
22

Inverted Treaps

ROBERTO KONOW, Universidad Diego Portales and University of Chile
GONZALO NAVARRO, University of Chile
CHARLES L. A. CLARKE and ALEJANDRO LÓPEZ-ORTÍZ, University of Waterloo

We introduce a new representation of the inverted index that performs faster ranked unions and intersections
while using similar space. Our index is based on the treap data structure, which allows us to intersect/merge
the document identifiers while simultaneously thresholding by frequency, instead of the costlier two-step
classical processing methods. To achieve compression, we represent the treap topology using different al-
ternative compact data structures. Further, the treap invariants allow us to elegantly encode differentially
both document identifiers and frequencies. We also show how to extend this representation to support incre-
mental updates over the index. Results show that, under the tf-idf scoring scheme, our index uses about the
same space as state-of-the-art compact representations, while performing up to 2–20 times faster on ranked
single-word, union, or intersection queries. Under the BM25 scoring scheme, our index may use up to 40%
more space than the others and outperforms them less frequently but still reaches improvement factors of
2–20 in the best cases. The index supporting incremental updates poses an overhead of 50%–100% over the
static variants in terms of space, construction, and query time.

CCS Concepts: � Information systems → Search index compression; Search engine indexing

Additional Key Words and Phrases: Compact data structure, top-k document retrieval

ACM Reference Format:
Roberto Konow, Gonzalo Navarro, Charles L. A. Clarke, and Alejandro López-Ortı́z. 2017. Inverted treaps.
ACM Trans. Inf. Syst. 35, 3, Article 22 (January 2017), 45 pages.
DOI: http://dx.doi.org/10.1145/3007186

1. INTRODUCTION

The central goal of modern Web search engines, as well as most other information
retrieval systems, is to provide very precise results in response to user queries by
identifying a few relevant documents from usually huge text collections. They then
face the two competing challenges of quality and efficiency as follows: to provide a few
documents best matching the users’ needs and to find them within tenths of seconds.

In the most sophisticated information retrieval systems, these requirements are han-
dled via a two-stage ranking process [Wang et al. 2011; Büttcher et al. 2010]. In the
first stage, a fast and simple filtration procedure extracts a subset of a few hundreds or
thousands of candidates from the possibly billions of documents forming the collection.

Funded with Fondecyt Grant 1-140796, Chile, with a Conicyt Ph.D. Scholarship, Chile, and by the Emerging
Leaders in the Americas Program, Government of Canada.
A preliminary partial version of this work appeared in Proc. SIGIR 2013 [Konow et al. 2013].
Authors’ addresses: R. Konow and G. Navarro, Department of Computer Science, University of Chile,
Beauchef 851, Santiago, Chile; emails: rkonow@dcc.uchile.cl, gnavarro@dcc.uchile.cl; C. L. A. Clarke and A.
López-Ortı́z, David R. Cheriton School of Computer Science, University of Waterloo, 200 University Avenue
West Waterloo, ON, Canada N2L 3G1; emails: claclark@gmail.com, alopez-o@uwaterloo.ca.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 1046-8188/2017/01-ART22 $15.00
DOI: http://dx.doi.org/10.1145/3007186

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

http://dx.doi.org/10.1145/3007186
http://dx.doi.org/10.1145/3007186

22:2 R. Konow et al.

In the second stage, more complex learned ranking algorithms are applied to the re-
duced candidate set in order to obtain a handful of high-quality results. These complex
algorithms are too slow to be applied on the whole collection, and they obtain better
quality as they have more time to run. Current systems are actually multi-stage, but
the first is still the one that uses indexing to perform the most massive filtration.

In this article, we focus on improving the efficiency of the first stage, thus freeing
more resources for the second stage to increase the quality of results. In contexts where
simple ranking methods are sufficient, the goal of the first stage is to directly convey a
few top-quality results to the final user.

The first stage aims to return a set of the highest ranked documents containing
either all the query terms (a ranked intersection) or some of the most important query
terms (a ranked union). In most cases, ranked intersections are solved via a Boolean
intersection followed by the computation of scores for the resulting documents. Ranked
unions are generally solved only in approximate form, avoiding a costly Boolean union.
However, Ding and Suel [2011] showed that ranked intersections can be processed
faster than Boolean intersections. They also obtained the best-known performance
for ranked unions, giving exact results and thus showing that ranked unions can be
efficiently solved without resorting to approximations.

The inverted index is the central data structure in information retrieval systems.
It stores a list per vocabulary word (or term) storing the documents where the term
appears, plus a weight associated with the term in each document. This index can be
stored on disk or in main memory, and in both cases reducing its size is crucial. On disk,
it reduces transfer time when reading the lists of the query terms. In main memory, it
increases the size of the collections that can be managed within a given RAM budget
or, alternatively, reduces the number of servers that must be allocated in a cluster to
hold the index, the energy they consume, and the amount of communication.

Inverted indexes are possibly the oldest successfully compressed data structures
(e.g., see Witten et al. [1999]). The main idea to achieve compression is to differentially
encode either the document identifiers (docids) or the weights stored in the inverted
lists, depending on how the lists are sorted, whereas the other value (weight or docid,
respectively) becomes harder to compress. The problem of this duality in the sorting,
and how it affects compression and query algorithms, has been discussed in past work
[Witten et al. 1999; Baeza-Yates et al. 2002; Konow and Navarro 2012].

In this article, we introduce a new compressed representation for the lists of the in-
verted index, which performs ranked intersections and (exact) ranked unions directly.
Our representation is based on the treap data structure [Seidel and Aragon 1996], a
binary tree that simultaneously represents a left-to-right and a top-to-bottom order-
ing. We use the left-to-right ordering for document identifiers (which supports fast
Boolean operations) and the top-to-bottom ordering for term weights (which supports
the thresholding of results simultaneously with the intersection process). Using this
data structure, we can obtain the top-k results for a ranked intersection/union without
having to produce the full Boolean result first.

We explore different alternatives to engineer the new list representation using state-
of-the-art compact data structures to represent the treap topology. The classical differ-
ential representation of docids becomes less efficient on the treap, but in exchange the
treap representation allows us to differentially encode both docids and weights, which
compensates the loss. We also present novel algorithms for processing the queries on
the treap structure and compare their performance against well-known approaches
such as Weak-And (WAND) [Broder et al. 2003], Block-Max [Ding and Suel 2011], and
Dual-Sorted [Konow and Navarro 2012]. Our experiments under the classical tf-idf
scoring scheme show that the space usage of our treap-based inverted index represen-
tation is competitive with the state-of-the-art compressed representations: Our faster

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:3

variant is around 25% larger than WAND, as large as Block-Max, and 15% smaller than
Dual-Sorted. In terms of time, the fastest inverted treap variant outperforms previous
techniques in many cases: On ranked one-word queries it is 20 times faster than Dual-
Sorted and 25–200 times faster than Block-Max; WAND is even slower. On ranked
unions it is from 10 times (for k = 10) to 3 times (for k = 1,000) faster than Block-Max,
and, similarly, from 45–50 times to 6–7 times faster than WAND and Dual-Sorted. It
is always the fastest index for one- and two-word queries, which are the most popular.
On ranked intersections, our fastest treap alternative is twice as fast as Block-Max
for k = 10, converging to similar times for k = 1000. In the same range of k, it goes
from twice as fast to 40% faster than WAND and from 80% faster to 10% slower than
Dual-Sorted. Our inverted treap is always the fastest index up to k = 100. We also ex-
perimented under a quantized BM25 scoring scheme, where the fastest inverted treap
uses 35%–40% more space than Block-Max or Dual-Sorted. It is still slightly better
than all the alternatives on ranked unions. For ranked intersections, it is from twice
as fast (for k = 10) to 15% slower (for k = 1,000) on ranked intersections, still being
the fastest for k = 100. On one-word queries, the inverted treap is 20 times faster than
Dual-Sorted and 40–300 times faster than Block-Max.

Those ranges of kvalues make this result very relevant both for a first stage retrieving
a few hundreds or thousands of documents or for directly conveying a handful of final
results to the user. The technique can also be used in large-scale distributed systems
where each node contributes a small set of documents to the global result. We also
show how to support incremental updates on the treap, making this representation a
useful alternative for scenarios where new documents must be available immediately.
The overhead of allowing for incremental updates compared to our static alternatives,
in terms of space, construction, and query times, ranges from 50% to 100%.

This article is structured as follows. Section 2 presents basic concepts. Section 3 pro-
vides a discussion on the related work and Section 4 describes the new representation
of lists using treaps. Section 5 describes in detail the top-k query processing algo-
rithms. Section 6 shows how extend the treap representation to support insertions of
documents (incremental updates). Section 7 evaluates the performance of our structure
and compares it with the state of the art. We discuss the results in Section 8.

2. BASIC CONCEPTS

2.1. Inverted Index

The inverted index is an old and simple, yet efficient, data structure that is at the heart
of every modern information retrieval system and plays a central role in any book on
the topic [Witten et al. 1999; Büttcher et al. 2010; Baeza-Yates and Ribeiro-Neto 2011;
Croft et al. 2009]. Let a text collection contain a set of D documents D = {d1, d2, . . . , dD}.
A document di can be regarded as a sequence of terms or words and the number of
words in the document is denoted by |di|. The total length of the collection is then∑D

i=1 |di| = n. Each document has a unique document identifier (docid) ∈ [1, D]. The set
of distinct terms in the collection is called the vocabulary, which is comparatively small
in most cases [Heaps 1978], more precisely of size O(nβ), for some constant 0 < β < 1
that depends on the text type. The inverted index can be seen as an array of lists or
postings, where each entry of the array corresponds to a different term or word in the
vocabulary of the collection, and the lists contain one element per distinct document
where the term appears. For each term, the index stores in the list the document
identifier (docid), the weight of the term in the document, and, if needed, the positions
where the term occurs in the document. The weight of the term in the document is a
utility function that represents the importance of that word inside the document. The

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:4 R. Konow et al.

Fig. 1. An example non-positional inverted index built over the collection of documents at the top. The
vocabulary and the postings lists built over the collection are shown on the bottom.

main components of the inverted index are then defined as the vocabulary and the
inverted lists:

—The Vocabulary. The vocabulary stores all distinct terms contained in the collection
of documents D. This is commonly implemented with a dictionary data structure
such as a hash table or a digital tree (also called a trie). In practice, the vocabulary
stores two elements associated to each term: an integer value dft called the document
frequency, which is the number of documents that contain the term t, and a pointer
to the start of its corresponding inverted list.

—Inverted Lists. A non-positional inverted list stores a list of elements containing
pairs 〈d, w(t, d)〉, where d is the document identifier (docid) and w(t, d) is a relevance
measure of the term t in document d. A positional inverted list contains a list of triples
〈d, w(t, d), 〈p1, p2, . . . , pk〉〉, where the third component is a vector of the positions
where the occurrences of term t are located in the document d.

Figure 1 shows an example of an inverted index for an example collection consisting
of three documents. The inverted index from the example shows a docid-sorted organi-
zation, where each posting list is in increasing docid order. The postings lists could also
follow a weight-sorted organization. Both docid-sorted and weight-sorted offers differ-
ent alternatives in terms of compression techniques and query processing strategies
that are discussed in Section 3.1.

2.2. Scoring

In the first stage of query processing, a simple metric is used to assign a score to a
document with respect to a query. In the classical bag-of-words model, the query Q is

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:5

seen as a set of q terms t ∈ Q, and the score of a document d is computed as

score(Q, d) =
∑
t∈Q

w(t, d), (1)

where w(t, d) is the weight of term t in document d. For example, in the well-known
tf-idf scoring scheme, this weight is computed as w(t, d) = tft,d · idft. Here, tft,d is the
term frequency of t in d, that is, the number of times t occurs in d. The second term
is idft = log D

dft
, where dft is the document frequency defined above. As explained, the

terms dft are stored in the vocabulary, whereas tft,d must be stored in the posting list of
term t, together with the docid d. This is an efficient way to record w(t, d) in the tf-ifd
model. However, state-of-the-art information retrieval systems employ more complex
ranking formulas such as Okapi BM25, which does not require much more space than
a tf-idf scheme but requires more complex calculations.

Computing the ranking score can be a major bottleneck of the system’s query pro-
cessing routines. Pre-computing the scores and storing them as a float number would
require between 24 and 32 bits. This alternative is usually unfeasible, since it increases
the size of index significantly. To speed up the score calculation process and also main-
tain a reasonable size of the index, we can discretize the range of possible scores into
a predefined set of buckets. Anh et al. [2001] proposed a uniform quantization method
that is a index-wide linear scaling of the term weights, in other words, the idea is to
precompute and store the impact score for the term weight I(d, t) using the following
formula:

I(t, d) =
⌊

w(t, d) − min(w(t, d))
max(w(t, d)) − min(w(t, d))

× 2b
⌋

, (2)

where b is the number of bits that we are willing to reserve for each score contribution.
Crane et al. [2013] shows that by setting b = 8 this quantization method achieves an
effectiveness that is indistinguishable from using exact term weights.

2.3. Query Processing

In the bag-of-words model, we are given Q and k and asked to retrieve k documents
d with the highest score(Q, d) values. In the two-stage model, typical values of k for
the first stage are hundreds to thousands, as discussed earlier. In simpler one-stage
systems, typical values of k are below 20. In the ranked intersection model, all the
terms in Q must appear in returned documents. In the ranked union model, instead, a
missing term t simply implies that w(t, d) = 0. Ranked intersection was popularized by
Web search engines to favor precision over recall and is nowadays more common than
ranked union.

The Boolean intersection problem, without ranking, aims at retrieving all the docu-
ments d where all the terms of Q appear. A typical way to solve a ranked intersection
is to first compute a Boolean intersection, then compute the scores of all the resulting
documents, and, finally, keep the documents with the k highest scores. This approach
has triggered much research on the Boolean intersection problem [Demaine et al.
2000; Baeza-Yates and Salinger 2005; Sanders and Transier 2007; Barbay et al. 2009;
Konow and Navarro 2012]. This approach is, of course, suboptimal, since in principle
one could use weight information to filter out documents that belong to the intersection
but one can ensure will not make it to the top-k list. Some schemes specifically aimed
at solving ranked intersections have appeared only recently [Ding and Suel 2011]. All
these schemes store the posting lists in increasing docid order, which is convenient for
skipping documents during intersections.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:6 R. Konow et al.

Ranked unions, instead, cannot be efficiently solved through a Boolean union, as
this returns too many results. In this case, most research has aimed at returning an
approximate answer within good time bounds [Persin et al. 1996; Anh and Moffat 2006].
Most of these techniques order the posting lists by decreasing weight values, not by
docids. Recently, it has been shown that ranked unions can be solved in exact form
within reasonable time [Broder et al. 2003; Strohman and Croft 2007; Ding and Suel
2011] by using increasing docid order for the posting lists in the best solution [Ding
and Suel 2011].

Traditionally, the posting lists were stored on disk. With the availability of large
amounts of main memory, this trend has changed to use the main memory of a cluster
of machines, and many intersection algorithms have been designed for random access
[Demaine et al. 2000; Scholer et al. 2002; Baeza-Yates and Salinger 2005; Sanders and
Transier 2007; Culpepper and Moffat 2007; Strohman and Croft 2007; Barbay et al.
2009; Konow and Navarro 2012]. In distributed main-memory systems, usually docu-
ments are distributed across independent inverted indexes, and each index contributes
with a few results to the final top-k list. In this case, it is most interesting that an indi-
vidual inverted index solves top-k queries efficiently for k values in the range 10–100
in the two-stage model [Büttcher et al. 2010].

2.4. Compact Data Structures

A compact data structure is a data structure that is represented within little space,
ideally close to the compressed data size, and still offers the desired functionality. We
describe the main compact data structures employed in our work.

2.4.1. Rank and Select on Binary Sequences. Binary sequences or bitvectors are a funda-
mental part of many compact data structures. A bitvector B[1, n] stores a sequence of
n bits and provides efficient solutions for three basic operations:

—ACCESS (B, k) returns the bit at position k of the sequence.
—RANKb (B, i) returns the number of bits equal to b up to position i in B.
—SELECTb (B, j) returns the position of the j-th occurrence of bit b in B.

All of these operations can be solved in constant time using n + o(n) bits [Munro 1996].
In this article, we use an implementation spending, in practice, 5% extra space on top
of the original bitvector size and providing fast query processing [González et al. 2005].

2.4.2. Compact Trees. There are �(4n/n3/2) general trees of n nodes, and thus one needs
log(4n/n3/2) = 2n − �(log n) bits to represent any such tree. There are various compact
tree representations using 2n + o(n) bits that can in addition carry out many tree oper-
ations efficiently, including retrieving the first child, next sibling, computing postorder
of a node, lowest common ancestor, and so on. We describe two compact tree repre-
sentations: Balanced Parentheses (BP) and Level-Ordered Unary Degree Sequence
(LOUDS)

BP. Balanced Parentheses were introduced by Jacobson [1989] and later improved
to achieve constant time operations [Munro and Raman 2002]. It represents a tree by
doing a depth-first traversal: An opening parenthesis is written when arriving at a node
for the first time and a closing parenthesis is written after traversing the subtree of the
node, therefore each node will generate two parentheses. The parentheses sequence is
represented using a bitvector by assigning a “1” to the opening parenthesis and a “0” to
the closing one. The representation then requires 2n bits. In practice [Arroyuelo et al.
2010], this representation requires 2.37n bits, since the bitvector requires additional
data structures to process RANK/SELECT and other queries.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:7

Fig. 2. Example of compact representations of a tree using BP and LOUDS.

LOUDS. The Level-Ordered Unary Degree Sequence [Jacobson 1989] is a simpler,
yet efficient, mechanism to represent ordinal trees. We start with an empty bitvector
T and traverse the tree in a level-order fashion starting from the root. As we visit a
node v with d ≥ 0 children, we append 1d0 to T . We need to augment T only with RANK

and SELECT operations to support basic navigation operations such as PARENT and CHILD

in O(1) time. However, the repertoire of LOUDS is more limited than that of by BP, as
it excludes more complex operations such as SUBTREE_SIZE or LOWEST_COMMON_ANCESTOR.
In practice, since we can give RANK/SELECT support using 5% of extra space, a LOUDS
representation uses 2.10n bits.

Figure 2 shows an example of these schemes. The left part shows a tree with nodes
numbered levelwise. The right part shows the corresponding compact representations
of the topology and where each node is located.

2.5. Direct Access Codes

Directly Addressable Codes (DACs) [Brisaboa et al. 2013] is a variable-length en-
coding of integers. Given a chunk length b and a sequence of positive integers
S[1, n] = x1, x2, . . . , xn, DACs divide each integer xi into �|xi|/b� chunks. Similarly to
vByte encoding [Williams and Zobel 1999], DACs employ a “continuation” bit to indicate
whether the code continues in further chunks. Instead of concatenating the encoding
of xi+1 after that of xi, however, they build a multi-layer data structure. Let M be the
maximum element in the sequence; a DACs encoding will contain � = �	log(M)
 + 1/b�
layers consisting in two parts: (1) the lowest b bits of each chunk, which are stored
contiguously in an array Ak with 1 ≤ k ≤ �, and (2) the “continuation” bits, which are
concatenated into a bitvector Bk. An integer xi will require exactly �|xi|/b� layers. For
example, say we want to encode the integer x = 6, and we set the chunk length b = 2.
The lowest b bits of 6 are 10, so we append them to array A1. Since we still require
more bits to represent the number, we append the continuation bit 1 to B1. The next b
lowest bits for representing x, 01 are now appended to A2, and since we do not require
more bits to represent x, we append the continuation bit 0 to B2.

Any integer xi can be extracted from the successive arrays Ak and bitvectors Bk by
using RANK on the bitvectors to track the positions of the chunks in the arrays. Then the
extraction time is O(1 + |xi|/b), and the number of wasted bits used to represent it is
at most �|xi|/b� + b− 1. A further improvement of DACs encoding is to choose different
chunk lengths for each layer. The authors present a dynamic programming algorithm
that computes the optimal chunk length and the optimal number of layers to achieve
the smallest representation of the sequence of numbers.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:8 R. Konow et al.

3. RELATED WORK

3.1. Query Processing Strategies

There are different query evaluation mechanisms that exhibit affinities with different
index organizations. They are classified in three different categories: Document-at-a-
time (DAAT), Term-at-a-time (TAAT), and Score-at-a-time (SAAT).

Document-at-a-time. DAAT processing is more popular for Boolean intersections and
unions. Here the q lists are processed in parallel, looking for the same document in
all of them. Posting lists must be sorted by increasing docid, and we keep a pointer to
the current position in each of the q lists. Once a document is processed, the pointers
move forward. Much research has been carried out on Boolean intersections [Demaine
et al. 2000; Baeza-Yates and Salinger 2005; Sanders and Transier 2007; Culpepper and
Moffat 2007; Barbay et al. 2009]. While a DAAT processing is always used to intersect
two lists, experimental results suggest that the most efficient way to handle more lists
is to intersect the two shortest ones, then the result with the third, and so on. This can
be seen as a TAAT strategy.

Term-at-a-time. TAAT processes one posting list after the other. The lists are con-
sidered from shortest to longest, starting with the first one as a candidate answer set,
and refining it as we consider the next lists. The documents in each list are sorted
by decreasing weight. TAAT is especially popular for processing ranked unions, as
the successive lists have decreasing idft value and thus a decreasing impact on the
result, not only for the tf-idf model but also for BM25 and other models. Thus heuristic
thresholds can be used to obtain an approximate ranked union efficiently by pruning
the processing of lists earlier, or avoiding lists completely, as we reach less-relevant
documents and our candidate set becomes stronger [Persin et al. 1996; Anh and Moffat
2006]. A more sophisticated approach based on similar ideas can be used to guarantee
that the answer is exact [Strohman and Croft 2007]. TAAT approaches usually make
use of an accumulator data structure that holds the intermediate accumulated results
for each document.

Score-at-a-time. SAAT mechanism can be seen as a hybrid between document-at-a-
time and term-at-a-time in which multiple index lists are open. This is usually em-
ployed with impact-sorted indexes [Anh and Moffat 2006]. In impact-ordered indexes
the actual score contributions of each term are precomputed and quantized into what
are known as impact scores [Lin and Trotman 2015]. The idea is that a complete impact
block is processed at each step, and the results are obtained using a set of accumulator
variables.

Many ranked intersection strategies employ a full Boolean intersection followed by a
post-processing ranking step. However, recent work has shown that it is possible to do
better using DAAT strategies [Ding and Suel 2011]. The advantage of DAAT processing
is that, once we have processed a document, we have complete information about its
score, and thus we can maintain a current set of top-k candidates whose final scores
are known. This set can be used to establish a threshold on the scores other documents
need to surpass to become relevant for the current query. Thus the emphasis on ranked
DAAT is not on terminating early but on skipping documents. This same idea has been
successfully used to solve exact (not approximate) ranked unions [Broder et al. 2003;
Ding and Suel 2011]. The strategies we use for solving ranked union and intersection
queries in this article are best classified as DAAT: We use sophisticated mechanisms
to skip documents using the current threshold given by the current top-k candidate
set.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:9

3.2. Compressed Posting List Representations

Compression of the inverted lists is essential for efficient retrieval on disk and in main
memory [Witten et al. 1999; Büttcher and Clarke 2007]. The main idea to achieve
compression is to differentially encode the docids, whereas the weights are harder
to compress. A list of docids 〈d1, d2, d3, . . . dn〉 is represented as a sequence of d-gaps
〈d1, d2 − d1, d3 − d2, . . . , dn − dn−1〉, and variable-length encoding is used to encode the
differences. Extracting a single list or merging lists is done optimally by traversing
lists from the beginning, but query processing schemes can be done much faster if
random access to the sequences is possible. This can be obtained by cutting the lists
into blocks that are differentially encoded, while storing in a separate sequence the
absolute values of the block headers and pointers to the encoded blocks [Culpepper and
Moffat 2007; Sanders and Transier 2007].

Bit-aligned codes can be inefficient to decode, since they require several bitwise
operations. Byte-aligned [Scholer et al. 2002] or word-aligned codes [Yan et al. 2009;
Culpepper and Moffat 2005] are preferred when speed is the main concern. Examples
of these techniques are Variable Byte (VByte) and Restricted-Prefix Byte Codes.

Another approach is to encode blocks of integers together, aiming to improve both
compression and decoding speed. One popular block-based encoding mechanism is
Simple9 or Simple16 [Anh and Moffat 2005], which encodes as many as possible of
the next values using fixed-width fields in a 32-bit word. Another is PforDelta, which
encodes the next, say, 128 numbers using fixed-width cells, while encoding separately
the largest 10% of the numbers as outliers. In practice, PforDelta is one of the fastest
for decoding and achieves excellent compression ratios.

A recent trend exploits the advantages of SIMD operations available on modern
CPUs. For example, Variant-G8IU [Stepanov et al. 2011] encodes as many integers
as possible into 8 consecutive bytes preceded by a 1-byte descriptor and uses SIMD
instructions to encode/decode. Another example is SIMD-BP128 [Lemire and Boystov
2015], which can be seen as an adaptation of Simple9 to use 128-bit SIMD words.

Recently, Trotman [2014] introduced a new mechanism to encode integers, called
QMX. This encoding scheme combines word-aligned, SIMD, and run-length techniques,
resulting in a highly space-efficient and fast-decoding scheme.

Vigna [2013] explored an Elias-Fano representation of monotone sequences to encode
the docids of the posting lists. The representation allows for direct random access to any
docid and for efficient skipping operations that are useful for performing intersections.
His experiments showed that Elias-Fano achieves space and time competitive with
state-of-the-art methods, even including PforDelta. Ottaviano and Venturini [2014]
extended this idea by performing an (1 + ε)-optimal partitioning of the list into chunks,
for any ε > 0, and then encoding all the chunks and their endpoints with Elias-Fano.
They show that this partitioned approach offers significantly better compression and
similar query time performance, compared to representing the sequence as a whole.

When the lists are sorted by decreasing weight (for approximate ranked unions), the
differential compression of docids is not possible, in principle. Instead, term weights
can be stored differentially. When storing tf values, one can take advantage of the fact
that long runs of equal tf values (typically low values) are frequent and thus not only
run-length encode them but also sort the corresponding docids increasingly to encode
them differentially [Baeza-Yates et al. 2002; Zobel and Moffat 2006].

3.3. State of the Art for Exact Ranked Queries

The following approaches display the best performance to date for exact ranked in-
tersections and unions. We also highlight the advantages of our work with respect to
them.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:10 R. Konow et al.

3.3.1. WAND. WAND [Broder et al. 2003] is a query processing algorithm that per-
forms weighted unions following a DAAT strategy. Each term ti in the query is assigned
a weight wi, and a threshold θ is established. The method returns the documents con-
taining query terms ti whose sum of weights wi reaches θ .

The WAND algorithm traverses the lists of all the query terms in parallel, carrying
out three phases in each iteration: pivot selection, alignment check, and evaluation.
The procedure starts by selecting a pivoting term. This is done by sorting the lists by
their current docid and summing the corresponding weights wi until the sum reaches
θ . The term where this happens is selected as the pivot. The key observation is that
there is no docid smaller than the pivot’s current docid that could reach a sum reaching
θ , unless it was already considered. Next, WAND tries to align all the posting lists to
the pivot’s current docid by moving forward the pointers in these lists. If the sum of
the weights wi of the entries where the pivot’s docid appears reaches θ , then the docid
is reported. The process then continues by moving forward the pointer in the pivot list
and then starting a new iteration.

In this context, a Boolean union query with q terms can be obtained by setting all
the weights to wi = 1 and θ = 1 and a Boolean intersection by raising the bar to θ = q.

In the context of top-k ranked unions, we can maintain the k docids with maximum
score we have seen, and set θ dynamically as the kth largest score known. The weights
wi are also dynamic: They are the weight of the term in the current docid. To choose
the pivot, we have a precomputed upper bound on wi in the inverted index, associated
with the term. Therefore, if a pivot is chosen accordingly to upper bounds on weights,
we are not losing any relevant previous pivot. To obtain ranked intersections, we must
also enforce that all the terms appear in the docid; note that the result does not differ
from performing a Boolean intersection, except that we may prune the consideration
of a docid if it is clear that it will not make it to the top-k list.

In this article, we use WAND to perform ranked unions and intersections, as de-
scribed. For this purpose, WAND has been superseded by the more complex Block-Max,
described next.

3.3.2. Block-Max. Block-Max [Ding and Suel 2011] is a special-purpose structure for
ranked intersections and unions. It sorts the lists by increasing docid, cuts the lists
into blocks, and stores the maximum weight for each block. This enables them to
skip whole blocks whose maximum possible contribution is very low by comparing
its maximum weight with a threshold given by the current candidate set. Block-Max
obtains considerable performance gains over the previous techniques for exact ranked
unions [Broder et al. 2003; Strohman and Croft 2007] and over the techniques that
perform ranked intersections via a Boolean preprocessing.

The basic concept is as follows: Suppose the next document of interest, d, belongs to
blocks b1, . . . , bq in the q lists. Compute an upper bound to score(Q, d) using the block
maxima instead of the weights w(t, d). If even this upper bound does not surpass the
kth best score known up to now, then no document inside the current blocks can make
it to the top-k list. So we can safely skip the least advanced block.

Our technique can be seen as a generalization of the Block-Max idea, in which we
use the treap concept to naturally define a hierarchical blocking scheme. The general-
ization is algorithmically nontrivial, but it is practical and beats the flat Block-Max. In
addition, the treap structure allows us to differentially encode both docids and weights,
which translates into space savings.

3.3.3. Dual-Sorted Inverted Lists. Dual-Sorted inverted lists [Navarro and Puglisi 2010;
Konow and Navarro 2012] represent the posting lists sorted by decreasing frequency,
using a wavelet tree data structure [Grossi et al. 2003; Navarro 2012]. The wavelet tree
efficiently simulates ordering by increasing docids as well. TAAT processing is used for

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:11

approximate ranked unions and DAAT-like processing for (exact) ranked intersections.
The latter, although building on Boolean intersections, is implemented in native form
on wavelet trees, which makes it particularly fast, even faster than Block-Max. Basi-
cally, the wavelet tree can recursively subdivide the universe of docids and efficiently
determine that some list has no documents in the current interval.

Our technique shares with Dual-Sorted the ability to maintain the lists sorted by
both docids and weights simultaneously and is able to perform a similar kind of native
intersection, that is, determine that in an interval of documents there is a list with
no elements. In contrast, Dual-Sorted does not know the frequencies until reaching
the individual documents, whereas our treaps give an upper bound to the frequencies
in the current interval. This allows us to perform ranked intersections faster than
the Boolean intersections of Dual-Sorted. In addition, the treap uses less space, since
Dual-Sorted cannot use differential encoding on docids.

4. INVERTED TREAPS

We describe our data structure in this section. First, we survey the treap data structure
and show that it can be used to represent a posting list. Then we describe how we
represent the resulting data structure using little space. At the end, we describe some
practical improvements on the basic idea.

4.1. The Treap Data Structure

A treap [Seidel and Aragon 1996] is a binary tree where nodes have two attributes: a
key and a priority. The treap satisfies the invariants of a binary search tree with respect
to the keys: The key of a node is larger than those of its left subtree and smaller than
those of its right subtree. Furthermore, the treap satisfies the invariants of a binary
heap with respect to the priorities: The priority of the parent is equal to or larger than
those of its descendants.

Given its invariants, a treap can be searched for a key just as a binary search
tree, and it can be simultaneously used as a binary heap. While in the literature it has
mostly been used with randomly assigned priorities [Seidel and Aragon 1996; Martı́nez
and Roura 1997; Blelloch and Reid-Miller 1998] to ensure logarithmic expected height
independently of the order of insertions, a treap can also be seen as the Cartesian tree
[Vuillemin 1980] of the sequence of priorities once the values are sorted by keys.

Treaps are a particular case of priority search trees [McCreight 1985], which can
guarantee balancedness but are unlikely to be as compressible as Cartesian trees.
There has been some work on using priority search trees for returning top-k elements
from suffix trees and geometric range searches [Bialynicka-Birula and Grossi 2005;
Bialynicka-Birula 2008] but, as far as we know, our use of treaps for ranked queries on
inverted indexes, plus their differential compression, is novel.

4.2. Inverted Index Representation

We consider the posting list of each term as a sequence sorted by docids (which act as
keys), each with its own term frequency (which act as priorities). Term impacts, or any
other term weights, may also be used as priorities. We then use a treap to represent
this sequence. Therefore, the treap will be binary searchable by docid, whereas it will
satisfy a heap ordering on the frequencies. This means, in particular, that if a given
treap node has a frequency below a desired threshold, then all the docids below it in
the treap can be discarded as well.

Figure 3 illustrates a treap representation of a posting list. This treap will be used
as a running example. Ignore for now the differential arrays on the bottom.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:12 R. Konow et al.

Fig. 3. An example posting list with docids and frequencies and the corresponding treap representation in
our scheme. Note that docids (inside the nodes) are sorted in order and frequencies (outside the nodes) are
sorted top to bottom. The differentially encoded docids and frequencies are shown below the tree.

4.3. Construction

A treap on a list 〈(d1, w1), . . . , (dn, wn)〉 of documents and weights can be built in O(n)
time in a left-to-right traversal [Berkman and Vishkin 1993; Bender and Farach-Colton
2000; Fischer and Heun 2011]. Initially, the treap is just a root node (d1, w1). Now,
assume we have processed (d1, w1), . . . , (di−1, wi−1) and the rightmost path of the treap,
root to leaf, is v′

1, . . . , v
′
�, each v′

j representing the posting (d′
j, w

′
j). Then we traverse the

path from v′
� to v′

1, until finding the first node v′
j with w′

j ≥ wi (assume the treap is the
right child of a fake root with weight w′

0 = +∞, to avoid special cases). Then, (di, wi)
is set as the right child of v′

j , and the former right child of v′
j becomes the left child of

(di, wi), which becomes the lowest node in the rightmost path.
Since for every step in this traversal the rightmost path decreases in length, and

it cannot increase in length by more than 1 per posting, the total number of steps is
O(n). Under reasonable assumptions (i.e., the weight and the docid are statistically
independent) the height of a treap is O(log n) [Martı́nez and Roura 1997] and so is the
length of its rightmost path. Therefore, the maximum time per insertion is O(log n)
expected (but O(1) worst-case when amortized over all the insertions on the treap).

4.4. Compact Treap Representation

To represent this treap compactly, we must encode the tree topology, the docids, and the
term frequencies. We discuss only the docids and frequencies in this subsection. Our
plan is not to access the posting lists in sequential form as in classical schemes, thus
a differential encoding for each docid with respect to the previous one is not directly
applicable. Instead, we make use of the invariants of the treap data structure.

Let id(v) be the docid of a treap node v and f (v) its frequency. We represent id(v)
and f (v) for the root in plain form, and then represent those of its left and right
children recursively. For each node v that is the left child of its parent u, we represent
id(u)−id(v) instead of id(v). If, on the other hand, v is the right child of its parent u, then

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:13

we represent id(v) − id(u) [Claude et al. 2012]. In both cases, we represent f (u) − f (v)
instead of f (v). Those numbers get smaller as we move downwards in the treap.

The sequence of differentially encoded id(v) and f (v) values is represented according
to an inorder traversal of the treap, as show on the bottom of Figure 3. As we move
down the treap, we can easily maintain the correct id(v) and f (v) values for any node
arrived at, and use it to compute the values of the children as we descend.

To do this, we need to randomly access a differential value in the sequence, given a
node. We store those values in an array indexed by node inorders and use the DACs
described in Section 2.5 to directly access the values while taking advantage of their
small size.

4.5. Representing the Treap Topology

We have shown that if we use a treap to represent posting lists, we can differentially
encode both docids and frequencies; however, we still need to represent the topology.
A pointer-based representation of a treap topology of n nodes requires O(n log n) bits,
which is impractical for large-scale data. Still, space is not the only concern: We need
a compact topology representation that supports fast navigation in order to implement
the complex algorithms deriving from ranked intersections and unions. In this subsec-
tion we introduce three representations designed to be space efficient and to provide
fast navigation over the topology.

4.5.1. Compact Treap using BP. This representation uses the BP described in Sec-
tion 2.4.2. However, this representation is designed for general ordinal trees, not for
binary trees. For example, if a node has only one child, then general trees cannot
distinguish between it being the “left” or the “right” child.

A well-known isomorphism [Munro and Raman 2002] allows us to represent a binary
tree of n nodes using a general tree of n + 1 nodes: First, a fake root node vroot for the
general tree is created. The children of vroot are the nodes in the rightmost path of the
treap, from the root to the leaf. Then each of those nodes is converted recursively. The
general tree is then represented as a BP sequence SBP[1, 2n+2]. With this transforma-
tion, the original treap root is the first child of vroot. The left child of a treap node v is its
first child in the general tree and the right child of v is its next sibling in the general
tree. Moreover, the inorder in the original treap, which we use to access docids and
frequencies, corresponds to the preorder in the general tree, which is easy to compute
with parentheses. Figure 4 shows the transformed treap for our running example.

Each treap node i is identified with its corresponding opening parenthesis. Thus
the root of the treap is node 2. The inorder of a node i is simply RANK1(SBP, i) − 1, the
number of opening parentheses up to i excluding the fake root. The left child of i in the
treap, or its first child in the general tree, is simply FIRST_CHILD(i) = i + 1. If, however,
SBP[i + 1] = 0, then this means that i has no first child. For the right child of node i in
the treap, or its next sibling in the general tree, we use NEXT_SIBLING(i) = CLOSE(i) + 1,
where CLOSE returns the closing parenthesis that matches a given opening parenthesis.
If SBP has a 0 in the resulting position, then this means that i has no right child.

Therefore, in addition to RANK, we need to implement operation CLOSE in constant
time. This is achieved with a few additional data structures of size o(n), as described
in Section 2.4.2.

As an example, we demonstrate this procedure using the treap from Figure 4. We
see that v1 (the treap’s original root) starts at position i = 2 in SBP. If we want to
retrieve the index of its left child, which is node v2, then we perform FIRST_CHILD(2).
The procedure checks that SBP[3] is an opening parenthesis, so we can return 3 as the
answer for the starting position of the left node of v1. On the other hand, if want to
obtain the position where the right child of v1 begins, which is v3, then we perform

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:14 R. Konow et al.

Fig. 4. The original binary tree edges (dashed) are replaced by a general tree, whose topology is represented
with parentheses. The opening and closing parentheses of nodes v1, v2, and v3 in SBP are shown on the
bottom part.

CLOSE(2) + 1 and obtain position 20, which contains a 1 and thus corresponds to the
starting position of v3.

4.5.2. Compact Treap using LOUDS. The LOUDS representation (recall Section 2.4.2)
can be adapted to support binary trees efficiently: For every node in a level-order
traversal, we append two bits to the bit sequence, setting the first bit to “1” if an only
if the node contains a left child and setting the second to “1” if and only if the node
contains a right child. For example, a leaf node will be represented as 00, while a binary
tree node containing both children is represented as 11. The concatenation of these bits
builds a bit sequence SLOUDS[1, 2n]. Since every node adds two bits to this sequence,
we can use the levelwise order i of a node as its identifier, knowing that its two bits are
at SLOUDS[2i − 1, 2i].

The LOUDS representation is simpler than BP, as it can be navigated downwards
using only RANK operations. In addition, it does not require the tree isomorphism. Given
the sequence SLOUDS representing the treap topology as a binary tree and a node i, we
navigate the tree as follows: If i has a left child (i.e., if SLOUDS[2i − 1] = 1), then the
child is the node (with levelwise order) RANK1 (SLOUDS, 2i − 1) + 1. Analogously, the
right child exists if SLOUDS[2i] = 1, and it is RANK1 (SLOUDS, 2i) + 1.

Figure 5 shows an example of a binary tree using a LOUDS representation. We
demonstrate how to navigate the tree with an example: Say that we are at node v4
(meaning its LOUDS identifier is 4), which is represented by the bits located at positions
7 and 8. We know that v4 has no left child because the first bit is 0, but it has a right
child since the second bit is a 1. The right child of v4 is the node with identifier (or
levelwise order) RANK1 (SLOUDS, 2 · 4) + 1 = 8, which we draw as v8. The two bits of this
node are at positions 15 and 16. Since both bits are set to 0, this node is a leaf.

Compared to the BP representation, the LOUDS-based solution requires less space
in practice (2.10 bits per node instead of 2.37) and simpler operations. On the other
hand, the BP representation has more locality of reference when traversing subtrees.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:15

Fig. 5. The LOUDS representation of an example treap. SLOUDS denotes the bit sequence that describes the
topology.

For this representation, we store the sequences of differentially encoded docids and
frequencies (sequences “diff docids” and “diff freqs” of Figure 3) following the level-
order traversal of the binary tree. This ordering is shown as “Node” at the bottom part
of Figure 5.

4.5.3. Compact Treap using Heaps. Even if the topology representations using LOUDS
or BP support constant-time tree navigation, in practice they are 10 to 100 times slower
than a direct access to a memory address (i.e., accessing any position in an array), as
shown in the preliminary version of this work [Konow et al. 2013]. In order to avoid
these costly operations, we designed a new compact binary tree representation that
is inspired on binary heaps. The main idea is to take advantage of the fact that a
complete binary tree of n nodes does not require any extra information to represent
its topology, since the values can be represented using just an array of size n. In order
to navigate the tree, we can use traditional binary heap operations: The left child of
node i is located at position 2i and the right child at position 2i + 1. However, a treap
posting list representation will rarely be a complete binary tree. Therefore, we take
the maximal top part of the tree that is complete and represent it as a heap. We then
recursively represent the subtrees that sprout from the bottom of the complete part.
The motivation is to avoid the use of RANK or more complex operations every time we
need to navigate down the tree.

We start at the root of the treap and traverse it in levelwise order, looking for the
first node that does not contain a left or a right child. Say that this happens at level �
of the tree, so we know that all the nodes up to level � have both left and right children.
In other words, the subtree formed by all the nodes starting from the root up to level
� forms a complete tree T1 that contains 2� − 1 nodes. Figure 6 shows an example,
where the first node that does not have a left or right child (v4) is located at level � = 3,
therefore, |T1| = 23 − 1 = 7. We then append the differential values of the nodes (docid
and frequency) of the complete subtree to the sequences “diff docids” and “diff freqs”
(see Figure 3) in levelwise order.

For each of the 2�−1 leaves of T1, we write in a bit sequence SHEAP two bits, indicating
if the corresponding leaf contains a left or a right child, similarly to LOUDS.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:16 R. Konow et al.

Fig. 6. An example HEAP treap topology representation. At the top, we draw each complete tree with a
gray background. The levels of the tree are shown on the right. At the bottom, we show the resulting SHEAP
sequence (the holes are not represented) and mark the area of each complete treap T j . The starting positions
of these areas correspond to the sequences of docids and frequencies, as they consider the holes and thus
account for the internal nodes as well (see array Node). Those starting positions are written below, in array
P. Note that the corresponding starting position in SHEAP is simply P[j] + j − 1. Instead of P, we store the
logarithms of the sizes, in P ′.

We continue this procedure by considering each node located at level � + 1 as a new
root for further trees T j . The trees yet to process are appended to a queue, so the trees
T j are also deployed levelwise. Note that any of these new roots (including the original
root) could lack a left or a right node, in which case we will have a complete subtree of
only one node.

We also need a sequence P where P[j] is the starting point of T j in the sequences of
docids and frequencies. This also serves to compute |T j | = P[j + 1] − P[j]. Since there
may be a considerable number of small complete trees, P may require up to n log n bits.
To reduce its size, and considering that P[j + 1] − P[j] is of the form 2� − 1, we store
another array instead: P ′[0] = 0 and P ′[j + 1] = � − 1 = log2(|T j | + 1) − 1. This reduces
the space to at most n log log n bits, and the starting position of the sequences of T j can
be obtained as P[j] = ∑ j−1

i=0 (2P ′[i]+1 − 1). To compute this sum faster, we divide P ′ into
blocks of fixed size b and store in a separate sequence the sums up to the beginning
of each block. This way, we limit to b the number of elements that are summed up. A
similar trick, computing −1 + ∑ j−1

i=0 2P ′[i]+1 = P[j] + j − 1, gives the starting position
of T j in the bitvector SHEAP.

Figure 6 shows our representation. The gray triangles represent the complete trees
T1 to T5. On the bottom of the figure, we show the extra structures discussed.

In order to navigate the tree, we proceed as follows: We represent a node v as a
pair 〈 j, pos〉, so v is the node at levelwise-order position pos inside the subtree T j . To

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:17

move to the left child, we just set pos′ = 2 · pos, and to move to the right child we set
pos′ = 2 · pos + 1. If pos′ ≤ |T j |, then we are within the same complete subtree T j , so
we are done. On the other hand, if pos′ > |T j |, then we know two things: First, node
v is a leaf within its complete subtree T j , and, second, we need to move to another
complete subtree. Before moving to another subtree, we first need to check if the
leaf node has the desired (left or right) child. Thus we map the position of the leaf
within its subtree, pos, to the sequence SHEAP. This can be done with pos map =
P[j]+ j −1+2 · (pos−1−	|T j |/2
) = P[j]+ j −2+2 · pos−|T j |, adding 1 if we descend
to the right child. Now, we check in SHEAP[pos map] if the corresponding bit is set. In
the case where the leaf node in the subtree T j has the desired left or right child, we
calculate the new node subtree index with j ′ = RANK1 (SHEAP, pos norm) + 1, and set
pos′ = 1.

We demonstrate this process with an example based on Figure 6: Let us begin at
node v7, which is represented by the pair 〈1, 7〉 and let us say that we want to move
to the left. We set pos′ = 2 · pos = 14. Since |T1| = 7 < 14, we realize that we
are located at a leaf node. Thus we map pos to the sequence SHEAP with pos map =
1 + 1 − 2 + 2 · 7 − 7 = 7. Note that the 7-th bit in SHEAP tells if v7 has a left child or not.
Since SHEAP[7] = 1, we proceed to figure out which tree we must go to. This is computed
with RANK1 (SHEAP, 7) + 1 = 5. Our new node is then represented as the pair 〈5, 1〉.

For this representation, we maintain the sequences of docids and frequencies follow-
ing the level-order traversal of the nodes within each complete subtree. This traversal
is denoted “Node” in the bottom part of Figure 6).

The idea of separating the treap into complete trees is inspired by the level-
compressed tries of Andersson and Nilsson [1994]. Under reasonable models for tries,
they show that the expected number of complete subtrees traversed in a root-to-leaf
traversal is O(log log n) and even O(log∗ n). While we are not aware of an analogous
result for random binary trees, it is reasonable to expect that similar results hold. Note
that this is the number of RANK operations needed in a traversal, instead of the O(log n)
that we can expect using BP or LOUDS.

4.6. Practical Improvements

The scheme detailed above would not be so successful without three important im-
provements. First, because many posting lists are very short, it turns out to be more
efficient to store two single DAC sequences, with all the differential docids and all the
differential frequencies for all the lists together, even if using individual DACs would
have allowed us to optimize their space for each sequence separately. The overhead
of storing the chunk lengths and other administrative data outweighs the benefits for
short sequences.

A second improvement is to break ties in frequencies to make the treap as balanced
as possible, by choosing the root as the maximum that is closest to the center of each
interval (in every subtree). This improves the binary searches for docids and the tree
traversal for the HEAP representation. While it is still possible to build the treap in
linear time with this restriction, a simple brute-force approach to find the centered
maximum performs better in most practical cases.

The third, and more important, improvement is to omit from the treap representation
all the elements of the lists where the frequency is below some threshold f0. According to
Zipf ’s law [Zipf 1949; Croft et al. 2009; Büttcher et al. 2010; Baeza-Yates and Ribeiro-
Neto 2011], a large number of elements will have low frequencies, and thus using
a separate posting list for each frequency below f0 will save us from storing those
frequencies wherever those elements would have appeared in the treap. Further, the
docids of each list can be differentially encoded in classical sequential form, which is
more efficient than in treap order.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:18 R. Konow et al.

Fig. 7. Separating frequencies below f0 = 2 in our example treap. The nodes that are removed from the
treap are on white background. For the documents with frequencies 1 and 2, we show the absolute docids on
the left and their differential version on the right.

It turns out that many terms do not have to store a treap at all, as they never
occur more than f0 times in any document. We represent the gap-encoded lists using
PforDelta and take an absolute sample every 128 values (which form a block). Samples
are stored separately and explicitly in an array, with pointers to the block [Culpepper
and Moffat 2007]. Searches in these lists will ask for consecutively larger values, so we
remember the last element found and exponentially search for the next query starting
from there. Figure 7 illustrates the separation of low-frequency elements from our
example treap.

A neat feature of these lists is that often we will not need to access them at all during
queries, since ranked queries aim at the highest frequencies.

5. QUERY PROCESSING

In this section, we describe the procedure to perform efficient top-k query processing
using the inverted treaps.

5.1. General Procedure

Let Q be a query composed of q terms t ∈ Q. To obtain the top-k documents from the
intersection or union of q posting lists, we proceed in DAAT fashion: We traverse the q
posting lists in synchronization, identifying the documents that appear in all or some
of them, and accumulating their weights w(t, d) into a final score(Q, d) = ∑

t w(t, d) =∑
t tft,d·idft. Those documents are inserted in a min-priority queue limited to k elements,

where the priority is the score. Each time we insert a new element and the queue size
reaches k + 1, we remove the minimum. At the end of the process, the priority queue
contains the top-k results. Furthermore, at any stage of the process, if the queue has
reached size k, then its minimum score L is a lower bound to the scores we are interested
in for the rest of the documents.

5.2. Intersections

Let d be the smallest docid not yet considered (initially d = 1). Every treap t involved in
the query Q maintains a stack of nodes (initially holding just a sentinel value element
ut with id(ut) = +∞ and f (ut) = +∞), and a cursor vt (initially the treap root). The

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:19

stack will contain the nodes in the path from the root to vt where we descend by the
left child. We will always call ut the top of the stack; thus, ut is an ancestor of vt and it
holds id(ut) > id(vt).

We advance in all the treaps simultaneously towards a node v with docid id(v) = d,
while skipping nodes using the current lower bound L. In all the treaps t, we maintain
the invariant that, if v is in the treap, it must appear in the subtree rooted at vt. In
particular, this implies d < id(ut).

Because of the decreasing frequency property of treaps, if d is in a node v within
the subtree rooted at vt, then f (v) ≤ f (vt). Therefore, we can compute an upper bound
U to the score of document d by using values f (vt) instead of f (v), for example, U =∑

t∈Q f (vt) · idft for a tf-idf scoring.1 If this upper bound is U ≤ L, then there is a valid
top-k answer where d does not participate, so we can discard d. Further, no node that
is below all the current vt nodes can qualify. Therefore, we can safely compute a new
target d ← mint(id(ut)). Each time the value of d changes (it always increases), we
must update the stack of all the treaps t to restore the invariants: While id(ut) ≤ d, we
assign vt ← ut and remove ut from the stack. We then resume the global intersection
process with this new target d. The upper bound U is recomputed incrementally each
time any vt value changes (U may increase or decrease).

When U > L, it is still feasible to find d with sufficiently high score. In this case, we
have to advance towards the node containing d in some treap. We obtained the best
results by choosing the treap t of the shortest list. We must choose a treap where we
have not yet reached d; if we have reached d in all the treaps, then we can output d as
an element of the intersection, with a known score (the current U value is the actual
score of d), insert it into the priority queue of top-k results as explained (which may
increase the lower bound L), and resume the global intersection process with d ← d + 1
(we must update stacks, as d has changed).

In order to move towards d �= id(vt) in a treap t, we proceed as follows. If d < id(vt),
then we move to the left child of vt, lt, push vt in the stack, and make vt ← lt. Instead,
if d > id(vt), then we move to the right child of vt, rt, and make vt ← rt. We then
recompute U with the new vt value.

If we have to move to the left and there is no left child of vt, then d does not belong to
the intersection. We stay at node vt and redefine a new target d ← id(vt). If we have to
move to the right and there is no right child of vt, then again d is not in the intersection.
We make vt ← ut, remove ut from the stack, and redefine d ← id(ut). In both cases we
adjust the stacks of the other treaps to the new value of d, as before, and resume the
intersection process.

Algorithm 1 gives pseudocode for the intersection.

5.2.1. Handling Low-Frequency Lists. We have not yet considered the lists of documents
with frequencies up to f0, which are stored separately, one per frequency, outside the
treap. While a general solution is feasible (but complicated), we describe a simple
strategy for the case f0 = 1, which is the case we implemented.

Recall that we store the posting lists in gap-encoded blocks. Together with the treap
cursor, we will maintain a list cursor, which points inside some block that has been
previously decompressed. Each time there is no left or right child in the treap, we must
search the list for potential elements omitted in the treap. More precisely, we look for
elements in the range [d, id(vt) − 1] if we cannot go left or in the range [d, id(ut) − 1] if
we cannot go right. Those elements must be processed as if they belonged to the treap

1Replacing f (v) by f (vt) will yield an upper bound whenever the scoring function is monotonic with the
frequencies. This is a reasonable assumption and holds for most weighting formulas, including tf-idf and
BM25.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:20 R. Konow et al.

ALGORITHM 1: Top-k of Intersection Using Treaps.
INTERSECT(Q, k)

results ← ∅ // priority queue of pairs (key, priority)
for t ∈ Q do

stackt ← 〈⊥〉 // stack of treap t, id(⊥) = f (⊥) = +∞
vt ← root of treap t

end for
compute score U using f (vt) values, e.g.

∑
t∈Q f (vt) · idft

d ← 1, L ← −∞
while d < +∞ do

while U ≤ L do
CHANGED(mint∈Q id(TOP(stackt)))

end while
if ∀t ∈ Q, d = id(vt) then

REPORT(d,U)
CHANGED(d + 1)

else
t ← treap of shortest list such that d �= id(vt)
if d < id(vt) then

lt ← left child of vt
if lt is not null then

PUSH(stackt,vt), CHANGEV(t, lt)
else

CHANGED(id(vt))
end if

else
rt ← right child of vt
if rt is not null then

CHANGEV(t, rt)
else

CHANGEV(t,POP(stackt))
CHANGED(id(vt))

end if
end if

end if
end while
return results

REPORT(d, s)
results ← results ∪ (d, s)
if |results| > k then

remove minimum from results, L ← minimum priority in results
end if

CHANGED(newd)
d ← newd
for t ∈ Q do

v ← vt
while d ≥ id(TOP(stackt)) do

v ←TOP(stackt)
POP(stackt)

end while
CHANGEV(t, v)

end for
CHANGEV(t, v)

remove contribution of f (vt) from U , e.g. U − f (vt) · idft
vt ← v

add contribution of f (vt) to U , e.g. U + f (vt) · idft

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:21

before proceeding in the actual treap. Finding this new range [l, r] in the list may imply
seeking and decompressing a new block.

The cleanest way to process range [l, r] is to search as if it formed a subtree fully
skewed to the right, descending from vt. If we descended to the left of vt towards the
range, then we push vt into the stack. Since all the elements in the list have the same
frequency, when we are required to advance towards (a new) d we simply scan the
interval until reaching or exceeding d, and the docid found acts as our new id(vt) value.
When the interval [l, r] is exhausted, we return to the treap. Note that the interval
[l, r] may span several physical list blocks, which may be subsequently decompressed.

5.3. Unions

The algorithm for ranked unions requires a few changes on the algorithm for intersec-
tions. First, in the two lines that call CHANGED(id(vt)), we do not change the d for all the
treaps when the current treap does not find it. Rather, we keep values nextdt where
each treap stores the minimum d′ ≥ d it contains, and thus those lines are changed by
nextdt ← id(vt). Second, we will choose the treap t to advance only among those where
id(vt) �= d and nextdt = d, as if nextdt > d we cannot find d in treap t. Third, when
all the treaps t where id(vt) �= d satisfy nextdt > d, we have found exactly the treaps
where d appears. We add up score(Q, d) over those treaps where id(vt) = d, report d,
and advance to d + 1. If, however, this happens but no treap t satisfies id(vt) = d, then
we know that d is not in the union, and we can advance d with CHANGED(mint∈Q nextdt).
Finally, CHANGED(newd) should not only update d but also update, for all the treaps t,
nextdt to max(nextdt, newd).

Algorithm 2 gives the detailed pseudocode.

5.4. Supporting Different Score Schemes

Arguably the simplest scoring scheme is to use the sum of term frequencies tft,d of
the words involved in a bag-of-words union or intersection query. This case is easy to
implement using inverted treaps, since the topology is constructed employing the term
frequency as the priority, and the term frequencies are represented differentially. A
trivial extension is tf-idf scoring: Every time we need to calculate U , we multiply the
term frequency by the corresponding idft, as shown in Algorithms 1 and 2. However, in
order to support more complex scoring schemes, such as BM25, additional information
is required (i.e., document length) and the resulting relative order of documents inside
a list may differ from tf . In these cases, creating the treap topology based on the the
term frequency tft,d is not useful. Moreover, if we actually use the exact score, we would
require float or double precision numbers, thus increasing the size of the index.

An alternative to cope with BM25 is to compute each score at construction time and
build the topology according to the computed score but still store the term frequency at
each node. The query processing algorithm is still valid because we are able to compute
the complete score at query time. However, the treap cannot encode term frequencies
differentially anymore, since it is possible that a term frequency stored in a node’s child
is greater than the one of the node itself. If we represent the absolute frequencies, then
the resulting inverted treap approach is not competitive in terms of space.

In this work, we use another approach to this problem. We employ impact-scoring
(Section 2.2) instead of term frequencies. This enables the inverted treaps to support
any type of scoring scheme. The procedure is to construct the treap topology using
the pre-calculated impacts and store them as if they were the term frequencies in the
nodes. This allows for differential encoding of impacts, and we can use the same query
algorithms without any change.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:22 R. Konow et al.

ALGORITHM 2: Top-k of Union Using Treaps.
UNION(Q, k)

results ← ∅ // priority queue of pairs (key, priority)
for t ∈ Q do

stackt ← 〈⊥〉 // stack of treap t, id(⊥) = f (⊥) = +∞
nextdt ← 1 // next possible value in treap t
vt ← root of treap t

end for
compute U as a score using all f (vt) values
d ← 1, L ← −∞
while d < +∞ do

while U ≤ L do
CHANGED(mint∈Q id(TOP(stackt)))

end while
if ∀t ∈ Q, d = id(vt) ∨ nextdt > d then

if ∃t ∈ Q, d = id(vt) then
REPORT(d,

∑
t∈Q,d=id(vt) w(t, d))

CHANGED(d + 1)
else

CHANGED(mint∈Q nextdt)
end if

else
t ← choose where to advance, d = nextdt �= id(vt)
if d < id(vt) then

lt ← left child of vt
if lt is not null then

PUSH(stackt,vt)
CHANGEV(t, lt)

else
nextdt ← id(vt))

end if
else

rt ← right child of vt
if rt is not null then

CHANGEV(t, rt)
else

CHANGEV(t,POP(stackt))
nextdt ← id(vt))

end if
end if

end if
end while
return results

CHANGED(newd)
d ← newd
for t ∈ Q do

nextdt ← max(nextdt, newd)
v ← vt
while d ≥ id(TOP(stackt)) do

v ←TOP(stackt)
POP(stackt)

end while
CHANGEV(t, v)

end for

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:23

6. INCREMENTAL TREAPS

So far, we described a static representation of posting list using treaps. In this section,
we show how to extend the inverted treap representation to support incremental up-
dates, that is, to allow the addition of new documents to the collection while the index
is loaded in memory.

Incremental in-memory inverted indexes have been developed to cope with the ef-
ficiency challenges in Tweeter [Busch et al. 2012] and for indexing microblogs [Wu
et al. 2013]. In these two cases, the more recent posts are generally more relevant, and
thus appending them at the end of the inverted lists, just as in the indexes designed
for Boolean intersections, allows for efficient query processing. In main memory, the
problem of maintaining such an inverted index up to date is simpler, because the price
for non-contiguous storage of the inverted lists is not so high. In a thorough recent
study, Asadi and Lin [2013] show that the difference in query performance between
lists cut into many short isolated blocks versus fully contiguous lists is only 10%–20%
for Boolean intersections and 3%–6% for ranked intersections.

However, there are cases where we require immediate updating of the index but
have no preference for the most recent posts. Obvious examples are online stores like
Ebay or Amazon, where new products must be immediately available but they are
not necessarily better than previous ones. In those cases, we are interested in ranked
retrieval using traditional relevance measures, which are mostly independent of the
insertion time.

While this form of dynamization is simple for the WAND and Block-Max formats
[Asadi and Lin 2013], it is much more challenging for the treaps, because postings are
not physically stored in increasing document identifier order, and therefore one cannot
simply append the inserted postings at the end of the inverted lists.

6.1. Supporting Insertions

Our solution is inspired by the linear-time algorithms for building treaps offline (recall
Section 4.3). We maintain the rightmost path of the tree in uncompressed form, and
their left subtrees are organized into progressively larger compressed structures. This
allows for smooth insertion times without large sudden reconstructions, reasonable
compression performance, and search times.

The main idea is to maintain a treap for each inverted list, as in the static case.
However, this treap is only gradually converted into a compressed static structure and
never completely. Some nodes are represented with classical pointers (we call those
free nodes), whereas some subtrees are represented in the form of static treaps.

The rightmost path is always composed of free nodes. Some nodes descending from
the left children of those nodes may also be free but not many. Each free node v stores
the number F(v) of free nodes in its subtree; these always form a connected subtree
rooted at the node. We use a blocking parameter b, so when a left child v of a rightmost
path node has b free nodes or more, all those free nodes are converted into a static
treap.

Precisely, when a rightmost node v′
j is converted into the left child of a new incoming

node vi, we check if F(v′
j) ≥ b (since v′

j belonged to the rightmost path, the limit to
free nodes did not apply to it, so if v′

j has � rightmost descendants, it could have up to
f (v′

j) = b� free nodes descending from it). If F(v′
j) ≥ b, then all those F(v′

j) free nodes
are converted into a static treap, and we set F(vi) ← 1 for the new node. Otherwise,
we set F(vi) ← F(v′

j) + 1.
Hence, the maximum time per insertion is O(b�), which is O(b log n) in expectation.

This, however, does not add up to more than O(n), since static treaps are built in linear
time and each node becomes part of a static tree only once.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:24 R. Konow et al.

The static treaps we create are not completely identical to the static ones of Section 4.
In this case, some free nodes may be parents of static treaps. Therefore, the process
results in a tree of static treaps (with some free nodes in the top part). To accommodate
this extension, the static structure is expanded with a bitvector B that has one bit
per leaf of the static treap, indicating whether the leaf is actually a leaf or it contains
a pointer to another static treap. Those pointers are packed in an array inside the
structure, so the ith 1 in B corresponds to the ith pointer in the array. Its position is
computed with RANK1 (B, i).

6.2. Gradual Growth

Note that there will be O(b log n) free nodes per inverted list in expectation. Therefore, b
must be reasonably small to avoid their pointers blow up the space (in practice, b should
not exceed a few thousands). On the other hand, a small b implies that the static treaps
may contain as little as b nodes. Thus, b should be large enough for the static structures
to use little space (otherwise, the constant number of integers and pointers they use
may be significant). It may be impossible to satisfy both requirements simultaneously.

To cope with this problem, we enforce a gradual increase of the treap sizes. Static
treaps will be classified in generations. A static treap T is of generation g(T) = 1 when
it is first created. No treap can have descendants of lower generations. Each static treap
T stores its generation number g(T) and the number d(T) of descendant treaps of its
same generation, including itself. It is easy to compute d(T) = 1 + ∑

T ′,g(T ′)=g(T) d(T ′)
for a newly created static treap T that points to several other existing treaps T ′.
Given a parameter c, we establish that, when a new static treap T is created and
d(T) ≥ c, that is, its subtree has c or more treaps of its generation, then all those
are collected and recompressed into a larger static treap S, which now belongs to
generation g(S) = g(T) + 1. The same formula above is used to compute d(S) for the
new treap.

This technique creates larger and larger static treaps towards the bottom and left
part of the tree. Now a node can be reprocessed logc(n/b) times along its life to make it
part of larger and larger static treaps; therefore, the total construction time becomes
O(n log n) (albeit with a very low constant). Parameter c should be a small constant.

Figure 8 shows a normal left-to-right construction process (as described in Sec-
tion 4.3), but it also illustrates how the incremental version is built. We have enclosed
in gray sets the nodes that are grouped into static treaps for b = c = 2. In particular,
observe the situation in the rightmost cell of the second row. A static treap of generation
1 is created for the nodes with docid 13, 22, and 27. But now this node is of generation
1 and its subtree has d = 3 ≥ c treaps of its same generation. Thus, a new static treap,
of generation 2, is created with all those generation-1 descendants. This is shown in
the leftmost cell of the third row.

7. EXPERIMENTAL SETUP AND RESULTS

In this section, we describe the experimental setup, in terms of the collections used
and the environment employed for the experiments. We also explain the engineering
details required to implement the indexes and the baselines and discuss the space/time
results obtained.

7.1. Collections

We use the TREC GOV2 collection, parsed using the Indri search engine,2 and Porter’s
stemming algorithm. The collection contains about 25.2 million documents and about

2http://www.lemurproject.org/indri/.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

http://www.lemurproject.org/indri/

Inverted Treaps 22:25

Fig. 8. The left-to-right construction of an example treap. We show in bold the rightmost path and shade
the node that is added in each iteration. Sets of nodes with gray borders indicate static treaps that are built.

39.8 million terms in the vocabulary. The inverted lists contain about 4.9 billion post-
ings in total. After pre-processing and filtering, a plain representation of the GOV2
collection requires about 72GB. The average posting list length is 76, and the average
document contains 932 words.

We also performed experiments using other collections, such as the English
Wikipedia dump, containing about 5 million documents and 6 million terms. An aver-
age Wikipedia article contains 352 words, and the average number of elements in a
posting list is 132. We also performed experiments on the Weblogs collection,3 contain-
ing about 50 million documents and requiring 120GB of space. For queries, we used the
50,000 TREC2005 and TREC2006 Efficiency Queries dataset with distinct numbers of
terms, from q = 2 to 5. We omitted those not appearing in our collection, thus we
actually have 48,583 queries.

In this article, we only show the results obtained using the TREC GOV2 collection,
since the results over the others do not change significantly.

3http://www.icwsm.org/data/.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

http://www.icwsm.org/data/

22:26 R. Konow et al.

7.2. Baselines and Setup

We compare our results with five baselines: (1) Elias Fano WAND implementation
[Ottaviano and Venturini 2014], (2) Block-compressed WAND Implementation [Broder
et al. 2003], (3) Block-Max [Ding and Suel 2011], (4) Dual-Sorted [Konow and Navarro
2013], and (5) ATIRE [Trotman et al. 2012].

For Elias Fano WAND, we use the implementation4 provided by Ottaviano and
Venturini [2014]; we denote this implementation as EF in the charts. For block-
compressed WAND, we use the implementation obtained from the SURF framework5;
we denote this implementation as WAND in the charts. For Block-Max, we adapted
the implementation of Petri et al. [2013] by extending it to support ranked intersec-
tions and included it into the SURF framework; we call it BMAX in the charts. For both
WAND and BMAX, we use the optimal PForDelta encoding for the docids and Simple9
encoding for the frequencies, as these gave the smallest indexes. In both cases, the
posting lists were encoded using blocks of 128 values. In the case of BMAX, we also
store the maximum value for every block. The implementations of those encodings were
obtained from the FastPFor library.6

We use ATIRE7 as our baseline for impact-sorted indexes. ATIRE is an open-source
search engine that supports different early-termination algorithms based on impact
or frequency sorted posting lists. We constructed both frequency-sorted and quantized
BM25 (q = 8) impact-sorted indexes for our experiments.

In the case of Dual-Sorted, we use the original implementation of Konow and Navarro
[2012], using compressed bit sequences representation.

All baselines were modified, when needed, to support both quantized impact BM25
scores (Section 2.2) and tf-idf scoring. Our experiments were run on a dedicated server
with 16 processors of Intel Xeon E5-2609 at 2.4GHz, with 256GB of RAM and 10MB of
cache. The operating system is Linux with kernel 3.11.0-15 64 bits. We used GNU g++
compiler version 4.8.1 with full optimizations (-O3) flags.

7.3. Inverted Treaps Implementation

We implemented our indexes based on the sdsl-lite library [Gog et al. 2014]. The
document ids are stored in a dac_vector<6> of fixed width 6, which gave the best
results at parameter tuning time. The weights are stored in a dac_vector<2> of fixed
width 2. The f0 list are represented using PForDelta using a similar implementation to
the ones used in WAND and BMAX. We do not use inverted treaps to represent every
posting list but only those containing at least 1,024 elements. The other posting lists
are represented using WAND. At query time, if necessary, they are fully decompressed
and handled by maintaining a pointer to the current docid being evaluated. The BP
topology is implemented using the bp_tree<> class, while the LOUDS topology is
implemented using the bit_vector<> class enhanced with rank operations, for which
we use the alternative dubbed rank_support_v5<>, which requires 5% extra space.
The HEAP implementation uses an integer vector int_vector requiring �log(X + 1)�
bits, where X is the maximum element in the array P ′. The implementation of the bit
sequence for the topology is the same one as the one employed in LOUDS. We perform
all the experiments for tf-idf score and for quantized BM25 impact scoring, as described
in Section 5.4, using 8 bits for each impact.

4http://github.com/ot/partitioned_elias_fano.
5http://github.com/simongog/surf.
6https://github.com/lemire/FastPFor.
7http://atire.org/index.php?title=Main_Page.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

http://github.com/ot/partitioned_elias_fano
http://github.com/simongog/surf
https://github.com/lemire/FastPFor
http://atire.org/index.php?title$=$Main_Page

Inverted Treaps 22:27

Fig. 9. Total sizes of the indexes depending on the scoring scheme.

Fig. 10. Total sizes of the indexes depending on the scoring scheme.

7.4. Index Size

We start by showing the size required of each index in Figure 9, separated by the scoring
scheme used. The left part of the figure shows the case of tf-idf scoring, whereas the
right part shows BM25 scoring. In both cases, EF is clearly the smallest alternative.
The second alternative, WAND, is about 10% larger.

In the tf-idf indexes, BMAX requires more space than any of the treap alternatives,
LOUDS being about 10% smaller than BMAX and HEAP almost equal. Dual-Sorted,
on the other hand, is the most space-consuming alternative. With BM25 scoring, all
the inverted treap alternatives require more space than the baselines, climbing from
about 13% of the text space under tf-idf scoring to up to 18%. This is mainly because,
when using the quantized BM25 score, the number of posting lists elements having
score 1, which is efficiently represented using the f0 lists, is considerably reduced: For
the tf-idf score scheme, there are about 3 billion posting list elements with frequency
1, but this decreases to 800 million under BM25. The space of ATIRE also increases
when moving from tf-idf, where it is the third smallest index, to BM25, where it is only
smaller than our treap alternatives.

Figure 10 shows the space breakdown of the inverted treap components, using tf-idf
scoring on the left and BM25 on the right. This figure is based on our smallest case,
which is the LOUDS alternative. The component Small Lists represents all the posting
lists that have fewer than 1,024 elements and are represented using WAND. For the
tf-idf case, we see that the topology requires 7% of the total index size, and the biggest

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:28 R. Konow et al.

Fig. 11. Sizes of the topology components depending on the scoring scheme.

Fig. 12. Construction time of the indexes depending on the scoring scheme, in minutes.

component is the f0 lists. However, in the BM25 case, the f0 lists use a negligible
amount of space, and the document ids is the heaviest component.

The only component that changes between our three alternatives is how we represent
the treap topology. Figure 11 shows the difference in space requirements, depending on
the scoring scheme. We see that LOUDS is always the smallest alternative, and HEAP
is the biggest, requiring about twice the size of LOUDS.

7.5. Construction Time

Figure 12 shows the time required to build each index. We see that the construction
times of the inverted treap alternatives are not so distant from those of the baseline
inverted index representations. This holds except for the HEAP alternative, which is
up to twice as slow to build than the fastest baseline. It is interesting to note that
the Elias-Fano WAND index builds 1.4 to 1.8 times slower than the block-compressed
WAND implementation. ATIRE was the slowest alternative to build in both cases. We
do not include the time required to build the Dual-Sorted index, since the construction
is not optimized and was above 200 minutes.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:29

Fig. 13. Ranked union times for distinct k values, in milliseconds. We show the case of tf-idf scoring on the
left and quantized BM25 on the right.

7.6. Ranked Union Query Processing

We describe the time results for the processing of ranked union queries. We first discuss
the results globally and then consider how they evolve as a function of k or the number
of words in the query.

Global Analysis. Figure 13 (left) shows the average time per query, for distinct values
of k, using the tf-idf scoring scheme. These times average all the queries of all the
lengths (two to five terms) together.

The results show that EF, WAND, and Dual-Sorted are not competitive for these
queries, as they are sharply outperformed by BMAX. In turn, all our inverted treap
alternatives outperform BMAX by a wide margin. The differences become less drastic
as we increase k, but still for k = 1,000 the HEAP alternative is more than 3 times

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:30 R. Konow et al.

Table I. Ranked Union Results Grouped by Percentiles for k = 10

Union TFIDF Union BM25
Index/Percentile 50% 80% 90% 95% 99% 50% 80% 90% 95% 99%
EF 170 342 724 781 976 35 102 144 181 230
WAND 177 462 701 787 918 30 77 116 141 168
BMAX 28 139 195 246 332 20 74 122 169 222
BP 10 27 47 73 94 60 80 156 229 294
LOUDS 7 21 39 61 80 40 62 103 123 231
HEAP 40 177 289 457 617 20 49 76 96 156
DualSorted 151 416 736 866 1,101 25 70 121 155 202

The numbers indicate the maximum time reached by X% of the fastest queries.

faster than BMAX. Our LOUDS alternative is always slower than HEAPS, and BP is
slower than LOUDS. Still, BP is almost twice as fast as BMAX even for k = 1,000. We
discarded results from ATIRE in most of the following figures because it required more
than 500ms on average.

Figure 13 (right) shows the distribution of the results using the BM25 quantized
score scheme. The differences are much smaller in this case, and in particular our
LOUDS and BP variant are the slowest. Our HEAP alternative, instead, is still the
fastest or on par with the fastest.

The worse performance of our variants under BM25 is due to the fact that most of
the lists are stored as treaps, whereas under tf-idf many of them are stored as f0 lists.
The union algorithm performs a significant amount of sequential traversal, and the
simple f0 lists are faster at this than the treaps. Instead, the considerable improvement
obtained by EF and WAND is due to the narrower universe of impacts, which increases
the chances that the lower bound θ is not reached along the process and enables more
frequent skipping (recall Section 3.3.1). Up to a lesser extent, BMAX also improves,
thanks to more frequent skipping, as on a narrower universe it is also less likely to
outperform the current kth highest score. Finally, the significant improvement of Dual-
Sorted is due to the fact that it implements the method of Persin et al. [1996] (which
does not give exact results, so the comparison is not totally fair) and this method is also
favored by the BM25 quantized scores: It reaches sooner a stable situation where the
upcoming scores are no better than those already obtained. The optimal-partitioned
Elias-Fano implementation was consistently slightly slower than the block-compressed
WAND implementation, so we will only consider the latter alternative for the rest of
the comparisons.

We show more detailed results grouped by percentiles in Table I. In the case of
tf-idf, the best alternative by far is the LOUDS treap for all percentiles. For the quan-
tized BM25 case, HEAP is the best alternative. In general terms, the table shows
that our improved time results are consistently better and are not blurred by a high
variance.

Analysis as a Function of k and Separated by Query Length. Figure 14 separates the
times according to the number of words in the query, and shows how times evolve with
k, using tf-idf scoring. Note that the times are independent of k for some techniques or
grow very slowly with k in the others.

For two query terms, all the inverted treap alternatives are an order of magnitude
faster than WAND and Dual-Sorted. For small k values, BMAX is about twice as slow as
the fastest treap alternative, HEAP. For large k values, instead, HEAP is about 5 times
faster than BMAX. The LOUDS and BP alternatives are also faster or on par with
BMAX. As the number of query terms increases, however, BMAX starts to outperform

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:31

Fig. 14. Ranked union times as a function of k, grouped by number of terms per query, using tf-idf.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:32 R. Konow et al.

the slower inverted treap alternatives. Still, HEAP is always faster than BMAX and 3
to 4 times faster than WAND and Dual-Sorted.

Figure 15 shows the same experiment on the quantized BM25 scoring scheme. In
this case, the treap alternatives are competitive only on queries of 2 and 3 words. In
particular, our fastest approach, HEAP, is twice as fast as BMAX for 2 words, but up to
50% slower on the longest queries. Still, we note that most real queries are short. For
example, the average query length has been measured in 2.4 words [Spink et al. 2001],
and in our dataset of real queries, 44% of the multi-word queries have indeed 2 words.

Analysis as a Function of Query Length and Separated by k Value. Figure 16 shows
the ranked union times as a function of the query length for distinct k values. As
mentioned before, in the case of tf-idf (left side of the figure), our fastest approach
HEAP is consistently faster than all the other alternatives for all query lengths and
up to k = 1,000. In the case of BM25 (right side of the figure), our HEAP alternative
is competitive when two or three query terms are involved. In general, the costs grow
linearly with the number of query terms, but the growth rate of WAND and Dual-Sorted
is higher on tf-idf and lower on BM25.

7.7. Ranked Intersection Query Processing

We proceed to describe the time results for processing ranked intersection queries.
As before, we first discuss the results globally and then consider how they evolve as
a function of k or the number of words in the query. We do not include the results
from ATIRE since it does not support a native mechanism to perform top-k ranked
intersection.

Global Analysis. Figure 17 (left) shows the average time per query, for distinct values
of k, using the tf-idf scoring scheme. These times average all the queries of all the
lengths (two to five terms) together.

As expected, BMAX always outperforms WAND by a significant margin. Among
our alternatives, as before, HEAP is always faster than LOUDS, and this is faster
than BP. Our results are better for small k, where HEAP outperforms all the other
indexes by a factor of 2 or more. The difference narrows down for larger k, but still
for k = 1,000 we have that HEAP is faster than BMAX. Dual-Sorted performs a
Boolean intersection and then computes the score of all the qualifying documents. The
experiment shows that, for k = 1,000, this becomes (slightly) better than the more
sophisticated alternatives that try to filter the documents on the fly. As for unions, the
optimal-partitioned Elias-Fano implementation was consistently slightly slower than
the block-compressed WAND implementation, and so we did not include it in further
experiments on time performance.

Figure 17 (right) shows the distribution of the results using the BM25 quantized score
scheme. Unlike in the case of unions, the powerful filtration enabled by the treaps
outweighs its slowness compared to traversing an f0 list. As a result, the inverted
treaps are faster on BM25 than on tf-idf scores. The methods WAND and BMAX also
improve thanks to the quantized scores. Dual-Sorted also improves: Even if it always
performs the same Boolean intersection and then computes the scores of the surviving
candidates, this computation is faster because it uses the stored quantized scores,
whereas for tf-idf it must multiply each stored tf by the idf associated with the query
term. The comparisons between all the alternatives stay, overall, similar as in the case
of tf-idf scoring.

We show detailed results grouped by percentiles in Table II for all the alternatives
considered. In both cases, tf-idf and BM25, the best alternative is the treap using the
HEAP topology. Again, the table shows that our improved time results are consistently
better and are not blurred by a high variance.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:33

Fig. 15. Ranked union times as a function of k, grouped by number of terms per query, using BM25.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:34 R. Konow et al.

Fig. 16. Ranked union times for distinct k values as a function of the query query length. We show the case
of tf-idf scoring on the left and quantized BM25 on the right.

Table II. Ranked Intersection Results Grouped by Percentiles for k = 10

Intersection TFIDF Intersection BM25
Index/Percentile 50% 80% 90% 95% 99% 50% 80% 90% 95% 99%
EF 4 35 85 195 526 9 49 91 146 304
WAND 4 43 93 178 451 9 35 89 128 223
BMAX 29 146 209 260 321 3 29 62 93 156
BP 17 42 58 68 77 18 43 67 85 101
LOUDS 13 22 34 47 60 12 29 44 56 67
HEAP 3 12 18 23 34 9 21 32 42 51
DualSorted 24 132 230 287 386 9 33 84 122 212

The numbers indicate the maximum time reached by X% of the fastest queries.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:35

Fig. 17. Ranked intersection times for distinct k values, in milliseconds. We show the case of tf-idf scoring
on the left and quantized BM25 on the right.

Analysis as a Function of k and Separated by Query Length. Figure 18 shows how
times evolve with k, using tf-idf scoring. As in the ranked unions, some techniques are
independent of k and others (in this case, the inverted treaps with 2 or 3 words) grow
slowly with k.

For two query terms, the HEAP alternative is the fastest up to k = 300, from where
BMAX takes over. For three and four words, HEAP is either the fastest choice or very
close to it, and for five-word queries it takes over again. As mentioned by Ding and
Suel [2011], the performance of BMAX is considerably affected by the number of terms
participating in the query. For four query terms, it is one of the slowest alternatives,
together with the BP inverted treap variant. For five query terms, it is definitely
the slowest. This explains the poor performance of BMAX compared to WAND when
considering all the queries together.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:36 R. Konow et al.

Fig. 18. Ranked intersection times as a function of k, grouped by number of terms per query, using tf-idf.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:37

Figure 19 shows the results for ranked intersections on the quantized BM25 scoring
scheme. While the general picture is similar to the case of tf-idf, HEAP is overcome
more frequently. For few-word queries, it is outperformed sooner by BMAX, for k = 200
on two words and for k = 80 on three words. On four-word queries, it is almost always
outperformed by a small margin. It is again the fastest alternative on five words, but
by a smaller margin than for tf-idf. BMAX is also heavily affected as the number of
words increases.

Analysis as a Function of Query Length and Separated by k Value. Figure 20 shows
the ranked intersection times as a function of the query length for distinct k values.
On the left side of the figure, we show the results of the tf-idf scoring scheme. We can
see more clearly how BMAX is heavily affected by the query length. The others stay
unaltered or fluctuate as a function of the number of words. This is because, as this
number increases, more lists have to be handled, but it is also more likely to filter
out portions of the lists. The interaction of the two effects produces increments and
decrements in the query times. Recall that WAND and Dual-Sorted perform a Boolean
intersection followed by the evaluation of all the resulting scores, so their behavior is
very similar. Note that our HEAP alternative is generally the best on tf-idf, whereas
on BM25 it is the best for k = 10 and in some cases for larger k.

7.8. One-Word Queries

We have not yet considered the simplest one-word queries, which account for a signifi-
cant percentage of typical queries (almost 24% in our query set). For these queries, we
must obtain the k-highest-ranked documents from a single inverted list. In the case
of WAND, this requires traversing the whole list and retaining the k-highest scores.
BMAX speeds this up by skipping blocks where the maximum score is not higher than
the kth score we already know. Dual-Sorted, instead, simply requires us to extract the
first k elements from the list of the query term, as its lists are sorted by decreasing fre-
quency. Therefore the Dual-Sorted time is bounded by O(k log D), as it is implemented
on a wavelet tree. This is the best scenario for ATIRE, since the posting lists are sorted
by either frequencies or quantized scores, so returning the k best documents is done
simply by traversing the first k postings.

For our inverted treaps, we use a simplification of the procedures for ranked unions
and intersections. We insert the root of the treap in a heap that sorts by decreasing
score. We then iteratively extract the top of the heap, report its document, and insert its
two children. Therefore, we require O(k) operations on the treap and the heap, leading
to total time O(k log k).

Figure 21 shows the time performance. The time differences are so significant that
we have used logarithmic scale. Our fastest variant, HEAP, requires from 5 to 10μs per
query with k = 10 to 100–200 with k = 1,000, whereas our slower variant, BP, requires
10–20 to 200–500μs. Dual-Sorted, instead, goes from 100–200 to 2,000–5,000μs, that
is, around 20 times slower than HEAP. The slowest technique in the plots is BMAX,
which requires 1–5ms per query, that is, 25–200 times slower than HEAPS. This is
because its time is not bounded in terms of k. Still, the time of BMAX increases with k
because its ability to filter blocks decreases as k grows. On the other hand, the times of
the other indexes grows more or less linearly with k after a query initialization time: A
rough fitting gives, for HEAP, 0.15k + 6.5μs on tf-idf and 0.10k + 5 on BM25; for BP, it
gives 0.5k+ 10 on tf-idf and 0.3k+ 5 on BM25; and for DualSorted it climbs to 4k+ 100
on tf-idf and 2k + 80 on BM25. ATIRE is clearly the fastest alternative for single-term
queries, taking 0.05k+ 1μs in both cases. We have not included the times of WAND as
they are much higher, 15,000μs almost independently of k (note that WAND needs to
decompress the whole list, independently of k, and then find the k largest scores).

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:38 R. Konow et al.

Fig. 19. Ranked intersection times as a function of k, grouped by number of terms per query, using BM25.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:39

Fig. 20. Ranked intersection times for distinct k values as a function of the query query length. We show
the case of tf-idf scoring on the left and quantized BM25 on the right.

7.9. Incremental Treaps

Figure 22 shows the time required to insert increasing prefixes of the GOV2 collection
on our incremental inverted treaps. For these experiments, we use the block param-
eter b = 1,024 and recompress any subtree that has generation c = 16 into a new
larger static treap (recall Section 6.1). These values were chosen by parameter tun-
ing experiments. As a baseline, we consider the static inverted treap construction, for
LOUDS and HEAP, on the same prefixes. The figure shows that the time for incremen-
tal treap construction grows slightly superlinearly, as expected from its O(n log n) time
complexity. The static construction, instead, displays linear-time performance. Still,
after inserting 24 million documents, the incremental construction is only twice as

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:40 R. Konow et al.

Fig. 21. One-word query times as a function of k, using tf-idf (top) and BM25 (bottom) scoring schemes.
Note the logscale.

Fig. 22. Incremental versus static construction of the inverted treaps, for tf-idf (left) and BM25 (right)
scoring schemes.

slow as the fastest static construction (LOUDS) and 40%–60% slower than the static
construction giving the best query times (HEAPS).

In terms of memory usage, the incremental treap requires an additional bitvector,
causing an increase in the overall size of about 7%. However, the size occupied by the

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:41

free nodes is considerably larger, using about 40% more space. This is because the free
nodes are not compressed in any way, that is, we are using 64-bit pointers, and 32-bit
integers for the the docid and the weight. In addition, we need to keep track of counters
for the block parameter b and the generations for parameter c. For these variables, we
use integers of 16 and 8 bits, respectively. In total, the incremental variant is about
50% larger than the static LOUDS variant.

As seen in Figure 23, the incremental treap is also about 45% slower than the LOUDS
implementation in all cases of ranked unions and intersections and more than twice
as slow as HEAPS. We included the times of BP, which show that the incremental
treap is still slightly slower. There are two main reasons for such a degradation in
the performance: First, the free nodes are not located in contiguous memory, leading
to cache misses. Cache misses are also caused because each static tree has its own
dac_vector and topology bitmap, isolated from those of other static treaps. Second, the
incremental treap requires an additional RANK1 operation each time we move from a
free node to a static tree or from a static tree to another static tree.

Overall, compared with LOUDS, dynamism costs us about 50% overhead in both
space and query time performance, and building from scratch by successive insertions
requires twice the time of a static construction. Compared with HEAPS, dynamism
poses a 50% overhead in both space and construction time, and it requires twice the
time at queries. Of course, reconstruction from scratch is not an alternative when
insertions are mixed with queries.

8. CONCLUSIONS AND FUTURE WORK

We have introduced a new inverted index representation based on the treap data
structure. Treaps turn out to be an elegant and flexible tool to represent simultaneously
the docid and the weight ordering of a posting list. We use them to design efficient
ranked union and intersection algorithms that simultaneously filter out documents by
docid and frequency. The treap also allows us to represent both docids and frequencies
in differential form to improve the compression of the posting lists. Our experiments
under the tf-idf scoring scheme show that inverted treaps use about the same space
as competing alternatives like Block-Max and Dual-Sorted, but they are significantly
faster: from 20 times faster on one-word queries to 3–10 times faster on ranked unions
and 1–2 times faster on ranked intersections. On a quantized BM25 score, inverted
treaps use about 40% more space than the best alternatives, but they are still 20 times
faster on one-word queries, slightly faster on unions, and up to 2 times faster on
intersections. Inverted treaps are generally the fastest alternative for k ≤ 100, and on
one- and two-word queries, which are the most popular ones. In addition, we have shown
that treaps can handle insertions of new documents, with a 50%–100% degradation in
space, construction, and query time performance.

A future research line is to study the effect of reassigning docids. Some results
[Ding and Suel 2011] show that reassignment can significantly improve both space
and processing time. How much would treaps improve with such schemes? Can we
optimize the reassignment for a treap layout?

An important part of our gain is due to separating lists with frequency f0 = 1 (this
is the main explanation why our scheme performs better on tf-idf than on quantized
BM25). How to efficiently separate lists with higher frequencies or impacts is a chal-
lenge, and it can lead to important gains. It is also interesting to explore how this idea
could impact on schemes like Block-Max and Dual-Sorted.

Third, we have used DAAT processing on our inverted treaps. Such an approach
penalizes long queries, as already noted in Block-Max [Ding and Suel 2011]. We believe
the time would become almost nonincreasing with the query length if we used treaps
under a TAAT scheme, where the longer lists were processed after determining good

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:42 R. Konow et al.

Fig. 23. Ranked union and intersection times as a function of k, using tf-idf and BM25, for our static and
incremental variants.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:43

lower bounds with the shorter lists. This constitutes another interesting line of future
work.

Finally, we plan to evaluate our inverted treaps in a multithreaded environment
with queries arriving in batch and seeking to maximize throughput. The fact that, for
example, Elias-Fano uses less space than our structures may give it a further advantage
that could compensate its higher average time per query.

ACKNOWLEDGMENTS

We thank the reviewers for their comments, which helped us improve the presentation significantly.

REFERENCES

A. Andersson and S. Nilsson. 1994. Faster searching in tries and quadtrees - an analysis of level compression.
In Proc. 2nd Annual European Symposium on Algorithms (ESA) (LNCS 855). 82–93.

V. Anh, O. Kretser, and A. Moffat. 2001. Vector-space ranking with effective early termination. In Proc. 24th
Annual International ACM Conference on Research and Development in Information Retrieval (SIGIR).
35–42.

V. Anh and A. Moffat. 2005. Inverted index compression using word-aligned binary codes. Inf. Retriev. 8, 1
(2005), 151–166.

V. Anh and A. Moffat. 2006. Pruned query evaluation using pre-computed impacts. In Proc. 29th Annual
International ACM Conference on Research and Development in Information Retrieval (SIGIR). 372–379.

D. Arroyuelo, R. Cánovas, G. Navarro, and K. Sadakane. 2010. Succinct trees in practice. In Proc. 11th
Workshop on Algorithm Engineering and Experiments (ALENEX). 84–97.

N. Asadi and J. Lin. 2013. Fast, incremental inverted indexing in main memory for web-scale collections.
CoRR abs/1305.0699 (2013). Retrieved from http://arxiv.org/abs/1305.0699.

R. Baeza-Yates, A. Moffat, and G. Navarro. 2002. Searching large text collections. In Handbook of Massive
Data Sets. Kluwer, 195–244.

R. Baeza-Yates and B. Ribeiro-Neto. 2011. Modern Information Retrieval (2nd ed.). Addison-Wesley.
R. Baeza-Yates and A. Salinger. 2005. Experimental analysis of a fast intersection algorithm for sorted

sequences. In Proc. 12th International Symposium on String Processing and Information Retrieval
(SPIRE). 13–24.

J. Barbay, A. López-Ortiz, T. Lu, and A. Salinger. 2009. An experimental investigation of set intersection
algorithms for text searching. ACM J. Exp. Algor. 14 (2009), 128–140.

M. Bender and M. Farach-Colton. 2000. The LCA problem revisited. In Proc. 9th Latin American Theoretical
Informatics (LATIN) (LNCS 1776). 88–94.

O. Berkman and U. Vishkin. 1993. Recursive star-tree parallel data structure. SIAM J. Comput. 22, 2 (1993),
221–242.

I. Bialynicka-Birula. 2008. Ranked Queries in Index Data Structures. Ph.D. Dissertation. University of Pisa.
I. Bialynicka-Birula and R. Grossi. 2005. Rank-sensitive data structures. In Proc. 12th International Sym-

posium on String Processing and Information Retrieval (SPIRE) (LNCS 3772). 79–90.
G. Blelloch and M. Reid-Miller. 1998. Fast set operations using treaps. In Proc. 10th ACM Symposium on

Parallel Algorithms and Architectures (SPAA). 16–26.
N. Brisaboa, S. Ladra, and G. Navarro. 2013. DACs: Bringing direct access to variable-length codes. Inf.

Process. Manag. 49, 1 (2013), 392–404.
A. Broder, D. Carmel, M. Herscovici, A. Soffer, and J. Zien. 2003. Efficient query evaluation using a two-

level retrieval process. In Proc. 12th ACM International Conference on Information and Knowledge
Management (CIKM). 426–434.

M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. 2012. Earlybird: Real-time search at Twitter.
In Proc. 28th International Conference on Data Engineering (ICDE). 1360–1369.

S. Büttcher and C. L. A. Clarke. 2007. Index compression is good, especially for random access. In Proc. 16th
ACM International Conference on Information and Knowledge Management (CIKM). 761–770.

S. Büttcher, C. L. A. Clarke, and G. Cormack. 2010. Information Retrieval: Implementing and Evaluating
Search Engines. MIT Press.

F. Claude, P. K. Nicholson, and D. Seco. 2012. Differentially encoded search trees. In Proc. 22nd Data
Compression Conference (DCC). 357–366.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

22:44 R. Konow et al.

M. Crane, A. Trotman, and R. O’Keefe. 2013. Maintaining discriminatory power in quantized indexes. In Proc.
22nd ACM International Conference on Information and Knowledge management (CIKM). 1221–1224.

B. Croft, D. Metzler, and T. Strohman. 2009. Search Engines: Information Retrieval in Practice. Pearson
Education.

J. Culpepper and A. Moffat. 2007. Compact set representation for information retrieval. In Proc. 14th Inter-
national Symposium on String Processing and Information Retrieval (SPIRE). 137–148.

S. Culpepper and A. Moffat. 2005. Enhanced byte codes with restricted prefix properties. In Proc 12th
International Symposium on String Processing and Information Retrieval (SPIRE) (LNCS 3772). 1–12.

E. Demaine, A. López-Ortiz, and J. I. Munro. 2000. Adaptive set intersections, unions, and differences. In
Proc. 11th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 743–752.

S. Ding and T. Suel. 2011. Faster top-k document retrieval using block-max indexes. In Proc. 34th Interna-
tional ACM Conference on Research and Development in Information Retrieval (SIGIR). 993–1002.

J. Fischer and V. Heun. 2011. Space-efficient preprocessing schemes for range minimum queries on static
arrays. SIAM J. Comput. 40, 2 (2011), 465–492.

S. Gog, T. Beller, A. Moffat, and M. Petri. 2014. From theory to practice: Plug and play with succinct data
structures. In Proc. 13th International Symposium on Experimental Algorithms (SEA). 326–337.

R. González, Sz. Grabowski, V. Mäkinen, and G. Navarro. 2005. Practical implementation of rank and select
queries. In Poster Proc. Volume of 4th Workshop on Efficient and Experimental Algorithms (WEA). 27–38.

R. Grossi, A. Gupta, and J. Vitter. 2003. High-order entropy-compressed text indexes. In Proc. 14th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). 841–850.

H. Heaps. 1978. Information Retrieval—Computational and Theoretical Aspects. Academic Press.
G. Jacobson. 1989. Space-efficient static trees and graphs. In Proc. 30th Annual Symposium on Foundations

of Computer Science (FOCS). 549–554.
R. Konow and G. Navarro. 2012. Dual-sorted inverted lists in practice. In Proc. 19th International Symposium

on String Processing and Information Retrieval (SPIRE) (LNCS 7608). 295–306.
R. Konow and G. Navarro. 2013. Faster compact top-k document retrieval. In Proc. 23rd Data Compression

Conference (DCC). 351–360.
R. Konow, G. Navarro, C. L. A. Clarke, and A. López-Ortı́z. 2013. Faster and smaller inverted indices with

treaps. In Proc. 36th Annual International ACM Conference on Research and Development in Information
Retrieval (SIGIR). 193–202.

D. Lemire and L. Boystov. 2015. Decoding billions of integers per second through vectorization. Softw.: Pract.
Exp. 45, 1 (2015), 1–29.

J. Lin and A. Trotman. 2015. Anytime ranking for impact-ordered indexes. In Proc. ACM International
Conference on the Theory of Information Retrieval (ICTIR). 198–210.

C. Martı́nez and S. Roura. 1997. Randomized binary search trees. J. ACM 45, 2 (1997), 288–323.
E. M. McCreight. 1985. Priority search trees. SIAM J. Comput. 14, 2 (1985), 257–276.
J. I. Munro. 1996. Tables. In Proc. 16th Conference on Foundations of Software Technology and Theoretical

Computer Science (FSTTCS). 37–42.
J. I. Munro and V. Raman. 2002. Succinct representation of balanced parentheses and static trees. SIAM J.

Comput. 31, 3 (2002), 762–776.
G. Navarro. 2012. Wavelet trees for all. In Proc. 23rd Annual Symposium on Combinatorial Pattern Matching

(CPM) (LNCS 7354). 2–26.
G. Navarro and S. Puglisi. 2010. Dual-sorted inverted lists. In Proc. 17th International Conference on String

Processing and Information Retrieval (SPIRE) (LNCS 6393). 309–321.
G. Ottaviano and R. Venturini. 2014. Partitioned Elias-Fano indexes. In Proc. 37th International ACM

Conference on Research and Development in Information Retrieval (SIGIR). 273–282.
M. Persin, J. Zobel, and R. Sacks-Davis. 1996. Filtered document retrieval with frequency-sorted indexes. J.

Am. Soc. Inf. Sci. 47, 10 (1996), 749–764.
M. Petri, S. Culpepper, and A. Moffat. 2013. Exploring the magic of WAND. In Proc. Australasian Document

Computing Symposium (ADCS). 58–65.
P. Sanders and F. Transier. 2007. Intersection in integer inverted indices. In Proc. 9th Workshop on Algorithm

Engineering and Experiments (ALENEX).
F. Scholer, H. Williams, J. Yiannis, and J. Zobel. 2002. Compression of inverted indexes for fast query evalu-

ation. In Proc. 25th Annual International ACM Conference on Research and Development in Information
Retrieval (SIGIR). 222–229.

R. Seidel and C. R. Aragon. 1996. Randomized search trees. Algorithmica 16, 4/5 (1996), 464–497.

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

Inverted Treaps 22:45

A. Spink, D. Wolfram, M. Jansen, and T. Saracevic. 2001. Searching the web: The public and their queries.
J. A. Soc. Inf. Sci. Technol. 52, 3 (2001), 226–234.

A. Stepanov, A. Gangolli, D. Rose, R. Ernst, and P. Oberoi. 2011. SIMD-based decoding of posting lists. In
Proc. 20th ACM International Conference on Information and Knowledge Management (CIKM). 317–326.

T. Strohman and B. Croft. 2007. Efficient document retrieval in main memory. In Proc. 30th Annual Inter-
national ACM Conference on Research and Development in Information Retrieval (SIGIR). 175–182.

A. Trotman. 2014. Compression, SIMD, and postings lists. In Proc. Australasian Document Computing
Symposium (ADCS). Article 50.

A. Trotman, X. Jia, and M. Crane. 2012. Towards an efficient and effective search engine. In SIGIR 2012
Workshop on Open Source Information Retrieval. 40–47.

S. Vigna. 2013. Quasi-succinct indices. In Proc. 6th ACM International Conference on Web Search and Data
Mining (WSDM). 83–92.

J. Vuillemin. 1980. A unifying look at data structures. Commun. ACM 23, 4 (1980), 229–239.
L. Wang, J. Lin, and D. Metzler. 2011. A cascade ranking model for efficient ranked retrieval. In Proc. 34th

International ACM Conference on Research and Development in Information Retrieval (SIGIR). 105–114.
H. Williams and J. Zobel. 1999. Compressing integers for fast file access. SIAM J. Comput. 42, 3 (1999),

193–201.
I. Witten, A. Moffat, and T. Bell. 1999. Managing Gigabytes (2nd ed.). Morgan Kaufmann.
L. Wu, W. Lin, X. Xiao, and Y. Xu. 2013. LSII: An indexing structure for exact real-time search on microblogs.

In Proc. 29th International Conference on Data Engineering (ICDE). 482–493.
H. Yan, S. Ding, and T. Suel. 2009. Inverted index compression and query processing with optimized document

ordering. In Proc. 18th International Conference on World Wide Web (WWW). 401–410.
G. Zipf. 1949. Human Behaviour and the Principle of Least Effort. Addison-Wesley.
J. Zobel and A. Moffat. 2006. Inverted files for text search engines. ACM Comput. Surv. 38, 2 (2006),

Article 6.

Received April 2016; revised September 2016; accepted October 2016

ACM Transactions on Information Systems, Vol. 35, No. 3, Article 22, Publication date: January 2017.

