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Abstract We present a framework based on information theoretic concepts and the
Dirichlet distribution for classifying chromosomes based on the degree to which they
use synonymous codons uniformly or preferentially, that is, whether or not codons
that code for an amino acid appear with the same relative frequency. At its core is
a measure of codon usage bias we call the Kullback–Leibler codon information bias
(KL-CIB or CIB for short). Being defined in terms of conditional entropy makes KL-
CIB an ideal and natural quantity for expressing a chromosome’s degree of departure
from uniform synonymous codon usage. Applying the approach to a large collection
of annotated bacterial chromosomes reveals three distinct groups of bacteria.
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Mathematics Subject Classification 60F10 · 60G42 · 92D20 · 62P10

1 Introduction

Living cells use the genetic code to translate triples of nucleic acids called codons into
amino acids, the building blocks of proteins. There are a total of 64 codons of which61
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code for 20 amino acids while the remaining 3 constitute translation stop signals. This
many-to-one mapping between codons and amino acids means the genetic code is
degenerate. As almost all amino acids are represented by two to six different codons,
the code possesses intrinsic redundancy. This provides the cellular machinery with the
ability to correctly manufacture protein products in the presence of certain kinds of
transcription/translation/replication errors.However, theway inwhich codons are used
to represent amino acids varies from gene to gene and from organism to organism. The
mechanism by which variations in these usage patterns arise is not clearly understood,
though a number of factors that can influence codon usage are known. These include
mutational biases, translational selection pressures, gc content at the third codon site
(gc3s) and gene size. The pattern in the way amino acids are represented by codons
is called synonymous codon usage (SCU) and inequity in the distribution of codons
which code for the same amino acid is referred to as codon usage bias (CUB).

As noted above, patterns of SCU are specific to each organism and their study is of
significant biological interest. Consequently, there is a substantial body of literature
devoted to studying SCU in the genes of organisms. Comeron and Aguade (1998)
give a brief review of methods for measuring SCU, both general and species-specific.
Two useful measures are the codon adaptation index (Sharp and Li 1987) and the
‘effective number of codons’ (Wright 1990). A number of other measures have been
subsequently posed such as relative codon adaptation (Fox and Erill 2010), various
modifications to the ‘effective number of codons’ (Fuglsang 2006; Banerjeee et al.
2005) and the measure of gene expression E(G) which was used by Karlin et al.
(2001) to characterize predicted highly expressed genes in four bacteria.

Here, we develop a method for assessing codon usage bias based on concepts from
information theory and apply it to a large set of bacterial chromosomes. Our objective
is to explore and identify trends in global SCU in a large collection of organisms. In
order to do this, our approach differs from that which is typically taken when studying
SCU in a chromosome. Rather than examining SCU in a chromosome gene by gene,
we aggregate all the genes annotated for the chromosome together and compute total
relative frequencies for codons and amino acids which are then plugged into our
measure.

To set the scene more concretely, let {a, c, g, t} be the alphabet of nucleotides in
DNA. Being triplets of nucleotides, codons are elements of {a, c, g, t}3 and 61 of the
64 possible codons code for amino acids. The remaining 3 codons (taa, tag and tga)
indicate a STOP condition that is transcribed into messenger RNA and which instructs
the ribosome to halt the translation of a sequence of codons into a polypeptide chain.

Each amino acid can be represented by any of its so-called synonymous codons,
which are those codons that code for it. For instance, the four codons gca, gcg, gct
and gcc all code for the amino acid alanine (Ala). Thus the list of amino acids defines
a partition A = {Ad : d = 1, . . . , 20} on the set of 61 codons. Each amino acid is
associated with a class Ad which is the set of its synonymous codons. For example,
if A1 corresponds to Ala, then A1 = {gca, gcg, gct, gcc}. Further, the collection of 20
amino acids can be organized according to the number of synonymous codons each
has: there are 5 amino acids with 4 synonymous codons, 3 with 6 codons, 9 with 2
codons, 1 with 3 codons and 2 with just 1 codon.
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We seek ameasure or statisticΔwhich captures the degree towhich the set of amino
acids are represented equally often by their synonymous codons. If we suppose that
there are kd codons that code for amino acid Ad , then Ad will exhibit no CUB if each
of its kd synonymous codons appears with relative frequency 1/kd . Extending this,
it should be clear that a complete chromosome will exhibit no overall CUB provided
that every codon C appears in the chromosome with a relative frequency equal to
the reciprocal of the number of codons that code for the same amino acid as C . In
order for Δ to be useful, it should possess a number of desirable properties. Firstly,
a complete absence of CUB, the ideal case just described, should be indicated by the
reference value of 0. Secondly, the most extreme form of CUBwhere each amino acid
is always represented by the same codon should correspond to the maximum value
of Δ. Thirdly, larger values of Δ should correspond to greater concentrations of the
codon distribution on a smaller number of codons, with the extreme case being one
codon per amino acid. Finally, it should be independent of the amino acid composition
so that comparisons can be made between chromosomes and/or organisms.

This paper is organized as follows. Section 2 begins by presenting information
theoretic concepts such as partitions, entropy, conditional entropy andmaximal entropy
of probability measures when fixing a probability measure over some partition. We
propose a statistic Δ for CUB which we call the Kullback–Leibler codon information
bias (KL-CIBor simplyCIB).This section also includes a discussionof the relationship
of Δ to probabilistic measures such as the Kullback–Leibler divergence, from which
it takes its name and it is also compared to homozygosity, a well-known measure
of genetic similarity. Next, Sect. 3 is concerned with computing the expected value
of Δ under a uniform distribution assumption on the set of all possible probability
distributions of synonymous codons for each amino acid. This enables a reference
value for the mean of the statistic to be computed directly from knowledge of the
amino acid composition alone.

The final section applies the proposed entropy-based approach to a set of 2535
annotated bacterial chromosomes and we discover that the bacteria can be divided into
three broad groups based on their SCU behavior. In the largest group, which contains
1587 bacteria, amino acids are fairly uniformly represented by their synonymous
codons. The next largest group consists of 592 bacteria that exhibit a very high degree
of CUB, indicating an extreme preference for a small number of codons. The third
and smallest group has 356 bacteria whose SCU bias is moderate.

2 Partitions, entropy and maximal entropy

Let I be a finite set and denote its cardinality by |I |. A partition A = (A : A ∈ A )

of I is such that its elements, which we shall call atoms, are non-empty, disjoint and
cover I . Throughout the remainder of this work, I is the set of 61 codons which code
for amino acids while A is the set of 20 amino acids and each amino acid A ∈ A
may be viewed as the set of codons which code for it.

It will also be useful to introduce the partition I = {{i} : i ∈ I } where the atoms
are the singletons of I . For every i ∈ I there is a unique atom Ai ∈ A containing i .
For A ∈ A , |A| is the number of elements in A.
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Once and for all, we fix a probability distribution q on the set of amino acids, which
can be represented by a vector q = (qA : A ∈ A ) satisfying qA ≥ 0 for A ∈ A and∑

A∈A qA = 1. Its Shannon entropy h(A , q) is given by

h(A , q) = −
∑

A∈A
qA log qA

with the convention that the summand is taken to be 0 whenever qA = 0. Next, a
probability measure p on I is given by a vector p = (pi : i ∈ I ) and p(B) = ∑

i∈B pi
for all B ⊆ I . We say that p extends q if p(A) = qA for all A ∈ A . We write this
extension relation as p � q. From now on, we shall assume that p � q always holds.

For any measure p extending q from A to I , we have the increasing property
h(A , q) ≤ h(I , p). More generally, let B be a partition of I which is coarser than
A , that is, the atoms of A are unions of atoms of B. Then, h(A , q) ≤ h(B, p) =
−∑

B∈B p(B) log p(B). The conditional entropy is

h p(B |A ) = h(B, p) − h(A , q) = −
∑

A∈A
qA

⎛

⎝
∑

B∈B:B⊆A

p(B)

qA
log

p(B)

qA

⎞

⎠ . (1)

So, when B = I we obtain

h p(I |A ) = −
∑

A∈A
qA

(
∑

i∈A

pi
qA

log
pi
qA

)

= −
∑

A∈A
qA

(
∑

i∈A

pi |A log pi |A

)

,

where pi |A = pi/qA for i ∈ A is the probability that an arbitrary instance of amino
acid A is coded by the synonymous codon specified by i . Note that the vector (pi |Ai :
i ∈ I ) provides a complete picture of SCU.

Next, define the probability measure p(q) on I by

∀i ∈ I : p(q)
i = qAi

/|Ai |,

that is, p(q) gives the same weight to the points of I contained in the same atom of
A . A straightforward computation shows that p(q) � q and its entropy is

h
(
I , p(q)

) =
∑

A∈A
qA log |A| + h(A , q).

Since the function −x log x is concave on the interval [0, 1], Jensen’s inequality
implies that p(q) maximizes the entropy over the set of probability measures that
extend q, that is,

h
(
I , p(q)

) = max
{
h(I , p) : p � q

}
.
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Wecannowdefine theKullback–Leibler codon information bias (KL-CIBor simply
CIB):

Δ = Δ(p | q) = h
(
I , p(q)

) − h
(
I , p

)
for p � q.

In other words, Δ is the difference between two entropies where the first is the
maximum entropy (computed over the discrete partition I ) of codon distributions
extending the amino acid composition q and the second is the entropy of the observed
codon distribution p, which always extends q. Then,

Δ(p | q) =
∑

A∈A
qA log |A| + h(A , q) − h p(I |A ) − h(A , q)

=
∑

A∈A
qA log |A| − h p(I |A ), (2)

which provides an alternative formulation of CIB in terms of conditional entropy. CIB
possesses a number of properties whichmake it useful for assessing CUB. Being based
on entropy, it is a natural quantity formeasuring departure fromequal usage. It takes the
value zero if and only if p is constant on each atom ofA , a configuration concordant
with unbiased SCU. The maximum value that Δ can take is

∑
A∈A qA log |A|. By the

definition of Δ, this maximum value corresponds to a conditional entropy of zero and
this means there is precisely one codon representing each amino acid. Finally, fixing
the distribution of amino acids in the definition of Δ has the effect of removing the
influence of amino acid composition so that it can be used to compare the degree of
CUB in coding sequences from different chromosomes/species.

In Sect. 4, we shall use The empirical CIB Δ̂ for assessing a chromosome’s CUB.
The empirical CIB is

Δ̂ = Δ( p̂ | q̂), (3)

where q̂ and p̂ are respectively the vectors of amino-acid and codon relative frequen-
cies obtained from annotation and sequence data. So Δ̂ is simply Δ evaluated for
empirically derived estimates of p and q rather than theoretical or simulated probabil-
ity measures. Note that Δ̂ retains all the desirable properties of Δ outlined above. In
addition, we should point out that, in any real chromosome or DNA coding sequence,
the vector of codon relative frequencies always extends the vector of amino-acid rela-
tive frequencies (subject to computation error), that is, the assumption p̂ � q̂ is always
valid in this context and hence Δ̂ always has a reasonable interpretation as a summary
of SCU.

2.1 Relationship to Kullback–Leibler divergence

Next, we shall establish an equivalence between Δ(p | q) and the Kullback–Leibler
divergence for which it has been named. Then, we shall describe how Δ(p | q) is
related to homozygosity, a standard quantity in the field of population genetics which
has also been used in measuring CUB.
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1616 A. Hart, S. Martínez

First, we recall the definition of the Kullback–Leibler divergence. For two probabil-
ity measures μ and ν on I such that ν(i) = 0 implies μ(i) = 0, the Kullback–Leibler
divergence of ν from μ is

K (μ | ν) =
∑

i∈I
μ(i) log

(
μ(i)/ν(i)

)
,

where by convention the summand is taken to be 0 if ν(i) [and hence μ(i)] is equal
to 0.

Proposition 1 For p � q, Δ(p | q) = K
(
p | p(q)

)
.

Proof For i ∈ I we have

pi

p(q)
i

= |Ai | pi
qAi

= |Ai |pi |Ai ,

so

K
(
p | p(q)

) =
∑

i∈I
pi log

(
|Ai |pi |Ai

)
=

∑

A∈A

∑

i∈A

pi log
(|A|pi |Ai

)
.

Then

K
(
p | p(q)

) = h(A , q) − h(I , p) +
∑

A∈A

∑

i∈A

pi log |A|

= h(A , q) − h(I , p) +
∑

A∈A
qA log |A| = Δ(p | q).

�	
Next, statistical estimators of homozygosity have been used to construct a measure

of CUB called the “effective number of codons” (Wright 1990). The homozygosity
of each atom A ∈ A is

κA =
∑

i∈A

p2i |A

and it is related to Δ(p | q) as follows.

Proposition 2 The statisticΔ(p | q) and the homozygosity are related by the inequal-
ity

Δq(p) ≤
∑

A∈A
qA|A|κA − 1.

Proof Firstly, the homozygosities of the atoms ofA can be related to the χ2 distance.
The χ2 distance between two probability measures μ and ν is
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d2
χ2(μ, ν) =

∑

i∈I
(μ(i)/ν(i) − 1)2 ν(i).

In our case,

d2
χ2

(
p, p(q)

) =
∑

A∈A

∑

i∈A

(|A|pi |A − 1
)2 qA

|Ai | =
∑

A∈A

qA
|A|

∑

i∈A

(|A|pi |A − 1
)2

=
∑

A∈A

qA
|A|

⎛

⎝
∑

i∈A

(|A|pi |A
)2 − 2|A| + |A|

⎞

⎠ =
∑

A∈A

qA
|A|

∑

i∈A

(|A|pi |A
)2 − 1

=
∑

A∈A
qA|A|

∑

i∈A

p2i |A − 1.

Then,

d2
χ2

(
p, p(q)

) =
∑

A∈A
qA|A|κA − 1.

Finally, combining Proposition 1 with the well-known result (see, Gibbs and Su 2002)
that

K (μ | ν) ≤ d2
χ2(μ, ν)

gives the result.

3 The expected CIB

We would like to have a better idea of how the quantity Δ(p | q) behaves probabilisti-
cally. Recalling that the amino acid composition q is fixed, our initial step towards this
end is to place a uniform probability law on the set of probability measures that extend
q which treats all possible SCU scenarios as equally likely. We shall then compute the
expected value ofΔ(P | q)when P is chosen according to this law. Thus,E

(
Δ(P | q)

)

will represent the mean CIB among all possible SCU scenarios where equal weight or
importance is given to all scenarios. Note that all SCU scenarios imply some kind of
CUB except for p(q) which equates to an utter lack of bias. As a result, E

(
Δ(p | q)

)

is a measure of the average CUB one would expect to observe supposing all possible
SCU scenarios are equally likely. It carries an implicit assumption of CUB.

To begin, since any extension p of q satisfies
∑

i∈A pi = qA for A ∈ A , p is
characterized by the set of probability vectors of the form

((
pi/qA : i ∈ A

) : A ∈ A
)
.

Any such measure takes values in S|A|−1, the simplex of dimension |A| − 1.
Pursuant to the ‘equal likeliness’ supposition described above, we impose a distri-

bution P on the set of probability measures on I that extend q which is a product of
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independent Dirichlet distributions with its support constrained to the set of extensions
of q. More precisely, the random vector P = (Pi : i ∈ I ) is such that

X (A) = (
Pi/qA : i ∈ A

) ∼ Dirichlet (1, . . . , 1
︸ ︷︷ ︸
|A| times

) (4)

and (X (A) : A ∈ A ) are independent random vectors. We recall that the
density for (Y1, . . . ,Ya) ∼ Dirichlet (1, . . . , 1

︸ ︷︷ ︸
a times

) is fY1,...,Ya (y1, . . . , ya) = (a −

1)!1(
(y1, . . . , ya) ∈ Sa−1

)
.

We can now compute the expectation of Δ(P | q) with respect to this distribution.

Theorem 1 Let P be a random probability vector extending q that is distributed
according to (4). Then

E
(
Δ(P | q)

) =
∑

A∈A
qA log |A| −

∑

A∈A
qAξ|A| + 1,

where ξn = ∑n
j=1 j−1 denotes the nth harmonic number.

Proof From (2), it suffices to show

E (hP (I |A )) =
∑

A∈A
qAξ|A| − 1. (5)

However, we shall prove a slightlymore general statement. LetB be a coarser partition
of I than A and P a random probability measure on B extending q. We shall prove
that

E (hP(B |A )) =
∑

A∈A
qAξ|A| −

∑

A∈A

qA
|A|

⎛

⎝
∑

B∈B:B⊆A

|B|ξ|B|

⎞

⎠ . (6)

Note that (5) immediately follows from (6) whenB = I because the atoms ofI
are all singletons. Restricting our attention to (6), we let B be an arbitrary atom of the
partitionB.

Now, if (Y j : j = 1, . . . , a) ∼ Dirichlet (c1, . . . , ca) with c1, . . . , ca > 0, (Ji :
i = 1, . . . , k) is a partition of {1, . . . , a} and Zi = ∑

j∈Ji Y j for i = 1, . . . , k, then
it follows that (Zi : i = 1, . . . , k) ∼ Dirichlet (

∑
j∈Ji c j : i = 1, . . . , k) (see for

instance Section 2.2.1 in, Bertoin 2006). As a special case of this, we have

Zi ∼ Beta

⎛

⎝
∑

j∈Ji

c j ,
∑

j∈{1,...,a}\Ji
c j

⎞

⎠ . (7)
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Recalling that P(B) = ∑
i∈B Pi , (1) yields

hP (B |A ) = −
∑

A∈A
qA

⎛

⎝
∑

B∈B:B⊆A

P(B)

qA
log

P(B)

qA

⎞

⎠

while combining distributions (4) and (7) enables us to conclude that

P(B)

qA
∼ Beta(|B|, |A| − |B|).

Then,

E(hP (B |A )) = −
∑

A∈A
qA

⎛

⎝
∑

B∈B:B⊆A

E(WB,A logWB,A)

⎞

⎠ , (8)

where WB,A ∼ Beta (|B|, |A| − |B|).
We need to compute E(W logW ) for W ∼ Beta (l,m). Firstly,

E (W logW ) = (l + m − 1)!
(l − 1)! (m − 1)!

∫ 1

0
x (log x) xl−1(1 − x)m−1dx .

For reals s, t ≥ 0, define

θ(s, t) =
∫ 1

0
xs (1 − x)t log x dx .

By using the fact that θ(s, t) is the derivative with respect to s of the Beta function

β(s + 1, t + 1) =
∫ 1

0
xs(1− x)t dx = 	(s + 1)	(t + 1)

/
	(s + t + 2), we can write

θ(s, t) = d

ds
β(s + 1, t + 1) = d

ds

	(s + 1)	(t + 1)

	(s + t + 2)

= β(s + 1, t + 1)

(
	′(s + 1)

	(s + 1)
− 	′(s + t + 2)

	(s + t + 2)

)

.

Since the Digamma function ψ(z) = 	′(z)/	(z) satisfies ψ(n + 1) = ψ(1) +∑n−1
j=1 j−1 for integer values n ≥ 2 (see formula 6.3.2 on Page 258 of, Abramowitz

and Stegun 1964), we can deduce that for integers s, t ≥ 0

θ(s, t) = s! t !
(s + t + 1)! (ξs − ξs+t+1) .

Hence, for (W, 1 − W ) ∼Dirichlet (l,m) we have

E(W logW ) = − (l + m − 1)!
(l − 1)! (m − 1)! · l! (m − 1)!

(l + m)! (ξl+m − ξl) = − l

l + m
(ξl+m − ξl) .
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Setting W = WB,A, l = |B| and m = |A| − |B|, we obtain

E(WB,A logWB,A) = −|B|
|A|

(
ξ|A| − ξ|B|

)

and substituting this into (8) yields the result. �	
Note. The calculations in the above proof also enable E

(
hP (B |A )

)
to be computed

exactly when X (A) ∼Dirichlet (c, . . . , c
︸ ︷︷ ︸
|A|times

) where c is a positive fixed integer which

is the same for all A ∈ A . Here, we have fixed c = 1 in the statement of the theorem
because this causes all distributions p that extend q to occur with the same probability.

Remark 1 To better understand the tail distribution of Δ(P | q), one can attempt to
bound the expressionP ((Δ(P | q) − E(Δ(P | q))) ≤ −λ). Onewayof doing this is by
using the Azuma-Hoeffding large deviation inequality (see for instance Lemma 11.2
in Section 11.1.4 of, Waterman 1995) and only considering dyadic refinements. Let
(Bk : k = 0, . . . , K ) be a dyadic sequence of partitions fromB0 = A toBK = I ,
Bk be the unique atom of Bk which is split into B̄k and Bk\B̄k , and Ak be the atom
in A that contains Bk . Then define (ζk : k = 0, . . . , K − 1) by

ζk = qAk logmax{|B̄k |, |Bk\B̄k |} + log 2 − qAk log qAk . (9)

Assuming qA ≤ 1/e for all A ∈ A , standard arguments combined with (6) yield

∀λ > 0 : P
(
Δ(P | q) ≤ E

(
Δ(P | q)

) − λ
) ≤ exp

(

−λ2
/
2

K−1∑

k=0

ζ 2
k

)

. (10)

As an aside, Sect. 4 examines a collection of 2535 bacterial chromosomes down-
loaded from the NCBI ftp server. Among these, we found that max{qA : A ∈ A } ≈
0.179855 < 1/e always holds and so the above conclusions are valid for all the real-
world chromosomes considered. Next,B0,K can be chosen optimally to minimize the
bound on the right-hand side of (10) and this bound can be shown to be greater than
0.99805. Clearly, this is not tight enough for any kind of practical application.

4 Application and comments

Wedownloaded a large set of 2585 bacterial DNA sequences from theNCBI ftp server.
All of the sequences weremarked as ‘complete genome’ or ‘nearly complete genome’,
so constitute chromosomes and not plasmids. Chromosomeswhichwere either lacking
annotation data or which had fewer than 200 coding sequences, of which there were
8 and 45 respectively, were filtered out. This left a set of 2535 chromosomes. Next,
the codon distribution ( p̂) was estimated from the relative frequencies of the codons
for each chromosome by adding up the counts of codons in all the genes annotated
in the GenBank (.gbk) file, excluding the terminating STOP codons, and rescaling
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the results to sum to one. For example, the numbers of aaa codons appearing in each
gene were added together and then divided by the total number of codons contained in
all the genes in the chromosome. The corresponding amino acid distribution (q̂) was
computed by summing the relative frequencies of the synonymous codons for each
amino acid. Finally, the relative frequencies of the codons and amino acids were used
to compute Δ̂ for each chromosome in accordance with (3) and (2).

In order to compare the Δ̂ statistic observed in a real-world chromosome with
what is theoretically observable for such a chromosome, we examined the behavior
of Δ in codon distributions that are compatible with the chromosome’s amino acid
composition. We did this for each of the 2535 chromosomes by carrying out a series
of Monte Carlo simulations in which 100 codon distributions were sampled uniformly
at random subject to having the same amino acid distribution as the chromosome in
question. This produced a sample of size 253,500 covering all 2535 chromosomeswith
the characteristic that the two sets of statistics, the set of Δ̂’s observed from the bacterial
chromosomes and the larger set of theoretically simulated Δ’s, are comparable since
they are based on the same mixture of amino acid compositions.

The algorithm we used for uniformly sampling codon distributions that extend a
specified amino acid distribution can be described as follows. First fix the amino acid
distribution q = (qA : A ∈ A ). Then, a distribution p·|A = (

pi |A : i ∈ A
)
for the

usage of the synonymous codons that code for each amino acid A is sampled from the
appropriate Dirichlet distribution. For example, a distribution for the two codons (gac
and gat) that code for aspartic acid (Asp) would be obtained by sampling from the
2-dimensional Dirichlet(1, 1) distribution while a distribution for proline (Pro) which
has 4 synonymous codons (cct, ccc, cca and ccg) would be obtained by sampling
from a 4-dimensional Dirichlet(1, 1, 1, 1) distribution. The final codon distribution
p = (pi : i ∈ I ) is then obtained by combining these two distributions as follows:

∀i ∈ I, pi = pi |Ai qAi .

In other words, take an amino acid distribution and uniformly select a possible SCU
distribution at random for each amino acid in turn. After multiplying each SCU dis-
tribution by the probability of the corresponding amino acid, the result is a codon
distribution which is a discrete extension of the original amino acid composition. In
future, we shall refer to this procedure as ‘uniformly simulating SCU scenarios’, as
it generates a codon distribution compatible with a given amino acid composition by
selecting a possible usage of synonymous codons uniformly at random.

Figure 1 shows kernel density estimates of Δ̂ for the collection of 2535 chromo-
somes and the codon distributions simulated as just described above. While codon
distributions are known not to manifest uniformly in nature as this would be incon-
sistent with the amino acid compositions that have been empirically observed in
organisms, the figure illustrates the unsurprising fact that the patterns of SCU in
bacteria, which are essentially characterized by the codon distribution conditioned
on amino acid composition, are also non-uniform. The figure shows the overall shape
of CUB based on CIB for the collection of bacteria included in the study and contrasts
this with the wide range of feasible SCU patterns. Observe that the range of values
(roughly [0.0, 0.6]) taken by Δ̂ on the x-axes of the plot is similar for both the collec-
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Fig. 1 Distributions of CIB for real and randomly simulated data. The dotted red line is a density estimated
from 2535 bacterial chromosomes while the dashed green line is an estimate obtained from a sample pro-
duced by aggregating 100 random simulations for each of the 2535 chromosomes’ amino acid compositions

tion of chromosomes and the simulated data. However, the Δ̂’s for the chromosomes
are skewed towards the no CUB end of the spectrum with fatter tails compared to the
Δ’s based on uniformly simulated SCU scenarios, which appear to have a Gaussian
shape.

Next, by examining where the Δ̂ computed for each bacterial chromosome lies
among the set of all codon distributions that extend the amino acid distribution for
that chromosome, an interesting phenomenon can be revealed. For each chromosome,
we estimated Δ∗, which is defined as follows: Δ∗ is the proportion of all codon
distributions that are compatible with the chromosome’s amino acid distribution and
that would give rise to a Δ smaller than the chromosome’s empirically computed Δ̂.
In other words, Δ∗ gives the probability of observing a chromosome with less CUB
than the chromosome under consideration. The probability for each chromosome was
estimated by carrying out a series of Monte Carlo simulations in which 104 codon
distributions were sampled uniformly at random subject to having the same amino acid
distribution as the chromosome. The simulations were conducted using the algorithm
for simulating uniform SCU scenarios described above. The probability Δ∗ was then
obtained as the fraction of the 104 simulated codon distributions whose Δ is smaller
than or equal to the chromosome’s Δ̂.

Theoretically, if Δ∗ is computed for a codon distribution obtained by uniformly
simulating a SCU scenario given a particular amino acid composition, thenΔ∗ should
itself be uniformly distributed on the interval [0, 1]. To check this empirically, we
sampled a codon distribution for each chromosome by uniformly simulating a SCU
scenario based on its amino acid composition and then computed Δ together with the
corresponding value of Δ∗ as described in the preceding paragraph.

Figure 2 displays kernel density estimates of the distribution ofΔ∗ for the collection
of bacterial chromosomes. Three concentrations of chromosomes are apparent in the
real data (the dotted red line), the central one being fairly amorphouswhile the extreme
concentrations stand out prominently. In contrast, Δ∗ is uniformly distributed in the
randomly simulated data (the dashed green line) as expected.
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Fig. 2 Distributions of probabilities of observing a value smaller than Δ̂ in real and randomly simulated
data. The dotted red line is a density estimated from 2535 bacterial chromosomes while the dashed green
line is an estimate for Δ∗ based on uniformly simulating a SCU scenario for every amino acid composition
exhibited by the chromosomes

Table 1 Clustering of 2535 bacterial chromosomes into three groups according to Δ∗, the proportion of
codon distributions with less CUB than the chromosome

Group Bias Size Δ∗ Δ̂

Center Min. Max. Center Min. Max.

1 Low 1587 0.0269 0.0000 0.2661 0.1182 0.0262 0.2140

2 Moderate 356 0.5086 0.2699 0.7240 0.2372 0.2042 0.2709

3 High 592 0.9556 0.7362 1.0000 0.3921 0.2645 0.6629

The grouping was obtained via k-means clustering and the between-cluster sum of squares accounts for
96.8 % of the total sum of squares

We used k-means clustering to assign each chromosome to one of three groups
according to the value of Δ∗. The main characteristics of the resulting groups, which
we nominally named ‘low CUB’, ‘moderate CUB’and ‘high CUB’, are summarized
in Table 1. The table gives the size of each group, the range of Δ∗ and Δ̂ spanned by
each group, as well as the center (mean) value of Δ∗ and Δ̂. Observe that the ranges
of Δ∗ covered by the three groups are disjoint, which is a side effect of the k-means
clustering procedure. On the other hand, the ranges of Δ̂ that the groups encompass
overlap slightly. This phenomenon is attributable to the theoretical equal weighting
applied to all codon distributions during the calculation of Δ∗.

Next, a principal component analysis (PCA) of the chromosomes’ codon distribu-
tions highlights the concentration of the codon distributions for bacterial chromosomes
into a lower dimensional region inside the 61-dimensional set of all theoretically pos-
sible codon distributions. The first principal component is by far the most important,
accounting for approximately 75 % of variability in the codon distributions, while the
first 10 principal components explain about 95 % of the total variability. Performing
PCA on the amino acid distributions yields a similar picture: 80 % of the variability
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Fig. 3 Plot of the first two principal components of the codon distributions of 2535 bacterial chromosomes
classified into three classes according to degree of CUB

is explained by the first principal component while the first 10 components explain
98 % of the total variability in the amino acid distributions.

This is not surprising in light of what is known about CUB in organisms, though
there would seem to be something particular about the way codon distributions for
bacterial chromosomes are arranged. We plotted the first two principal components
of the codon distributions, indicating to which group each chromosome belongs. The
most significant feature of our final plot (see Fig. 3) is that the plot is roughly broken
into vertical bands according to membership in the ‘low CUB’, moderate CUB’or
‘high CUB’ group. Thus, the first principal component captures substantial informa-
tion concerning CUB in the chromosome. We believe that this may be the first time
that this characteristic of the first principal component has been demonstrated at the
chromosome level. At present, we have no satisfactory biological explanation for the
division of bacterial chromosomes into three groups based on CUB.
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