of PULL. First, we look at the case where all nodes
have unbounded buffer size. In this scenario, in the classical
model, we show that there is an n-node graph with maximum
degree 4 and a starting source node for which PULL informs all
nodes in O(n log n) rounds with high probability (abbreviated
w.h.p.), i.e., with probability at least 1 − n−c for any fixed
constant c > 0. In contrast, in the new model, it requires 2�(n)

rounds to inform all nodes. As a more positive counterpart,
we show that the number of rounds required by PULL over
�-regular graphs of diameter D is O(D� max{D,�2} ln n).

We then consider the case in which buffers have bounded
size, and the size of each buffer is a parameter of the system
denoted by B . Now, when a message arrives to a full buffer, the
message is dropped. Hence, a second random factor appears
in the system that takes into account the probability that a
message is successfully enqueued in a buffer. In this context,
we show that given a family of graphs of bounded degree
(independent of n) whose graph conductance is at least �
the number of rounds required by PULL to inform all nodes
is O(B�−1 log n) w.h.p. (In fact, we state our bound in
terms of weighted graph conductance for a specific choice of
weights that takes into account the probability that a message
is successfully enqueued in a buffer — for restricted graph
classes the weighted and standard graph conductance measure
are within a �(1) factor of each other). We also establish an
essentially matching lower bound that shows that, in general,
the unfortunate linear dependency on B in the upper bound
for the number of rounds is in fact unavoidable.

2) Related Work: Concerning the model itself, we are aware
of only one other model that resembles some aspects of ours;
the rumor spreading with bounded in-degree model proposed
recently by Daum et al. [7]. Specifically, the restricted PULL

protocol of Daum et al. where the requests to be served among
a set of pull requests at a given node is chosen uniformly at
random, which corresponds exactly to the case of our model
where buffers are of size B = 1.

Time complexity of rumor spreading has been extensively
studied. For instance, the time complexity of PUSH for
the n-node complete graph and in subfamilies of Cayley
graphs (including star, pancake, and transposition graphs –
see [15], [21]). In [14], it is shown that in �-regular graphs,
� ≥ 3, with probability 1 − o(1), PUSH informs all n nodes
in O(ln n) rounds, where the hidden constant depends on �.
Regarding random graphs, hypercubes and bounded degree
graphs, Feige et al. [13] provide asymptotically optimal upper
bounds for the time complexity of PUSH. These bounds are
improved in [12] where tight lower and upper bounds are
obtained. Sauerwald [22] relate the time complexity of PUSH

to the mixing time of random walks. In [23] the relation
between time complexity of PUSH and the vertex expansion
of a graph is investigated.

Regarding PULL, it has been shown [8], [19] that in com-
plete graphs if a constant fraction of the nodes are informed,
then within O(log log n) additional rounds every node of the
graph becomes informed with probability 1 − o(1).

There also is a vast amount of literature concerning
PUSH&PULL. In [17] and [23], the time complexity of
PUSH&PULL is bounded in terms of the vertex expansion
of the underlying network. For complete graphs it is known
that PUSH&PULL requires �(log n) rounds to spread the
rumor w.h.p. [8], [9], [11], [19]. Chierichetti et al. [5] study
rumor spreading in social networks generated according to
the Barabassi-Albert preferential attachment model. For the
same class of networks, Doerr et al. [10] later gave a tight
analysis proving that �(log n) rounds are sufficient, w.h.p.,
for PUSH&PULL to spread the rumor throughout the network.

Results that connect runtime of rumor spreading with con-
ductance in general graphs were first established in [3] and [4].
Giakkoupis, in [16], presented a tight bound for rumor spread-
ing via conductance. His main result says that for any graph
with conductance at least �, PUSH&PULL informs all nodes in
O((1/�) log n) rounds w.h.p. This bound is tight, since there
exist graphs where PUSH&PULL requires �((1/�) log n)
rounds to spread the rumor to all nodes. Variants of these
bounds, but for PUSH, are also given in [16].

3) Organization: In Section II, we define notation and give
a detailed description of the proposed model. In Section III,
we establish a tight upper bound for the time complexity
of PULL in the bounded buffer model via weighted con-
ductance. In Section IV, we study PULL in the unbounded
buffer model. We conclude with some final comments
in Section V.

II. BUFFER MODEL

We now describe in detail the new model. First, we fix
some of the notation we use. All graphs we consider will be
undirected and simple. Given a graph G = (V , E) we let
NW (v) denote the set of neighbors in W ⊆ V of node v and
denote by �v the degree of v in G, i.e., �v = |NV (v)|. Also,
we let �max = �max(G) and D = D(G) denote the maximum

KIWI AND THRAVES CARO: FIFO QUEUES ARE BAD FOR RUMOR SPREADING 1161

degree and diameter of G, respectively. The set {1, . . . , n} will
be denoted [n].
A. Network

The network is modeled as an n node graph G = (V , E).
The node set V represents the computing entities and the set
of edges E the point-to-point bi-directional communication
links available. We do not assume any global node or link
labeling; instead, only local link labeling is required to be
able to select an outgoing port for a message to be sent and
to identify the incoming point of a received message. Time
is considered to be slotted in synchronized steps, also called
rounds.

B. Buffers

Every node has a bounded size buffer where messages sent
to the node are enqueued. The number of packets that buffers
can hold is denoted by B and is a system parameter also
referred to as buffer size given rise to what we henceforth refer
to as bounded buffer model (or bounded model, for short).
When B is very large, from the perspective of a finite-time
execution, buffers are in practice “unbounded” and we refer
to the model as the unbounded buffer model (or unbounded
model, for short). We simply say buffer model when we want
to refer to both the bounded and unbounded models.

C. Local Memory

Every node has a “small” (logarithmic in n) amount of
memory. In particular, algorithms executed by nodes are
allowed to store, in addition to the rumor, only a constant
number of link identifiers (e.g., ids of connections to some of
its neighbors).

D. Scheduling Policy

It specifies the order in which to process messages stored at
a buffer. Decisions do not depend on the state of other nodes.
Unless stated otherwise, we always assume that the scheduling
policy is FIFO, with ties broken uniformly at random.

E. Local Steps: Sending, Delivering and Reading a Message

Each node runs a given algorithm in consecutive steps.
At the start of a time step, every node can retrieve one
message from its buffer (determined by the scheduling policy).
Every node can send at most one message during each time
step. This assumption, rather than for example allowing for a
(potentially large) constant number of messages to be sent per
time step is just for the sake of simplicity of exposition and
in order to avoid unnecessarily cluttering notation. All our
arguments can easily be adapted to yield analogous results
but for nodes that can make O(1) accesses to their buffers
each time step. At the end of a step, messages arrive to
their destination. If more messages than those that can be
stored in a node’s buffer arrive at any given step, then the
excess messages are dropped. We always assume that the
set of messages dropped are selected uniformly at random.
Fig. 1 illustrates the order in which events take place during
a step.

Fig. 1. Order of events that take place at a node during a step.

F. PUSH and PULL Spreading Algorithms

PUSH works in the buffer model as follows: if a node has the
rumor stored in its memory, it sends a message with the rumor
to one neighbor selected uniformly at random among all its
neighbors (so called push action). If a node does not have the
rumor stored in its memory, it waits until it receives the rumor
(in the meantime, it keeps reading messages from its buffer,
one reading attempt per step). PULL works analogously: If a
node does not have the rumor stored in its memory, it sends a
request to a neighbor selected uniformly at random among all
its neighbors (so called pull request) and it reads one message
from its buffer. If a node has the rumor stored in its memory,
it retrieves messages from its buffer and answers a retrieved
PULL request during the same step it is read. We recall that
a node can read only one message from its buffer per time
step — hence, the presence of a request in its buffer does not
necessarily imply it will be answered immediately.

G. Rumor Spreading Problem

At the start of an execution, there is a single node, called
source node, that has a rumor. The goal is to spread the
rumor to every node in the network. In the execution of an
algorithm, a node could be in one of two states: informed
or uninformed. We say that a node is informed at a given
step if it is the source node or it has retrieved from its
buffer a message containing the rumor before or during the
step. A node that is not yet informed is called uninformed.
An uninformed node that has a message containing the rumor
in its buffer is called nearly-informed. Note that a node can
locally recognize and remember whether it is informed or not.
However, an uninformed node cannot locally check if it is
nearly-informed, as this would require reading from its buffer
messages faster than one per step.

H. Time Complexity

Let IAt (s) be the set of informed nodes at time t of an
execution of the spreading algorithm A (for some specific
occurrence of random events) when the rumor is initially at
node s. We say that the time complexity of A is O(T (n))
w.h.p., if for every c > 0 and n sufficiently large, for every
connected graph G = (V , E) on n nodes and all possible
sources s we have IAT (n)(s) = V with probability at least
1 − n−c. We shall establish our w.h.p. results for c = 1.

1162 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017

In all cases considered, the adaptation to arbitrary c > 0 is
straightforward.

Remark 1: The time complexity of PUSH in the buffer and
classical models is the same. Intuitively this holds because if
nodes use only PUSH, then uninformed nodes do not transmit
any messages. Thus, no relevant queues are formed and the
rate of propagation of the rumor throughout the network is as
in the classical model. This explains why we henceforth only
focus in studying PULL.

III. PULL IN THE BOUNDED BUFFER MODEL

When the underlying network is an arbitrary graph, the
tighter known methods for upper bounding the time com-
plexity of PULL in the classical model are based in graph
conductance. In this section we derive analogous bounds for
the time complexity of rumor spreading for PULL but in the
buffer model. The bounds we establish are in terms of the so
called weighted conductance, but for a particular set of weights
that depends on the model and network parameters.

We start by recalling the notion of weighted conductance.
Let G = (V , E) be a graph with edge weights given by
ω : E → [0, 1]. For S, T ⊆ V , the sum of the weights of
edges with one endnode in S and the other in T is called the
weighted (S, T) edge cut in G and is denoted cutωG(S, T), i.e.,
cutωG(S, T) = ∑

st∈E :s∈S,t∈T ω(st). Moreover, the sum of the
degrees of a set of nodes S ⊆ V is called the volume of S
in G and is denoted volG(S), i.e., volG(S) = ∑

v∈S �v . The
weighted conductance of G is defined as

�ω(G) = min
S⊆V :0<volG(S)≤|E |

cutωG(S, V \ S)

volG(S)
.

When clear from context, we drop the subindex G from the
notation introduced above. Also, if we omit ω, it is to be
understood that it is identically 1 over E .

We now describe a natural weighted variant of PULL which
takes into consideration random transmission failures. For
every edge e = uv ∈ E , assuming v has the rumor, we
consider a probability ω(e) ∈ [0, 1] such that a request sent
by u to v is successfully replied to. The events associated to
distinct edges are assumed independent. The probability that
in any one round u chooses v as the transmission destination
is as before, i.e., 1/ �u .

For the non-weighted case, i.e., when ω assigns weight 1
to every edge of G, the definition of �ω(G) coincides with
the standard notion of graph conductance and the weighted
versions of PUSH and PULL correspond to the classical cases,
respectively. In this situation, Giakkoupis [16, Lemma 4]
showed that the time complexity of PULL in the classical
setting could be upper bounded in terms of the graph con-
ductance. The proof argument in [16] readily generalizes to
the weighted case and yields:

Theorem 1 (Giakkoupis [16]): For an initial set
of informed vertices S0 of G = (V , E) and any
fixed β > 0, all vertices get informed in at most
O(1)(β + 2)

(
1 + �max / volG(S0)

)
�−1

ω (G) log |V | rounds of
the PULL algorithm, with probability 1 − O(|V |−β).

We now informally discuss our key insight for analyzing
the PULL protocol in the bounded buffer model. We view

the rumor spreading process as a weighted version of the
classical PULL protocol over time windows of length 2B , for
an appropriate choice of weights. The length of the window
is motivated by the fact that a request sent at time t from
node u to a neighbor node v, if successfully enqueued at node
v, might end up spending B time steps at v’s queue before
being serviced, and when serviced, might end up spending
another B time steps in u’s queue if the response to the original
request is successfully enqueued there. However, there is no
guarantee that either a request or the response to a request will
succeed in being enqueued at the adequate node destination.
The probability of such a thing happening is what motivates
us to consider weighted versions of rumor spreading, and
justifies why we require the determination of the probability
of occurrence of certain events such as the ones defined in the
following results.

From now on, when not otherwise specified, we assume
that the local rumor spreading protocol is PULL, that we are
working in the buffer model, and that the underlying network
is G = (V , E). We denote by St (respectively, Ut) the set of
informed (respectively, uninformed) nodes at time t . Clearly,
we have Ut = V \ St .

Lemma 1: Consider su ∈ cutG(St , Ut). Let Et,s,u be the
event “given that u sends a request to s during round t + B ,
the request sent by u is enqueued at s”. Then,

P(Et,s,u) ≥
(

1 +
∑

u′∈NUt (s):u′ �=u

1

�u′

)−1
.

Proof: Let T be the collection of uninformed neighbors of
s that transmit a message to s during round t+B . Since s ∈ St ,
node s was informed at most by time step t . Thus, s does not
send any rumor request during steps t, . . . , t+B−1. Moreover,
any such request enqueued at time t in one of the neighbors of
s must have been dealt with (hence, purged from the queue)
before time step t + B . It follows that during step t + B ,
messages sent to s can only come from nodes uninformed at
time t + B . By definition of Et,s,u , we get

P(Et,s,u) ≥
∑

C⊆NUt+B (s):u∈C

1

|C| · P(T = C).

Moreover, conditioned on u sending a request to s in round
t + B ,

∑

C⊆NUt+B (s):u∈C

P(T = C) = P(u ∈ T) = 1.

Jensen’s inequality and convexity of x 	→ 1/x for x > 0,
together with the fact that Ut+B ⊆ Ut imply that

P(Et,s,u) ≥
(∑

C⊆NUt+B (s):u∈C

|C| · P(T = C)
)−1

=
(∑

C⊆NUt+B (s)\{u}
|C ∪ {u}| · P(T \ {u} = C)

)−1

≥
(∑

C⊆NUt (s)\{u}
|C ∪ {u}| · P(T \ {u} = C)

)−1
.

KIWI AND THRAVES CARO: FIFO QUEUES ARE BAD FOR RUMOR SPREADING 1163

Fig. 2. Graph H .

The desired conclusion follows since the expression inside
parenthesis in the last displayed term corresponds to 1 plus
the expectation of the sum of Bernoulli random variables Xu′ ,
u′ ∈ NUt (s) \ {u}, each with expectation 1/�u′ .

Lemma 2: Consider su ∈ cutG(St , Ut). Let Ft,s,u be the
event “given that u sends a request to s during round t + B ,
the request is successfully enqueued at s and by round t + 2B
node u becomes nearly informed”. Then,

P(Ft,s,u) ≥
(

1 +
∑

u′∈NUt (s)

u′ �=u

1

�u′

)−1(
1 +

∑

u′∈NUt (u)

1

�u′

)−1
.

Proof: Clearly Ft,s,u happens if Et,s,u as defined in
Lemma 1 occurs and the reply sent (at time t + 2B) by s to
the request made by u (at time t + B) is successfully enqueued
at u. Since Ut+2B ⊆ Ut and given that the messages sent to
u during time step t + 2B either carry the rumor or originate
in uninformed nodes, a similar proof argument as the one of
Lemma 1 yields that

P(Ft,s,u|Et,s,u) ≥
(

1 +
∑

u′∈NUt (u)

1

�u′

)−1
.

To conclude, note that P(Ft,s,u) = P(Ft,s,u|Et,s,u)P(Et,s,u) and
apply Lemma 1.

Henceforth, we denote by ωG the map ω : E → [0, 1] such
that for su ∈ E

ω(su)

= min
∅�U�V

su∈cutG (V \U,U)

(
1 +

∑

u′∈NU (s)
u′ �=u

1

�u′

)−1(
1 +

∑

u′∈NU (u)

1

�u′

)−1
.

Taking U = V \ {s} in the left hand side above and given that
NW (s) ⊆ NV (s) for all W ⊆ V , it follows that

ω(su) =
(

1 +
∑

u′∈NV (s)
u′ �=u

1

�u′

)−1(
1 +

∑

u′∈NV (u)

u′ �=s

1

�u′

)−1
.

The following (easily derived) claim relates �ω with the
classical notion of graph conductance �.

Proposition 1: Let G = (V , E) be a connected graph where
|V | > 2 and let ω = ωG . If �min and �max are the
smallest and largest degree in G, then

(�min
�max+�min−1

)2
� ≤

�ω ≤ (
�max

�max+�min−1

)2
�. In particular, if G is �-regular, then

�ω = (
�

2�−1

)2
�. If the ratio of the degrees of neighboring

nodes in G is at most δ, then
(1

δ+1

)2
� ≤ �ω ≤ (2δ

δ+2

)2
�.

We now establish this section’s main result.
Theorem 2: Let G = (V , E) be a graph, ω = ωG ,

and �ω = �ω(G). For any initial set of informed vertices

S0 ⊆ V and any fixed β > 0, with probability 1 − O(|V |−β),
all vertices get informed in at most O(1)B(β + 2)

(
1 +

�max/ vol(S0)
)
�−1

ω log |V | rounds by PULL when buffers are
of size B .

Proof: Follows directly from Theorem 1 and Lemma 2
by partitioning time into intervals of length 3B , noting that
P(Ft,s,u) ≥ ω(su) and observing that if a node is nearly-
informed by time step t + 2B it will be informed by time step
t + 3B .

We next describe a network for which Theorem 2 is
essentially tight. The construction is motivated by the fol-
lowing footnote claim of Chierichetti et al. [4, Footnote 2]
asserting that the conductance based upper bound on the time
complexity of rumor spreading in the classical model given
by Giakkoupis [16] is tight: For any ε > 0, positive integer n,
and � = �(G) ≥ n−1+ε , if G is a 3-regular graph of constant
expansion on O(n�) nodes, then replacing each edge of G by
a path of O(�−1) new nodes yields an O(n) node graph with
conductance �(�). We claim that if edges are replaced by
the graph H of Fig. 2 instead of by paths, then a network for
which Theorem 2 is tight is obtained. Intuitively, this happens
because whenever a rumor arrives at an internal node in the
u-v path of a copy of H whose buffer is full, it will henceforth
encounter a full buffer in every internal node in the u-v path of
every copy of H it moves into. Although Chierichetti et al. do
not provide a detailed proof of their assertion, it is indeed not
hard to reconstruct, although unfortunately it requires some
space to corroborate carefully. The same is true, but even more
so, in our case.

For a graph G = (V , E) we let G′ = (V ′, E ′) be the
graph obtained from G by replacing each of its edges, say
with endpoints u and v, by the graph of H of Fig. 2, where
m = �1/γ
 and 0 < γ < 1. The nodes of the resulting graph
G′ that arise as copies of nodes of degree 1 in H will be
henceforth called leafs. As usual, denote by D(G) the diameter
of G. From now on, we assume each node’s buffer is of size
B . Let s ∈ V be a node for which there is some t ∈ V
such that the number of edges in any path in G between s
and t is D(G) (such pair of nodes exists by definition of
D(G)). We henceforth assume that the source of the rumor
is s. Finally, for � ∈ N, let V ′

� be the set of nodes v ′ ∈ V ′ \ V
such that for every path P in G′ between s and v ′ it holds
that at least � internal nodes of P belong to V ′ \ V , i.e.,
|(V (P) \ {s, v ′}) ∩ (V ′ \ V)| ≥ �.

Lemma 3: Before it becomes nearly-informed, non-leaf
node v ′ ∈ V ′

� has at least min{B, 2�} − 1 messages queued
in its buffer.

Proof: The statement is trivially true for � = 0. Assume
it holds for � > 0. Consider a shortest path P in G′ between s

1164 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017

and v ′. Let u′ be the internal node of P closest to v ′. Clearly, u′
is a non-leaf node and u′, v ′ ∈ V ′

�−1. By inductive hypothesis,
just before u′ becomes nearly-informed both u′ and v ′ have
at least min{B, 2�−1} − 1 messages queued in their buffers.
Hence, the time step that u′ becomes nearly-informed plus the
time the rumor spends in u′’s queue is at least min{B, 2�−1}.
During such period of time, given that the leaves attached to
v ′ in G′ cannot become informed before v ′ and since v ′ can
process at most 1 message per time step, its queue increases to
at least min{B, 2�} − 1 messages. The claimed result follows.

Corollary 1: The number of steps until node t is informed
is at least

B
(
m D(G) − �log2 B
) ≥ B

γ

(
D(G) − log2 B − O(1)

)
.

Proof: Note that any path P in G′ between s and t has
at least m D(G) of its internal nodes in V ′ \ V . However,
all but at most �∗ := �log2 B
 of such internal nodes can
belong to V�∗ . By Lemma 3, for every internal node v ′ of P
in V�∗ , the rumor takes at least one step to reach v ′ from an
adjacent node and spends at least min{B, 2�∗}−1 ≥ B−1 steps
enqueued at v ′. Thus, the number of steps until t is informed
is at least B(m D(G) − �∗) = B(m D(G) − �log2 B
). The
desired conclusion follows since �x
 ≤ x + 1 and γ < 1

The next two results are established as required to prove
Chierichetti et al.’s [4] footnote claim.

Lemma 4: Let G = (V , E) be a 3-regular graph and ω′ =
ωG ′ . If 0 < γ < 1, then �ω′ (G′) ≤ γ . Moreover, if G is a
3-regular expander graph, then �ω′(G′) ≥ γ�(1).

Proof: Note that |E ′| = (3m + 1)|E | and |E | = 3|V |/2.
Let S′ be the set of new nodes that are created when a given
edge uv of G is replaced by the graph H of Fig. 2. Clearly,
volG ′(S′) = 6m ≤ |E ′| since |E | ≥ 3, so volG ′(S′c) >
volG ′(S′). Also note that | cutG ′(S′, V ′ \ S′)| = 2. It follows
immediately from the definition of �ω′(·), the 3-regularity of
G, and some basic arithmetic, that

�ω′(G′) ≤ cutω
′

G ′(S′, V ′ \ S′)
volG ′(S′)

= | cutG ′(S′, V ′ \ S′)|
(5/3) · volG ′(S′)

= 1

5m
≤ γ

5
≤ γ.

Now, for the second part. Let S′ be a non-trivial subset of V ′.
Because the maximum degree of any node of G′ is 4 and each
such node has at most two neighbors of degree 1, we get that
ω′(e′) ≥ (2/7)2 for each e′ ∈ E ′, so

�ω′(S′) = cutω
′

G′ (S ′,V ′\S ′)
min{volG′ (S ′),volG′ (V ′\S ′)}

≥ | cutG′ (S ′,V ′\S ′)|/(2/7)2

min{volG′ (S ′),volG′ (V ′\S ′)} .

Let S = S′ ∩ V . Note that V \ S = (V ′ \ S′) ∩ V . We can
assume that volG(S) ≤ |E | ≤ volG(V \ S), since otherwise
we can replace S′ by V ′ \ S′ in what follows.

Let F be the subgraph of G′ induced by S′. Say a node
v ∈ S′ is bad if the connected component of F to which v
belongs does not contain a node that belongs to V . Denote by
B ′ the set of bad nodes. Note that B ′ ⊆ S′, so volG ′(S′) =
volG ′(B ′)+ volG ′(S′ \ B ′). Since every node of G′ has degree

at most 4, it follows that volG ′(B ′) ≤ 4|B ′|. Note that by the
way in which badness is defined, cutG ′(B ′, S′ \ B ′) = ∅. Also,
because the largest connected component induced by V ′ \ V
in G′ is of size 3m, it must hold that
∣
∣ cutG ′(S′, V ′ \ S′)

∣
∣

= ∣
∣ cutG ′(B ′, V ′ \ B ′)

∣
∣ + ∣

∣ cutG ′(S′ \ B ′, V ′ \ (S′ \ B ′))
∣
∣

≥ |B ′|
3m

+ ∣
∣ cutG ′(S′ \ B ′, V ′ \ (S′ \ B ′))

∣
∣.

Putting everything together,

�ω′(S′) ≥ | cutG ′(S′, V ′ \ S′)|
(2/7)2 volG ′(S′)

≥ 1

(2/7)2 ·
|B ′|
3m + ∣

∣ cutG ′(S′ \ B ′, V ′ \ (S′ \ B ′))
∣
∣

4|B ′| + volG ′(S′ \ B ′)
.

So, if B ′ = S′ (equivalently, volG ′(S′ \ B ′) = 0), then
�ω′(S′) ≥ γ�(1) as claimed. Otherwise, recalling that for
a, c ≥ 0 and b, d > 0, it holds that (a + c)/(b + d) ≥
min{a/b, c/d}, we get that

�ω′(S′) ≥ 49

4
min

{ | cutG ′(S′ \ B ′, V ′ \ (S′ \ B ′))|
volG ′(S′ \ B ′) ,

1

12m

}
.

Since for the graph H of Fig. 2 the volume of H \ {u, v}
is 6m and every node in S′ \ B ′ is in the same connected
component of a node in S, if follows that volG ′(S′ \ B ′) ≤
(6m + 1) volG(S). Moreover, note that | cutG ′(S′ \ B ′, V ′ \
(S′ \ B ′))| ≥ | cutG(S, V \ S)|. Thus,

�ω′(S′) ≥ 49

4
min

{ | cutG(S, V \ S)|
(6m + 1) volG(S)

,
1

12m

}
= γ�(1),

where the last inequality is due to the fact that
volG(S) ≤ |E | and G is an expander graph, so
| cutG(S, V \ S)|/ volG(S) = �(1).

Proposition 2: For every ε > 0 and B : N → N such that
1 ≤ B(n′) < n′1−ε , there is a graph G′ = (V ′, E ′) over n′
vertices and ω′ = ωG ′ , such that: (1) �ω′(G′) ≥ B(n′)/n′1−ε

and, (2) the time complexity of PULL in the buffer model for
G′ is at least �(B(n′) log n′/�ω′ (G′)).

Proof: Let γ = γ (n′) = B(n′)/n′1−ε < 1. Let G =
(V , E) be a 3-regular expander graph over n nodes such that
n′ = (1 + 9m/2)n (note that n must be even, so n′ is an
integer). Also note that n ≥ (2

9 − O(1))γ n′. Construct G′ =
(V ′, E ′) from G and choose s and t as discussed previously.
Since G is 3-regular, |E | = 3|V |/2, and because of the way in
which G′ is constructed, |V ′| = |V |+3m|E | = (1+9m/2)n =
n′. Moreover, since for any d-regular graph, d ≥ 3, it holds
that D(G) ≥ logd−1 |V |−1, we get that D(G) ≥ log2 n −1 ≥
log2(γ n′) − O(1). By Corollary 1 and our choice of γ , it
follows that the time complexity for rumor spreading in G′ is
at least

B(n′)
γ (n′)

(
log2

γ (n′)n′

B(n′)
− O(1)

)

= B(n′)
γ (n′)

(
ε log2 n′ − O(1)

)

= �
(B(n′)

γ (n′)
log2 n′).

The conclusion follows because by Lemma 4,
�ω′(G′) = �(γ (n′)).

KIWI AND THRAVES CARO: FIFO QUEUES ARE BAD FOR RUMOR SPREADING 1165

IV. PULL IN THE UNBOUNDED BUFFER MODEL

In this section we study the behavior of PULL in the
unbounded buffer model. We begin by highlighting the sig-
nificant performance difference between PULL in the classical
model and in the unbounded buffer model.

Proposition 3: There is a maximum degree 4 graph
G = (V , E) on n nodes and a source s ∈ V for which PULL

informs all nodes in O(n log n) rounds, w.h.p., in the classical
model, and in �(1)2n/3 in the unbounded buffer model.

Proof: Let H , u, v and m be as depicted in Fig. 2.
Consider as source of the rumor the node u. Note that H
has n = 3m + 2 nodes. Since the time complexity of PUSH

in any n-node connected graph is O(n log n) (see [13]), the
bound also holds for H . To conclude, observe that by taking
B = +∞ in Lemma 3, we get that the number of rounds until
v is informed is at least 2m . Thus, H satisfies the conditions
required of G in the statement.

We next establish a more positive counterpart to the pre-
ceding result, but restricted to regular graphs. The following
two facts would be useful to establish separately.

Lemma 5: Let u and v be neighbors in G, and let �max =
�max(G). Suppose that v is uninformed when u becomes
informed. Then, with probability at least 1 − 1/n2, from the
time step when u becomes informed to the time step when
v is nearly-informed, at most 2�2

max(�max − 1) ln n messages
get enqueued at v

Proof: Let t = 2�max ln n. The probability that v makes
no request to u during the following t = 2�max ln n steps
after u is nearly-informed is at most (1 − 1/�v)

t ≤ e−t/�v ≤
e−t/�max = 1/n2. During an interval of time t , since no queue
can increase by more than (�max − 1) per round, at most
t (�max − 1) messages could have queued at u during the
interval. Thus, with probability at least 1 − 1/n2 the node
v becomes nearly-informed at most t + t (�max − 1) = t�max
steps after u. The desired conclusion follows recalling that at
most (�max −1) messages can be enqueued at any single node
per time step.

Henceforth, given a source node in G, let Vd be the set of
nodes of G at distance at most d from the source. Moreover,
let τd denote the maximum, among all nodes v ∈ Vd , of the
time v is informed. Since the only node at distance 0 from the
source is the source itself, we clearly have τ0 = 0.

Lemma 6: Let G = (V , E) be a connected �-regular graph.
Then, for d ∈ N, d < D(G), with probability 1 − O(|Vd+1 \
Vd |)/n2,

τd+1 ≤ τd + √
τd� ln n + 2�2(� − 1) ln n.

Proof: Let v ∈ Vd+1 \ Vd and assume the first neighbor
of v, say u, is informed at time T ≤ τd . Note that such a
neighbor need not belong to Vd . By Lemma 5, with probability
at least 1−1/n2 node v enqueues at most 2�2(�−1) ln n mes-
sages before becoming nearly-informed but after u becomes
informed.

We also need to bound the number of messages enqueued
at v during the first T rounds. Now though, since none of v’s
neighbors is informed up to T , we know that each neighbor u
of v sends a request to v with probability 1/�, independently
of what other request v’s neighbors send, and independent

of what happened in previous rounds. We thus expect that
roughly T

∑
u∈NV (v)

1
� = T requests would have arrived at

v before time step T and that roughly T would have been
serviced (given that v’s queue could have remained empty
during some rounds, not exactly T messages are necessarily
serviced). We claim that the number of messages enqueued
at v in round T is not significantly large. Let Xu,t be the
indicator of whether u sends a request to v during round t
and let Qt be the number of messages enqueued at v at the
beginning of round t . We wish to bound the probability that
QT is large. Let A = √

T� ln n. Clearly, for T < (ln n)/�
we have T� < A, so P(QT ≥ A) = 0, because in T steps at
most T (�−1) messages reach node v. Assume T ≥ (ln n)/�.
Partitioning according to the last round 0 ≤ t < T in which
v’s queue was empty, a union bound, the preceding discussion,
a Chernoff [1, Th. A.14] bound, and Jensen’s inequality, yield
that

P(QT ≥ √
T � ln n) = P(QT ≥ A)

≤
∑

0≤t<T

P(QT ≥ A, Qt = 0,∀k ∈ [T −t], Qt+k �= 0)

≤
∑

0≤t<T

P(
∑

k∈[T −t]

∑

u∈NV (v)

Xu,t+k ≥ A + T − t)

≤
T −1∑

t=0

e−2T (ln n)/(T −t) ≤ (1 + o(1))T e−2 ln n ln T

= O(1/n2).

Since the time between v being nearly-informed and becoming
informed is at most the queue size it had when becoming
nearly-informed, it follows that with probability 1 − O(1/n2)
node v becomes informed by round

T +√
T� ln n+2�2(� − 1) ln n ≤ τd +√

τd� ln n+2�3 ln n.

A union bound over the nodes in Vd+1 \ Vd yields the desired
conclusion.

We can now establish this section’s main result.
Proposition 4: The time complexity of PULL in the

unbounded buffer model on an n-node �-regular network of
diameter D is 4D� max{�2, D} ln n.

Proof: From Lemma 6, we get that with probability at
least 1 − |VD|/n2 = 1 − 1/n the recurrence τd ≤ τd−1 +√

τd−1� ln n + 2�3 ln n holds for all d ∈ [D]. By induction,
one can show that τd ≤ 4d� max{�2, D} ln n holds for all
d < D.

V. CONCLUSIONS

In this paper we formally introduced a new model for
randomized rumor spreading. The model encapsulates a more
realistic scenario than classically considered in the literature.
Specifically, we consider a restriction on the number of
messages, per time step, that network nodes can act upon.
We demonstrated differences between the buffer and classical
model which are particularly striking in the case when the
underlying network is not necessarily regular.

By definition of our buffer model, rumors spread slower
than in the classical setting. For PULL, this is somewhat of

1166 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 63, NO. 2, FEBRUARY 2017

an understatement, since as we have seen they can spread
dramatically slower compared to the classical rumor spreading
setting. The slowdown is somewhat less dramatic over regular
networks. The slower propagation of rumors arises because
FIFO queues prioritize messages that have been in the sys-
tem longer. However, one actually would like to prioritize
messages more recently generated, mainly for two reasons:
(1) newer requests are more informative than older ones
(a node requesting a rumor might have been informed since
it sent the request), and (2) older messages arriving from a
neighbor are less likely to carry a rumor than younger request
responses from the same neighbor. The preceding discussion
suggests that Last-In First-Out (LIFO) rather than FIFO should
be used as scheduling policy. The work of Daumet al. [7]
shows, stated in the language of this paper, that the slowdown
of using PULL in the bounded buffer model with buffers of
size 1 versus using the classic pull protocol can, w.h.p., be
upper bounded by O((�max/�min) log n) where �max and
�min as used previously in this article. The same claim clearly
holds for larger size buffers (even unbounded ones).

ACKNOWLEDGMENT

The authors would like to thank Prof. Dariusz R. Kowalski
for many useful discussions during the early stages of this
article. They are grateful to the anonymous reviewers for their
careful reading of our manuscript and many observations.

REFERENCES

[1] N. Alon and J. Spencer, The Probabilistic Method. 3rd ed. New York,
NY, USA: Wiley, 2008.

[2] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE Trans. Inf. Theory, vol. 52, no. 6, pp. 2508–2530,
Jun. 2006.

[3] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Almost tight bounds for
rumour spreading with conductance,” in Proc. 42nd ACm Symp. Theory
Comput. (STOC), 2010, pp. 399–408.

[4] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Rumour spreading and
graph conductance,” in Proc. ACM-SIAM Symp. Discrete Algorithms
(SODA), 2010, pp. 1657–1663.

[5] F. Chierichetti, S. Lattanzi, and A. Panconesi, “Rumor spreading in
social networks,” Theor. Comput. Sci., vol. 412, no. 24, pp. 2602–2610,
May 2011.

[6] B. S. Chlebus, K. Diks, and A. Pelc, “Fast gossiping with short unreliable
messages,” Discrete Appl. Math., vol. 53, nos. 1–3, pp. 15–24, Sep. 1994.

[7] S. Daum, F. Kuhn, and Y. Maus, “Rumor spreading with bounded in-
degree,” in Proc. 23rd Int. Colloq. Struct. Inf. Commun. Complexity
(SIROCCO), Jul. 2016, pp. 323–339.

[8] A. Demers et al., “Epidemic algorithms for replicated database mainte-
nance,” Oper. Syst. Rev., vol. 22, no. 1, pp. 8–32, Jan. 1988.

[9] B. Doerr and M. Fouz, “Asymptotically optimal randomized rumor
spreading,” in Proc. 38th Int. Colloq. Automata, Lang. Program.
(ICALP), 2011, pp. 502–513.

[10] B. Doerr, M. Fouz, and T. Friedrich, “Social networks spread rumors
in sublogarithmic time,” in Proc. 43rd ACM Symp. Theory Comput.
(STOC), 2011, pp. 21–30.

[11] R. Elsässer, “On the communication complexity of randomized broad-
casting in random-like graphs,” in Proc. 18th ACM Symp. Parallelism
Algorithms Architectures (SPAA), 2006, pp. 148–157.

[12] R. Elsässer and T. Sauerwald, “On the runtime and robustness of
randomized broadcasting,” Theor. Comput. Sci., vol. 410, no. 36,
pp. 3414–3427, Aug. 2009.

[13] U. Feige, D. Peleg, P. Raghavan, and E. Upfal, “Randomized broadcast
in networks,” Random Struct. Algorithms, vol. 1, no. 4, pp. 447–460,
1990.

[14] N. Fountoulakis and K. Panagiotou, “Rumor spreading on random
regular graphs and expanders,” Random Struct. Algorithms, vol. 43,
no. 2, pp. 201–220, Sep. 2013.

[15] A. M. Frieze and G. R. Grimmett, “The shortest-path problem for
graphs with random arc-lengths,” Discrete Appl. Math., vol. 10, no. 1,
pp. 57–77, Jan. 1985.

[16] G. Giakkoupis, “Tight bounds for rumor spreading in graphs of a given
conductance,” in Proc. 28th Symp. Theor. Aspects Comput. Sci. (STACS),
2011, pp. 57–68.

[17] G. Giakkoupis and T. Sauerwald, “Rumor spreading and vertex expan-
sion,” in Proc. ACM-SIAM Symp. Discrete Algorithms (SODA), 2012,
pp. 1623–1641.

[18] M. Harchol-Balter, T. Leighton, D. Lewin, “Resource discovery in
distributed networks,” in Proc. ACM Symp. Principles Distrib. Com-
put. (PODC), 1999, pp. 229–237.

[19] R. Karp, C. Schindelhauer, S. Shenker, and B. Vocking, “Random-
ized rumor spreading,” in Proc. 41st Annu. Symp. Found. Comput.
Sci. (FOCS), Nov. 2000, pp. 565–574.

[20] D. W. Krumme, G. Cybenko, and K. N. Venkataraman, “Gossiping in
minimal time,” SIAM J. Comput., vol. 21, no. 1, pp. 111–139, Feb. 1992.

[21] B. Pittel, “On spreading a rumor,” SIAM J. Appl. Math., vol. 47, no. 1,
pp. 213–223, Feb. 1987.

[22] T. Sauerwald, “On mixing and edge expansion properties in randomized
broadcasting,” Algorithmica, vol. 56, no. 1, pp. 51–88, Jan. 2010.

[23] T. Sauerwald and A. Stauffer, “Rumor spreading and vertex expansion
on regular graphs,” in Proc. ACM-SIAM Symp. Discrete Algorithms
(SODA), 2011, pp. 462–475.

[24] R. van Renesse, Y. Minsky, and M. Hayden, “A gossip-style failure
detection service,” in Proc. IFIP Int. Conf. Distrib. Syst. Platforms Open
Distrib. Process. Middleware, 1998, pp. 55–70.

Marcos Kiwi received the Engineering degree from U. de Chile in 1991 and
the Ph.D. degree from MIT in 1996. He is Full Professor in the Department
of Mathematical Engineering and an Associate Researcher at the Center for
Mathematical Modeling (CNRS UMI 2807), both at U. de Chile, Santiago,
Chile. His main research interests are theory of computation and random
structures.

Christopher Thraves Caro is Assistant Professor at the Department of
Mathematical Engineering, at the University of Concepción, Chile. Previously
he has held different research positions such as: Research Engineer at
LAAS-CNRS, Toulouse, France; Juan de la Cierva Researcher at the Rey
Juan Carlos University, Madrid, Spain; Post-doc Researcher at the ASAP
Team, INRIA Rennes-Bretagne Atlantique, France; and Post-doc Researcher
at the CEPAGE Team, INRIA Bordeaux-Sud-Ouest, France. He received a
PhD degree in Computer Science from the Rey Juan Carlos University and a
PhD degree in Applied Mathematics from University of Chile in March 2008.
The thesis was done under cotutelage between both University of Chile and
Rey Juan Carlos University. His research interests include combinatorics,
discrete optimization, and discrete mathematics.

View publication statsView publication stats

https://www.researchgate.net/publication/310790045

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

