
Contents lists available at ScienceDirect
Information Systems

Information Systems 64 (2017) 206–218
http://d
0306-43

☆ Part
grant 11

n Corr
E-m

rapared
cjbustos
journal homepage: www.elsevier.com/locate/infosys
An empirical evaluation of intrinsic dimension estimators$

Gonzalo Navarro a, Rodrigo Paredes b,n, Nora Reyes c,n, Cristian Bustos c

a Center of Biotechnology and Bioengineering, Department of Computer Science, University of Chile, Chile
b Departamento de Ciencias de la Computación, Universidad de Talca, Chile
c Departamento de Informática, Universidad Nacional de San Luis, Argentina
a r t i c l e i n f o

Article history:
Received 16 December 2015
Accepted 10 June 2016
Available online 16 June 2016

Keywords:
Intrinsic dimension
Complexity of searching
Metric spaces
x.doi.org/10.1016/j.is.2016.06.004
79/& 2016 Elsevier Ltd. All rights reserved.

ially funded by basal funds FB0001, Conicyt
31044, Chile.
esponding authors.
ail addresses: gnavarro@dcc.uchile.cl (G. Nav
e@utalca.cl (R. Paredes), nreyes@unsl.edu.ar
@unsl.edu.ar (C. Bustos).
a b s t r a c t

We study the practical behavior of different algorithms and methods that aim to estimate
the intrinsic dimension (IDim) in metric spaces. Some of themwere specifically developed
to evaluate the complexity of searching in metric spaces, based on different theories
related to the distribution of distances between objects on such spaces. Others were
originally designed for vector spaces only, and have been extended to general metric
spaces. To empirically evaluate the fitness of various IDim estimations with the actual
difficulty of searching in metric spaces, we compare two representatives of each of the
broadest families of metric indices: those based on pivots and those based on compact
partitions. Our conclusions are that the estimators Distance Exponent and Correlation fit
best their purpose.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Similarity search in metric spaces has received much
attention due to its applications in many fields, ranging
from multimedia information retrieval to machine learn-
ing, classification, and searching the Web. While a wealth
of practical algorithms exist to handle this problem, it has
been often noted that some datasets are intrinsically
harder to search than others, no matter which search
algorithms are used. An intuitive concept of “curse of
dimensionality” has been coined to denote this intrinsic
difficulty, but a clear method to measure it, and thus to
predict the performance of similarity searching in a space,
has been elusive.

The similarity between a set of objects U is modeled
using a distance function (ormetric) d:U� U↦Rþ [f0g that
, Chile and Fondecyt

arro),
(N. Reyes),
satisfies the properties of triangle inequality, strict posi-
tivity, reflexivity, and symmetry. In this case, the pair ðU; dÞ
is called a metric space [1–4].

In some applications, the metric spaces are of a parti-
cular kind called “vector spaces” of finite explicit or
representational dimension, where the elements consist of
D coordinates of real numbers. In this case, we can use
some Minkowski metric or any other metric appropriate to
the specific case (for instance, the cosine distance) as the
dissimilarity measure between two objects. Many works
exploit the geometric properties of vector spaces, but they
usually cannot be extended to general metric spaces,
where the only available information is the distance
between objects. Since in most cases the distance is very
expensive to compute, the main goal when searching in
metric spaces is to reduce the number of distance eva-
luations. In contrast, vector space operations tend to be
cheaper and the primary goal when searching them is to
reduce the CPU cost or the number of I/O operations
carried out.

Similarity queries are usually of two types. For a given
database SDU with size jSj ¼ n, qAU and rARþ , the range
query ðq; rÞd returns all the objects of S at distance at most r

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.06.004
http://dx.doi.org/10.1016/j.is.2016.06.004
http://dx.doi.org/10.1016/j.is.2016.06.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.06.004&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.06.004&domain=pdf
mailto:gnavarro@dcc.uchile.cl
mailto:raparede@utalca.cl
mailto:nreyes@unsl.edu.ar
mailto:cjbustos@unsl.edu.ar
http://dx.doi.org/10.1016/j.is.2016.06.004

G. Navarro et al. / Information Systems 64 (2017) 206–218 207
from q, formally ðq; rÞd ¼ fxAS;dðx; qÞrrg; whereas the
nearest neighbor query kNNd(q) retrieves the k elements of
S that are closest to q, that is, kNNd(q) is a set such that for
all xAkNNdðqÞ and yAS⧹kNNdðqÞ, dðq; xÞrdðq; yÞ, and
jkNNdðqÞj ¼ k.

A naïve way to answer similarity queries is to compare
all the database elements with the query q and return
those elements that are close enough to q. This brute force
approach is too expensive for real applications. Research
has then focused on ways to reduce the number of dis-
tance computations performed to answer similarity quer-
ies. There has been significant progress around the idea of
building an index, that is, a data structure that allows
discarding some database elements without explicitly
comparing them to q. Moreover, there are some relatively
recent works [5–10] that try to get jointly the goals of
reducing the number of distance evaluations and the
number of I/O operations performed.

In vector spaces with uniformly distributed data, the
curse of dimensionality describes the well-known expo-
nential increase of the cost of all existing search algo-
rithms as the dimension grows. Non-uniformly distributed
vector spaces may be easier to search than uniform ones,
despite having the same explicit dimensionality. The
phenomenon also extends to general metric spaces despite
their absence of coordinates: some spaces are intrinsically
harder to search than others. This has lead to the concept
of intrinsic dimensionality (IDim) of a metric space, as a
measure of the difficulty of searching it. A reliable measure
of IDim has been elusive, despite the existence of several
formulae.

Computing the IDim of a metric space is useful, for
example, to determine whether it is amenable to indexing
at all. If the IDim is too high, then we must just resort to
brute-force solutions or to approximate search algorithms
(which do not guarantee to find the exact answers). Even
when exact indexing is possible, the IDim helps decide
which kind of index to use and how to tune it. For
example, in lower dimension spaces, a pivot-based
method works fine using a small set of pivots; whereas
in higher dimensions we need to use a large set of pivots
[1], which also implies a large amount of memory for the
index. Alternatively, if we do not have enough extra
memory for the index, we can switch to the List of Clusters
[11], which has reasonable performance in high dimension
spending little space in the index.

In this work we aim to empirically study the fitness of
various IDim measures to predict the search difficulty of
metric space searching. Some measures were specifically
developed for metric spaces, based on different theories
related to the distribution of distances between objects.
Others were originally designed for vector spaces and have
then been adapted to general metric spaces. We chose
various synthetic and real-life metric spaces and four
indexing methods that are representatives of the major
families of indices: two based on pivots and two based on
compact partitions. Our comparison between real and
estimated search difficulty yields that Distance Exponent
[12,13] and Correlation [14] are currently the best pre-
dictors in practice, however all the estimators behave
relatively well.
The rest of this paper is organized as follows. In Section
2, we review some relevant issues of IDim estimators for
vector spaces. Next, in Section 3, we survey four methods
for estimating IDim in vector spaces and show how to
adapt them to the metric case. We also include three new
IDim estimators for general metric spaces. The experi-
mental evaluation for the seven methods is presented in
Section 4. We finally draw our conclusions and future work
directions in Section 5. An early version of this work
appeared in [15].
2. Intrinsic dimension estimators for vector spaces

There are several interesting applications where the
data are represented as D-dimensional vectors in RD. For
instance, in pattern recognition applications, objects are
usually represented as vectors [16]. Therefore, data are
embedded in RD, even though this does not imply that its
intrinsic dimension is D.

There are many definitions of IDim. For instance, the
IDim of a given dataset is the minimum number of free
variables needed to represent the data without loss of
information [17]. In general terms, a dataset XDRD has
IDim MrD, if its elements fall completely within an M-
dimensional manifold of RD [18]. Another intuitive notion
is the logarithm of the search cost, as in many cases this
cost grows exponentially with the dimension.

Even in vector spaces, there are many reasons to esti-
mate the IDim of a dataset. Using more dimensions (more
coordinates in the vectors) than necessary can bring sev-
eral problems. For example, the space to store the data
may be an issue. A dataset XDRD with jXj ¼ n requires to
store n� D real coordinates. Instead, if we know that the
IDim of X is MrD, we can map the points to RM and just
store n�M real coordinates. The CPU cost to compute a
distance is also reduced. This can in addition help identify
the important dimensions in the original data. Also, as the
amount of available information increases, compressing
the data storage becomes even more important. Secondly,
as the asymptotic complexity of the algorithms is mono-
tonically increasing with respect to the dataset dimen-
sionality, a dimensionality reduction (to the actual dataset
IDim) can produce an important CPU time reduction. For
instance, in the case of data classification or pattern
recognition, producing reliable classifiers is difficult when
the dataset dimensionality is high (curse of dimensionality
[19]); and according to the theoretical approximation of
statistical learning [20], the classifier generalization cap-
ability depends on the IDim of the space.

There are two approximations to estimate the IDim of a
vector space [16,17], namely, local and global methods. The
local ones make the estimation by using the information
contained in sample neighborhoods, avoiding the data
projection over spaces of lower dimensionality. The global
ones deploy the dataset over an M-dimensional space
using all the dataset information. Unlike the local methods
that only use the information contained in the neighbor-
hood of each data sample, global methods use whole
information of the dataset.

G. Navarro et al. / Information Systems 64 (2017) 206–218208
In this work we focus on global IDim estimators. That
is, we consider all the dataset information to estimate the
IDim as accurately as possible. Global methods can be split
into three families: projection techniques, multi-
dimensional scaling methods, and fractal based methods.
The last two are more suitable to extend to metric spaces,
so we have selected and adapted some representatives of
these groups.
3. Intrinsic dimension estimators for metric spaces

In general metric spaces, since the curse of dimen-
sionality severely affects the performance of the search
process, knowing the IDim can help choose a metric index
appropriate to the space dimension and also give some
insight on the specific index tuning. For instance, in low
IDim spaces, where searching is easier, pivot based indices
usually perform better, even when using a small set of
pivots. However, they can fail in high IDim spaces, or hard
spaces, as a large set of pivot is needed to preserve the
performance at the cost of an excessive amount of space
for the index. Alternatively, if there is little amount of extra
memory, we can use the List of Clusters (LC) [11], which is a
very appropriate, RAM economical index.

Hence, a proper estimation of the operating dataset
IDim is very important, as it helps improve the time and
memory costs of the selected solution.

There are few IDim estimators that apply directly in
general metric spaces. The IDim estimators that are proper
to metric spaces can only consider the dataset objects and
their distances between each other.

In this section we analyze various methods to estimate
the IDim of vector spaces and others to general metric
spaces. We discuss how to adapt the former to the case of
general metric spaces. Note that, since multidimensional
spaces are a particular case of metric spaces, our estima-
tors can also be applied to obtain the IDim of D-dimen-
sional vector spaces.

3.1. Fractal based methods

Unlike other families, fractal based methods can esti-
mate non-integer IDim values. The most popular techni-
ques of this family are Box Counting [21], which is a sim-
plified version of the Haussdorff dimension [22,23], and
Correlation [14]. These techniques have been successfully
used to estimate the dimensionality of the underlying
dynamic systems that generate time series [24].

The dimension estimation by Box Counting DB of a set
ΩDRD is defined as follows: if v(r) is the number of boxes
of size r needed to cover Ω, then

DB ¼ lim
r-0

lnðvðrÞÞ
ln

1
r

� �: ð1Þ

In this method, the boxes are multidimensional regions
of side r on each dimension (that is, they are hypercubes of
side r). Regrettably, even though efficient algorithms have
been proposed, the Box Counting dimension can be com-
puted only for low dimension datasets, because its
algorithmic complexity grows exponentially with the
dimension.

Estimating the dimension by Correlation is an alter-
native to Box Counting. It is defined as follows. Let
Ω¼ fx1; x2;…; xng �RD and the correlation integral

Cm rð Þ ¼ lim
n-1

2
nðn�1Þ

X
1r io jrn

I Jxj�xi Jor
� �

; ð2Þ

where Ið�Þ is the indicator function. Intuitively, Cm(r) is the
fraction of object pairs whose distance is lower than r. So,
the dimension estimation by Correlation DC is

DC ¼ lim
r-0

lnðCmðrÞÞ
ln r

: ð3Þ

3.1.1. Correlation
The most popular method to estimate the dimension by

Correlation is the log–log plot. It consists in plotting
lnðCmðrÞÞ versus lnðrÞ. The dimension by Correlation is the
slope of the linear section of the curve.

To illustrate the process of estimating IDim using the
Correlation estimator, in Fig. 1 we show an example of its
computation on the real world metric space Histograms
(this dataset is described in Section 4.2). The line plotted
by circles corresponds to the curve lnðCmðrÞÞ versus lnðrÞ,
obtained from the experimental data. We estimate the
IDim of this dataset by computing the slope of the linear
section at the beginning of the plot (drawn with a line).
Note that this is the section of the curve that shows the
usual exponential growth of the fraction Cm(r) with
respect to the intrinsic dimensionality of the space. At the
end of the linear section of the plot, Cm(r) almost reaches
its maximum value, so the growth beyond this linear
section is very mild. Hence, we need to neglect this section
of the curve, otherwise we can underestimate the space
intrinsic dimensionality. To compute the slope we use
linear regression with least squares over the first linear
section of the curve. Note that this procedure allows us to
estimate IDim with a dataset of modest size, because we
are only focused on the section of the curve that does
reveal exponential growth.

3.1.2. Ball counting
Analogously with Correlation, to estimate the dimen-

sion by Box Counting, we can compute the slope of the
linear section of the curve lnðvðrÞÞ versus lnð1=rÞ. However,
in the general case of metric spaces, we do not have
coordinates. Thus, to adapt the Box Counting method, we
consider balls of radius r, that is, the set of objects within a
distance r from a reference object o. We randomly pick the
reference objects from the dataset, and count the number
B(r) of balls of radius r needed to cover the dataset. To do
so, we use the List of Clusters (LC) index [11], whose code is
available from SISAP [25], with the variant of fixed radius
and centers chosen at random. Then, B(r) is just the length
of the LC.

To estimate the dimension by Box Counting, which in
this case is Ball Counting, we replace lnðvðrÞÞ by lnðBðrÞÞ,
plot lnðBðrÞÞ versus ln 1

r

� �
in log–log and obtain the IDim as

the slope of the linear section of the curve by using linear

-14

-12

-10

-8

-6

-4

-2

 0

 2

-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

ln
(C

m
(r

))

ln(r)

Example of how to compute the slope of the linear section of the curve

Cm(r)
model

Fig. 1. IDim estimation with Correlation by computing the slope of the
linear section of the curve.

G. Navarro et al. / Information Systems 64 (2017) 206–218 209
regression with least squares over the experimental data
ln B rð Þð Þ; ln 1

r

� �� �
, using a procedure analogous to

Correlation.

3.2. Distance exponent

Traina et al. [12,13] discuss the problem of the selec-
tivity estimation for range queries in real-world metric
spaces, including spatial or multidimensional datasets as
special cases. It plays an important role when analyzing
real metric spaces. Their main finding is that several
datasets follow the so-called Power Law. They call Distance
Exponent the exponent of the power law, and show how to
use it to derive formulae for estimating the selectivity of
range queries. For instance, the number of objects relevant
to the query, the number of I/Os to answer the query when
the data is stored on disk, the amount of time needed to
answer the query, and so on.

To find a formula that estimates the number of neigh-
bors of objects within a distance r in a dataset of n-objects,
they introduce the following notions: (i) the Distance Plot
of a metric set is the number of object pairs at distance at
most r versus the distance r, and both axes are drawn in
logarithmic scale; and (ii) the Distance Exponent is the
slope of the line that better fits the distance plot in case it
is linear for a range of scales. Using these two notions, they
define the Distance Law.

Definition 1 (Distance Law). Given a dataset of n objects
from a metric space with distance function dðx; yÞ, the
average number of distances lower than a radius r follows
a power law; that is, the average number of neighbors
nbðrÞ within a distance r is proportional to rD. Formally,

n � ΦðrÞ ¼ nbðrÞprD; ð4Þ

where n is the number of objects in the dataset and ΦðrÞ is
the accumulated distribution function of the probability of
a pair of objects to be within a distance r.

If a dataset has a metric to evaluate the distance
between every object pair, then this plot can always be
drawn. They show that the distance plot has an almost
linear behavior for many databases, both real and syn-
thetic. Building the distance plot requires Oðn2Þ distance
computations. To reduce this cost, nbðrÞ is estimated using
an index [12], in particular the M-tree [5]. That is, a way to
estimate the distance exponent D of a dataset stored in a
metric index is by means of the very same index.

Since in this work we are only interested in comparing
the different IDim measures, indexing the space is not
necessary and we compute nbðrÞ directly, considering a
reference object chosen at random from the dataset. We
only determine the number of elements at distance r from
that object. The result is averaged over various choices for
the object.

3.3. Fastmap

This method arises from the proposal [26] of a fast
algorithm to map objects of any metric space onto points
of a k-dimensional space (k being defined by the user), so
that the dissimilarities are preserved. Its goal is to speed
up searches in traditional or multimedia databases.

To do so, the objects are mapped onto the k-dimen-
sional space using k feature extraction functions, provided
by domain experts [26]. The main issue is how to define
such feature extraction functions. For example, in the
metric case of strings with the edit distance [27], it is not
clear which features can be considered.

For a domain expert, it is generally easier to provide a
distance function to compare objects than to provide fea-
ture extraction functions. Fastmap [28] is a generalization
of the original method [26], where the objects are mapped
using only a distance function.

Fastmap finds, given a dataset of n objects from a
metric space ðU; dÞ, n image points in a k-dimensional
target space, such that the distances between the objects
in the original space are preserved as much as possible in
the target space.

For evaluating the dissimilarity preservation in the
target space, a stress function is defined as follows,

stress2 ¼
P

i;jðd̂ij�dijÞ2
� �

P
i;jd

2
ij

� � ; ð5Þ

where dij is the dissimilarity measure (the distance of the
original space) between objects oi and oj, and d̂ij is the
Euclidean distance between their respective images pi and
pj. The stress function gives the relative error that the
distances in the target space suffer on average after the
transformation. Fastmap begins with an estimation that is
iteratively improved, until no additional improvement is
possible.

In the metric case, we can assume that we have the
n� n matrix of distances between all the dataset objects,
and Fastmap must find n points in the k-dimensional space
whose Euclidean distances are close to the original matrix
of n� n distances. The crux is to assume that objects are
points in some m-dimensional space, with unknown m,
and to project these points over k mutually orthogonal
directions. The challenge is to compute all these projec-
tions using only the distance matrix. Fastmap projects the
objects over carefully selected lines. It chooses two objects

G. Navarro et al. / Information Systems 64 (2017) 206–218210
oa and ob, and considers the “line” passing through them in
the original space. The projections x0i of the objects over
this line are obtained using the cosine law:

Theorem 1 (Cosine Law). Any triangle oaoiob
▵

satisfies:

dðob; oiÞ2 ¼ dðoa; oiÞ2þdðoa; obÞ2�2x0idðoa; obÞ: ð6Þ

Eq. (6) can be solved for x0i to compute the projection of
object oi with the formula

x0i ¼
dðoa; oiÞ2þdðoa; obÞ2�dðob; oiÞ2

2dðoa; obÞ
: ð7Þ

Thus, the input of Fastmap is a set S of size n and, in
each iteration, it computes the coordinates of all the n
objects over the new axis. So, after k iterations, it produces
a k-dimensional target space S0 where each object oiAS is
mapped to a k-coordinate vector pi ¼ ðx0i;1; x0i;2;…; x0i;kÞAS0,
where x0i;j is the jth projection of the image pi of the object
oi.

In our case, we want to estimate the number of pro-
jections needed so that the target space reaches a mapping
with a small enough stress, that is, preserving the distances
sufficiently well. Thus, we modify the Fastmap algorithm
so that it computes the stress of the target space after each
new dimension is added. If the difference between the
current and the previous stress values is significant, we
compute another projection (thus increasing the dimen-
sionality of the target space). Otherwise, the current
dimension of the target space is reported as the estimation
of the IDim of the original metric space.

3.4. Principal Component Analysis

Principal Component Analysis (PCA) [29] is a statistical
procedure that projects the data onto new axes, called the
principal components, where the axes are ordered by
maximum to minimum variance. As the first components
accumulate most of the variance, the original data can be
projected using the first components controlling how
much information we want to preserve or lose (and we can
use more components if we want to preserve a larger
amount of the data information).

A common application of PCA is to reduce the dimen-
sionality of a vector dataset by neglecting the components
with small variance, as they have minimum impact in the
amount of information that the projected dataset will
have. So, we can identify the number of selected compo-
nents as the IDim of the dataset.

The crux of PCA is that it finds a set of basis vectors,
where the first component follows the maximum variance
direction, the second follows the next variance direction,
and so on. That is, each component accounts for as much
of the variability in the data as possible. The resulting
vectors, called principal components, are an uncorrelated
orthogonal basis set, because they are the eigenvectors of
the data covariance matrix.

In the metric case, we do not necessary have objects
with coordinates. So, the first step is to represent the
object from a given space as a vector. For this purpose, we
simply select a set of random pivots and compute the pivot
table. Thus, each object is represented as a row in the
table, a vector, where its components are the distances to
every pivot. After this, we compute the principal compo-
nents of the pivot table. In the process, the components
are sorted by their importance, that is, in decreasing pro-
portion of the variance of the data. So the first components
should accumulate most of the variance.

We start the computation with an educated guess. In
the synthetic metric spaces, we use a set of pivots two
times bigger than the representational dimension. The
underlying intuition is that we should not estimate an
IDim bigger than the representational dimension, but, as
we use random pivots, we grant the pivot set the chance of
incorporating the maximum of distance information
between the objects in the dataset. On the other hand, in
the case of real world metric spaces we use a set of 20
pivots, as our experience says that the real world metric
space under study has a much lower IDim.

Since we need to fix a threshold, we use the number of
components that accumulates 90% of the variance of the
dataset as the IDim estimation of the space. This threshold
gave us the best results in our experiments. To perform the
statistics computation we use R [30].

It is important to verify whether the IDim of the given
metric space is preserved after representing the objects as
vectors. To do so, we carry out a preliminary study which
consists in calculating the intrinsic dimensionality com-
puted with the estimator Distance Exponent over the pivot
table. The results of the study are shown in Tables 1 and 2,
where IDim Space is the IDim estimation that Distance
Exponent suggests for the respective space and IDim PT is
the estimation for the vectors in the pivot table.

As can be seen, the IDim computed with Distance
Exponent over the pivot table is similar to the one com-
puted on the original dataset, with the exception of the
space of strings (ENG) and documents (DOCS). These
results validate our application of PCA. The mismatch in
the case of strings can be due to the discrete nature of the
space, and in the case of documents, to the extremely
concentrated histogram of distances. For example, several
other estimators yield similar numbers for these two
spaces.

3.5. Intrinsic search difficulty

Chávez et al. [1] introduced a measure of the intrinsic
complexity of searching in general metric spaces, which is
easy to estimate and is independent of the search
algorithm.

Several authors [31–33] have proposed to use the dis-
tance histogram to characterize the hardness of searching
in arbitrary metric spaces, yet the cost was tailored to a
specific index. This measure [1] is the first quantitative
definition. It depends only on the histogram and not on
any assumption on the indexing method.

The intuition behind this measure is that, in random
vectors in D dimensions, the histogram has a larger mean μ
and a smaller variance σ2 as D increases. In fact, it holds
D¼ c � μ2=σ2 for some constant c [34]. Thus, the same for-
mula could be used to estimate a dimension D from the
mean and variance of the histogram of distances in a

Table 1
Verification of the pivot table IDim for synthetic spaces.

IDim/Space C5 C10 C15 C20 G5 G10 G15 G20 G101

IDimExp (Space) 5.08 8.40 12.13 15.80 4.73 8.83 13.46 15.80 0.92
IDimExp (PT) 4.70 7.45 11.17 13.92 4.83 8.01 11.98 13.40 0.96

Table 2
Verification of the pivot table IDim for real world spaces.

IDim/Space ENG NASA DOCS HIS

IDimExp (Space) 4.96 3.70 3.52 4.70
IDimExp (PT) 9.29 3.02 0.57 3.54

G. Navarro et al. / Information Systems 64 (2017) 206–218 211
general metric space. We do not have the histogram of the
whole universe U, but we can approximate it using the
histogram of the dataset S� U, considering the set S as a
random sample of U.

Definition 2 (Intrinsic search difficulty). Let μ be the mean
and σ2 be the variance of the histogram of distances of a
metric space. Then, its intrinsic search difficulty is

ρ¼ μ2

2σ2
: ð8Þ

An obvious advantage of this measure, which has
contributed to its popularity, is that ρ is easy to compute
from a reasonable sampling of pairs in S. Other techniques
require more complex and expensive computations.

Pestov [35] presents a system of three axioms an
intrinsic dimension function must satisfy. He proves that
the intrinsic dimension measure ρ satisfies a weak version
of these axioms. Later [36], he introduces a set of goals an
intrinsic dimension function should fulfill, and ρ achieves
many of them.

As the measure ρ has been designed for general metric
spaces, we use it as is. We consider the dataset S and we
compute all the distances dðx; yÞ; 8x; yAS. Then we com-
pute the average μ¼ 1

n2

P
x;yA Sd x; yð Þ and the variance

σ2 ¼ 1
n2

P
x;yASðdðx; yÞ�μÞ2. Finally, we obtain the value of

ρ¼ μ2

2σ2 and report it as the IDim of the metric space.

3.6. Sparse spatial selection method

This method is based on a very simple pivot selection
strategy [37], called Sparse Spatial Selection (SSS). This
strategy has the advantage that it is not required to know
the number of pivots in advance.

Initially, the set of pivots contains only the first object
of the collection. Then, for each element xAS, x is chosen
as a new pivot if its distance to every pivot in the current
set of pivots is equal to or greater than αdþ , with α being a
constant parameter (for indexing purposes this constant α
takes values around 0.5) and dþ the maximum distance
between two objects in the space. That is, an object in the
collection becomes a new pivot if it is located at more than
a fraction of the maximum distance dþ with respect to all
the current pivots. For example, if α¼ 0:5 an object is
chosen if it is located further than a half of the maximum
distance dþ from the already selected pivots.

Therefore, the selected pivots will not be too close to
each other. Forcing the distance between two pivots to be
greater than or equal to αdþ , it is ensured that they are
well distributed in the whole space. It is important to take
into account that these pivots are not very far away from
each other, neither very far from the rest of the objects in
the collection (i.e., they are not necessarily outliers), but
they are well distributed and cover the whole space.

An distinguishing feature of SSS is that an element x is
compared against the pivots already selected and it
becomes a new pivot if needed. In this way the number of
pivots does not depend on the collection size but on its
intrinsic dimensionality. This number of pivots is very
similar to the optimum number for other strategies.

We note that surrounding a pivot, there is a ball of
radius αdþ . Also, the method produces pivots as long as
there is some part of the space that is not covered by any
previous pivot. This resembles the fractal methods. So, we
can use a similar technique to estimate IDim. Let PðαÞ be
the number of pivots produced by SSS for a given value of
α. So, we plot ln PðαÞ versus ln 1

α and obtain the slope of the
linear section of the curve by using linear regression with
least squares over the experimental data ln P αð Þð Þ; ln 1

α

� �� �
.

4. Experimental evaluation

We evaluate experimentally the seven IDim estimators
described on general metric spaces. We consider two kinds
of metric spaces, depending on the data source:

Synthetic: These are spaces generated artificially so that
they present some interesting characteristic to be
evaluated. For instance, uniformly distributed
vectors in RD with known dimension.

Real world: These are metric spaces obtained from real-
world applications. For instance, a feature vector
space of images obtained from a NASA image set.

4.1. Synthetic metric spaces

These are vector spaces with Euclidean distance. They
are treated as metric spaces, as we do not consider the
coordinate information. A first set is formed by vectors
with uniform distribution, so that the representational
dimension matches the IDim. Here, we can test the

 0

 5

 10

 15

 20

 25

 30

C20C15C10C5

E
st

im
at

io
n

of
 d

im
en

si
on

al
ity

Metric space

Estimations of dimensionality for uniform spaces

Ball Counting
Exponent
Fastmap
Intrinsic

PCA
SSS

Correlation

Fig. 2. Comparison of dimensionality estimations for uniform spaces.

G. Navarro et al. / Information Systems 64 (2017) 206–218212
estimators in a case where the IDim is known. A second set
is formed by vectors with Gaussian distribution, so that
the representational dimension is greater than the IDim
(the more clustered is the space, the lower is the IDim).
The distance is also Euclidean. Here, we aim to check
whether the estimators give lower values as the IDim
decreases.

4.1.1. Uniformly distributed vectors with Euclidean distance
We generate four datasets of 100,000 uniformly dis-

tributed vectors in the unitary cube ð0;1ÞD, with D¼5, 10,
15, and 20. The spaces are called C5, C10, C15, and C20,
respectively.

Fig. 2 depicts the estimations obtained with the seven
IDim estimators, namely, Ball Counting, Distance Expo-
nent, Fastmap, Intrinsic Search Difficulty, PCA, SSS, and
Correlation, for these four metric spaces. As it can be seen,
Ball counting becomes insensitive to the correct dimension
in C20. The other six methods increase proportionally with
D, but with different slopes. Fastmap is the one with the
best fit, matching D almost perfectly, closely followed by
Correlation and Distance Exponent. Intrinsic Search Diffi-
culty based estimator shows a consistent factor multi-
plying D. Both PCA and SSS fit well in C5, but as IDim
grows, the fit loses precision.

Search degradation as IDim grows: To verify that the
dataset IDim is responsible for the search degradation, we
pick C5 and extend its vectors with zeroes to produce
spaces with 10, 15, and 20 representational dimensions,
and study the search performance over it.

We perform 10 executions of the algorithms, building
the index with 90% of the database elements and reserving
the remaining 10% (chosen at random) for the queries. So,
the query objects do not belong to the index. We average
the results over the 10 executions. In each execution, the
objects in the metric space are permuted at random.
Therefore, each of the 10 indices uses a different dataset S,
and the query objects are also different.

We use two pivot indices and two compact partition
indices. For the pivot index family, we use the generic
pivot algorithm and the Vantage Point Tree index [38,39].

In the case of the generic pivot algorithm, we choose at
random a set of pivots P ¼ fP1; P2;…; Pkg � S of size jPj ¼ k.
We store the kn distances between pivots and objects, and
use them to filter out candidates using the triangle
inequality. For each space, we experimentally determine
the number of pivots that obtains the best search perfor-
mance. Thus, the results shown for each case correspond
to the best possible ones for this method, in the corre-
sponding metric space.

On the other hand, the Vantage Point tree (VPT) is a
tree recursively built by taking an arbitrary element p as
the root. The distances from the root to every object in the
database are computed fdðp;uÞ;uAUg. Let M be the median
of those distances. All objects such that dðp;uÞrM are
assigned to the left node and the rest to the right node.
Then, we recurse until the number of elements is smaller
than a certain bucket size. To solve a query in the VPT the
query ball is tested to see if there could be candidates in
the left and right nodes. It is possible to enter both
subtrees.

For the case of compact partition based algorithms, we
consider the LC [11], which is one of the best indexes for
medium and high dimensions, and the Spatial Approx-
imation Tree [40]. We use the LC variant that has a max-
imum size for each cluster. For each metric space con-
sidered, we experimentally determine the cluster size
whose performance is the best, and this is the result
shown in the plots.

Finally, the Spatial Approximation Tree (SAT) is a data
structure aiming at approaching the query spatially by
starting at the root and getting iteratively closer to the
query by navigating the tree. The SAT is built as follows. An
element a is selected as the root, and is connected to a set
of neighbors N(a), defined as a subset of elements x in the
dataset such that x is closer to a than to any other element
in N(a). The other elements (not in NðaÞ [fag) are assigned
to their closest element in N(a). Each element in N(a) is
recursively the root of a new subtree containing the ele-
ments assigned to it.

In Fig. 3, we show the cost of range queries retrieving
0.01%, 0.1% and 1% of the vector dataset per query, using
the generic pivot index, the LC, the VPT, and the SAT, see
Fig. 3(a), (b), (c), and (d), respectively. These results are
compared with the ones for searching C10, C15, and C20.
The four plots show that the search effort performed by
the four tested indices remain almost unaltered when
working on the four spaces of IDim 5 (independently of
the representational dimension of the space), while the
curves for C10, C15, and C20 show the usual degradation.

4.1.2. Gaussian distributed vectors with Euclidean distance
We generate 100,000 vectors in RD, where each coor-

dinate has mean μ¼ 1 and variance σ2 ¼ 0:1, for D¼ 5, 10,
15, and 20. In these spaces, there are no, a priori, clusters
of elements. These spaces are called G5, G10, G15, and G20.
Note that the object are not confined in the unitary cube.

We also generate 100,000 vectors in R101 with 200
clusters. In this space, the first 100 coordinates of each
vector follow a N ðμ¼ 1; σ2 ¼ 0:1Þ distribution. The 101th
coordinate stores the cluster identifier. So, the cluster
centers are essentially uniformly distributed in the last
coordinate. Geometrically speaking, one can imagine that

Fig. 3. The search effort does not vary when the IDim of the space does not change.

1 Available at http://www.sisap.org/library/dbs/
2 Available at http://www.dimacs.rutgers.edu/Challenges/Sixth/soft

ware.html

G. Navarro et al. / Information Systems 64 (2017) 206–218 213
this space is a sequence of 200 crisp clusters in a line
immersed in R101. This space is called G101.

Fig. 4 shows the estimations obtained with the seven
IDim estimators for these metric spaces. As can be seen, all
the methods give increasing IDim values as the repre-
sentational dimension grows (G5 through G20) as expec-
ted, but with different behaviors. Ball Counting and Dis-
tance Exponent become less sensitive to high dimension-
ality, from G15 to G20 they show a small increment.
Intrinsic, SSS and Correlation give IDim values that grow
steadily from G5 through G20, and we note that the
Intrinsic Search Difficulty gives markedly lower values
than in the uniform case. Fastmap and PCA show a large
increment from G15 to G20, and we note that the IDim
estimated by Fastmap in G20 is higher than in C20, which
is unexpected.

We note that the lower the IDim, the more similar the
dimensionality estimation. In fact, all the measures esti-
mate the IDim of G5 around 4–5 and the IDim of G101
around 1. This last result is very interesting. We prepare
the dataset G101 with the purpose of having a space with
high representational dimension but with very low
intrinsic dimension and all the estimators detect this fact.
4.2. Real metric spaces

We pick four spaces from the Metric Library [25]1 in
order to estimate their IDims with the seven IDim esti-
mators The selected spaces are varied:

Dictionary: This is a dictionary of 69,069 English words. In
this space, we use a discrete function, the Edit
Distance or Levenshtein Distance [27].

NASA: This is a set of 40,700 images from NASA,
represented as feature vectors of 20 real coordi-
nates per vector, under the Euclidean distance.
They were generated from images downloaded
from the NASA photo and video archive site, used
in contests conducted by the Center for Discrete
Mathematics and Theoretical Computer Science
(DIMACS).2 To obtain images from the videos,
cuts are detected based on the transition of the
color histogram and then representative images

http://www.sisap.org/library/dbs/
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html
http://www.dimacs.rutgers.edu/Challenges/Sixth/software.html

Fig. 4. Comparison of dimensionality estimations for Gaussian spaces. Fig. 5. Comparison of dimensionality estimations for real metric spaces.

G. Navarro et al. / Information Systems 64 (2017) 206–218214
are extracted when the changes in the histogram
reach a given threshold. Later, the images are
split into four sub-regions, i.e., upper-left, upper-
right, lower-left and lower-right, and histograms
of the subregions are calculated in order to take
account of the composition of the image. The
four histograms are concatenated to compose a
36-dimensional feature vector. Finally, using
principal component analysis the feature vectors
are reduced to 20-dimensional vectors.3

Histograms: This is a dataset of 112,682 histograms of
medical images, each one composed by 8-D color
histograms of 112 real components.4 As any
quadratic form function can be used as the dis-
tance in this case, we also have chosen the
Euclidean distance, as is the simplest alternative.

Documents: This space has 1265 documents, represented
as vectors according to the vector model of
documents used in the Information Retrieval
field. To compare documents we use the cosine
distance. Each vector has a coordinate for each
vocabulary term in the collection, and docu-
ments can be seen as points in a vector space of
high representational dimension. The documents
are files obtained form the TREC-3 collection.5

We start the experimental evaluation in real metric
spaces by estimating their IDims. These results are shown
in Fig. 5. As it can be seen, all the methods shown coincide
in that the English dictionary apparently has the highest
IDim. Also, in these real world metrics we can detect two
groups of estimators that report similar values for IDims.
The first is composed of Intrinsic Search Difficulty, PCA and
SSS, and the second by Ball Counting, Distance Exponent
and Correlation. On the other hand, Fastmap shows an
erratic behavior.
3 More details on this dataset can be obtained from http://www.
dimacs.rutgers.edu/Challenges/Sixth/participants.html#KS

4 Available at http://www.dbs.informatik.uni-muenchen.de/�seidl/
DATA/histo112.112682.gz

5 Available at http://trec.nist.gov
To measure the intrinsic hardness of the searching, we
consider the same four indices as before, using range
queries:

Dictionary: As the metric is discrete, we use radii 1, 2, 3,
and 4, retrieving on average about 0.003%,
0.037%, 0.326%, and 1.757% of the database.

NASA: In this continuous metric we use radii 0.012,
0.285, and 0.53, retrieving on average approxi-
mately 0.01%, 0.1%, and 1% of the dataset.

Histograms: This metric is also continuous. To retrieve on
average approximately 0.01%, 0.1%, and 1% of the
dataset, we use query radii 0.051768, 0.082514,
and 0.131163.

Documents: The distance is also continuous. We use query
radii 0.14, 0.15, and 0.195, which retrieve on
average 0.01%, 0.1%, and 1% of the database.

Fig. 6 shows the correlation between the search cost
with the Pivot index (on the left) and the List of Clusters
(on the right), and the estimation reported for each con-
sidered IDim estimator, namely, Ball counting, Distance
Exponent, Fastmap, Intrinsic Search Difficulty, PCA, SSS,
and Correlation.

Fig. 7 illustrates the correlation between the search cost
with the Vantage Point Tree (on the left) and the Spatial
Approximation Tree (on the right) with respect to the
seven estimators.

We plot the ratio between the logarithm of the search
cost, measured with distance computations, and the esti-
mations of the IDim. This measures how close is the
logarithm of the actual search costs to the predicted IDim:
if the search cost is consistently s¼ cd, where d is the
predicted IDim and c is a constant, then the plots should
always be close to log c. Thus the best methods are those
that give roughly the same value regardless of the index
used. In Table 3, we show the mean and standard devia-
tion of logðSearch DifficultyÞ=IDim obtained for each esti-
mator. To compute the table, we consider the four real
world metric spaces, the three radii, and the four indices
considered for each estimator.

http://www.dimacs.rutgers.edu/Challenges/Sixth/participants.html#KS
http://www.dimacs.rutgers.edu/Challenges/Sixth/participants.html#KS
http://www.dimacs.rutgers.edu/Challenges/Sixth/participants.html#KS
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://www.dbs.informatik.uni-muenchen.de/~seidl/DATA/histo112.112682.gz
http://trec.nist.gov

Fig. 6. Comparison of Ball Counting, Distance Exponent, Fastmap, Intrinsic Search Difficulty, PCA, SSS, and Correlation IDim estimators, for real metric spaces.
On the left, using Pivots. On the right, using List of Clusters.

G. Navarro et al. / Information Systems 64 (2017) 206–218 215
As on the synthetic spaces, Distance Exponent and
Correlation turn out to be the best predictors for the four
tested indices, as the ratio between logðSearch DifficultyÞ
and the IDim estimation remains similar in all the real
world spaces tested considering the different query radii
and indices. This can be corroborated in Table 3: Distance
Exponent and Correlation have the lowest standard
deviations, just 0.135 and 0.200, respectively. As it can be
observed, the other methods are not stable enough with
respect to search costs. In fact, their standard deviations

Fig. 7. Comparison of Ball Counting, Distance Exponent, Fastmap, Intrinsic Search Difficulty, PCA, SSS, and Correlation IDim estimators, for real metric
spaces. On the left, using Vantage Point Tree. On the right, using Spatial Approximation Tree.

G. Navarro et al. / Information Systems 64 (2017) 206–218216
range from 0.289 for Ball Counting to 0.605 for PCA. This is
because in some cases they underestimate the search dif-
ficulty, and in the others they make an overestimation.

The search cost, however, depends both on the data-
base size and on the output size (which in turn depends on
the query radius). Therefore, dividing the cost of the search
by these measures may give a more stable measure of
search difficulty. We repeat this evaluation considering the
relation between the fraction of the database visited when
solving a query and the estimation of IDim (this is,
� logðSearch Difficulty=DBSÞ=IDim, where DBS stands for
database size) and, on the other hand, the number of
distance evaluation per each object in the query answer
set (this is, logðSearch Difficulty=QOSÞ=IDim, where QOS
stands for query output size). We summarize these results
in Tables 4 and 5. The reduced standard deviations confirm

Table 4
Comparison of log(Search Difficulty/DBS)/Estimation for the seven IDim
estimators.

IDim estimator Mean Standard deviation

Ball Counting 0.218 0.175
Distance Exponent 0.212 0.149
Fastmap 0.287 0.302
Intrinsic Search Difficulty 0.255 0.196
PCA 0.279 0.247
SSS 0.283 0.186
Correlation 0.204 0.156

Table 3
Comparison of log(Search Difficulty)/Estimation for the seven IDim
estimators.

IDim estimator Mean Standard deviation

Ball Counting 0.810 0.289
Distance Exponent 0.822 0.135
Fastmap 0.924 0.592
Intrinsic Search Difficulty 0.861 0.364
PCA 1.068 0.605
SSS 1.121 0.556
Correlation 0.773 0.200

Table 5
Comparison of log(Search Difficulty/QOS)/Estimation for the seven IDim
estimators.

IDim estimator Mean Standard deviation

Ball Counting 0.427 0.173
Distance Exponent 0.448 0.164
Fastmap 0.398 0.281
Intrinsic Search Difficulty 0.491 0.280
PCA 0.599 0.406
SSS 0.681 0.553
Correlation 0.407 0.137

G. Navarro et al. / Information Systems 64 (2017) 206–218 217
that the estimations are indeed more stable, especially
when dividing by the database size. Still, we obtain the
same conclusions: the two most stable intrinsic dimen-
sionality estimators are Distance Exponent and Correlation.
5. Conclusions

The Intrinsic Dimension (IDim) of metric spaces mea-
sures their search difficulty, independent of the type of
index used. Computing the IDim is useful to determine
whether a metric space can be indexed at all (or we must
resort to sequential scanning or approximate methods),
which kind of index would perform better, and what
search performance to expect.

We have analyzed seven IDim estimators in a practical
perspective. Some were defined for D-dimensional coor-
dinate spaces, and we have adapted them to the more
general metric spaces. We compared their predictions
with the actual search cost using various synthetic and
real-life metric spaces, so as to verify which are better at
predicting the search difficulty.
Although our results are preliminary, they suggest that
all the methods considered obtain appropriate estimations
over synthetic metric spaces, because their values grow as
the dimension increases. However, if we compare the
estimations with the real search costs, the Distance
Exponent [12,13] and Correlation [14] turn out to be more
stable. This is corroborated in Table 3 that shows the mean
and standard deviation of the ratio between
logðSearch DifficultyÞ and the IDim estimation for the
seven estimators. The standard deviations computed for
Distance Exponent and Correlation are just 0.135 and
0.200, respectively, and are the two lowest ones. On the
other hand, the other estimators, namely, Ball Counting
(our adaptation of Box Counting [21]), Fastmap [28], the
simple measure proposed by Chávez et al. [1], PCA, and
SSS [37] sometimes obtain values less than the logarithm
of search costs and other times greater than them. These
conclusions are also supported by Tables 4 and 5.

As future work, we plan to analyze other estimators.
For instance, we can study the concentration dimension
[35].
Acknowledgments

We gratefully acknowledge the anonymous referees
who helped us to improve the presentation.
References

[1] E. Chávez, G. Navarro, R. Baeza-Yates, J. Marroquín, Searching in
metric spaces, ACM Comput. Surv. 33 (3) (2001) 273–321.

[2] G. Hjaltason, H. Samet, Index-driven similarity search in metric
spaces, ACM Trans. Database Syst. 28 (4) (2003) 517–580.

[3] P. Zezula, G. Amato, V. Dohnal, M. Batko, Similarity Search: The
Metric Space Approach, Advances in Database Systems, vol. 32,
Springer, New York, NY, USA, 2006.

[4] H. Samet, Foundations of Multidimensional and Metric Data Struc-
tures (The Morgan Kaufmann Series in Computer Graphics and
Geometric Modeling), Kaufmann Publishers Inc., San Francisco, CA,
USA, 2005.

[5] P. Ciaccia, M. Patella, P. Zezula, M-tree: an efficient access method for
similarity search in metric spaces, in: Proceedings of 23rd Con-
ference on Very Large Databases (VLDB), 1997, pp. 426–435.

[6] V. Dohnal, C. Gennaro, P. Savino, P. Zezula, D-index: distance
searching index for metric data sets, Multimed. Tools Appl. 21 (1)
(2003) 9–33.

[7] T. Skopal, J. Pokorný, V. Snásel, PM-tree: pivoting metric tree for
similarity search in multimedia databases, in: ADBIS (Local Pro-
ceedings), 2004.

[8] G. Navarro, N. Reyes, Dynamic spatial approximation trees for
massive data, in: T. Skopal, P. Zezula (Eds.), Proceedings of 2nd
International Workshop on Similarity Search and Applications
(SISAP), IEEE CS Press, Prague, Czech Republic, 2009, pp. 81–88.

[9] G. Navarro, R. Uribe, Fully dynamic metric access methods based on
hyperplane partitioning, Inf. Syst. 36 (4) (2011) 734–747.

[10] G. Navarro, N. Reyes, Dynamic list of clusters in secondary memory,
in: Proceedings of 7th International Workshop on Similarity Search
and Applications (SISAP), Lecture Notes in Computer Science, vol.
8821, 2014, pp. 94–105.

[11] E. Chávez, G. Navarro, A compact space decomposition for effective
metric indexing, Pattern Recognit. Lett. 26 (9) (2005) 1363–1376.

[12] C. Traina Jr., A. J. M. Traina, C. Faloutsos, Distance Exponent: A New
Concept for Selectivity Estimation in Metric Trees, Research Paper
99–110, School of Computer Science, Carnegie Mellon University
(03/1999 1999).

[13] C. Traina Jr., A.J.M. Traina, C. Faloutsos, Distance exponent: A new
concept for selectivity estimation in metric trees, in: Proceedings of

http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref1
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref1
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref1
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref2
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref2
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref2
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref4
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref4
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref4
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref4
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref6
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref6
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref6
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref6
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref9
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref9
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref9
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref11
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref11
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref11

G. Navarro et al. / Information Systems 64 (2017) 206–218218
16th International Conference on Data Engineering (ICDE), 2000, p.
195.

[14] F. Camastra, A. Vinciarelli, Estimating the intrinsic dimension of data
with a fractal-based method, IEEE Trans. Pattern Anal. Mach. Intell.
24 (10) (2002) 1404–1407.

[15] C. Bustos, G. Navarro, N. Reyes, R. Paredes, An empirical evaluation of
intrinsic dimension estimators, in: Proceedings of 8th International
Conference on Similarity Search and Applications (SISAP), Lecture
Notes in Computer Science, vol. 9371, Springer, Glasgow, Scotland,
UK, 2015, pp. 125–137.

[16] A.K. Jain, R.C. Dubes, Algorithms for Clustering Data, Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[17] F. Camastra, Data dimensionality estimation methods: a survey,
Pattern Recognit. 36 (12) (2003) 2945–2954.

[18] K. Fukunaga, Introduction to Statistical Pattern Recognition, 2nd ed.,
Academic Press Professional, Inc. San Diego, CA, USA, 1990.

[19] R. Bellman, Adaptive Control Processes: A Guided Tour, Princeton
University Press, Princeton, NJ, 1961.

[20] V.N. Vapnik, The Nature of Statistical Learning Theory, Springer-
Verlag New York, Inc., New York, NY, USA, 1995.

[21] B. Mandelbrot, Fractals: Form, Chance and Dimension, W. H. Free-
man, San Francisco, 1977.

[22] J.P. Eckmann, D. Ruelle, Ergodic theory of chaos and strange attrac-
tors, Rev. Mod. Phys. 57 (1985) 617.

[23] E. Ott, Chaos in Dynamical Systems, Cambridge University Press,
Cambridge, New York, 1993.

[24] D. Kaplan, L. Glass, Understanding Nonlinear Dynamics, Springer-
Verlag, New York, 1995.

[25] K. Figueroa, G. Navarro, E. Chávez, Metric Spaces Library, Available at
http://www.sisap.org/Metric_Space_Library.html, 2007.

[26] H.V. Jagadish, A retrieval technique for similar shapes, in: SIGMOD
Conference, ACM Press, Denver, CO, USA, 1991, pp. 208–217.

[27] V.I. Levenshtein, Binary codes capable of correcting deletions,
insertions and reversals, Sov. Phys. Dokl. 10 (8) (1966) 707–710.

[28] C. Faloutsos, K.-I. Lin, Fastmap: a fast algorithm for indexing, data-
mining and visualization of traditional and multimedia datasets, in:
Proceedings of 1995 ACM SIGMOD International Conference on
Management of Data, ACM Press, San Jose, CA, USA, 1995, pp. 163–174.

[29] I.T. Jolliffe, Principal Component Analysis, 2nd ed., Springer Series in
Statistics, Springer, New York, NY, USA, 2002.
[30] R Core Team, R: A Language and Environment for Statistical Com-
puting, R Foundation for Statistical Computing, Vienna, Austria,
2013.

[31] S. Brin, Near neighbor search in large metric spaces, in: Proceedings
of 21st Conference on Very Large Databases (VLDB'95), 1995,
pp. 574–584.

[32] E. Chávez, J. Marroquín, Proximity queries in metric spaces, in:
Proceedings of 4th South American Workshop on String Processing
(WSP'97), Carleton University Press, Valparaíso, Chile, 1997, pp. 21–
36.

[33] P. Ciaccia, M. Patella, P. Zezula, A cost model for similarity queries in
metric spaces., in: Proceedings of 17th ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (PODS),
1998, pp. 59–68.

[34] P. Yianilos, Excluded Middle Vantage Point Forests for Nearest
Neighbor Search, Technical report, NEC Research Institute, Balti-
more, MD, in: 6th DIMACS Implementation Challenge: Near
Neighbor Searches Workshop, ALENEX'99, 1998.

[35] V. Pestov, Intrinsic dimension of a dataset: what properties does one
expect? in: 2007 International Joint Conference on Neural Networks
(IJCNN), 2007, pp. 2959–2964. http://dx.doi.org/10.1109/IJCNN.2007.
4371431.

[36] V. Pestov, An axiomatic approach to intrinsic dimension of a dataset,
Neural Netw 21 (2–3) (2008) 204–213, http://dx.doi.org/10.1016/j.
neunet.2007.12.030. in: Advances in Neural Networks Research:
2007 International Joint Conference on Neural Networks (IJCNN)..

[37] N. R. Brisaboa, A. Fariña, O. Pedreira, N. Reyes, Similarity search using
sparse pivots for efficient multimedia information retrieval, in: 8th
IEEE International Symposium on Multimedia (ISM), IEEE CS, San
Jose, CA, USA, 2006, pp. 881–888.

[38] P. Yianilos, Data structures and algorithms for nearest neighbor
search in general metric spaces, in: Proceedings of 4th ACM-SIAM
Symposium on Discrete Algorithms (SODA'93), SIAM Press, Austin,
TX, USA, 1993, pp. 311–321.

[39] T. Chiueh, Content-based image indexing, in: Proceedings of 20th
Conference on Very Large Databases (VLDB'94), 1994, pp. 582–593.

[40] G. Navarro, Searching in metric spaces by spatial approximation,
Very Large Databases J. 11 (1) (2002) 28–46.

http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref14
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref14
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref14
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref14
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref16
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref16
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref17
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref17
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref17
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref19
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref19
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref20
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref20
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref22
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref22
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref23
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref23
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref24
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref24
http://www.sisap.org/Metric_Space_Library.html
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref27
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref27
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref27
http://dx.doi.org/10.1109/IJCNN.2007.4371431
http://dx.doi.org/10.1109/IJCNN.2007.4371431
http://dx.doi.org/10.1016/j.neunet.2007.12.030
http://dx.doi.org/10.1016/j.neunet.2007.12.030
http://dx.doi.org/10.1016/j.neunet.2007.12.030
http://dx.doi.org/10.1016/j.neunet.2007.12.030
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref40
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref40
http://refhub.elsevier.com/S0306-4379(15)30210-6/sbref40

	An empirical evaluation of intrinsic dimension estimators
	Introduction
	Intrinsic dimension estimators for vector spaces
	Intrinsic dimension estimators for metric spaces
	Fractal based methods
	Correlation
	Ball counting

	Distance exponent
	Fastmap
	Principal Component Analysis
	Intrinsic search difficulty
	Sparse spatial selection method

	Experimental evaluation
	Synthetic metric spaces
	Uniformly distributed vectors with Euclidean distance
	Gaussian distributed vectors with Euclidean distance

	Real metric spaces

	Conclusions
	Acknowledgments
	References

