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The Aeolian arc (Italy) is characterized by some of the strongest along-the-arc geochemical variations in the
planet, making it an ideal location to study the effect of subducting components in modifying the mantle source
of island arc melts. Here, we use high-precision element concentrations in primitive phenocrystic olivine from
basalts along the arc to elucidate the effects of mantle source modification by the subduction process. Olivines
from this arc have Ni concentrations and Fe/Mn ratios that show similarity to peridotite sources that melted
to produce mid-ocean ridge basalts. Nevertheless, they also have systematically lower Ca concentrations and
Fe/Mn ratios that broadly overlap with olivines from the available global arc array. These phenocrysts also do
not show significant variations in Ca as a function of olivine forsterite content. The global data suggest that all
olivines crystallizing from island-arcmelts have suppressed Ca concentrations and Fe/Mn ratios, relative to olivines
derived frommelts at intraplate andmid-ocean ridge settings suggesting elevated H2O concentrations and higher
oxidation state of the equilibrium melts. Based on olivine chemistry, we interpret a predominantly peridotite
source (fluxed by subduction fluids) beneath the Aeolian Arc and also for other examples of arc-related lavas.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The physical and chemical evolution of the Earth is closely linked to
the recycling of crustal materials and elements into subduction zones at
convergent plate margins (Hofmann, 1997; Plank and Langmuir, 1993;
Rudnick, 1995; Ryan and Chauvel, 2014; Zindler and Hart, 1986). The
subducting slab at convergent plate boundaries undergoes metamor-
phic processes and introduces crustal materials, volatiles, and fluids
(aqueous fluids, hydrous melts, or supercritical liquids) back into the
mantle (e.g., Grove et al., 2012), resulting in a heterogeneous upper
mantle. Although subduction processes generate geochemical hetero-
geneities in the mantle, the chemical relationship between erupted
island arc basalts and subductedmaterials in themantlewedge requires
further evaluation. The Aeolian Islands (Italy) stand as a singular volca-
nic arc to study this link, as the lavas record some of the most extreme
geochemical variations along-the-arc (see a comprehensive synthesis
in Lucchi et al., 2013c).

Several geochemical studies (e.g., Francalanci et al., 2007; Peccerillo
et al., 2013; Zamboni et al., 2016) suggested that the geochemical
variations of the mafic rocks along the arc reflect modification of the
mantle wedge by subducting components. For example, the well-
known negative correlation between 87Sr/86Sr (0.7034–0.7075) and
143Nd/144Nd (0.5129–0.5124) isotope ratios from west to east along
the Aeolian Island Arc in a distance of less than 100 km is attributed to
increasing metasomatism by subducting components (fluid and melt)
along with local crustal contamination processes (e.g., anatexis in the
source of Lipari, Di Martino et al., 2010, 2011). The study by Zamboni
et al. (2016) used B and otherfluidmobile elements (e.g., As, Li) coupled
with melt mobile elements (i.e., Be) to distinguish the contributions of
the subducting components along the Aeolian Arc system, and provided
evidence for the presence of hydrous fluid components along the arc
and the existence of a metasomatic melt component in the peripheral
islands (Alicudi and Stromboli).

Our study aims to elucidate the effect of hydrous fluids and slab-
melts in themantle wedgewith evidence beyondwhole rock geochem-
istry. Olivine is the most abundant mineral in the upper mantle and
is the first to crystallize from a basaltic melt, thus providing critical in-
formation on primary magma compositions. The investigation of trace
element compositions (e.g., Ni, Mn, Ca, Cr, Ti; in abundances from 10s
to 1000s of ppm) in olivine is a useful tool to infer the lithology of the
mantle source (De Hoog et al., 2010; Sobolev et al., 2007). These trace
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element systematics have been previously used to discriminate be-
tween peridotite and pyroxenite sources (Barker et al., 2014; Gurenko
et al., 2009a, 2009b, 2013; Herzberg, 2011; Herzberg et al., 2014;
Søager et al., 2015; Sobolev et al., 2005, 2007). Olivines that crystallize
from pyroxenite-derived melts record high Ni, low Ca, and high Fe/Mn
and the partitioning of these elements is largely controlled by
clinopyroxene and garnet in the source (Sobolev et al., 2005, 2007).
Olivines interpreted to have crystallized from peridotite derived melts,
e.g., mid-ocean ridge basalts (MORB), record lower Ni, higher Ca, and
lower Fe/Mn relative to olivine crystallizing from pyroxenite sourced
melts due to the effect of residual olivine in the source. These studies
rely on the compositional control of Ni partitioning between olivine
and melt. However, some studies show that the partition coefficient of
Ni (DNi

ol/melt) in olivine depends also on temperature and olivines crystal-
lizing at low pressures and temperatures from the melt originally
in equilibrium with normal mantle olivine at high pressures and tem-
peratures will have elevated Ni contents without the involvement of
an olivine-free (pyroxenite) source (Li and Ripley, 2010; Matzen et al.,
2013; Putirka et al., 2011). Recent experimental studies by Mallik and
Dasgupta (2012, 2013, 2014) described elevated Fe/Mn ratios in melts
obtained bymixtures of eclogite and peridotite derivedmelts in equilib-
rium with residues characterized by lower olivine modal abundance
than in peridotite, but not necessarily olivine-free, as Mn content is
also controlled by garnet in the source. Finally, oxidized melts, as com-
monly produced in arc settings, could crystallize olivine with signifi-
cantly lower Fe/Mn in olivine as Fe3+ is less compatible in olivine
than Fe2+ (Krivolutskaya et al., 2012).

The few available studies on subduction related rocks (Foley et al.,
2013; Prelević et al., 2013; Straub et al., 2008) reported olivines with
high Ni content and associated this characteristic to a source that
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Smt = seamount; TLF = Tindari-Letojanni Fault System.
contains an olivine-free assemblage. It is imperative to distinguish be-
tween multiple source lithologies beneath the Aeolian Islands in order
to characterize the subduction inputs involved in the magma genesis
of this area. Here, we adopt a high-precision olivine chemistry approach
(Batanova et al., 2015; Herzberg et al., 2014; Sobolev et al., 2005, 2007).

2. Geologic setting

The collision between the African and Eurasian plates and the re-
lated geodynamic evolution of the Mediterranean area is responsible
for shaping the present day volcanic and tectonic setting of the Italian
region. The Aeolian Islands originated during the steep northwestern
subduction of the Ionian Plate beneath the Calabrian orogenic arc
and the plate's rollback toward southeast (Chiarabba et al., 2008;
Gvirtzman and Nur, 2001). The archipelago consists of seven volcanic
islands (Alicudi, Filicudi, Salina, Lipari, Vulcano, Panarea, and Stromboli)
and several seamounts (i.e., Palinuro, Marsili) inside and around the
Marsili back-arc basin (Fig. 1). The arc is subdivided into the western,
central and eastern sectors based on structural, geochemical, and volca-
nological criteria (e.g., De Astis et al., 2003). Presently, the western
area (Alicudi and Filicudi) is not considered volcanically active while
young eruptions occur on Vulcano (central segment) and Stromboli
(eastern segment). The Aeolian subaerial activity is geologically recent
(250–270 ka, Lucchi et al., 2013a, 2013b; Forni et al., 2013) and is char-
acterized by mafic volcanic rocks having calc-alkaline through potassic
compositions with extreme variations in trace elements and in radio-
genic isotope signatures (e.g., Peccerillo et al., 2013). The highest Nd iso-
topic (0.512894) and lowest Sr (0.703433) contents characterize the
most primitive basalts in the archipelago on the island of Alicudi, with
ratios similar to Etna lavas (e.g., Peccerillo et al., 2004). In contrast,
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Fig. 2. Variation of olivine Mg-numbers from the most mafic rocks along the Aeolian
Islands. The island of Alicudi is characterized by the highest Mg-number of 92.21. Mg-
number is defined as 100 × MgO / (MgO + FeO). Alicudi, Filicudi, Salina, and Stromboli
are color-coded.
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these values systematically change, moving toward the eastern sector,
in which Stromboli's rocks display the highest 87Sr/86Sr isotopic content
(0.707550) and the lower143Nd/144Nd value (0.512460), resembling
Vesuvius lavas (e.g., Peccerillo, 2001).

3. Materials and methods

We collectedmafic samples (MgO N 8wt%) on the islands of Alicudi,
Filicudi, Salina, and Stromboli based on studies that suggested that
the units collected are not only the most mafic but, do not show strong
evidence for crustal contamination (with the possible exception being
Alicudi) (e.g., Francalanci et al., 2013; Lucchi et al., 2013a; Lucchi et al.,
2013b; Lucchi et al., 2013d). For additional geologic background,
Lucchi et al. (2013c) presented a comprehensive geologic description
and history of the Aeolian Islands and the units selected for this study.
Sample location coordinates and whole rock major and trace element
chemical compositions are provided in Zamboni et al. (2016). For
Stromboli, we collected olivine from both the calc-alkaline and the po-
tassic lavas. We processed the samples in the geochemistry laboratory
at the Department of Geosciences at Virginia Tech. Olivine phenocrysts
were handpicked from the most mafic units, mounted in epoxy, and
hand-polished with diamond suspensions. The polished epoxy disks
were then carbon coated with a 20 nm film using a Q150TE high-
vacuum carbon coater. We performed high precision major (Si, Fe, Mg),
minor and trace (Ni, Mn, Ca, Al, Cr, Co, Ti, Zn, P and Na) element analyses
on the olivine phenocrysts using the JEOL JXA-8230 Superprobe at the
Institute des Sciences de la Terre (ISTerre), University Joseph Fourier,
Grenoble, France.

Samples were analyzed using the method described by Batanova
et al. (2015) with an accelerating voltage at 25 keV and a beam current
of 900 nA. Major elements were analyzed with an ED spectrometer
with element count times of 500 s for Si, Fe, and Mg. Minor and trace
elements were analyzed by WD spectrometer. Element counts were as
follows: 160 s for Na, 180 s for Al, 160 s for Co, 180 s for Zn, 180 s for
Ca, 160 s for P, 180 s for Ti, 90 s for Cr, 160 s for Mn, and 80 s for
Ni. The San Carlos olivine standard (USNM111312-44, Jarosewich
et al., 1980) was analyzed as an unknown 3 times every 30 measure-
ments in order to monitor potential instrumental drift and to estimate
accuracy and precision. The results yield precision better than 10 ppm
(2 standard errors) for trace elements and 0.06 wt% (2 standard errors)
for Fo content of SanCarlos olivine analyses. A detailed discussion on the
EMPA protocol can be found in Batanova et al. (2015). Standards and
statistics for the olivine analyses are given in Table 1 in Supplementary
Materials.

4. Results

The new high precision major and trace element compositions in
olivines from our Aeolian basaltic samples are reported in Table 1 of
Supplementary Materials. We conducted 133 high precision olivine
analyses for Alicudi, 92 for Filicudi, 183 for Salina, and 105 for Stromboli.
The peripheral islands (Stromboli, Alicudi) are characterized by higher
forsteritic content (high Mg-number) than the central sector of the arc
(Fig. 2). The Mg-numbers of olivines from Alicudi are the highest with
92.21, while Stromboli reaches values up to 90.77. It is noteworthy to
mention the low and constantMg-numbers for the olivine representing
the potassic rock series (67.87–75.88). Olivines from Filicudi reach a
maximum value of 86.84, while those from the central sector (Salina)
have Mg-numbers as high as 87.55.

Olivines from the peripheral islands are characterized by higher Ni
contents with respect to those from the central sector (Fig. 3A). Olivines
from Alicudi have the highest Ni values in the arc (maximum of
3243 ppm), followed by Stromboli calc-alkaline-derived olivines with
~2604 ppm. In contrast, olivines from Filicudi and Salina are character-
ized by lower Ni contents (1046 and 2232 ppm, respectively). Olivines
from all the islands have Fe/Mn ratios of ~60, with the exception of a
small subgroup from Alicudi, that displays elevated values up to 74.
Calcium concentrations display two populations of crystals in Alicudi
for forsteritic olivine (Mg number ~90), with one population reaching
almost 2000 ppm and the other characterized by values less than
1000 ppm (Fig. 3C). The majority of the olivines from the other islands
display Ca concentrations in the range between 1000 and 2000 ppm.
Olivines from the potassic rock of Stromboli range between 2000 and
2500 ppm Ca, with a maximum of 2369 ppm.

5. Discussion and conclusions

We used the minor and trace element geochemical compositions
of olivines from the most primitive erupted magmas along the Aeolian
Arc to distinguish which source lithology (peridotite or olivine-free
“pyroxenite”) melted to produce the observed arc basalts (Herzberg,
2011; Sobolev et al., 2005, 2007). We present our data with olivine de-
rived from primary magmas modeled from an ~anhydrous peridotite
source (e.g. MORB) and schematic trends for the liquid lines of descent
(LLD) of olivine and the cotectic fractionation olivine + clinopyroxene
(ol + cpx), as described in Herzberg (2011). Nickel contents in most
of the Aeolian olivines (Fig. 3A) match the olivine LLD modeled from
melts derived from a peridotite source or are even more depleted in
Ni. The Fe/Mn ratios of most Aeolian olivines are the same or lower
than predicted for olivine from peridotite sourced parental melts
(Fig. 3B). These together imply for the dominant role of peridotitic
source for the studied Aeolian magmas. The only exception is the
high-Ni olivine subgroup from Alicudi that can't be explained by simple
fractional crystallization (Figs. 3 and 4). This subgroup of olivines is
characteristically higher in Ni, Fe/Mn, and lower in Ca than olivines
from the other Aeolian Island olivines and is indicative of a crystalliza-
tion from a source that includes a pyroxenite component. These two
groups also show distinct Ti crystallization trends, inconsistent with
derivation from the same source. The high-Ni olivines are markedly
lower in Ti (less than 50 ppm) than the low-Ni olivine group that
display elevated Ti contents (up to 73 ppm). The low Ti concentrations
in the high-Ni olivine could reflect the sequestration of Ti by rutile in a
pyroxenite source. The elevated Ni contents in olivine subgroup from
Alicudi are unlikely to be explained by temperature dependence of Ni
partition between olivine and melt (e.g. Li and Ripley, 2010; Matzen
et al., 2013; Putirka et al., 2011) because these are arc magmas that
are not particularly hot compared to other geologic environments
such as intraplate plume-related magmatism.
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The olivine Ni data from the Stromboli calc-alkaline series also dis-
play two distinct trends (Fig. 3A). Nevertheless, in this case they can
be explained by a higher Ni trend (at a given Mg#) that resulted from
earlier ol + cpx cotectic crystallization, relative to the low-Ni trend.
This may reflect higher crystallization pressures that would initiate
early cpx fractionation. Fe/Mn values in the Aeolian olivines are
even markedly lower than estimated for peridotite-sourced magmas
(Fig. 3B). This could exclude a significant role of pyroxenitic lithologies
in the sources, but most likely it reflects the oxidized conditions for
the crystallizing magmas (Krivolutskaya et al., 2012).

Calcium contents in Aeolian olivines are lower than expected for
olivines crystallizing from an anhydrous peridotite source (Fig. 3C).
This may result from an alternative peridotite source hydrated by sub-
duction fluids. Experimental data show that the main effect of H2O on
the partitioning behavior of Ca between olivine and melt is to decrease
the partition coefficient (DCa

ol/melt), as DCa
ol/melt is a function of olivine

Mg-number, and suppressed with increasing H2O (Feig et al., 2006;
Gavrilenko et al., 2016). This effect is mostly observed in olivines with
depleted Ca concentrations, relative to those crystallizing from a
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nominally anhydrous source, e.g., MORB. The represented olivine liquid
lines of descent (LLD) and the corresponding peridotite source
(Herzberg, 2011) were modeled for anhydrous magmas. We note that
H2O is not considered to have a great effect on DNi

ol/melt and DFe/Mn
ol/melt. Vol-

canic arcs commonly contain high H2O contents, on average ~4 wt%
(Plank et al., 2013), thus thewater effect on Ca partitioning requires fur-
ther evaluation. In the case of the Aeolian Islands, water contents from
olivine (Fo 88–91) hosted melt inclusions range 2–4 wt% for Vulcano
(Clocchiatti et al., 1994; Gioncada et al., 1998) and 2–3 wt% for Alicudi
(Sorbadere et al., 2012), while for Stromboli olivine (Fo 83–89) hosted
melt inclusions contain 2–4 wt% of H2O (Métrich et al., 2001, 2010).

We first compared our Aeolian Islands high precision olivine data
with olivine compositions from different mid-ocean ridge and intra-
plate volcanic settings derived from pyroxenite, peridotite, or a mixture
of the two sources. The Aeolian olivines partially overlap with MORB
olivines that are consistent with peridotite source melting (Herzberg,
2011; Sobolev et al., 2007). Only very few high-Ni samples from Alicudi
overlap with the intraplate olivines (Fig. 3A). This can be seen in Fig. 3B
where several high forsteritic samples of Alicudi with high Fe/Mn ratios
overlapwith intraplate olivines. In contrast, the low Ca contents are not
consistent with either an anhydrous pyroxenite or peridotite source.
We suggest that the differences between the Aeolian olivine composi-
tions and the intraplate olivine data (characterized by high Ni and low
Mn and Ca) are due to the different origins of the respective melts. For
example, both Mauna Kea and Quepos (accreted Galapagos track in
Costa Rica) olivines were interpreted as crystallizing from pyroxenite-
derived primary magmas (Sobolev et al., 2007; Trela et al., 2015).

Because of the dominant effect of water on the partitioning behavior
of Ca in olivine, it is necessary to compare and contrast our Aeolian
olivine data with the limited available high-precision olivine data from
arc settings (Fig. 4). In the Ni vs. Mg# systematic (Fig. 4A) we observe
that the Irazu (Costa Rica) and Argentinian back-arc olivines only,
though overlap with the few relatively high Ni Alicudi's data. Vesuvius
olivines plot near the Aeolian data, though exhibit trends lower in Ni
and Fe/Mn and higher Ca at any given Mg# (Fig. 4A–C). These trends
are also observed in most suprasubduction-related olivines and are
thought to result from the more oxidized mantle wedge compared
with intraplatemantle sources (e.g., Krivolutskaya et al., 2012) implying
that the use of olivine Fe/Mn from magmas produced in arc-related
settings should be interpreted with caution as a source lithological dis-
criminator, by always considering the internal consistency with Ni and
other trace elements. The Argentinian data (Søager et al., 2015) are
characterized by high Fe/Mn ratios (Fig. 4B) that exceed the modeled
bound of 70 for observed olivines of a peridotite source provenance
(Herzberg, 2011), indicating a pyroxenitic sourcemixingwith a perido-
titic metasomatizedmantle by fluids (Søager et al., 2015). Irazu olivines
(Fo N 88) also display slightly higher Fe/Mn values and Ni, suggesting
the need of a pyroxenitic component in the generation of these lavas
(Fig. 4A). In terms of Ca contents, the Irazu and Argentinian olivines
are similarly low than the Aeolian Islands ones (Fig. 5C). This observa-
tion can be readily explained by the influence of H2O on the partitioning
of Ca (Behrens and Schulze, 2000;Gavrilenko et al., 2016), asmentioned
before, and supports a fluid fluxed source for the Aeolian lavas, as well
as for Irazu and Argentina back-arc examples. In contrast, Vesuvius
olivines are characterized by higher Ca contents (N2000 ppm), similar
to data from the leucites and lamproites found in Italy, (Ammannati
et al., 2016) and interpreted as a carbonated source. This source is prob-
ably related to metasomatism of the mantle wedge through melting of
subducted carbonated pelites and/or reactions with the carbonates in
the crust (Ammannati et al., 2016; Dallai et al., 2011; Jolis et al., 2013).

In order to evaluate global trends and minimize the effect of crystal
fractionation,we filtered the available global olivines database to obtain
primitive compositions, selecting Mg-numbers N87. In Fig. 5A and B
we represent data as averages (1 standard deviation) and plot Mn/Fe
ratios against parameters useful to emphasize differences in source
lithology and geodynamic settings (Sobolev et al., 2007). Fig. 5A
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shows 100Mn/Fe vs. Ni/(Mg/Fe)/1000 anddefines a clear array between
olivines derived from pyroxenite and peridotite sources. The Aeolian
Islands olivines clearly plot within the peridotite end-member, with
the exception of the high-Ni group of Alicudi olivines. The differences
in trace element systematics between the two Alicudi olivine groups
highlight the significance of having two lithologically distinguishable
sourced (peridotite and pyroxenite) melts in the generation of Alicudi
olivine (Fig. 5C). In contrast, Vesuvius olivines plot outside the area
defined by the pyroxenite–peridotite end-members, but with composi-
tion similar to Stromboli olivines. The composition of these olivines
might represent a third lithological end-member, e.g., a peridotite
metasomatized by carbonatitic melts (Ammannati et al., 2016) found
in some arc settings and/or olivine crystallization from an oxidized
melt (Krivolutskaya et al., 2012).

Fig. 5B clearly shows that olivines crystallizing from hydrous
peridotite-derived liquids (as in an arc setting) systematically show
lower Ca concentrations and lower Mn/Fe ratios, relative to those that
crystallized from nominally anhydrous sources, e.g., OIBs and MORB.
This trend is subparallel to the intraplate trend, yet shows similar
variations between peridotite and pyroxenite end members. Detailed
hydrous peridotite and pyroxenite melting experiments and analysis
of derived olivine phenocrysts will place better constraints on the
mantle source end-member compositions in subduction zone settings.
We suggest that the intraplate trend is related to the almost anhydrous
conditions that characterized OIB melts, while the arc trend highlights
the effect of H2O on the partitioning behavior of Ca between melt and
olivine (Berndt et al., 2005; Feig et al., 2006; Libourel, 1999) and higher
oxidation of Fe. A water diffusion study by Behrens and Schulze (2000)
suggests that hydrous species strongly bond to Ca-complexes in melts,
thus resulting in a decrease of calcium activity in themelt and an overall
decrease in calcium concentrations in crystallizing olivine. The effects of
temperature, pressure, and oxygen fugacity are considered to be negli-
gible factors controlling the calcium contents of olivine. Therefore, cal-
cium concentrations in primitive olivine phenocrysts from island arcs
may be a more useful indicator of H2O concentrations in primary melts.

With the exception of some samples from the island of Alicudi, the
dominant role of a peridotite source for the Aeolian Islands is a sur-
prising result, given the fact that melt components have been identified
in the peripheral islands (Zamboni et al., 2016). This new evidence sug-
gests that although from a trace-element and isotopic perspective the
three different components that play a role in producing magmas be-
neath the Aeolian Islands are peridotite, subducted oceanic crust, and
sediments (e.g. Francalanci et al., 2007; Peccerillo and Frezzotti, 2015;
Peccerillo et al., 2013), contrary to Mexico (Straub et al., 2008), and
Argentina (Søager et al., 2015) the source composition is a hydrated
peridotite. We suggest that the ratio of silica-rich melt (from the
subducting oceanic crust) to peridotite increases and as a consequence,
the source can evolve from re-fertilized peridotite to olivine-bearing
pyroxenite, and finally olivine-free pyroxenite depending on the pro-
portion of silicic melts that can reactwith peridotite, and the convection
processes in themantle wedge. Additionally, it is also possible that high
degrees of partial melting, common in the presence of water in arc
settings, obscure the role ofmelting pyroxenitic veins in a dominant pe-
ridotitic mantle. Finally, carbonatitic melts with very low silica activities
could react with orthopyroxene to produce olivine (Neumann et al.,
2002) and thus, reverting the reaction produced by silica-rich melts,
thus adding more complexity to the metasomatic reactions that result
in arc magmas.

Finally, we suggest that the use of Fe/Mn and Ca in olivines as tracers
of mantle source lithology in island arc settings (as they have used for
intraplate magmas) should be used with caution. Iron partitioning
between olivine and melt is sensitive to the state of oxidation of the
melt (which may be more oxidized in arc settings) and DCa

ol/melt is sup-
pressed in hydrous melts. Therefore, the use of nickel concentrations
in olivine, coupled with other geochemical data (whole rock major
and trace element), provides internal consistency to infer the source
lithology in arc settings, as DNi
ol/melt is not significantly affected by the

state of oxidation or H2O content of the melt.
Supplementary data to this article can be found online at http://dx.

doi.org/10.1016/j.lithos.2016.12.004.
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