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Abstract We propose a method for simulating linear
elastic crack growth through an isogeometric boundary
element method directly from a CAD model and with-
out anymesh generation. To capture the stress singular-
ity around the crack tip, twomethods are compared: (1)
a graded knot insertion near crack tip; (2) partition of
unity enrichment.Awell-establishedCADalgorithm is
adopted to generate smooth crack surfaces as the crack
grows. TheM integral and Jk integralmethods are used
for the extraction of stress intensity factors (SIFs). The
obtained SIFs and crack paths are compared with other
numerical methods.
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1 Introduction

Meshing and remeshing is one of the most human
interactive task in fracture simulation. Most if not all,
commercial codes do not offer completely automatic
approach for industrial fracture simulations. The diffi-
culties associatedwith computational fracturemechan-
ics have various sources. First, given a CAD model
of the component, a suitable mesh has to be gener-
ated, usually orders of magnitude finer in the region(s)
where cracks are introduced, than the mesh used for
stress analysis. Second, the discontinuities engendered
by the cracks must be followed during crack propaga-
tion. Third, the discretizationmust be able to reproduce
the large gradients [singularities in the case of linear
elastic fracture mechanics (LEFM)]. This requirement,
combined with that of capturing discontinuities as they
evolve implies that relatively fine meshes must be con-
tinuously regenerated as cracks propagate. Fourth, reli-
able and general fracture models remain elusive. For
LEFM, the Paris law or its cousins are commonly used.
Such laws compute the increment in crack advance as
a proportional to some power m(m > 1) of the stress
intensity factor (SIF). A small error εSI F in the SIF
thus leads to an accumulated error scaling as mεSI F
at each of the tens of thousands of crack growth steps
required for each simulation.

Consequently, various approaches have been devel-
oped to overcome, or at least alleviate those difficulties
as listed in Table 1.
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Table 1 Difficulties associated with crack modeling and main remedies, see also Rabczuk et al. (2010)

CAD and Mesh IGA (Hughes et al. 2005), IGABEM (Simpson et al. 2012; Scott et al.
2013), automatic remeshing (Bouchard et al. 2000)

Discontinuities Meshless (Bordas et al. 2008), XFEM (Moës et al. 1999), BEM (Cisilino
and Aliabadi 2004)

Large gradients and singularities XFEM (Moës et al. 1999), XIGA (Luycker et al. 2011; Ghorashi et al.
2012), cohesive IGA (Nguyen et al. 2014)

Models and error XFEM error estimators (Duflot and Bordas 2008; Bordas and Duflot
2007), XSPR (González-Estrada et al. 2014; Ródenas et al. 2008)

Homogenization andmultiscale fracturemodeling (Goury 2015; Akbari
Rahimabadi 2014)

The boundary element method (BEM) has been
applied for simulating fracture problems for several
decades due to the fact that (1) the governing equations
are accurately satisfied in the domain interior with the
use of fundamental solution and the discretization of
the geometry and approximation of the quantities of
interest only occur over the boundary. BEM is in par-
ticular able to capture the stress concentration or singu-
larity better than domain integration methods such as
the finite elementmethod (FEM) (Becker 1992); (2) the
dimensionality of the problem in BEM is reduced by
one and only the boundary geometry and discretization
must bemodified when cracks evolve, which simplifies
the remeshing procedure. An important issue for mod-
eling fracture usingBEM is the degeneration of the sys-
tem matrix when the source points are placed on over-
lapping crack surfaces.Muchworkwas done to address
this problem. Blandford et al. (1981) used the multi-
region method to model crack problems by dividing
the domain into sub-domains along the crack surface
and introducing artificial boundaries. This approach
is cumbersome in dealing with multiple cracks and
crack propagation problems. Snyder and Cruse (1975)
developed a modified fundamental kernel for infinite
domains containing flat, traction free cracks in a 2D
mixed-mode problem. However, the proposed kernel
is limited to flat cracks. The most popular approach
to overcome the degeneration of the system is to pre-
scribe displacement boundary integral equation (BIE)
on one crack surface and tractionBIE on the other crack
surface. The method is called dual boundary element
method (DBEM) (Hong and Chen 1988). DBEM pro-
vides an efficient way to model cracks of arbitrary 1D
and 2D geometries (Portela et al. 1992a; Mi and Ali-
abadi 1992; Cisilino and Aliabadi 2004; Portela 2011).

Another approach is knownas the displacement discon-
tinuity method (DDM) (Crouch 1976), which is mostly
suitable for problems with symmetry. In this method,
the two overlapping crack surfaces are replaced by
one of the surfaces, which decreases the computational
model size. Also the displacement and traction dis-
continuities on the crack surface are used as primary
quantities instead of displacement and traction on the
two crack surfaces in DBEM. in such a case, even a
single traction BIE can be used for fracture problems
(Dominguez and Ariza 2000). DDM was later proved
to be a special case of DBEM by Partheymüller et al.
(2000), who also extended the application of DDM
from symmetric loaded cracks to asymmetric loaded
cracks. However the displacement field on the crack
surface is indirect since only displacement disconti-
nuity is obtained. Additional postprocessing needs to
be done to retrieve the displacement solution which
increases the implementation complexity and the com-
putational burden.

Another branch of work has focused on the Galerkin
formulation of BEM, particularly symmetric Galerkin
BEM (SGBEM), for fracture mechanics, which is pri-
marily based on DDM (Li et al. 1998; Frangi 2002;
Sutradhar and Paulino 2004). InGalerkin formulations,
the error estimation theory is well developed and the
boundary continuity requirement is relaxed to be C0

for hyper-singular BIE due to the weak form (Bonnet
et al. 1998). However, double integrals must be eval-
uated which makes the method slower but also more
stable than the collocation BEM. In order to make the
crack modeling more efficient for large scale prob-
lems, hybrid BEM-FEM schemes were proposed (Nik-
ishkov et al. 2001; Aour et al. 2007; Dong and Atluri
2013). The general idea is to subdivide the cracked
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domain into two sub-domains, the BEM sub-domain
and the FEM sub-domain, to take advantage of both
methods. Some other methods like boundary element-
free method (Liew et al. 2007) and the scaled boundary
finite element method (SBFEM) (Natarajan and Song
2013) were also proposed and applied to fracture mod-
eling .

The accurate evaluation of stress intensity factors
(SIFs) plays a pivotal role in crack growth modeling.
Due to the 1/

√
r stress singularity in the vicinity of the

crack tip, special care should be taken in the numerical
methods in order to absolutely obtain more accurate
SIFs. One approach to capture the asymptotics of the
displacement and stress fields in the vicinity of a crack
is the use of special crack tip elements; for example,
quarter-point elements (Henshell and Shaw 1975; Mi
and Aliabadi 1994), which can exactly represent the
1/

√
r singularity in the near-tip stress field and allow a

direct extraction of the SIFs (Martinez and Dominguez
1984). Another possibility is the hybrid crack element,
developed in both the FEM and the BEM communi-
ties (Karihaloo and Xiao 2001; Zamani and Sun 1993),
which introduces asymptotic behavior of the stress field
around crack tip into the tip-element so that the SIFs
can be computed directly and accurately.

The virtual crack closure technique (VCCT) based
on the Irwin’s integral of strain energy release rates, is
a common method to extract SIFs in both the FEM and
the BEM, and has recently been extended to extended
finite element method (XFEM) and extended element-
free Galerkin method (XEFG) (Lan et al. 2013; Muthu
et al. 2014). Since the near-tip singular behavior is
already known as Williams’ solution, the idea is to
remove the singularity and extract the SIFs directly
(Portela et al. 1992b). However, the Williams’ solution
is only valid in the ‘near-tip’ region. The determination
of this ‘near-tip’ region for simulation is ambiguous in
practical problems.

J integral based methods are regarded as very accu-
rate approaches to extract SIFs in both FEM and BEM
communities. Different approaches to the extraction
of J1 (J ) were developed, such as the symmetric and
asymmetric decomposition of J1 (Rigby and Aliabadi
1998) and the M integral (interaction energy integral)
(Yau et al. 1980). Chang and Wu (2007) proposed
the Jk method which does not require any auxiliary
fields and is suitable for both flat and curved cracks.
We note that in the implementation of FEM/XFEM
and other domain type methods, these contour inte-

grals are always cast into domain integrals since the
FEM solutions and the related quantities (in particu-
lar stresses) are known inside the domain (Shivaku-
mar and Raju 1992; Gosz and Moran 2002; Moës et al.
1999).However, inBEMit is easier to dealwith contour
integrals, since obtaining solutions inside the domain
requires additional integration.While evaluating Jk and
M integrals along the crack surfaces is done directly
and straightforwardly due to the boundary nature of
BEM solutions. The latter two contour integral meth-
ods, namely Jk and M integrals are discussed in detail
in this paper.

The isogeometric analysis (IGA) (Hughes et al.
2005) has been proposed as an alternativemethodology
to the traditional Lagrange polynomial based analy-
ses. The IGA utilizes the same splines, that are used
to exactly represent the geometry, as basis functions
for the approximation of the unknown fields, which
builds up amore direct link betweenCADand analysis.
Non-uniform rational B-splines (NURBS) based IGA
has been widely investigated in many areas (Akker-
man et al. 2008; Bazilevs et al. 2006; Auricchio et al.
2010a; Benson et al. 2010; Borden et al. 2012). More
flexible geometrical representation techniques, such as
T-splines (Bazilevs et al. 2010; Scott et al. 2012), PHT
splines (Deng et al. 2008) and LR Splines (Dokken
et al. 2013) etc., have been introduced to overcome
the major difficulty of NURBS, i.e. the lack of local
refinement due to its tensor product structure. Recently
the IGA has been incorporated with BEM [namely the
isogeometric BEM (IGABEM)] and applied to exte-
rior potential-flowproblems (Politis et al. 2009), poten-
tial problems (Gu et al. 2012), elastostatics (Simpson
et al. 2012; Scott et al. 2013), shape optimization (Li
and Qian 2011), Stokes flow (Heltai et al. 2012) and
acoustic (Peake et al. 2013; Simpson et al. 2013) etc.
More recently, IGABEM has been investigated with
trimmed NURBS geometry (Wang et al. 2015; Beer
et al. 2015) and a posteriori error estimator is pro-
posed for adaptive IGABEM (Feischl et al. 2015). A
fast IGABEM solver has been developed in Marussig
et al. (2015).

The IGABEM presents another way for isogeomet-
ric analysis due to the natural fit between the twometh-
ods. Currently, the dominated CADgeometry only pro-
vides surface description by smooth splines. This is in
consistence with the basic feature of the BEM since
only the unknown fields (displacement and traction)
along the boundary is required to approximate. And the
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convergence of collocation BEMwith splines has been
investigatedwhich forms a solid basis for the combined
methodology (Arnold and Saranen 1984; Juhl 1998)
and latest work can be referred in Taus et al. (2015). In
this paper, a new application of IGABEM is discussed
in detail for linear elastic fracture problems. It should
be noted that knot insertion in B-splines can introduce
discontinuities in the geometry,whichmakes it possible
to extend IGA to fracture mechanics (Verhoosel et al.
2011; Nguyen et al. 2014). The higher order continuity
provided by splines also enables amore straightforward
expression of the traction BIE for crack modeling. This
paper presents a basic scheme for fracturemodeling and
crack propagation in 2D domains.

The paper is organized as follows: The concept of
NURBS is reviewed shortly in Sect. 2. The basics of
theDBEMfor fracturemodeling are briefly reviewed in
Sect. 3, and more details follow, including collocation
and singular integration in DBEM. Section 4 details the
approaches developed for extraction of the SIFs, based
on theM integral and the Jk integral. Section 5 outlines
a modified NURBS approach to simulate crack growth
using NURBS based representation for cracks. Numer-
ical examples are shown both for fracture analysis and
crack propagation, in comparison with other popular
methods such as SGBEM, XFEM and XEFG.

2 NURBS basis functions

NURBS basis functions are the generalization of B-
spline functions that allows a ‘projection’ from square
and cubic domains to form complex geometries. So
the basic concept of B-spline is first outlined. B-spline
basis functions are defined over a knot vector, which
is a non-decreasing sequence of real numbers given
in the parameter space. A knot vector is denoted as
� = {ξ1, ξ2, . . . , ξn+p+1}, where ξA ∈ R is the Ath

parameter coordinate (knot), p is the order of the poly-
nomial in B-spline basis functions, n is the number of
the basis functions. For a given order p, the B-spline
basis functions NA,p with 1 � a � n are defined by
the Cox-de Boor recursion:

NA,0(ξ) =
{
1 ξA � ξ < ξA+1

0 otherwise,
(1)

then, for p > 0,

NA,p(ξ) = ξ − ξA

ξA+p − ξA
NA,p−1(ξ)

+ ξA+p+1 − ξ

ξA+p+1 − ξA+1
NA+1,p−1(ξ). (2)

The continuity of B-spline basis functions at ξA can
be decreased by repeating the knot several times. If
ξA has multiplicity k (ξA = ξA+1 = · · · = ξA+k−1),
then the basis functions are C p−k continuous at ξA.
Particularly, when k = p, the basis isC0 and k = p+1
leads to a discontinuity at ξA. If the first and last knot
have k = p + 1, the knot vector is called an open knot
vector. More details can be referred in Piegl and Tiller
(1995).

Having defined the B-spline basis functions N =
{NA,p}nA=1, we can describe a curve C(ξ) in Rds (ds is
the spatial dimensionality, ds = 2 in this paper) by a
group of control points P = {PA}nA=1 with them as:

C(ξ) =
n∑

A=1

PANA,p(ξ). (3)

A NURBS curve is defined in the same way but by
replacing the B-spline basis functions byNURBS basis
functions. For example, a NURBS curve C(ξ) can be
described as:

C(ξ) =
n∑

A=1

PARA,p(ξ), (4)

where RA,p are the NURBS basis functions, which are
defined as

RA,p(ξ) = ωANA,p(ξ)∑n
B=1 ωBNB,p(ξ)

. (5)

ωB is the weight associated with the Bth control point.
Note that RA,p is only non-zero on the knot interval
[ξa, ξb]) defined by p + 1 control points.

3 Isogeometric DBEM for fracture modeling

3.1 Problem formulation

Consider an arbitrary domain�which contains a crack
as in Fig. 1. The boundary � is composed of �u where
Dirichlet boundary conditions are prescribed (known
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(a) (b)

Fig. 1 Crack model

displacement ū), �t where Neumann boundary condi-
tions are prescribed (known traction t̄). The remaining
part of the boundary is assumed to be traction free. The
crack �c is composed of two coincident faces: �c+ and
�c− is assumed also traction free. s = (s1, s2) denotes
the source point and x = (x1, x2) the field point. The
displacement BIE at source point s is given by finding
u, t : � → R

2 such that

ci j (s)u j (s) + −
∫

�

Ti j (s, x)u j (x)d�(x)

=
∫

�

Ui j (s, x)t j (x)d�(x), (6)

where theUi j , Ti j are called fundamental solutions and
for linear elasticity, given by

Ui j (s, x) = 1

8πμ(1−ν)

[
(3−4ν)δi j ln

(
1

r

)
+r,i r, j

]
,

(7)

Ti j (s, x) = − 1

4π(1−ν)r

{
∂r

∂n
[(1 − 2ν)δi j + 2r,i r, j ]

−(1 − 2ν)(r,i n j − r, j ni )
}
, (8)

for 2D under plane strain conditions, where μ =
E/[2(1 + ν)], E is Young’s Modulus and ν Poisson’s
ratio. Components Ti j exhibit a singularity of O(1/r)
and the sign −

∫
implies that the corresponding integrals

are understood in the sense of the Cauchy Principal
Value, |r| = |x − s|. and Ui j is weakly-singular (of
order O(ln(1/r))).

The idea of the boundary element method is to dis-
cretize the boundary geometry and the physical fields
using sets of basis functions. Subsequently, the source
point is placed at the collocation points and the dis-
placement BIE (6) is transformed into a corresponding
system of linear algebraic equations. However, when
the domain contains a crack, the collocation points on

the overlapping surfaces (refer to Fig. 1b) �c+ coin-
cide with �c− and the system matrix becomes singular.
This difficulty is overcome in dual boundary element
methods by prescribing the traction BIE on one of the
crack faces (�c− in Fig. 1b), and the displacement BIE
on the other crack surface (�c+) and on the rest of the
boundary �. The traction BIE is obtained by differen-
tiation of the displacement BIE with respect to s and
multiplication by the elastic tensor Ei jkl :

ci j (s)t j (s) + =
∫

�

Si j (s, x)u j (x)d�(x)

= −
∫

�

Ki j (s, x)t j (x)d�(x), (9)

Si j (s, x) = Eikpq
∂Tpj (s, x)

∂sq
nk(s),

Ki j (s, x) = Eikpq
∂Upj (s, x)

∂sq
nk(s), (10)

where Si j is the hypersingular kernel (O(1/r2)) and the
sign =∫ denotes the Hadamard finite part integrals and
Ki j is of order O(1/r). The fundamental solutions for
the traction BIE are detailed in Appendix 1. ci j (s) =
0.5δi j when the source point s is on a smooth boundary.

3.2 NURBS discretization of the boundary integral
equations

In the NURBS based isogeometric concept, the phys-
ical field is approximated by the same NURBS basis
functions as those used to describe the geometry � =
C(ξ). The displacement and traction fields can be
approximated as follows:

ui (ξ) =
n∑

A=1

RA,p(ξ)d A
i , (11)

ti (ξ) =
n∑

A=1

RA,p(ξ)q A
i , (12)

We define an element in the parameter space as an
interval between two consecutive non-repeated knots
[ξa, ξb] and linearly map it to interval [−1, 1], which
is called the parent space (Hughes et al. 2005) and the
number of elements is Ne. We define ξ̂ as the parent
coordinate of the field point x in [−1, 1], ξ̂s as the parent
coordinate of the source point s in [−1, 1], and J (ξ̂ )

is the Jacobian transformation from physical to par-
ent space. The transformation process for one NURBS
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Fig. 2 Coordinate system
in IGABEM: a the element
containing collocation point
s in the global space; b the
parametric space and parent
space

(a) (b)

element (the knot interval [ξa, ξb]) to the parent space
[−1, 1] is shown in Fig. 2. And we have

ξ = ξ(ξ̂ ) = (ξb − ξa)ξ̂ + (ξb + ξa)

2
,

J (ξ̂ ) = d�

dξ

dξ

dξ̂
. (13)

Then the above form can also be written via the ele-
mental approximation as:

ui (ξ̂ ) =
p+1∑
I=1

NI (ξ̂ )d I
i , (14)

ti (ξ̂ ) =
p+1∑
I=1

NI (ξ̂ )q I
i , (15)

where

NI (ξ̂ ) = RA,p(ξ). (16)

And di , qi are displacement and traction control vari-
ables respectively. The relation between the local index
I and the global index A is given by the element con-
nectivity (Simpson et al. 2012). Substituting the dis-
cretized displacements and tractions into the BIEs will
give,

p+1∑
I=1

C I
i j (s)d

I
j +

Ne∑
e=1

p+1∑
I=1

T I
i j d

I
j =

Ne∑
e=1

p+1∑
I=1

U I
i j q

I
j ,

(17)
p+1∑
I=1

C I
i j (s)t

I
j +

Ne∑
e=1

p+1∑
I=1

SIi j d
I
j =

Ne∑
e=1

p+1∑
I=1

K I
i j q

I
j ,

(18)

where the jump term and integrals of the fundamental
solutions are respectively written as:

C I
i j (s) = ci j NI (ξ̂s), (19)

T I
i j =

∫ 1

−1
Ti j (s, x(ξ̂ ))NI (ξ̂ )J (ξ̂ )dξ̂ , (20)

U I
i j =

∫ 1

−1
Ui j (s, x(ξ̂ ))NI (ξ̂ )J (ξ̂ )dξ̂ , (21)

SIi j =
∫ 1

−1
Si j (s, x(ξ̂ ))NI (ξ̂ )J (ξ̂ )dξ̂ , (22)

K I
i j =

∫ 1

−1
Ki j (s, x(ξ̂ ))NI (ξ̂ )J (ξ̂ )dξ̂ . (23)

3.3 Treatment of singular integrals

Integrating the weakly-singular, strongly-singular and
hyper-singular kernels in Eqs. (20)–(23) is a major dif-
ficulty in BEM. In the present work, weakly-singular
integrals are evaluated using Telles’ transformation
(Telles 1987). Strongly-singular integrals in Eq. (6) are
treated in two different ways. In the first approach,
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the singularity in Ti j is removed by the regulariza-
tion method, based on use of simple solutions (Rudol-
phi 1991; Liu and Rudolphi 1991), i.e. the rigid body
motions, which satisfy Eq. (6) with zero tractions.
Adding and subtracting term u(s) in Eq. (6), the
strongly-singular equation can be transformed into the
regularized form:∫

�

Ti j (s, x)(u j (x) − u j (s))d�(x)

=
∫

�

Ui j (s, x)t j (x)d�(x). (24)

After discretization, Eq. (24) becomes

Ne∑
e=1

p+1∑
I=1

P I
i j d

I
j =

Ne∑
e=1

p+1∑
I=1

U I
i j q

I
j , (25)

where

P I
i j =

∫ 1

−1
Ti j (s, x(ξ̂ ))(NI (ξ̂ ) − NI (ξ̂s))J (ξ̂ )dξ̂ .

(26)

The implementation of Eq. (24) is simple and does
not require calculation of jump term ci j (s). However,
when Eq. (24) is used at coincident points on crack
surfaces, the singularity corresponding to only one of
the points is removed. There have been many attempts
to overcome this difficulty. For example, creating arti-
ficial integration surfaces, excluding the second sin-
gular point (Lutz et al. 1992; Mukherjee et al. 1999)
is a possibility. However, the creation and evaluation
along the artificial surface is expensive computationally
(Tanaka et al. 1994) and is particularly cumbersome to
deal with in the framework of isogeometric analysis.
Therefore, in the present work, Eq. (24) is used only on
the non-cracked boundary, while on crack surfaces, the
approach, known as the singularity subtraction tech-
nique (SST), is used (Guiggiani et al. 1992). SST is
applied to both strongly-singular and hyper-singular
integrals after the parametrization in the parent space
(Eqs. 20, 22 and 23). The essential idea of the method
is to expand the production of the kernel function, the
shape function and the Jacobian J (ξ̂ ) into Taylor series
in the vicinity of the collocation point, and split the inte-
grands into regular and singular parts. Then the singular
terms can be evaluated analytically, while for regular
terms standard Gauss quadrature is sufficient. Take the
hyper-singular integral term Sei jl as an example:

SIi j =
∫ 1

−1
Si j (s, x(ξ̂ ))NI (ξ̂ )J (ξ̂ )dξ̂ =

∫ 1

−1
F(ξ̂s, ξ̂ )dξ̂ .

(27)

The function F(ξ̂s, ξ̂ ) can be expanded as:

F(ξ̂s, ξ̂ ) = F−2(ξ̂s)

δ2
+ F−1(ξ̂s)

δ
+ O(1), (28)

where δ = ξ̂ − ξ̂s . The details to obtain F−2 and F−1

with a NURBS basis are given in Appendix 1 and are
studied in detail in Guiggiani et al. (1992), Simpson
and Trevelyan (2011). The final form of (27) is given
by:∫ 1

−1
F(ξ̂s , ξ̂ )dξ̂ =

∫ 1

−1

(
F(ξ̂s , ξ̂ )− F−2(ξ̂s)

δ2
− F−1(ξ̂s)

δ

)
dξ̂

+ F−2(ξ̂s)

(
− 1

1 − ξ̂s
+ 1

−1 − ξ̂s

)

+ F−1(ξ̂s)ln

∣∣∣∣∣ 1 − ξ̂s

−1 − ξ̂s

∣∣∣∣∣ . (29)

The first integral in (29) is regular and it is evaluated
using standard Gaussian quadrature.

3.4 Partition of unity enrichment formulation

Thepartitionof unity (PU) enrichmentmethod (Melenk
and Babuška 1996) has been well studied in FEM to
model problems with a priori knowledge about the
solution. See Sukumar et al. (2008), Moës et al. (2002),
Gravouil et al. (2002) for application of XFEM to 3D
crack propagation and Bordas and Moran (2006), Bor-
das et al. (2007), Wyart et al. (2008) for industrial
damage tolerance assessment using XFEM. It was also
shown in the literature that the accuracy of the stress
intensity factors for 3D linear elastic fracture mechan-
ics was insufficient for coarsemeshes and always oscil-
latory. A posterori error estimate were derived (Róde-
nas et al. 2008; Bordas and Duflot 2007; Duflot and
Bordas 2008; González-Estrada et al. 2011) and imple-
mentedwithin the commercial softwareMorfeo to con-
trol the discretization error (Bordas and Duflot 2007;
Duflot and Bordas 2008).

The approximation of the primary field by PU
enrichment is decomposed by two parts: a regular part
and an enriched part. The latter allows the approxi-
mation to reproduce specific information on the solu-
tion through additional degrees of freedom. And the
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enrichment idea has been introduced within BEM as
well (Liew et al. 2007; Peake et al. 2013). Simpson
and Trevelyan (2011) first proposed the idea of enrich-
ment in BEM to capture the stress singularity around
the crack tip. The enriched displacement approxima-
tion with a NURBS basis writes:

ui (x) =
∑
I∈NI

NI (x)d I
i +

∑
J∈NJ

NJ (x)
4∑

l=1

φl(x)aJ
i ,

(30)

where d I
i are the regular DOFs. aJ

i are the crack tip
enrichedDOFs. See Bordas et al. (2007) for implemen-
tation details in an XFEM framework. Since in BEM
the crack is explicitly modeled by two overlapping sur-
faces, the Heaviside enrichment is not required. NI

and NJ are the collections of regular control points
and enriched control points, respectively. The crack tip
enrichment functions are defined as:

{φl(r, θ), l = 1, 4} =
{√

rsin
θ

2
,
√
rcos

θ

2
,
√
rsin

θ

2
sinθ,

√
rcos

θ

2
sinθ

}
, (31)

where (r, θ) are the polar coordinates associated with
the crack tip. If the enrichment is done in a small vicin-
ity of the crack tip, where the crack can be regarded as
a straight line, i.e. in Eq. (31) angle θ = ±π and the set
of four crack tip enrichment functions can be reduced
to one, i.e. φ(r) = √

r . Then Eq. (32) results in:

ui (x) =
∑
I∈NI

NI (x)d I
i +

∑
J∈NJ

NJ (x)φ(x)aJ
i . (32)

Substituting the above equation into (6) and (9) and
discretizing with a NURBS basis, the enriched dis-
placement and traction boundary integral equations can
be obtained, respectively:
p+1∑
I

C I
i j (s)(d

I
j + φ(s)aI

j ) +
Ne∑
e=1

p+1∑
I

(T I
i j d

I
j + T I

i jφa
I
j )

=
Ne∑
e=1

p+1∑
I

U I
i j q

I
j , (33)

p+1∑
I

C I
i j (s)t

I
j +

Ne∑
e=1

p+1∑
I

(SIi j d
I
j + SIi jφa

I
j )

=
Ne∑
e=1

p+1∑
I

K I
i j q

I
j . (34)

Note that topological enrichment is used, i.e. only
the elements containing the crack tip are enriched,
the enrichment terms do not need to be computed
for unenriched elements. Differing from Simpson and
Trevelyan (2011) where the discontinuous quadratic
Lagrange elements are enriched, the enrichment for
the NURBS basis will lead to blending elements due to
the continuity of the basis. The singular integration for
enriched elements can be done with SST as in Sect. 3.3
as long as the local expansion for φ(r) = √

r at the
collocation point with respect to intrinsic coordinate is
written explicitly.

3.5 Continuity requirements and collocation strategy

Methods for evaluating strongly-singular and hyper-
singular integrals (20), (22), (23), described above, are
implicitly or explicitly based on Taylor expansions of
the integrands in the vicinity of the collocation point.
Since the essential feature of the isogemetric approach
is to represent displacements, tractions and the geom-
etry using the same NURBS basis functions, special
attention should be paid to the continuity of NURBS
basis functions at the collocation points where the Tay-
lor series are expanded.

In the classical boundary element method a com-
monway to guarantee the existence of integrals in (20),
(22), (23) is by the so-called discontinuous quadratic
Largange elements (Portela et al. 1992a), i.e. plac-
ing collocation points inside an element, where the
quadratic polynomials are C∞ continuous. The same
approach can be implemented with NURBS parame-
trization, since inside the elements NURBS basis func-
tions are infinitely smooth, i.e. the SST can be used
directly to treat all singularities. In Fig. 3a, b exam-
ples of boundary discretization are shown for classical
BEM and IGABEM respectively, where the colloca-
tion points in IGA are generated by Greville abscissae
(Auricchio et al. 2010b) and the collocation points are
moved inside the elements when higher order continu-
ity is necessary.

For the enrichment formulation, since enriched
DOFs are introduced, additional source points need
to be collocated to balance the number of system
unknowns. The location of the source points plays an
important role in the condition number of the BEM
system matrix. It reveals that for crack tip enrich-
ment, when the additional collocation points are inside
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Fig. 3 Mesh discretization
for a mode I crack: a
discontinuous Lagrange
element (p = 2), b NURBS
(p = 2)

(a) (b)

the enriched element, the system condition remains
small and gives accurate solutions (see Simpson and
Trevelyan (2011) for more details). Nevertheless, the
specific location inside the crack tip element has little
influence on the final results. Hence in this work, the
additional source points are inserted within the crack
tip element and spread uniformly between the origi-
nal collocation points. Figure (4) illustrates the scheme
applied in this paper for collocation on the crack sur-
face.

However, the classical theory of boundary inte-
gral equations admits much weaker continuity require-
ments, i.e. the Cauchy and Hadamard integrals exist
for C1,α(�)(0 < α < 1) density functions (known as
Hölder continuous) (Martin and Rizzo 1996). There-
fore, strongly singular and hyper-singular equations,
and all the more so the regularized equation (24), can
be used at collocation points located at the edges of the
elements in IGABEM, provided that the NURBS basis
is sufficiently smooth. However, optimal collocation
strategies remain the subject of further research, and
requiremore detailed theoretical andnumerical studies.

4 Evaluation of stress intensity factors

4.1 Jk-integral

In this section, two different kinds of J integral based
methods for the extraction of SIFs are briefly reviewed.
The first one is the Jk method proposed in Chang and
Wu (2007), which is the more general case of the J
integral. The definition of the Jk in 2D is given as:

Jk := lim
�ε→0

∫
�ε

(Wδ jk − σi j ui,k)n jd�

= lim
�ε→0

∫
�ε

Pkjn jd�, (35)

where Pkj is the Eshelby tensor, W = 1/2σi jεi j is
the strain energy density, n j is the unit outward nor-
mal of �ε . J1 represents a special case, the J integral.
Throughout the paper we will use these two notations
interchangeably. All the variables are defined in the
crack tip local coordinate system (x0, y0) as in Fig. 5a.
However, from thenumerical point of view, it is difficult
to calculate the limit in Eq. (35), so that the definition
of Jk is usually modified in the following way. Since
the integral of the Eshelby tensor is equal to zero for
any closed contour, which does not contain a defect,
additional contours �, �c+ , �c− are introduced, such
that Eq. (35) can be rewritten as Eischen (1987)

Jk = lim
�ε→0

∫
�ε

Pkjn jd� =
∫

�

Pkjn jd�

+
∫

�c+
Pkjn jd� +

∫
�c−

Pkjn jd�. (36)

When k = 1, for a flat crack n1 = 0 along the crack
surfaces and thus along the contours �c+ and �c− the
integral is zero, and Eq. (36) simplifies to:

J1 =
∫

�

P1 j n jd�. (37)

This expression shows the path independence of the J
integral for a flat crack. But for the J2 integral, the term
associated with the crack surface cannot be omitted
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Fig. 4 Mesh and
collocation for crack
surfaces

Fig. 5 Path definition for J
integral

(a) (b)

since n2 = 1 and this term leads to a singularity in
numerical evaluation.

The most general 2D scenario must account for
curved cracks. The associated contribution from the
crack surfaces to both J1 and J2 cannot in general be
neglected. It should be noted that the energy density
W → 1/r when approaching the crack tip since both
σi j and εi j tend to 1/

√
r . The integrand along the crack

surfacewill remain of O(1/r), and this kind of singular
integral cannot be treated in a regular way. In Eischen
(1987) and Chang and Wu (2007), the crack surface
was split into a far field part and a near-tip part (Fig.
5b) in order to evaluate the singular integral:

Jk =
∫

�

Pkjn jd� +
∫
R−r

�W �n+
k d� +

∫
r
�W �n+

k d�.

(38)

The far field part is integrated by regular Gauss quadra-
ture. The near-tip part integral on the crack surface can
be simply omitted for J1(k = 1), since n1 is mostly
zero, while for J2(k = 2), the near-tip part exhibits

the O(1/r) singularity. The energy jump �W � on the
near-tip surface can be evaluated as in Eischen (1987):

�W � = −4KI Iσx0

E
√
2πr

+ O(r1/2), (39)

where σx0 is called T-stress. Thus near-tip part of �W �

can be represented as a proportion to the r1/2

Jk =
∫

�

Pkjn jd�+
∫
R−r

�W �n+
k d�+�nkr

1/2. (40)

Since two unknown variables J2 and � appear in the
above equation, the integral cannot be evaluated at
once. The splitting procedure needs to be performed
several times by taking different r , and a group of val-
ues of J2 and � can be found in order to extrapolate
J2 for the case of no splitting. In Eq. (40), as long as
the O(1/r1/2) can be captured, the Jk integral can be
correctly evaluated and the SIFs can be deduced (see
Appendix 2). Nevertheless, the choice of the extrac-
tion radius ‘r’ becomes path dependent and problem
dependent in real applications.
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4.2 M integral

TheM integral is another possiblemethod to extract the
SIFs. By applying the J integral under two states, the
actual state (denoted with superscript ‘1’), and the aux-
iliary state (superscript ‘2’), and adding them together:

J (1+2) =
∫

�ε

[1
2
(σ

(1)
i j + σ

(2)
i j )(ε

(1)
i j + ε

(2)
i j )δ1 j

−(σ
(1)
i j + σ

(2)
i j )

∂(u(1)
i + u(2)

i )

∂x1

]
n jd�. (41)

Rearranging the two state terms gives

J (1+2) = J (1) + J (2) + M (1,2), (42)

where

M (1,2) =
∫

�ε

[
W (1,2)δ1 j − σ

(1)
i j

∂u(2)
i

∂x1

−σ
(2)
i j

∂u(1)
i

∂x1

]
n jd�, (43a)

W (1,2) = σ
(1)
i j ε

(2)
i j = σ

(2)
i j ε

(1)
i j . (43b)

Once theM integral has been evaluated, the SIFs can
be extracted directly (see Appendix 2). But we note
that in Yau et al’s work (1980), a flat crack surface
is assumed. When applied to practical problems, the
radius of the contour circle should be chosen ‘small
enough’ to guarantee that within the domain bounded
by �, the crack is ‘almost’ straight.

In this paper, the M integral is adopted. A detailed
comparison of both methods applied to curved cracks
is provided in the forthcoming sections.

Once the SIFs have been obtained, the maximum
hoop stress criterion is used to determine the direction
of crack propagation. We assume that the crack prop-
agates in the direction θc such that the hoop stress is
maximum, which is given (see Erdogan and Sih 1963,
for example) by the following expression. Note that the
quantity of interest determining the accuracy of each
propagation step is the ratio (KI I /K I )

θc = 2arctan

[
−2(KI I /KI )

1 + √
1 + 8(KI I /KI )2

]
. (44)

5 2D NURBS crack propagation

A NURBS crack propagation algorithm is outlined
next. The conceptual idea for the deformation of the
NURBS curve representing the crack is realised by
moving the control points to make the curve satisfy
the external constraints under a user-defined function
(LaGreca et al. 2005). For crack growth, the external
constraint is the movement of the position of crack
tip (or crack front in 3D). Paluszny and Zimmer-
man (2013) implemented the idea in FEM to repre-
sent crack growth or intersection by updating the con-
trol points to satisfy the constraints given by fracture
parameters. The algorithm is briefly reviewed as fol-
lows:

• Initiation: represent the crack by theNURBScurve;
• Calculate the new physical position of the crack tip

M ′ (the space constraint). This is determined by
specified fracture criterion given in Sect. 4.2;

• Specify the parametric coordinate ξ (the parametric
constraint) of the old crack tip M ;

• Define the influence functions f . Here for 2D frac-
ture these functions are selected as the NURBS
basis functions at the parametric constraint ξ

(which is called natural deformation in LaGreca
et al. (2005)). f (A) = RA,p(ξ), A = 1, . . . , n,
n is the number of NURBS basis function of the
corresponding control point PA.

• Calculating the motion vector of each control point
m(A): the movement of the control points is given
by

m(A) = f (A)∑n
B=1 RB,p(ξ) f (B)

e, e = −−−→
MM ′.

(45)

The process to stretch a NURBS curve to simu-
late crack growth in 2D is illustrated in Fig. 6. Cer-
tain knot insertion should be done at the crack tip ele-
ment in order to capture the local changes.We note that
refining the crack tip element also helps improve the
solution near the crack tip, and a graded mesh refine-
ment is designed as in Fig. 4, where the new knots are
inserted consecutively at the (1/2)i , i = 1, 2, 3, 4, . . .
of the distance to the crack tip in parametric space
(the obtained meshes are denoted as R1, R2, R3,
R4 . . .).
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(a) (b) (c)

Fig. 6 NURBS modification for crack growth. a Original crack and new crack tip M ′; b knot insertion to refine the crack tip element;
c move the control points to obtain new crack curve by the presented algorithm

6 Numerical examples

In this section, several numerical examples are pre-
sented to verify the proposedmethod for fracture analy-
sis. We first give examples to study the behavior of
the (X)IGABEM on static fracture analysis. Then the
application to crack propagation by comparing against
XFEM is demonstrated. A fixed number of Gauss
points (ngp = 30) is adopted for the integration of
both singular and nearly-singular integrals, although
we note that it would be desirable to develop adap-
tive quadrature rules for the nearly-singular integrals
in BEM. The order of NURBS basis and discontinuous
lagrange basis is taken as 2 for all the examples.

6.1 Edge crack

Figure 7 illustrates the chosen edge crack problem.
we use the first-term asymptotic solution of a crack
problem (Westergaard 1939) (refer to the auxiliary dis-
placements in Appendix 2), which we prescribe as

Fig. 7 Edge crack

Dirichlet boundary condition on the outer boundaries,
while keeping crack faces traction free. The parame-
ters E = 1, ν = 0.3, a = 1, L = 2. For a mode
I crack, KI = 1, KI I = 0 and for a mode II crack,
KI = 0, KI I = 1. Thus the numerical displacement
field on the crack as well as the SIFs can be compared
to the analytical solution.

6.1.1 Ability of the method to capture the crack tip
singularity

An accurate approximation of the solution near the
crack tip is crucial to the accurate evaluation of frac-
ture parameters such as the SIFs. Three scenarios are
studied here, uniform meshes, graded refinement and
enrichment of the crack tip element with function given
in Eq. (32). Figure 8 shows the displacement uy along
the upper crack surface for the mode I problem. The
crack is discretized by 3 uniform elements. It can be

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

x

u y

Analytical
Enrichment
Uniform mesh
Crack tip refinement

Fig. 8 uy along the upper crack surface. It can be observed that
in all cases, the numerical displacements agree well with the ana-
lytical solution, even for coarse meshes. The graded refinement
and enrichmentmethod both give improved results near the crack
tip
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Fig. 9 Relative error in L2 norm of the displacement along the
crack surface. Note that R1, R2, R3 and R4 correspond to the
crack tip element’s refinement by consecutive knot insertions at
(1/2)1, (1/2)2, (1/2)3 and (1/2)4 of the distance to the crack
tip in parametric space. It can be seen that enrichment achieves
an accuracy which is intermediate between R3 and R4 graded
meshes while the convergence rate is improved by 55% com-
pared to the graded mesh refinement

observed that in all cases, the numerical displacements
agree well with the analytical solution, even for coarse
meshes. The graded refinement and enrichmentmethod
both give improved results near the crack tip. To further
assess the accuracy of these methods, the error in the
displacement L2 norm of the displacements along the
crack surfaces, given by

eL2 =
√√√√∫

�c
(u − uext )T(u − uext )d�∫

�c
uTextuextd�

(46)

is plotted in Fig. 9. We check the convergence results
by inserting the knots at (1/2)i consecutively until
i = 4 described in Fig. 4 (the results are denoted as
R1, R2, R3 and R4 respectively). It can be seen that
enrichment achieves an accuracy which is intermediate
between R3 and R4 graded meshes while the conver-
gence rate is improved by 55% compared to the graded
mesh refinement. In the following examples for static
crack and crack propagation, the graded mesh refine-
ment by 4 successive knot insertions is used for study
further.

6.1.2 SIFs comparison with Lagrange basis

To evaluate the potential of IGABEM for fracture, the
SIFs given by the M integral are compared to those
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Fig. 10 Convergence results of SIF for the mode I and mode II
crack. It can be observed that the precision provided by NURBS
basis is much higher (one order of magnitude for approximately
500 DOFs) than that of discontinuous Lagrange basis
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Fig. 11 Convergence results of SIF for the mode I and mode II
crack, plotting in terms of element number

from Lagrange elements using uniform meshes and no
special treatment for the crack tip. The radius for the
M integral is taken as the distance from the crack tip
to the third collocation point counting from the crack
tip, thus with mesh refinement, the extraction domain
will shrink. A convergence check for the error in the
normalized SIFs KI , KI I is shown in Fig. 10. It can be
observed that the precision provided by NURBS basis
is much higher (one order of magnitude for approxi-
mately 500 DOFs) than that of discontinuous Lagrange
basis. Because discontinuous Lagrange basis typically
leads to more nodes than NURBS basis for a given
number of elements (as presented in Fig. 3), the con-
vergence results are re-plotted in terms of number of
elements in Fig. 11. For the two coarsest meshes of 4
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Fig. 12 Physical model of an inclined center crack problem

elements per edge, the Lagrange basis is more accurate
than NURBS, but with mesh refinement, the NURBS
becomes superior, due to a larger convergence rate.
From both figures, it is observed that the convergence
rates of SIFs by NURBS basis is 5–8 times higher than
those by discontinuous Lagrange basis.

6.2 Inclined centre crack

In this example, The SIFs are calculated for a plate with
an inclined crack under remote biaxial tension such that
σ = σ0 is applied in the y-direction and σ = λσ0 is
applied in the x-direction, where λ is the load ratio
and σ0 = 1. The inclined centre crack with angle β

varies from 0 to π/2, see Fig. 12. The edge length of
the plate L = 1, crack length 2a = 0.02. L >> a
so that the numerical results can be compared with the
analytical solution for an infinite plate, given in Smith
et al. (2001). The elasticity parameters are E = 1,
ν = 0.3. The SIFs in this example obtained by the
M integral can be compared to the analytical ones as
follows:

KI = σ
√

πa(cos2β + λsin2β), (47a)

KI I = σ
√

πa(1 − λ)cosβsinβ. (47b)

The mesh of the crack surface was refined uni-
formly for both the discontinuous Lagrange basis BEM
(LBEM) and NURBS (IGABEM). The local graded
refinement for crack tip elements described in Fig. 4
is also performed (the corresponding result is denoted
as IGABEM(r)). Assuming the number of elements for

Table 2 Normalized KI in inclined centre crack

m KI /Kexact
I

SGBEM LBEM IGABEM IGABEM(r)

3 0.9913 1.00451 1.00982 1.00120

4 1.0002 1.00333 1.00769 1.00105

5 1.0001 1.00268 1.00633 1.00090

6 1.0002 1.00230 1.00539 1.00080

7 1.0003 1.00206 1.00474 1.00074

8 1.0003 1.00190 1.00426 1.00070

9 1.0003 1.00177 1.00389 1.00066

10 1.0003 1.00167 1.00359 1.00064

11 1.0003 1.00159 1.00336 1.00062

12 1.0003 1.00152 1.00316 1.00060

14 1.0003 1.00142 1.00285 1.00058

Table 3 Normalized KI I in inclined centre crack

m KI I /Kexact
I I

SGBEM LBEM IGABEM IGABEM(r)

3 1.0075 1.00104 1.00647 1.00146

4 1.0009 1.00129 1.00656 1.00129

5 1.0010 1.00158 1.00607 1.00113

6 1.0009 1.00160 1.00550 1.00102

7 1.0014 1.00153 1.00500 1.00096

8 1.0005 1.00143 1.00458 1.00091

9 0.9997 1.00134 1.00424 1.00087

10 1.0009 1.00126 1.00396 1.00085

11 0.9992 1.00119 1.00373 1.00083

12 1.0013 1.00112 1.00353 1.00081

14 1.0004 1.00102 1.00322 1.00079

the crack is m, a convergence check is done with the
crack angle β = π/6 at load ratio λ = 0.5 (biaxially
loaded). The results are given in Table 2 and 3. Here
the SGBEM results (Sutradhar and Paulino 2004) are
also given as a reference. It can be concluded that the
proposed local crack tip refinement gives a very good
accuracy for practical applications.

The SIFs are then compared for different angles at
λ = 0 (uniaxially loaded). In this case, the crack is dis-
cretized by 4 uniform elements, and for IGABEM, the
crack tip element is further refined in the same fashion.
The SIFs are given in Table 4.
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Table 4 SIFs and relative error (in brackets) for the inclined centre crack

β KI KI I

Exact IGABEM(r) SGBEM Exact IGABEM(r) SGBEM

0 1.0000 1.0006 (6.0e−4) 1.0002 (2.0e−4) 0.0000 0.0000 (<1.e−4) 0.0000 (<1.e−4)

π/12 0.9330 0.9336 (6.4e−4) 0.9332 (2.1e−4) 0.2500 0.2503 (1.2e−3) 0.2502 (8.0e−4)

π/6 0.7500 0.7505 (6.7e−4) 0.7502 (2.7e−4) 0.4330 0.4336 (1.4e−3) 0.4334 (9.2e−4)

π/4 0.5000 0.5003 (6.0e−4) 0.5001 (2.0e−4) 0.5000 0.5006 (1.2e−3) 0.5004 (6.0e−4)

π/3 0.2500 0.2501 (4.0e−4) 0.2500 (<1.e−4) 0.4330 0.4335 (1.2e−3) 0.4333 (6.9e−4)

5π/12 0.0670 0.0670 (<1.e−4) 0.0670 (<1.e−4) 0.2500 0.2503 (1.2e−3) 0.2502 (8.0e−4)

π/2 0.0000 0.0000 (<1.e−4) 0.0000 (<1.e−4) 0.0000 0.0000 (<1.e−4) 0.0000 (<1.e−4)

Fig. 13 Physical model of the arc crack

6.3 Arc crack

The circular arc crack under remote uniform biaxial
tension is used to further validate the effectiveness of
the proposed method for curved cracks. The problem
is defined in Fig. 13. Here L = 1, 2a = 0.01, L >> a,

Table 5 SIFs for the arc crack

m KI /Kexact
I K I I /Kexact

I I

M integral Jk integral M integral Jk integral

10 1.00045 0.99972 0.97506 1.00309

14 1.00014 0.99979 0.98621 1.00248

17 1.00011 0.99982 0.98642 1.00217

20 1.00009 0.99985 0.98657 1.00195

23 1.00002 0.99987 0.99407 1.00176

26 1.00002 0.99989 0.99413 1.00163

r = 5/64

2 1 2

2.5

2.5

Fig. 14 Physical model of rivet holes plate with initial cracks
emanating from the holes. The initial crack lengths are 0.1 (Moës
et al. 1999)

E = 1, ν = 0.3. In the test σ = 1, β = π/4. The
analytical SIFs are given by Cotterell and Rice (1980)
as:

KI = σ
√

πa
cos(β/2)

1 + sin2(β/2)
, (48a)

KI I = σ
√

πa
sin(β/2)

1 + sin2(β/2)
. (48b)

m elements are used to discretize each crack surface
with crack tip elements refined as in Fig. 4. A conver-
gence check for the SIFs are listed in Table 5. Here the
SIF extraction from both the Jk integral method and
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Fig. 15 Crack path
comparison. XFEM(M) is
Moës et al. (1999); XFEM*
is from the in-house XFEM
code

XFEM(M)

IGABEM

XFEM*

Table 6 Tip position for left crack tip with �a = 0.05

Step IGABEM XFEM* XFEM(M)

xc yc xc yc xc yc

Initial 2.1488 2.5707 2.1488 2.5707 2.1488 2.5707

1 2.1986 2.5665 2.1986 2.5662 2.1986 2.5663

2 2.2481 2.5596 2.2481 2.5593 2.2481 2.5595

3 2.2981 2.5575 2.2981 2.5570 2.2981 2.5575

4 2.3481 2.5564 2.3480 2.5556 2.3481 2.5581

5 2.3981 2.5573 2.3980 2.5564 2.3981 2.5562

6 2.4480 2.5598 2.4480 2.5587 2.4480 2.5600

7 2.4980 2.5614 2.4979 2.5604 2.4980 2.5608

8 2.5463 2.5485 2.5463 2.5477 2.5465 2.5488

9 2.5885 2.5217 2.5885 2.5209 2.5886 2.5219

10 2.6324 2.4978 2.6324 2.4968 2.6321 2.4972

11 2.6824 2.4986 2.6823 2.4990 2.6820 2.4998

12 2.7324 2.5000 2.7323 2.4997 2.7320 2.5013

13 2.7823 2.5035 2.7821 2.5036 2.7819 2.5037

14 2.8311 2.5144 2.8307 2.5157 2.8306 2.5151

15 2.8805 2.5217 2.8802 2.5223 2.8802 2.5217

XFEM(M) is from Moës et al. (1999), XFEM* is from the in-
house XFEM code. The final difference in the crack tip positions
between all three paths does not exceed the difference in the third
digital sign

the M integral method are compared. Both methods
use the same radius R, and the partition of the crack
surface for the Jk integral is done by experience at
r = 0.03R, 0.04R, 0.05R, 0.06R, 0.07R. The results
of the two methods are comparable, differing only at
the fourth digit. But we note that the Jk integral method
is more computationally expensive than the M integral
as (1) it needs integration on the crack surfaces; (2) the
crack surface needs to be partitioned into two parts; (3)
the integration needs to be performed several times as
described in Sect. 4.1.
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Fig. 16 SIF comparisonof the left crack tip for thewhole process
of crack propagation. XFEM(M) is from Moës et al. (1999),
XFEM* is from the in-house XFEM code

6.4 Crack growth in a plate with rivet holes

The purpose of this example is to evaluate the potential
of IGABEM for crack growth. The problem is cho-
sen from the XFEM work by Moës et al. (1999). The
geometry and loading conditions are illustrated in Fig.
14 (θ = π/4, initial crack length a = 0.1). The mater-
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Fig. 17 Physical model of
the three point bending
beam with three holes

ial parameters E = 1000, ν = 0.3. Below we compare
three crack paths:

(1) the crack path, obtained by IGABEM (abbreviated
as ‘IGABEM’),

(2) the crack path, obtained by XFEM in Moës et al.
(1999) (abbreviated as ‘XFEM(M)’),

(3) the crack path, obtained by the in-house XFEM
code (abbreviated as ‘XFEM∗’).

For IGABEM crack growth 12 elements are used
for each circle and 3 elements for each edge and for
the initial cracks. The crack tip elements are further
refined in the way described in Sect. 5. We assume
that each crack advances �a = 0.05 at each step,
which is identical to the increment chosen inMoës et al.
(1999) for the finest mesh. We grow the crack for 16
steps.

Next, all three crack paths—(1), (2) and (3)—are
compared in Fig. 15. The tip positions and SIFs for the
left crack in each step are further compared in Table
6. It can be observed that the tip positions and the
crack paths in all three cases are quasi-identical during
propagation. From Fig. 16a we note that SIFs display
significant difference in steps 9 ∼ 12. However, the
crack growth direction is defined by the ratio KI I /KI

which is shown in 16b and after these values of KI I /KI

are employed into the crack growth criteria, the final
difference in the crack tip positions between all three

experiment

XFEM

XEFG

IGABEM

Fig. 18 Crack paths [(XEFG result �a = 0.1 is from Ventura
et al. (2002)]

paths does not exceed the difference in the third digital
sign.

6.5 Three holes plate bending problem

A three point bending beam with three holes is sim-
ulated to further verify the robustness and accuracy
of IGABEM for crack propagation. The geometry and
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Fig. 19 Comparison of the SIFs for the whole process of crack
propagation

loading conditions are illustrated in Fig. 17. The mate-
rial parameters are E = 1000, ν = 0.37. Plane strain
conditions are assumed. With variation of the posi-
tion of the initial crack, different crack trajectories
were obtained experimentally in Ingraffea and Grig-
oriu (1990). Here the position of the initial crack is set
as d = 5, a = 1.5. This example has been solved using
XFEM and XEFG (Ventura et al. 2002) as well. The
crack advance�a is set to be 0.052 for bothXFEMand

IGABEM. The model is discretized by 27, 869 nodes
and 55, 604 triangular elements for XFEM. And for
IGABEM, 82 elements and 230 DOFs are used. Crack
tipmesh refinement is usedwithout enrichment. InVen-
tura et al. (2002), the XEFGmodel size is not given, but
the crack increment�a = 0.1. Figure 18 compares the
crack growth paths using all the mentioned methods.
All the crack paths agree well with the experiments.
Of course, due to the differences in discretization and
crack increment, the numerical results do differ. It can
be observed that the IGABEM reproduces slightly bet-
ter the experimental crack trajectory than theXFEMfor
the case when the crack passes through the first hole.
Nevertheless, it is noted that the different size of crack
increment could have influence on the final crack path
(Sutula and Bordas 2013). How to give the crack incre-
ment size�a needs to be further studied (Kaczmarczyk
et al. 2014; Davis et al. 2016). Figure 19 compares the
SIFs from XFEM and IGABEM. We note that signifi-
cant difference in SIF values and the ratio of KI I /KI

occur when the crack passes near the first hole. A pos-
sible explanation for this could be that in XFEM, the
domain used for SIF extraction is allowed to be inter-
sected with the boundary of the domain.

6.6 Crack propagation in an open spanner

The last example consists in simulating the failure
process of an open spanner due to crack propagation,
in which the geometry is taken directly from CAD.
The physical configuration is shown in Fig. 20. As in
industrial damage tolerance assessment (Bordas and
Moran 2006), we assume that a small defect has initi-
ated from the surface at the area of high stress concen-
tration obtained from an elastostatic analysis (Simpson
et al. 2012). The initial geometry including the crack is
given in Fig. 21. The crack will grow with �a = 0.1.
Figure 22 presents the deformed geometry with the

Fig. 20 Boundary
conditions, materials and
geometry of the open
spanner (Simpson et al.
2012)
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Fig. 21 Control points and NURBS representation of the open
spanner

Fig. 22 The deformed geometry after 10 steps of crack propa-
gation

crack. This example gives a straightforward illustra-
tion of the concept of seamless integration of CAD and
failure analysis, since no mesh generator is required
and the crack path is obtained directly from CAD.

7 Conclusions

A detailed procedure to model linear elastic fracture
problem using the NURBS based IGABEM is pro-
posed in this work. The dual BIEs is introduced so
that cracks can be modeled in a single domain. Differ-
ent treatments for crack tip singularity are investigated
including crack tip graded mesh refinement and par-
tition of unity enrichment. The popular approaches to
extract SIFs are compared in the framework of IGA-
BEM and it proves that the M integral is more efficient
for SIF extraction in IGABEM. The cracks are mod-
eled directly by NURBS, and an algorithm for modify-
ing the NURBS curve is implemented to describe the
crack propagation. Numerical examples shows that:

(1) The IGABEM can obtain a higher accuracy than
Lagrange basis based BEM for the samemodel size
or DOFs. The convergence rate in SIFs has been
improved by 5–8 times than BEM with discontin-
uous Lagrange basis without any treatment to the
crack tip;

(2) Both crack tip graded mesh refinement and enrich-
ment can improve the displacement field near
the crack tip, and the graded mesh refinement is
selected to apply in the crack growth;

(3) The proposed crack growth procedure can lead to
C1 smooth crack trajectory and agrees well with
those results from XFEM.

(4) A procedure for damage tolerance assessment
directly from CAD is presented, which does not
require any mesh (re)generation.

The authors believe that the crack propagation in
three dimensional domainwould benefitmore thanks to
the smooth crack representation and higher order con-
tinuous NURBS basis, which would provide a distinct
solution scheme for fracture analysis when compared
to the idea in the framework of FEM/XFEM.
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Appendix 1

The fundamental solutions for traction BIE are:

Ki j = 1

4π(1 − ν)r
[(1 − 2ν)(δi j r,k + δ jkr,i − δikr, j )

+ 2r,i r, j r,k]nk(s) (49)

Si j = μ

2π(1 − ν)r2

{
2
∂r

∂n
[(1 − 2ν)δikr, j

+ ν(δi j r,k + δ jkr,i ) − 4r,i r, j r,k]
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+ 2ν(nir, j r,k + nkr,i r, j ) − (1 − 4ν)δikn j

+ (1 − 2ν)(2n jr,i r,k + δi j nk + δ jkni )
}
nk(s)

(50)

Now we present the SST formula for the hyper-
singular integral as follows. Expanding the components
of distance between field and source points as Taylor
series in parent space gives:

xi − si = dxi

dξ̂

∣∣∣
ξ̂=ξ̂s

(ξ̂ − ξ̂s) + d2xi

dξ̂2

∣∣∣
ξ̂=ξ̂s

(ξ̂ − ξ̂s)
2

2
+ · · ·

:= Ai (ξ̂ − ξ̂s) + Bi (ξ̂ − ξ̂s)
2 + · · ·

= Ai δ + Bi δ
2 + O(δ3) (51)

and

A :=
(

2∑
k=1

A2
k

) 1
2

C :=
2∑

k=1

Ak Bk (52)

The first and second derivatives are:

dxi
dξ

= dNa

dξ
xai

d2xi
dξ2

= d2Na

dξ2
xai

dxi

dξ̂
= dxi

dξ

dξ

dξ̂

d2xi

dξ̂2
= d2xi

dξ2

(dξ
dξ̂

)2
(53)

The derivative r,i can be expressed as

r,i = xi − si
r

= Ai

A
+

(
Bi A − Ai

Ak Bk

A3

)
δ + O(δ2)

:= di0 + di1δ + O(δ2)

(54)

The term 1/r2 can be expressed as

1

r2
= 1

A2δ2
− 2C

A4δ
+ O(1)

:= S−2

δ2
+ S−1

δ
+ O(1)

(55)

The component of Jacobian from parametric space to
physical space can be expressed as:

J1(ξ) = J10(ξs) + J11(ξs)(ξ − ξs) + O((ξ − ξs)
2)

= J10(ξs) + dξ

dξ̂

∣∣∣
ξ=ξs

J11(ξs)δ + O(δ2)

J2(ξ) = J20(ξs) + J21(ξs)(ξ − ξs) + O((ξ − ξs)
2)

= J10(ξs) + dξ

dξ̂

∣∣∣
ξ=ξs

J21(ξs)δ + O(δ2)

i.e.,

Jk(ξ) := Jk0(ξs) + dξ

dξ̂

∣∣∣
ξ=ξs

Jk1(ξs)δ + O(δ2)

(56)

and we note that

J (ξ) =
√
J 21 (ξ) + J 22 (ξ) =

√(
dy

dξ

)2

+
(

−dx

dξ

)2

n(ξ) =
[
dy

dξ
,−dx

dξ

]
i.e.,

nk(ξ) = Jk(ξ)/J (ξ)

(57)

And the NURBS basis function is also expanded as:

Na(ξ̂ ) = Na(ξ̂s) + dNa

dξ

∣∣∣
ξ=ξs

(ξ − ξs) + · · ·

= Na(ξ̂s) + dNa

dξ

∣∣∣
ξ=ξs

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

δ + · · ·

:= Na0(ξ̂s) + Na1(ξ̂s)
dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

δ + O(δ2)

(58)

The detail formof hyper-singular kernel Si j is (plane
strain)

Si j (s, x) = μ

2π(1 − ν)r2

{
2

∂r

∂n

[
(1 − ν)δikr, j

+ ν(δi j r,k + δ jkr,i − 4r,i r, j r,k)
]

+ 2ν(nir, j r,k + nkr,i r, j ) − (1 − 4ν)δikn j

+ (1−2ν)(2n jr,i r,k+δi j nk+δ jkni )
}
nk(ξ̂s)

:= 1

r2
h(ξ̂ ) (59)
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Noting that nk(ξ) = Jk(ξ)/J (ξ), Use the above expan-
sions to rewrite h(ξ) as:

h(ξ̂ ) = h0(ξ̂s)

J (ξ)
+ h1(ξ̂s)

J (ξ)
δ + O(δ2) (60)

h0(ξ̂s) =
(
2ν(Ji0d j0dk0 + Jk0di0d j0)

+ (1 − 2ν)(2J j0di0dk0 + δi j Jk0 + δ jk Ji0)

+ (1 − 4ν)δik J j0
) μ

2π(1 − ν)
nk(ξ̂s) (61)

h1(ξ̂s) =
[
2(dl1 Jl0 + dl0 Jl1)

(
(1 − 2ν)δikd j0

+ ν(δi j dk0 + δ jkdi0) − 4di0d j0dk0
)

+ 2ν
(
Ji0(d j1dk0 + d j0dk1) + Ji1d j0dk0

+ Jk0(di1d j0 + di0d j1) + Jk1di0d j0

)
+ (1 − 2ν)

(
2(J j1di0dk0 + J j0(di1dk0 + di0dk1))

+ δi j Jk1 + δ jk Ji1
)

− (1 − 4ν)δik J j1
] μ

2π(1 − ν)
nk(ξ̂s) (62)

Thus,

h(ξ̂ )Na(ξ̂ )J (ξ̂ ) =
(
h0(ξ̂s) + h1(ξ̂s)δ + O(δ2)

)
(
Na0(ξ̂s) + dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

Na1(ξ̂s)δ + O(δ2)
)

= h0Na0 +
(
h1Na0 + h0Na1

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

)
δ + O(δ2)

(63)

F(ξ̂s , ξ̂ ) = 1

r2(ξ̂s , ξ̂ )
h(ξ̂ )Na(ξ̂ )J (ξ̂ )

=
( S−2

δ2
+ S−1

δ
+ O(1)

)
(
h0Na0 +

(
h1Na0 + h0Na1

dξ

dξ̂

∣∣∣
ξ̂=ξ̂s

)
δ + O(δ2)

)

= S−2h0Na0

δ2

+
S−1h0Na0 + S−2

(
h1Na0 + h0Na1

dξ
dξ̂

∣∣∣
ξ̂=ξ̂s

)
δ

+ O(1)

:= F−2

δ2
+ F−1

δ
+ O(1) (64)

Appendix 2

Once the J1 and J2 are evaluated properly, KI and KI I

can be found easily. Since

J1 = K 2
I + K 2

I I

E ′ (65a)

J2 = −2KI KI I

E ′ (65b)

where E ′ = E/(1−ν2) for plane strain condition. And
KI and KI I can be solved as Eischen (1987):

KI = ±
{ E ′ J1

2

[
1 ±

(
1 −

( J2
J1

)2)1/2]}1/2
(66a)

KI I = ±
{ E ′ J1

2

[
1 ∓

(
1 −

( J2
J1

)2)1/2]}1/2
(66b)

The signs of KI and KI I correspond to the signs of
crack opening displacement �u1� and �u2�, respec-
tively. If �u1� > 0, KI > 0. The term in brace can
be determined as :

if|�u1�| ≥ |�u2�|, take + (67a)

if|�u1�| < |�u2�|, take− (67b)

Combined with Eq. 65a, the following relationship
can be obtained for the M integral,

M (1,2) = 2

E ′
(
K (1)

I K (2)
I + K (1)

I I K
(2)
I I

)
(68)

Let state 2 be the pure mode I asymptotic fields with
K (2)

I = 1, K (2)
I I = 0 and KI in real state 1 can be found

as

K (1)
I = 2

E ′ M
(1, mode I ) (69)

The KI I can be given in a similar fashion.
The auxiliary stress field σ

(2)
i j and displacement field

u(2)
j are given as:

σxx (r, θ) = K (2)
I√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

− K (2)
I I√
2πr

sin
θ

2

(
2 + cos

θ

2
cos

3θ

2

)

σyy(r, θ) = K (2)
I√
2πr

cos
θ

2

(
1 + sin

θ

2
sin

3θ

2

)

+ K (2)
I I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

τxy(r, θ) = K (2)
I√
2πr

sin
θ

2
cos

θ

2
cos

3θ

2

+ K (2)
I I√
2πr

cos
θ

2

(
1 − sin

θ

2
sin

3θ

2

)

ux (r, θ) = KI

2μ

√
r

2π
cos

θ

2

(
κ − 1 + 2sin2

θ

2

)
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+ (1 + ν)KI I

E

√
r

2π
sin

θ

2

(
κ + 1 + 2cos2

θ

2

)

uy(r, θ) = KI

2μ

√
r

2π
sin

θ

2

(
κ + 1 − 2cos2

θ

2

)

+ (1 + ν)KI I

E

√
r

2π
cos

θ

2

(
1 − κ + 2sin2

θ

2

)
(70)

where (r, θ) are the crack tip polar coordinates and

μ = E

2(1 + ν)
(71)

κ =
{
3 − 4ν, Plane strain
(1 − ν)/(3 + ν), Plane stress

(72)

The auxiliary strain field can be obtained by differ-
entiating u j with respect to the physical coordinate.
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