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Abstract. The goal of this note is to study the asymptotic behavior of
positive solutions for a class of semilinear elliptic equations which can be
realized as minimizers of their energy functionals. This class includes the
Fisher-KPP and Allen–Cahn nonlinearities. We consider the asymptotic
behavior in domains becoming infinite in some directions. We are in
particular able to establish an exponential rate of convergence for this
kind of problems.
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1. Introduction

Let D be a bounded domain in R
n, n ≥ 1, with smooth boundary ∂D and

consider the semilinear elliptic problem
⎧
⎨

⎩

Δu + f(u) = 0 in D,
u > 0 in D,
u = 0 on ∂D.

(1.1)

It is a classical fact that Problem 1.1 has a solution 0 < u < 1 provided that
f is of class C1([0, 1]) and satisfies the following assumptions:

f(0) = 0 = f(1), f(s) > 0 for all s ∈ (0, 1). (1.2)

f ′(0) > λ1(D), (1.3)
where λ1(D) is the first eigenvalue of −Δ under Dirichlet boundary condi-
tions, given by

λ1(D) = inf
u∈H1

0 (D)

∫

D |∇u|2
∫

D u2
.

This can be seen using barriers: ū ≡ 1 is a supersolution and u = εφ1 is a
subsolution of (1.1) with u ≤ ū provided that ε > 0 is sufficiently small, and
φ1 is a positive eigenfunction of −Δ associated with λ1(D). See for instance

http://crossmark.crossref.org/dialog/?doi=10.1007/s11784-016-0349-1&domain=pdf


206 M. Chipot et al. JFPTA

Hess [13], Clement–Sweers [10], de Figueiredo [11]. In addition, the solution
0 < u < 1 is unique provided that f satisfies the additional assumption

f ′(s) <
f(s)

s
for all s ∈ (0, 1), (1.4)

as established by Brezis–Oswald in [2]. All these assumptions are automati-
cally satisfied for the Fisher-KPP or Allen–Cahn nonlinearities

f(u) = λu(1 − u), f(u) = λu(1 − u2),

if λ > λ1(Ω).
In what follows, we assume that f ∈ C1([0, 1]) satisfies assumptions

(1.2), (1.3) and (1.4).
Let ω ⊂ R

k be a bounded, smooth convex domain with 0 ∈ ω. For a
positive number �, we let

Ω� := �ω × D ⊂ R
n+k (1.5)

and consider the problem
⎧
⎨

⎩

Δu + f(u) = 0 in Ω�,
u > 0 in Ω�,
u = 0 on ∂Ω�.

(1.6)

We observe that

λ1(Ωl) = λ1(D) + �−2λ1(ω)

and hence the assumption (1.3) will be satisfied in Ω� for � sufficiently large.
We deduce the existence of a unique solution 0 < u� < 1 to (1.6) for all large
�.

The purpose of this paper is to analyze the behavior as � → +∞ of the
solution u�, in connection with the unique solution 0 < uD < 1 of (1.1). Our
main result is the following.

Theorem 1.1. For all (X1,X2) ∈ R
k × D̄, we have

u�(X1,X2) → uD(X2) as � → +∞,

uniformly in compact subsets of Rk × D. Moreover, this local convergence is
exponential: there exists a positive number α such that

uD(X2) − e−α� ≤ u�(X1,X2) ≤ uD(X2)

for all (X1,X2) ∈ �
2ω × D̄.

The solutions u� and uD can be variationally characterized as follows.
First, we observe that with no loss of generality, we may assume that f(s) = 0
for all s ≥ 1 or s ≤ 0 since a solution under this assumption automatically
satisfies 0 ≤ u ≤ 1 thanks to the maximum principle. We let

F (s) = −
∫ s

0

f(t)dt.

Then u solves (1.1) if and only if u is the unique nontrivial critical point of
the functional

ED(u) =
1
2

∫

D
|∇u|2 +

∫

D
F (u), u ∈ H1

0 (D).
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This functional has a global minimizer since it is coercive and lower semi-
continuous. This global minimizer is nontrivial since E(εφ1) < 0 for all small
ε > 0 thanks to assumption (1.3), and hence it characterizes the solution uD.
A similar characterization of course holds true for u�.

The question of analyzing the behavior of minimizers of various vari-
ational problems passing from truncated to infinite cylindrical domains, in
terms of minimizers for their cross sections has been treated in in [3–8]. In the
current context, we take strong advantage of the Euler equation to establish
comparisons. Some of the arguments we use are present in the analysis of
solutions with helicoidal symmetries of the Allen–Cahn equation in [9,12].

We devote the rest of this paper to the proof of Theorem 1.1.

2. Asymptotic behaviour

First, we prove the following comparison principle, which is adapted from the
uniqueness result of Brezis–Oswald [2]; see also [1]. For this, assume Ω ⊂ R

N

is a bounded domain with Lipschitz boundary.

Lemma 2.1. Let 0 < u1, u2 < 1 be functions in H1(Ω) such that in a weak
sense,

{
Δu1 + f(u1) ≥ 0 = Δu2 + f(u2) in Ω,

u1 ≤ u2 on ∂Ω.
(2.1)

Then, one has u1 ≤ u2 in Ω.

Proof. Let θ ∈ C∞(R) be such that

θ′(t) ≥ 0, θ(t) = 0 for t ≤ 0, θ(t) = 1 for t ≥ 1.

Set θε(t) = θ( t
ε ). One has

θε(u1 − u2) ∈ H1
0 (Ω).

Multiplying the left hand side of the first line of (2.1) by u2, the right hand
side by u1, subtracting we get

−u2Δu1 − u2f(u1) + u1Δu2 + u1f(u2) ≤ 0.

Multiplying then by θε(u1 − u2) and integrating over Ω, we get
∫

Ω

(u1f(u2) − u2f(u1))θε(u1 − u2)dx

≤
∫

Ω

(u2Δu1 − u1Δu2)θε(u1 − u2)dx

= −
∫

Ω

u2|∇(u1 − u2)|2θ′
ε(u1 − u2)dx

+
∫

Ω

∇u2 · ∇(u1 − u2)θ′
ε(u1 − u2)(u1 − u2)dx

≤
∫

Ω

∇u2 · ∇(u1 − u2)θ′
ε(u1 − u2)(u1 − u2)dx.
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Let us set

γε(t) =
∫ t

0

sθ′
ε(s)ds.

Then the inequality above reads as {u1 > u2} = {x ∈ Ω | u1(x) > u2(x)}
∫

{u1>u2}
u1u2

(
f(u2)

u2
− f(u1)

u1

)

θε(u1 − u2)dx ≤
∫

Ω

∇u2 · ∇γε(u1 − u2)dx

=
∫

Ω

−Δu2 γε(u1 − u2)dx.

It is clear that

0 ≤ γε(t) ≤
∫ ε

0

sθ′
(s

ε

) 1
ε
ds ≤ Cε.

Since Δu2 is bounded, passing to the limit above leads to
∫

{u1>u2}
u1u2

(
f(u2)

u2
− f(u1)

u1

)

dx ≤ 0.

Since f(u)
u is decreasing thanks to assumption (1.4), it follows that {u1 > u2}

as measure zero. This completes the proof. �

The points in R
k × R

n are denoted by

x = (X1,X2), X1 ∈ R
k, X2 ∈ R

n.

When necessary, we will denote by ΔX2 the Laplacian in x2 and similarly by
∇X1 , ∇X2 the gradients in X1, X2.

In what follows, Ω� is the domain (1.5) and u� is the solution of (1.6).
The hypothesis that ω is a convex domain containing the origin implies that
if 0 < � ≤ �′, then �ω ⊂ �′ω.

Lemma 2.2. Suppose that � is large enough so that f ′(0) > λ1(Ω�). Then for
any �′ > �, one has

0 < u� ≤ u�′ < 1 in Ω�. (2.2)

Moreover, when � → ∞,

u� → uD

in C1,α
loc (Rk × D).

Proof. On Ω�, the functions u�, u�′ are both positive solutions to

Δu + f(u) = 0. (2.3)

We assume here that the functions are extended by 0 outside of Ω� or Ω�′ .
The inequality (2.2) follows from Lemma 2.1. Since the sequence of functions
u� is monotone and bounded above, the pointwise limit

u∞(X1,X2) = lim
�→∞

u�(X1,X2)

exists. Moreover, from u� ≤ 1, for any �0 > 0 the H1(Ω�0)-norm of u� is
bounded independently of �. Therefore, u∞ ∈ H1

loc(R
k × D) and it vanishes

on R
k × ∂D.
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We would like to show now that u∞ is independent of X1. For i =
1, . . . , k we set

τ i
hv(x) = v(x − hei), h > 0,

where ei denotes the i-th vector of the canonical basis of Rk ×R
n. We claim

that
u�+h ≥ τ i

h′u� for 0 < h′ ≤ λh (2.4)
λ ≤ 1 being so small that

λei ∈ ω. (2.5)
Indeed if (2.5) holds, we have for X1 − h′ei ∈ �ω and some Y1 ∈ ω

X1 = �y1 + h′ei = (� + h)
{

�

� + h
Y1 +

h

� + h

h′

h
ei

}

∈ (� + h)ω

(since y1,
h′
h ei ∈ ω and ω is a convex set containing 0). Thus, the support of

τ i
h′u� is contained in Ω�+h.

Then, on this support, τ i
h′u� and u�+h are both solution to (2.3). Since

u�+h is positive u�+h ≥ τ i
h′u� on the boundary of this support, (2.4) follows

from Lemma 2.1. Similarly, one would get

τ i
−h′(u�) ≤ u�+h.

Thus, passing to the limit in � in the inequalities above one derives

u∞(x − h′ei) ≤ u∞(x), u∞(x + h′ei) ≤ u∞(x),

which implies

u∞(x) ≤ u∞(x − h′ei) ≤ u∞(x), ∀i = 1, . . . , k, ∀h′ small.

This shows that u∞ is independent of X1.
Since u� vanishes on �0ω1 ×∂D, so does u∞ and therefore u∞ ∈ H1

0 (D).
Passing to the limit in the equation

−Δu� + f(u�) = 0 in Ω�0 ,

one gets

−Δu∞ + f(u∞) = 0 = −ΔX2u∞ + f(u∞) in Ω�0 ,

where, as we mentioned above, ΔX2 denotes the Laplace operator in R
n. It

follows that u∞ = uD by uniqueness of the solution 0 < u < 1 of (1.1).
The convergence in C1,α

loc follows from the Schauder estimates. �

We have shown that u� → uD when � → ∞ in C1,α
loc (Rk × D). However,

for this kind of problems, one expects an exponential rate of convergence.
This is what we would like to establish now.

If 0 < uD < 1 is the unique solution of (1.1) we denote by μ1 the first
eigenvalue of the Dirichlet problem

− Δφ − f ′(uD)φ = μφ, φ ∈ H1
0 (D) (2.6)

and by ϕ1 its corresponding positive eigenfunction normalized so that its
L2(D)-norm is equal to 1.

Let us first show:
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Lemma 2.3. One has
μ1 > 0. (2.7)

Proof. Multiplying (1.1) by ϕ1 and integrating in D, we get

0 =
∫

D
(f ′(uD)uDϕ1 + μ1uDϕ1 − f(uD)ϕ1)dX2.

Thus,

μ1

∫

D
uDϕ1dX2 =

∫

DD

(f(uD) − f ′(uD)uD )ϕ1dX2 > 0,

by (1.4). Since uD and ϕ1 are both positive on D, (2.7) follows. �

Proof of Theorem 1.1

Since ω contains the origin, there exists a hypercube Qc = (−c, c)k such that

Qc ⊂ ω,

and thus
�Qc ⊂ �ω.

Denote by 0 < ũ� < 1 the solution of (1.6) in Ω̃� = �Qc × ω2. One has
obviously by our previous comparison theorem

u� ≥ ũ�. (2.8)

We consider then ϕ1 = ϕ1(X2) the positive eigenfunction of (2.6) normalized,
so that ‖ϕ1‖L2(D) = 1, and

wκ(X1) =
k∑

i=1

cosh(σxi)
cosh(σ(� − κ))

,

where σ and κ are positive constants that we will choose later on. Set

u(X1,X2) = uD(X2) − εϕ1(X2)wκ(X1) = u∞ − εϕ1wκ.

One has on Ω̃�−κ

Δu + f(u) = ΔuD − εwκΔϕ1 − εϕ1Δwκ + f(uD − εϕ1wκ).

Since

f(uD − εϕ1wκ) = f(uD) − f ′(uD)εϕ1wκ −
uD∫

uD−εϕ1wκ

(f ′(t) − f ′(u∞))dt,

we obtain
Δu + f(u) = εwκϕ1(μ1 − σ2) + Iε, (2.9)

where

Iε = −
u∞∫

u∞−εϕ1wκ

(f ′(t) − f ′(u∞))dt.

It is clear that 0 ≤ wκ ≤ k on Ω̃�−κ. Thus due to the uniform continuity of
f ′, one has for some δ(ε) → 0 when ε → 0

|Iε| ≤ εδ(ε)ϕ1wκ.
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Going back to (2.9), we deduce

Δu + f(u) ≥ 0 in Ω̃�−κ

for
σ2 < μ1 and ε small enough, (2.10)

that is, u is a subsolution to the equation Δu + f(u) = 0 in Ω̃�−κ. We will
suppose from now on that σ and ε are fixed and satisfy (2.10). Note that on
any compact subset of Rk, wκ converges exponentially toward 0. If one can
show that

ũ� ≥ u on ∂Ω̃�−κ (2.11)
by Lemma 2.1, one will have ũ� ≥ u on Ω̃�−κ and thus by (2.8) the theorem
will follow.

To prove (2.11), it is enough to show that

ũ� ≥ u = uD − εϕ1wκ on ∂(� − κ)Qc × D,

since on the rest of the boundary of Ω̃�−κ both functions are vanishing. Since
on ∂(� − κ)Qc × D, one has wκ ≥ 1, it is enough to show that

ũ� ≥ uD − εϕ1 on ∂(� − κ)Qc × D.

Suppose that we have shown that

ũκ(0,X2) ≥ uD(X2) − εϕ1(X2) on D, (2.12)

for some κ < �. Let x denote a point on ∂(� − κ)Qc. One has for some
i = 1, . . . , k

X = (x1, . . . , � − κ, . . . , xk),
where � − κ occupies the ith-slot, |xj | ≤ � − κ for any other j �= i. Since the
equations at stakes are invariant by translation, one has clearly

ũ�(x) ≥ ũκ(X1 − X,X2)

on the support of this last function which is clearly contained in Ω̃� and thus
the above inequality holds in Ω̃� (see Lemma 2.1). For x = (X,X2) which is
on ∂(� − κ)Qc × D, one has then

ũ�(X,X2) ≥ ũκ(0,X2) ≥ uD(X2) − εϕ1(X2),

that is, ũ� ≥ u∞ − εϕ1 on ∂(� − κ)Qc × D. Thus, we are reduced to prove
(2.12) for some κ < �.

Let us denote by ν the inner unit normal to ∂D and by Dδ the set

Dδ = {x ∈ D | x = x0 + λν, x0 ∈ ∂D, λ ∈ (0, δ)}
for some δ > 0 small, so that Dδ is contained in D. Due to the Hopf maxi-
mum principle and the positivity and continuity of ϕ1, there exists a positive
number m such that for δ small one has

ϕ1(x0 + λν)
λ

≥ m ∀x = x0 + λν ∈ Dδ.

Since for some positive constant A, one has ϕ1 ≥ A on D\Dδ, one has for κ
large

ũκ(0,X2) ≥ uD − εA ≥ uD(X2) − εϕ1(X2) on D\Dδ, (2.13)
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because ũκ(0, ·) → uD uniformly in D as κ → ∞.
On the other hand for x0 + λν ∈ Dδ, one has
ũκ(0, x0 + λν)
ϕ1(x0 + λν)

=
uD(x0 + λν)
ϕ1(x0 + λν)

+
ũκ(0, x0 + λν) − uD(x0 + λν)

ϕ1(x0 + λν)
and

|ũκ(0, x0 + λν) − uD(x0 + λν)|
ϕ1(x0 + λν)

=

∣
∣
∣
∫ λ

0
d
dt (ũκ(0, x0 + tν) − uD(x0 + tν))dt

∣
∣
∣

λ

λ

ϕ1(x0 + λν)

≤ Max
t∈(0,δ)

|∇x2 ũκ(0, x0 + tν) − ∇x2uD(x0 + tν)| 1
m

≤ ε

by the C1,α convergence of ũκ(0, x2) toward uD(x2), for κ large enough. From
this inequality, one derives

ũκ(0, x0 + λν)
ϕ1(x0 + λν)

≥ uD(x0 + λν)
ϕ1(x0 + λν)

− ε ∀ (x0 + λν) ∈ Dδ

which reads also

ũκ(0, x0 + λν) ≥ uD(x0 + λν) − εϕ1(x0 + λν) ∀ (x0 + λν) ∈ Dδ.

Combining this and (2.13) we arrive at (2.12) which completes the proof of
the theorem.
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