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Stress-Strength Reliability Analysis with Extreme
Values based on q-Exponential Distribution
Romero L. M. Sales Filho,a,c,d*† Enrique López Droguett,b Isis D. Lins,a,c

Márcio C. Moura,a,c Mehdi Amirie and Rafael Valença Azevedoa,c
When dealing with practical problems of stress–strength reliability, one can work with fatigue life data and make use of the
well-known relation between stress and cycles until failure. For some materials, this kind of data can involve extremely large
values. In this context, this paper discusses the problem of estimating the reliability index R= P(Y<X) for stress–strength
reliability, where stress Y and strength X are independent q-exponential random variables. This choice is based on the q-
exponential distribution’s capability to model data with extremely large values. We develop the maximum likelihood
estimator for the index R and analyze its behavior by means of simulated experiments. Moreover, confidence intervals are
developed based on parametric and nonparametric bootstrap. The proposed approach is applied to two case studies
involving experimental data: The first one is related to the analysis of high-cycle fatigue of ductile cast iron, whereas the
second one evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel. The adequacy of the
q-exponential distribution for both case studies and the point and interval estimates based on maximum likelihood
estimator of the index R are provided. A comparison between the q-exponential and both Weibull and exponential
distributions shows that the q-exponential distribution presents better results for fitting both stress and strength
experimental data as well as for the estimated R index. Copyright © 2016 John Wiley & Sons, Ltd.

Keywords: stress–strength reliability; reliability engineering; q-exponential distribution; maximum likelihood estimators; bootstrap
methods
1. Introduction

W
hen assessing system reliability, a useful performance metric corresponds to the index R= P(Y< X), where X is the strength of
a component that is subjected to stress Y. Obviously, when Y is greater than X, the system failure occurs. Thus, the index R
can be considered as a measure of system reliability. Several applications of physics and engineering such as strength failure

and system collapse use stress–strength models.1

In most works where the index R is estimated, the authors assume that X and Y are independent random variables described by the
same kind of probability distribution. For example, X and Y have been treated as normal,2–5 Weibull,6–8 and exponential9,10 random
variables. In addition, the generalized Pareto and generalized Rayleigh distributions are used to model X and Y in Rezaei et al.11 and
Fathipour et al.,12 respectively. The Lomax distribution under general progressive censoring was treated by Al-Zahrani and Al-Harbi.13

Panahi and Asadi14 assume that X and Y follow Lomax distributions with different shape parameters and the same scale parameter.
Some cases of generalized exponential distributions were considered by Kundu and Gupta15 and Raqab et al.16

In recent years, a family of probability distributions based on non-extensive statistical mechanics, known as q-distributions,
has experienced a surge in terms of applications to several fields of science and engineering. The basic properties of q-
exponential, q-Gaussian, and q-Weibull were discussed by Picoli et al.17 In a another work, Picoli et al.18 also presented a
comparison between q-exponential, q-Weibull, and Weibull distributions to model the frequency distributions of basketball
baskets, cyclone victims, brand-name drugs by retail sales, and highway length. Moreover, complex systems have been
satisfactorily described by q-distributions: cosmic rays,19 cyclones,20 financial markets,21 gravitational systems,22 earthquakes,23

and the Internet.24 Another important field of application of q-distributions is mechanical stress. For instance, it has been
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experimentally demonstrated that when a rock sample is subjected to mechanical stress, an electrical signal is emmited.25,26

This electrical signal is related to the evolution of cracks’ network within the stressed sample and is called pressure-stimulated
current. In Vallianatos and Triantis,27 pressure-stimulated current emissions in marble and amphibolite samples are considered
to follow a q-exponential distribution.

In fact, q-exponential distribution is obtained by maximizing the non-extensive entropy under appropriate constraints.28 This
distribution has two parameters (q and η), differently from the exponential distribution that is one parametric. This feature gives more
flexibility to q-exponential when it comes to decay of the probability density function (PDF) curve. Indeed, for a fixed parameter η, a
slower or faster decay of the PDF is observed depending on the value of q. Besides, in addition to constant failure rate, the q-
exponential distribution can model system improvement (1< q< 2) and degradation (q< 1). In this way, q-exponential and Weibull
distributions can be considered as alternative distributions given that both can model degradation or improvement behaviors.
Nevertheless, these distributions have different origins. Indeed, Weibull distribution is a particular case of the generalized extreme
value distribution (also known as Fisher–Tippett distribution). According to Goegebeur and Guillou,29 extreme value theory studies
the behavior of the largest observations in a sample and provides laws governing these values. The generalized extreme value
distribution is a family of continuous probability distributions developed within the extreme value theory to combine the Gumbel,
Fréchet, and Weibull families also known as type I, II and III extreme value distributions. The q-exponential distribution in turn derives
from the non-extensive statistical mechanics, which is appropriate to systems where nonlinearity, long-range interactions, memory
effects, and scaling are important.30 Thus, it is natural to suggest q-exponential as a possible candidate to model systems that can
present some kind of statistical dependency. Note that the q-exponential distribution has been considered by Sales Filho et al.31 to
obtain the index R; however, only the maximum likelihood estimator for the index R was developed.

For a given sample with extreme values, which can be thought of as the realizations of rare events, it is expected that both q-
exponential and Weibull distributions can fit the data well: The entropic index of the q-exponential would lie within the interval
(1,2), and the shape parameter of the Weibull distribution would be in (0,1). Indeed, 1< q< 2 characterizes a power law behavior
for the q-exponential PDF, whereas a shape parameter between 0 and 1 indicates a stretched exponential behavior for the Weibull
PDF.18,32 As pointed out by Laherrère and Sornette,32 a stretched exponential PDF has a tail that is heavier than the exponential
PDF but lighter than a pure power law PDF. The stretched exponential provides a compromise between exponential and power
law behaviors. Thus, we expect a superior performance of q-exponential over Weibull distribution in the characterization of data sets
with extremely large values.

Several studies have investigated the presence of power laws in the behavior of data observed in fatigue analysis of materials. For
instance, in Garcimartín et al.,33 the acoustic emissions of microfractures before the breakup of the sample are evaluated, where the
authors used samples made of composite inhomogeneous materials such as plaster, wood, or fiberglass. The experimental results
were similar for all materials, and the authors conclude that statistics from acoustic energy measurements strongly suggest that
the fracture can be viewed as a critical phenomenon and energy events are distributed in magnitude as a power law. Moreover,
according to Basquin’s law, the lifetime of a system increases as a power law with the reduction of the applied load amplitude.34

Therefore, the alternating stress in terms of number of cycles to failure is expressed in a power law form35 known as the Wöhler curve
(SN curve). It has also been suggested that the underlying fracture dynamics in some systems might display self-organized criticality,36

implying that long-range interactions between fracture events lead to a scale-free cascade of ‘avalanches’.37 For instance, in Zapperi
et al.,37 the authors present a scalar model of microfracturing that generates power law behavior in properties related to acoustic
emission, and a scale-free hierarchy of avalanches characteristic of self-organized criticality.38

According to Shalizi39 and Bercher and Vignat,40 in order to obtain analytical expressions for the maximum likelihood estimation
(MLE) of the q-exponential distribution parameters, it is necessary to reparameterize the q-exponential in order to transform this
distribution in a generalized Pareto distribution. Unfortunately, this methodology allows obtaining analytical expressions for the
MLE only when 1< q< 2, and as we shall show in the Section 2, the q-exponential distribution is also defined for q< 1. Thus, when
we deal with degrading systems (q< 1), this reparameterization does not work, and an alternative approach should be investigated.

Thus, because it is generally very difficult to obtain analytical expressions for the MLE of q-exponential parameters because of the
intricate derivatives of the log-likelihood function, in this paper, we will obtain the estimates of maximum likelihood numerically by
the optimization algorithm proposed by Nelder and Mead.41 Moreover, parametric and nonparametric bootstrap methods are
coupled with the Nelder–Mead algorithm for the construction of confidence intervals for R. Note that we obtain expressions for R
considering the general case, where the parameters can take any value, unlike other works1,7,8,12,14,15,42 that assume that some of
the parameters of a given model have the same values for both X and Y. In addition, we present two different equations for the
MLE of R depending on the support of X: The first formula considers an unlimited support, whereas the second one involves a limited
support for the strength variable.

Finally, simulation examples are here performed in order to assess the ability of the proposed method in providing point and
interval estimates for the index R. Moreover, as application of the proposed approach, we develop two case studies in the context
of stress–strength models by evaluating fracture data from applied tests in two different material types. The obtained data are related
to the life cycle, which can be thought of as a measure of resistance to failure. Furthermore, the results from these case studies are
also compared with the results from a classical Weibull distribution.

The remainder of this paper is structured as follows. The next section presents the q-exponential distribution along with its main
characteristics and particularities. Then, we present the MLE for the index R considering the cases where X has limited and unlimited
support. In the subsequent section, confidence intervals for the index R are developed by means of bootstrap approaches. Next, the
computational simulations are presented to evaluate the performance of the MLE and bootstrap confidence intervals, followed by the
section containing two case studies in the context of fatigue life distribution. Finally, some concluding remarks are presented.
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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2. The q-exponential distribution

The PDF of the q-exponential distribution is given by the following expression:

f q tð Þ ¼ 2� qð Þ
η

expq � t

η

� �� �
; q < 2 and η > 0;

where q is the parameter that determines the density shape and is known as the entropic index, η is the scale parameter, and expq(x)
is the q-exponential function defined as

expq xð Þ ¼ 1þ 1� qð Þx½ �
1

1� q ; if 1þ 1� qð Þx½ � ≥ 0

0; otherwise;

;

8>><>>:
where x and q ∈ R.

Note that the q-exponential PDF becomes an exponential PDF when q→ 1. Thus, the q-exponential distribution is a generalization
of the exponential one. The parameters η and q determine how quickly the PDF decays. Note also that the q parameter dictates how
the distribution deviates from exponentiality, and this deviation is also defined by the decay of the distribution. When compared with
the decay of the exponential distribution with the same parameter η, the q-exponential presents a slower decay for 1< q< 2 (power
law characteristic) and a faster decay for q< 1. By using the definition of the q-exponential function, it is possible to rewrite the
density of q-exponential:

f q tð Þ ¼
2� qð Þ 1� 1�qð Þt

η

h i 1
1�q

η
; q < 2 and η > 0:

Furthermore, depending on the value of the entropic index, we will have different results for the support t:

t∈

0; 1½ Þ; q ≥ 1

0;
1

1

η
1� qð Þ

2664
1CCA; q < 1

:

8>>>>>>><>>>>>>>:
(1)

Figure 1(a–d) presents the q-exponential PDF for some possible values of q and η, illustrating the behavior that was previously
commented.

The cumulative distribution function (CDF) of the q-exponential is defined by the following expression:

Fq tð Þ ¼
1� expq′ � t: 2� qð Þ

η

� �� �
; t ≥ 0

0; otherwise

8><>:
where q′ ¼ 1

2�q. By inverting Fq(t), we obtain a q-exponential random number generator:

T ¼
η 1� Uð Þ1�q

2�q

h i
1� q

; (2)

where U is a uniform random variable defined in [0,1].
Note that differently from the exponential distribution, the q-exponential hazard rate is not constant. In fact, this is an important

characteristic of the q-exponential distribution, especially in the reliability context. Next, we will show that for a q-exponential

distribution, it is possible to model two additional behaviors for the hazard rate. Let us first define the hazard rate hq tð Þ ¼ f q tð Þ
Rq tð Þ, where

Rq(t) is 1� Fq(t).
Thus, we can write

hq tð Þ ¼
2�qð Þ 1� 1�qð Þt

η½ � 1
1�q

η

1� 1�qð Þt
η

h i2�q
1�q

¼ 2� qð Þ
η

1� 1� qð Þt
η

� �q�1
1�q

:
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Figure 1. The q-exponential probability density function (PDF) for some possible values of q and η. (a) q-exponential PDF for q =�1.5 and η = 3, (b) q-exponential PDF for
q = 0.5 and η = 3, (c) q-exponential PDF for q = 1.5 and η = 3, and (d) q-exponential PDF for q→ 1 and η = 3
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Thus, the q-exponential distribution is able to represent two different types of hazard rate behaviors. That is, for 1< q< 2, hq(t) is a
decreasing monotonic function (Figure 2(a)), while for q< 1, hq(t) is an increasing monotonic function (Figure 2(b)).

Nadarajah and Kotz43 point out that many of the q-distributions that have emerged recently were known by other names, and they
particularly discuss two families of distributions: Burr-type XII and Burr-type III, which have many q-distributions as special cases.
However, it is worth noting that the q-exponential is a generalization of the Burr XII and not the opposite, as stated by Nadarajah
and Kotz,44 because the q-exponential is valid even for q< 1, which does not happen with the Burr XII.
Figure 2. The q-exponential hazard rate. (a) q-exponential hq(t) with η = 1 and q = 1.8 and (b) q-exponential hq(t) with η = 1 and q = 0.7

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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3. Maximum likelihood estimators of index R=P(Y<X)

In this section, we estimate the index R= P(Y< X) by using the maximum likelihood method. We assume that X and Y are independent
random variables and follow q-exponential distributions with different parameters. We can write Y~ qExp(q, η) and X~ qExp(r, β),
where q and r are the entropic indices (shape parameters) of stress and strength, respectively, and η and β are the scale parameters
of stress and strength. As mentioned earlier, the support of the q-exponential can be limited (q< 1) or unlimited (1< q< 2) (Equation
(1)). Therefore, in order to calculate the index R, we will consider two cases:

Case 1: There is no limitation on the support of X (strength), that is, 1< r< 2:

R ¼ P Y < Xð Þ ¼
Z 1

0

Z x

0

2� qð Þ q�1ð Þy
η þ 1

h i 1
1�q

� �
2� rð Þ r�1ð Þx

β þ 1
h i 1

1�r

� �
ηβ

dydx ¼

¼

r � 2ð Þ
β r�1ð Þ3ABC�

DEF r�1
βð Þr�2

r�1 q�1
ηð Þ2�r

r�1 1�β q�1ð Þ
η r�1ð Þ

h i 1
1�9þ

1
1�r

η 1�rð Þþβ q�1ð Þ½ �2

η2

264
375

A r�1ð Þ4 � βB
r�1

8>>>>>>><>>>>>>>:

9>>>>>>>=>>>>>>>;
βD

; (3)

where A ¼ Γ 2�q
q�1

� 	
; B ¼ Γ 2�r

r�1


 �
; C ¼ 2F1 1; 2�q

q�1 ;
3�2r
1�r ;

q�1ð Þβ
r�1ð Þη

� 	
; D ¼ Γ 1

r�1


 �
; E ¼ Γ 1

1�r


 �
; F ¼ Γ 1

r�1 � 2þ 1
q�1

� 	
and 2F1 a; b; c; zð Þ ¼

Γ cð Þ
Γ að ÞΓ c�að Þ

Z 1

0
ta�1 1� tð Þc�a�1 1� ztð Þ�bdt is the Gauss hypergeometric function.45

Case 2: The support of X (strength) is limited, that is, r< 1:

R ¼ P Y < Xð Þ ¼
Z 1

1

β

� �
1� rð Þ

0

Z x

0

2� qð Þ q� 1ð Þy
η

þ 1

� � 1

1� q

8><>:
9>=>; 2� rð Þ r � 1ð Þx

β
þ 1

� � 1

1� r

8><>:
9>=>;

ηβ
dydx ¼

¼ 1�2F1 1;
1

q� 1
� 1; 2þ 1

1� r
;
q� 1ð Þβ
r � 1ð Þη

� �
:

(4)

To compute the MLE of R, let Y= {y1, y2, …, yn} be a random sample of size n and X= {x1, x2, …, xm} be another random sample of
size m. Because X and Y are independent variables, it is possible to write the likelihood function for the observed samples as

L x; y; r; β; q; ηð Þ ¼ 2� qð Þn 1

η

� �n

∏
n

i¼1

1� 1� qð Þyi
η

� � 1

1� q

8><>:
9>=>; 2� rð Þm 1

β

� �m

∏
m

i¼1

1� 1� rð Þxi
β

� � 1

1� r

8>>><>>>:
9>>>=>>>;

¼ 2� qð Þn 1

η

� �n

2� rð Þm 1

β

� �m

∏
n

i¼1

1� 1� qð Þyi
η

� � 1

1� q∏
m

i¼1

1� 1� rð Þxi
β

� � 1

1� r :

Therefore, the log-likelihood function is written as follows:

l x; y; r; β; q; ηð Þ ¼ n ln 2� qð Þ þ n ln
1

η

� �
þm ln 2� rð Þ þm ln

1

β

� �
þ 1

1� q

Xn
i¼1

ln 1� 1� qð Þyi
η

� �
þ 1

1� r

Xm
i¼1

ln 1� 1� rð Þxi
β

� �
:

(5)

Maximizing the log-likelihood function given in Equation (5) results in a convoluted system of equations, and thus, the derivation
of analytical expressions for the MLE becomes impractical. So in this work, the maximization of the log-likelihood function in Equation
(5) will be performed by the Nelder–Mead method41 available in the software R (optim function).46

Because bq; bη; br ; and bβ are solutions that maximize the log-likelihood function of Equation (5) and using the property of
invariance of the MLE, from Equations (3) and (4), we can obtain the MLE of R for the two previously mentioned cases:
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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Case 1: When the X (strength) has 1< r< 2,

R̂ ¼

r̂ � 2ð Þ
β̂ r̂�1ð Þ3ÂB̂Ĉ�

D̂ÊF̂ r̂�1
β̂

� 	^̂r�2
r̂�1

q̂�1
η̂ð Þ2�r̂

r̂�1 1�β̂ q̂�1ð Þ
η̂ r̂�1ð Þ

h i 1
1�q̂

þ 1
1�r̂

η̂ 1�r̂ð Þþβ̂ q̂�1ð Þ½ �2
η2

264
375

Â r̂�1ð Þ4 � β̂B̂
r̂�1

8>>>>>>>><>>>>>>>>:

9>>>>>>>>=>>>>>>>>;
β̂D̂

; (6)

where Â ¼ Γ 2�q̂
q̂�1

� 	
, B̂ ¼ Γ 2�r̂

r̂�1


 �
; Ĉ ¼ 2F1 1; 2�q̂

q̂�1 ;
3�2̂r
1�r̂ ;

q̂�1ð Þβ̂
r̂�1ð Þη̂

� 	
; D̂ ¼ Γ 1

r̂�1


 �
, Ê ¼ Γ 1

1�r̂


 �
, and F̂ ¼ Γ 1

r̂�1 � 2þ 1
q̂�1

� 	
.

Case 2: When the X (strength) has r< 1,

R̂ ¼ 1�2F1 1;
1

q̂� 1
� 1; 2þ 1

1� r
;
q̂� 1ð Þβ̂
r̂ � 1ð Þη̂

 !
: (7)

4. Bootstrap confidence intervals

In this section, we present the construction of confidence intervals for the index R by using bootstrap-p and nonparametric bootstrap
methods.47–49

4.1. Bootstrap-p

The algorithm for constructing confidence intervals by using the bootstrap-p approach has the following steps:

• Step 1: From an initial sample for the variable X = {x1, x2,…, xm} and another one for Y= {y1, y2,…, yn}, estimate the parameters
(q, η, r, β) by maximizing Equation (5).

• Step 2: Use the estimates obtained in the previous step and Equation (2) to generate new samples for X and Y, that is,
x�1; x�2 ; …; x�m
� 

and y�1; y�2; …; y�n
� 

. Based on these new samples, compute the bootstrap sample estimate of R, say R*,
using Equations (6) or (7) (depending on the r-value).

• Step 3: Repeat step 2, N times.
• Step 4: Using the N-values of R* obtained in step 3 and by adopting a γ significance level, find the percentiles R�γ=2 and R�1� γ=2ð Þ.
Thus, it is possible to determine an approximate confidence interval, with confidence interval equal to 100*(1� γ)%, for the index
R, as

C:I: ¼ R�γ=2; R
�
1�γð Þ=2

h i
: (8)

4.2. Nonparametric bootstrap

The algorithm for constructing confidence intervals by using the nonparametric bootstrap approach is as follows:

• Step 1: From an initial sample for the variable X= {x1, x2, …, xm} and another one for Y= {y1, y2, …, yn}, generate new samples for
X and Y by sampling with replacement, that is, x�1; x�2;…; x�m

� 
and y�1; y�2;…; y�n

� 
. Based on these new samples, compute

the estimate of R, say R*, using Equation (6) or (7) (depending on the r-value).
• Step 2: Repeat step 1, N times.
• Step 3: By using the N-values of R* from step 2 and by adopting a γ significance level, the percentiles R�γ=2 and R�1� γ=2ð Þ are
obtained; they determine an approximate confidence interval for the index R with confidence level equals to 100*(1� γ)% using
Equation (8).
5. Numerical experiments

This section presents the performance evaluation of the MLE and bootstrap confidence intervals by means of simulation experiments.
We consider different sample sizes and different parameter values. First, we analyze the MLE, and then we discuss the bootstrap
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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confidence interval. Note that the simulations involved entropic indices ranging between 1 and 2 (cases 1–11), from 0 to 1 (cases
12–22), and with negative values (cases 23–33).
5.1. Analysis of the maximum likelihood estimation

Several combinations of sample sizes for the stress and strength are considered: (n;m) = (100; 100), (250; 250), (500; 500), (1000; 1000),
(5000; 5000), (100; 250), (100; 500), (100; 1000), (250; 100), (500; 100), and (1000; 100). Besides, we choose three sets of parameter
values respecting three important situations for the entropic indices, that is, 1< r,q< 2; 0< r,q< 1, and r,q< 0. Thus, we have (q, η,
r, β) = (1.78; 0.15; 1.9; 0.1), (0.55; 22; 0.67; 30.5), and (�1.95; 0.1; �1.8; 0.18). Observe that 11 different combinations of sample sizes
multiplied by three different parameter sets are equal to 33 initial samples. The samples for the simulations are generated by Equation
(2). All results are based on 1000 replications. That is, we generate 1000 samples from each set of initial parameters for all the
combinations of n and m. Thus, a total of 33,000 samples are generated. For each sample, we compute the MLE for q, η, r, β by
maximizing Equation (5) via the Nelder–Mead method.

Thus, we obtain the MLE of index R by Equation (6) or (7) (depending on the r-value). This process is carried out for each of the 1000
replications. Subsequently, we obtain the average of the estimation results for parameters q, η, r, β, and also for the index R. Table IV
presents the results for all simulation runs as well as the index R estimations. The mean squared error (MSE) and the average biases are

calculated for R̂ over the 1000 replications. Note that these quality indices are obtained for an estimator bθ of θ as bias θ̂
� 	

¼ E θ̂
� 	

� θ

and MSE ¼ Var θ̂
� 	

þ bias θ̂
� 	2

.

From the simulation results (Table IV), the following findings are observed:

(i) When (n; m) increase, the MSEs decrease. This suggests the consistency property of the MLE (Table I).
(ii) For a fixed n, MSEs decrease as m increases (Table II).
(iii) For a fixed m, MSEs decrease as n increases (Table III).

In order to illustrate behaviors (i)–(iii), excerpts of Table IV are reproduced in Tables I–III, respectively.
Table I. Examples of cases that present a decrease of the MSE when (n; m) increase

Case n m q η r β MSE

1 100 100 1.78 0.15 1.90 0.10 1.06E-03
12 100 100 0.55 22 0.67 30.5 1.28E-03
23 100 100 �1.95 0.1 �1.8 0.18 1.19E-03
5 5000 5000 1.78 0.15 1.90 0.10 2.77E-05
16 5000 5000 0.55 22 0.67 30.5 2.44E-05
27 5000 5000 �1.95 0.1 �1.8 0.18 4.87E-05

MSE, mean squared error.

Table II. Examples of cases that present a decrease of the MSE for a fixed n and an increase of m

Case n m q η r β MSE

1 100 100 1.78 0.15 1.90 0.10 1.06E-03
6 100 250 1.78 0.15 1.90 0.10 8.36E-04
7 100 500 1.78 0.15 1.90 0.10 5.63E-04
8 100 1000 1.78 0.15 1.90 0.10 5.22E-04

MSE, mean squared error.

Table III. Examples of cases that present a decrease of the MSE for a fixed m and an increase of n

Case n m q η r β MSE

12 100 100 0.55 22 0.67 30.5 1.28E-03
20 250 100 0.55 22 0.67 30.5 1.16E-03
21 500 100 0.55 22 0.67 30.5 9.4E-04
22 1000 100 0.55 22 0.67 30.5 8.8E-04

MSE, mean squared error.
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R. L. M. SALES FILHO ET AL.
5.2. Bootstrap confidence interval

For the simulations of the confidence intervals based on bootstrap-p and on nonparametric bootstrap, we generated 33 initial
samples using the same combinations of sample sizes and initial parameters presented in the Section 5.2. For the case of the
bootstrap-p, we obtain, from the 33 initial samples, the MLE of the parameters by maximizing the log-likelihood function (Equation
(5)). Given that we have the parameters’ estimates (obtained from the initial samples) for each different combination of parameters
and sample size, we can use these estimates to generate N= 1000 new samples from Equation (2). For the case of the nonparametric
bootstrap, we use the 33 initial samples to generate N=1000 samples by sampling with replacement (for each different combination
of parameters and sample sizes).

From the samples generated by the bootstrap-p or by nonparametric bootstrap, we estimate the index R from Equation (6) or (7)
(depending on the r-value). That is, for each method, we generate N= 1000 bootstrap estimates of R. We present the mean of
N= 1000 bootstrap estimates of R, and based on the percentile method, the corresponding 90% and 95% confidence intervals are
also provided.

Tables VIII and IX present, respectively, the results and estimation of bootstrap-p and nonparametric bootstrap confidence intervals
for index R. From the simulations for the bootstrap-p and nonparametric bootstrap confidence intervals, we observe that

(i) When (n; m) increase, the amplitude of the interval (width) decreases. In order to illustrate this behavior, Table V presents an
excerpt of Table VIII with the interval widths for the index R obtained by bootstrap-p, considering a 95% confidence level, for
the three different combinations of parameters when (n, m) = (100, 100) and (n, m) = (5000, 5000).

(ii) For a fixed n, the widths decrease as m increases. For example, the results in Table VI are taken from Table IX (nonparametric
bootstrap and 95% of confidence level) and demonstrate this behavior.

(iii) For a fixedm, the interval widths decrease as n increases. Table VII, which is an excerpt of Table VIII, exemplifies the decrease of
interval widths for bootstrap-p and 90% of confidence level.

Yet note that the method of bootstrap-p showed greater efficiency in the simulations because the confidence intervals (90% or
95%) contain the parameter value in all the simulations. On the other hand, the nonparametric method resulted in some intervals that
did not contain the real value of the parameter R. For example, this was observed for the case 3 (for 1� γ= 0.90), case 8 (for
1� γ= 0.90 and 0.95), case 20 (for 1� γ= 0.90 and 0.95), case 24 (for 1� γ= 0.90 and 0.95), case 26 (for 1� γ= 0.90), and case 33
(for 1� γ= 0.90), as shown in Table IX. The intervals that do not contain the parameters correspond to 14% of the simulated cases
with the nonparametric method.
Table V. Examples of cases that present a decrease of interval widths when (n; m) increase

Case n m q η r β (1� γ) = 0.95 Width

1 100 100 1.78 0.15 1.90 0.10 [0.6214; 0.7524] 1.310E-01
12 100 100 0.55 22 0.67 30.5 [0.5581; 0.7108] 1.527E-01
23 100 100 �1.95 0.1 �1.8 0.18 [0.6915; 0.8210] 1.296E-01
5 5000 5000 1.78 0.15 1.90 0.10 [0.6756; 0.6951] 1.945E-02
16 5000 5000 0.55 22 0.67 30.5 [0.6167; 0.6358] 1.905E-02
27 5000 5000 �1.95 0.1 �1.8 0.18 [0.7443; 0.7802] 3.590E-02

Table VII. Examples of cases that present a decrease of interval widths for a fixed m and an increase of n

Case n m q η r β (1� γ) = 0.90 Width

12 100 100 0.55 22 0.67 30.5 [0.5720; 0.6973] 1.2533E-01
20 250 100 0.55 22 0.67 30.5 [0.5944; 0.6957] 1.0130E-01
21 500 100 0.55 22 0.67 30.5 [0.5926; 0.6929] 1.0023E-01
22 1000 100 0.55 22 0.67 30.5 [0.5948; 0.6931] 9.8340E-02

Table VI. Examples of cases that present a decrease of interval widths for a fixed n and an increase of m

Case n m q η r β (1� γ) = 0.95 Width

1 100 100 1.78 0.15 1.90 0.10 [0.6111; 0.7430] 1.319E-01
6 100 250 1.78 0.15 1.90 0.10 [0.6701; 0.7670] 9.693E-02
7 100 500 1.78 0.15 1.90 0.10 [0.6456; 0.7407] 9.510E-02
8 100 1000 1.78 0.15 1.90 0.10 [0.6926; 0.7754] 8.279E-02
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6. Case studies

In this section, we present two case studies in which stress (Y) and strength (X) follow q-exponential distributions. The first case study,
which was originally described in Shirani and Härkegård,50 deals with the experimental determination of high-cycle fatigue of ductile
cast iron used for wind turbine components, and the second one, which was first reported in Furuya,51 evaluates the gigacycle fatigue
life of high-strength steel.

These two case studies are based on the well-known phenomenon51,52 that the fatigue strength or endurance limit of large
members is lower than that of small specimens made of the same material; in other words, a specimen size effect exists. That is, larger
specimens fail at shorter fatigue lives than smaller specimens.35,52 In fact, design of parts and structures against fatigue is based on
laboratory-sized specimens that are usually smaller than the real ones. Therefore, it is of great importance to determine the reliability
of larger specimens when data of smaller specimens are available. In our paper, we used the analogy that smaller specimens are
stronger against fatigue and can be used as reference. Therefore, fatigue strength of smaller specimens was used as a reference to
find the reliability of the larger specimens.

We use the stress–strength analysis in order to estimate the reliability of a specimen with large size by using a data set for small
specimen. The reliability is evaluated based on the number of cycles to failure. Stress–cycle curves (SN curves) are often used to
present fatigue resistance of materials at different stress levels. The SN curve simply represents the number of cycles to failure at a
given stress level. Therefore, there is a one-to-one relationship between stress level and number of cycles to failure.35,52 Therefore,
using number of cycles instead of stress is a reasonable selection. That is, the number of cycles to failure can be understood as a
measure of resistance to failure. In terms of stress–strength models, such measures are obtained in situations where the system
has low resistance to fatigue failure (i.e., larger specimen) as well as in situations where the system has greater resistance to fatigue
failure (i.e., smaller specimen).

Indeed, in the context of our work, Y refers to the number of cycles to failure in stress situation, that is, number of cycles to failure
of larger specimen. Similarly, X refers to the number of cycles to failure in strength situation, that is, number of cycles to failure of
smaller specimen. Therefore, the reliability index R= P(Y< X) refers to the probability of the variable Y being less than variable X. In
other words, the index R indicates a measure of the reliability of the larger specimen using the data set for the smaller specimen
as reference.

As we have mentioned earlier, q-exponential distribution can be used to fit stress–strength data when they are represented by
cycles to failure obtained from specimens made of the same material but with different sizes. Such an approach for stress and
strength analysis has been previously used, for example, in Kundu and Gupta7 and Shahsanaei and Daneshkhah.53

For each case study presented in this section, we estimate the parameters of two q-exponential distributions for data sets
representing X and Y. The estimation method is the maximum likelihood method discussed in Section 3. Based on the estimates of
the parameters, we analyze the goodness of fit of the q-exponential distributions by using both graphical analysis and hypothesis
testing. Thus, we show the CDF for the two data sets along with the theoretical CDF of the q-exponential. Finally, we perform a
bootstrapped version of the Kolmogorov–Smirnov (K–S boot) test in order to statistically check the fit of the q-exponential
distribution to each data set.

6.1. Bootstrapped Kolmogorov–Smirnov test

The one-sample Kolmogorov–Smirnov test (K–S test) is not very useful in practice because it requires a simple null hypothesis.
That is, the distribution must be completely specified with all parameters known.54 A K–S boot test was proposed as an
alternative to overcome this problem.55 This method results in accurate asymptotic approximations of the p-values.56 In this work,
we will use this bootstrapped version to check the fit of the q-exponential distribution to each data set. This method follows the
following steps:

• Step 1: From an initial sample for the variable X= {x1, x2, …, xn}, estimate the parameters Θ= {θ1, θ2, …, θk} and construct the
theoretical CDF: Fn X; Θ̂


 �
.

• Step 2: Evaluate D0 ¼ max1 ≤ i ≤ n F̂n xið Þ � Fn xi; Θ̂

 �

:

 ��; F̂n xi�1ð Þ � Fn xi; Θ̂


 �
:


 ���� ������ , where F̂n Xð Þ is the empirical CDF.

• Step 3: Use the estimates obtained in the first step to generate new samples for X, that is, x�1;j; x
�
2;j; …; x�n;j

n o
. Based on these

new samples, compute the bootstrap sample estimate of Θ, say Θ�
j ¼ θ�1j; θ

�
2j;…; θ�kj

n o
.

• Step 4: Repeat step 3, N times; j= (1, 2,…,N). The number of bootstrap samples N should be large to ensure a good
approximation.

• Step 5: Evaluate D�
j ¼ max

1 ≤ i ≤ n
F̂�n;j x�i;j
� 	

� F�n;j x�i;j; Θ̂
�

� 	��� ���; F̂�n;j x�i�1ð Þ;j
� 	

� F�n;j x�i;j; Θ̂
�

� 	��� ������ ���.
We reject the null hypothesis if D0 > D�

N 1�αð Þþ1ð Þ for a significance level α. An approximate p-value can be computed using

p ¼
# D�

j ≥ D0

n o
þ 1

N þ 1
;

where # D�
j ≥ D0

n o
indicates the quantity of D�

j (j= 1, …, N) that was larger than D0.
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6.2. Case study 1

From Shirani and Härkegård,50 the size effect in ductile cast iron was studied using two sets of fatigue data for specimens with
diameters 21mm (Ø 21) and 50mm (Ø 50). During the tests, the specimens were subjected to the same load condition. Figure 3
shows details of the drawings of the specimens.

For stress, we consider fatigue data of Ø 50 specimens, and for strength, the fatigue data of Ø 21 specimens are used. The data sets
given in terms of number of cycles to failure are presented in Tables X and XI for diameters 21 and 50mm, respectively.

Table XII presents the estimated parameters – entropic indices (shape parameters) and scale parameters, K–S distances between
the empirical and fitted distribution functions, and the p-values of the K–S boot test; for this test, we use N= 1000. As mentioned in
Section 2, the q-exponential distribution shows characteristics of a power law when the entropic index presents values between 1 and
2. In this case study, we can see that both X and Y present this behavior for the analyzed data sets.

Figure 4(a and b) presents the theoretical and empirical CDFs for X and Y, respectively. Note that the theoretical curve of the
cumulative q-exponential distribution provides a very good fit to the data points of the empirical distribution for both the stress data
and the strength data. In addition, by the K–S tests and the corresponding p-values (K–S boot) reported in Table XII, the q-exponential
model adequately fits both the strength and stress data sets, as can also be seen in the graphs shown in Figure 4(a and b).

Given that br ¼ 1:1087 1 < br < 2ð Þ, there is no limitation on the support of X; thus, the index R is estimated by Equation (6) as
0.7579. The value obtained for R indicates that within the range of fatigue cycles here considered (i.e., high-cycle fatigue), there is
a 0.7579 probability that fatigue life of specimens with Ø 21-mm diameter is longer than specimens with Ø 50-mm diameter. In terms
of reliability, we can conclude that the value obtained for index R indicates the system performance. That is, based on the data
presented for strength and stress, the reliability of the larger specimen is equal to 0.7579.

Moreover, the confidence intervals (bootstrap-p and nonparametric bootstrap approaches) are constructed by using the
procedures presented in Section 4. In this case study, we obtained a large width for the confidence interval of R parameter because
of the small size of the sample (Table XIII).
Table X. Ø 21 specimen fatigue test data (strength)

Specimen Number Fatigue Life (number of cycles to failure)

1 3,000,000
2 716,400
3 1,674,100
4 679,400
5 801,000
6 1,076,600
7 4,181,701
8 619,200
9 469,500
10 83,200
11 92,500
12 107,700

Figure 3. Detail drawings of (a) Ø 21 and (b) Ø 50 specimens (all dimensions are in millimeter)50

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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Table XI. Ø 50 specimen fatigue test data (stress)

Specimen number Fatigue life (number of cycles to failure)

1 295,000
2 869,000
3 869,900
4 1,573,335
5 151,400
6 152,000
7 183,700
8 218,000
9 30,200
10 45,100
11 46,900
12 47,300

Table XII. Estimated parameters, Kolmogorov–Smirnov distances, and p-values for the Kolmogorov–Smirnov test (K–S boot) – q-
exponential distribution (case study 1)

Entropic index Scale parameter K–S (D0) p-value

Data set 1 (strength) br ¼ 1:1087 bβ ¼ 884; 013:7 0.1477 0.7453
Data set 2 (stress) bq ¼ 1:3005 bη ¼ 161; 904 0.1554 0.6054

Figure 4. Theoretical (q-exponential) and empirical cumulative distribution function (CDF) for data sets of case study 1. (a) X – strength and (b) Y – stress

Table XIII. Point and interval estimates for R= P(Y< X) – case study 1

Estimate of the parameter R= P(Y< X)bR ¼ 0:7579
Bootstrap-p confidence interval

n=12, m= 12
C.I. (R,0.90) = [0.3258, 0.9078] C.I. (R,0.95) = [0.1977, 0.9288]

Nonparametric bootstrap confidence interval
n=12, m= 12

C.I. (R,0.90) = [0.4275, 0.9055] C.I. (R,0.95) = [0.2495, 0.9260]

C.I., confidence interval.

R. L. M. SALES FILHO ET AL.
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6.3. Case study 2

In Furuya,51 the size effect on gigacycle fatigue life of high-strength steel was evaluated using the following specimen geometries:

• Type A: Ø 8mm×10mm specimen.
• Type B: Ø 3mm hourglass-shaped specimens.

The specimens were subjected to the same load condition. Therefore, fatigue data for specimens type A and type B are selected as
stress and strength, respectively. Figure 5 shows the detail drawings of the specimens. Data sets for strength and stress are presented
in Tables XIV and XV, respectively.

In Table XVI, we present the estimated parameters (entropic indices and scale parameters), the K–S distances between the empirical
and fitted distribution functions, and the corresponding p-values (K–S boot – for this test, we use N=1000). Note that for stress and
strength, the entropic indices present values that characterize a power law behavior, that is, 1< q< 2 for stress and 1< r< 2 for strength.

Figure 6(a and b) shows the theoretical and empirical CDF for X and Y, respectively. For the sake of visualization, we here use logarithmic
scale to represent X and Y as the data sets include many extreme values. Analogously to the previous case study, one can conclude that,
based on the plots presented in Figure 6, the curve of the cumulative distribution of the q-exponential shows close agreement with the
empirical points for stress and strength data sets. We also report in Table XVI the bootstrapped K–S tests and the corresponding p-values.
Based on those results, we notice that q-exponential model adequately fits both X and Y data sets, as can also be seen in Figure 6.
Figure 5. Detail drawings of (a) Ø 8 and (b) Ø 3 specimens (all dimensions are in millimeter). Adapted from Furuya51

Table XIV. Type B (Ø 3-mm hourglass-shaped specimen) fatigue test data (strength)

Specimen number Fatigue life (number of cycles to failure)

1 1,017,286
2 2,989,152
3 4,059,346
4 4,256,299
5 8,376,572
6 9,560,400
7 13,007,977
8 25,303,118
9 33,621,704
10 55,951,560
11 101,155,984
12 144,322,192
13 376,711,232
14 731,957,760
15 9,444,513,800
16 9,912,163,300
17 9,918,688,300
18 9,921,105,900

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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Table XV. Type A (Ø 8 x 10mm specimen) fatigue test data (stress)

Specimen number Fatigue life (number of cycles to failure)

1 289,867
2 1,291,756
3 6,404,257
4 7,848,468
5 9,374,890
6 31,500,474
7 211,678,768
8 5,575,744,500
9 5,926,607,400

Table XVI. Estimated parameters, Kolmogorov–Smirnov distances, and p-values for the Kolmogorov–Smirnov test (K–S boot) –
q-exponential distribution (case study 2)

Entropic index Scale parameter K–S (D0) p-value

Data set 1 (strength) br ¼ 1:7519 bβ ¼ 4; 704; 629 0.1329 0.4955
Data set 2 (stress) bq ¼ 1:7643 bη ¼ 1; 450; 221 0.1434 0.8501

Figure 6. Theoretical (q-exponential) and empirical cumulative distribution function (CDF) for data sets of case study 2. (a) X – strength and (b) Y – stress

R. L. M. SALES FILHO ET AL.
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Given that br ¼ 1:7519 1 < br < 2ð Þ, there is no limitation on the support of X; thus, index R is estimated by Equation (6) as 0.5973.
Thus, considering a component of strength and another of stress, obtained respectively when we measure the life cycle for specimens
with 3-mm diameter and 8-mm diameter, there will be 59.73% chance that the larger specimen will not fail.

The confidence intervals are constructed using the bootstrap-p and nonparametric bootstrap approaches (presented in Section 4).
Also in this case study, because of the small size of the samples, we obtain large width for the confidence intervals of the parameter R
(Table XVII).
Table XVII. Point and interval estimates for R= P(Y< X) – case study 2

Estimate of the parameter R= P(Y< X)bR ¼ 0:5973
Bootstrap-p confidence interval

n= 9, m=18
C.I. (R,0.90) = [0.3986, 0.7980] C.I. (R,0.95) = [0.3681, 0.8242]

Nonparametric bootstrap confidence interval
n= 9, m=18

C.I. (R,0.90) = [0.4090, 0.7665] C.I. (R,0.95) = [0.3643, 0.7953]

C.I., confidence interval.

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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6.4. Comparing q-exponential with other distributions

For the sake of comparison, both Weibull and exponential distributions were also considered to model the experimental strength and
stress data sets presented in case studies 1 and 2. The results for the estimated parameters (scale and shape parameters for Weibull
distribution parameter and for the exponential distribution parameter), K–S distances between empirical and fitted distribution
functions, and the corresponding p-values (K–S boot – performed with N= 1000) obtained from the data sets are shown in Tables XVIII
and XIX, which also include the K–S distance and p-values for the fit of the q-exponential distribution.

For case study 1, based on the K–S boot, the fit of the Weibull distribution resulted in p-values of 0.7322 and 0.5115 for the
strength and stress data, respectively, clearly indicating that the Weibull is an appropriate distribution to describe the stress–
strength data of this case study. In the case of the exponential distribution, the p-value for the K–S test was equal to 0.7212
for strength and 0.2757 for stress, resulting in a reasonable fit for the experimental data. However, for the strength data, we
observed the most significant fit for q-exponential distribution (p-value = 0.7453), whereas Weibull distribution is the second
(p-value = 0.7323), and exponential distribution also presents a good fit (p-value = 0.7212). For the stress, a similar behavior
was observed. That is, q-exponential presents the most significant fit (p-value = 0.6054), while Weibull distribution is the second
(p-value = 0.5115), and among the three distributions considered, the exponential presented the worst adjustment for the stress
(p-value = 0.2757).

For case study 2, based on the K–S boot, the fit of Weibull distribution resulted in p-values of 0.2048 and 0.2297 for strength and
stress data, respectively, indicating that despite the adjustment being significant, we cannot consider this as an excellent fit. In the
case of exponential distribution, the p-value for the K–S test was equal to 9.99E-04 for strength and the same value for the stress,
which yields a nonsignificant fit for exponential distribution. Note that q-exponential distribution presents the most significant fit
for both strength (p-value = 0.4955) and stress (p-value = 0.8501), Weibull distribution provides the second most significant fit for
strength (p-value = 0.2048) and stress (p-value = 0.2298), whereas exponential distribution was not significant for both data sets.

Note also that for both case studies, when we consider q-exponential distribution, a power law behavior is obtained for all analyzed
cases, as the entropic indices for all data sets are greater than one. Moreover, when we consider the Weibull distribution, the shape
parameter for all cases were between 0 and 1, which indicates a behavior of stretched exponential. As we mentioned in Section 1, q-
exponential PDF with power law behavior presents a heavier tail than that of a Weibull PDF (with stretched exponential behavior).
Thus, it is expected the q-exponential to have a superior performance over Weibull distribution when dealing with data sets that
contain extremely large values. Thus, although the fit by q-exponential and Weibull distributions was comparable for the first case
study, q-exponential is superior in the second one. This fact is due to the presence of extremely large values in the associated samples
(magnitude in the order of 109).

The estimation of R when X and Y are Weibull-independent variables was presented by Kundu and Gupta.7 In their work, the

authors presented the expression bR ¼ bθ1bθ1þbθ2

, where bθ1 is the estimate of scale parameter for X and bθ2 is the estimate of scale parameter
Table XVIII. Comparing Weibull versus q-exponential – case studies 1 and 2

Parameters
(Weibull distribution)

(K–S boot) (Weibull
distribution)

(K–S boot)
(q-exponential
distribution)

Case studies
Shape

parameter
Scale

parameter
K–S
(D0)

p-
value

K–S
(D0)

p-
value

Case study 1 Data set 1 (strength) 0.9331 1,088,102 0.1409 0.7322 0.1477 0.7453
Data set 2 (stress) 0.8336 335,326.1 0.164 0.5115 0.1554 0.6054

Case study 2 Data set 1 (strength) 0.3366 417,229,706 0.1648 0.2048 0.1329 0.4955
Data set 2 (stress) 0.3077 176,273,348 0.2222 0.2298 0.1434 0.8501

Table XIX. Comparing exponential versus q-exponential – case studies 1 and 2

Parameter (exponential
Distribution)

(K–S boot)
(exponential distribution)

(K–S boot)
(q-exponential distribution)

Case studies Rate parameter K–S (D0) p-value K–S (D0) p-value

Case study 1 Data set 1 (strength) 8.89E-07 0.1587 0.7212 0.1477 0.7453
Data set 2 (stress) 2.68E-06 0.2245 0.2757 0.1554 0.6054

Case study 2 Data set 1 (strength) 4.42E-10 0.6048 9.99E-4 0.1329 0.4955 4
7
Data set 2 (stress) 7.65E-10 0.6429 9.99E-4 0.1434 0.8501

Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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Figure 7. Empirical and theoretical (q-exponential and Weibull) cumulative distribution functions (CDFs) for case study 1 – (a) strength and (b) stress

Figure 8. Empirical and theoretical (q-exponential and Weibull) cumulative distribution functions (CDFs) for case study 2 – (a) strength and (b) stress
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for Y. Thus, once the data set for X and Y in case study 1 also presented a good fit for the Weibull distribution, we computed R

considering a Weibull distribution as bR ¼ 0:7649. This result is very similar to the one when X and Y are modeled by two independent

q-exponential distributions, that is, bR ¼ 0:7579. This indicates that both distributions can be used in order to estimate R= P(Y< X) for
the first case study. For case study 2, when X and Y are modeled by two independent Weibull distributions, the estimated

R index is bR ¼ 0:7029, which is very different from the one obtained when we considered q-exponential (bR ¼ 0:5973).
This difference is because Weibull distribution presented an inferior fit performance for both X and Y when compared with
q-exponential. In fact, both X and Y present extremely large values, and as discussed previously, this kind of data is
better modeled by a PDF that has the ability to model data with characteristic of power law as is the case of q-exponential
when 1< q< 2.

From Figure 7, one can observe that, in the first case study, a good fit is obtained for both q-exponential and Weibull distributions.
On the other hand, based on the plots shown in Figure 8 for case study 2, the empirical points for stress and strength are fitted very
well by the curves of the theoretical CDF of the q-exponential distribution, whereas the same is not true for the curve of the Weibull
cumulative distribution.

Therefore, the q-exponential distribution can be considered as an alternative to the Weibull distribution in stress–strength
problems, especially when one is dealing with data with extreme large values. Thus, despite the more intricate set of equations
underlying the estimation of the index R based on the q-exponential distribution, its use represents a viable way for providing more
useful estimates for the index R.
Copyright © 2016 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2017, 33 457–477
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7. Conclusions

In this paper, we have introduced the q-exponential distribution as a model for reliability data with extreme values in the relevant
context of stress–strength reliability. More specifically, when we deal with fatigue life data that present a power law behavior and
we need to estimate the performance index R= P(Y< X), we have considered that the stress Y and strength X are q-exponential-
independent random variables and have proposed a procedure for estimating index R by considering that the support of X is limited
(i.e., entropic index or shape parameter of the strength is r< 1) and unlimited (1< r< 2). Additionally, confidence intervals for the
index R have been presented by means of parametric and nonparametric bootstrap approaches.

From the simulation experiments, the consistency of the MLE obtained for the Index R has been verified based on the q-
exponential distribution, once the absolute bias and the MSE values related to the estimation of R via maximum likelihood decrease
as the sample size increases. Furthermore, for different sample sizes for X and Y, the bootstrap-p confidence intervals showed to be
very efficient in estimating the confidence interval of R given that for all simulations, the confidence intervals included the true
parameter value. On the other hand, not all confidence intervals provided by the nonparametric bootstrap presented the true
parameter value (about 14% of the simulated cases).

With respect to the first case study involving ductile cast iron specimens, q-exponential distribution properly fits both stress and
strength data, as can be seen by the CDF and PDF plots and by the bootstrapped K–S test. In addition, for the sake of comparison,
we have estimated the parameters for the situations where X and Y are both modeled by either Weibull or exponential distribution.
The latter provided the worst fit, while q-exponential and Weibull models resulted in quite similar fits. Such a result was reinforced by
the proximity of the estimates for the index R obtained from both models.

In relation to the second case study involving high-strength steel, q-exponential distribution presented an excellent fit for both
strength and stress. The Weibull distribution, despite having a significant adjustment to the experimental data, presented smaller
p-values for both strength and stress. The exponential distribution in turn was not significant for the data sets of this case study.

Thus, based on the results for case studies, the q-exponential distribution is more suitable for modeling data that include extreme
large values when compared with the Weibull distribution. This result is evident in the second case study that deals with a very
resistant material, and because of this characteristic, the number of cycles until failure presents a high order of magnitude.
Consequently, the index R obtained with q-exponential model was more informative than the same index obtained by the Weibull
distribution.

Therefore, based on the discussed results, it is natural to suggest the q-exponential as a candidate distribution to model stress–
strength reliability problems, especially when dealing with extreme large values. We also note that the q-exponential distribution is
able to model data that present a power law asymptotic behavior, which is an important characteristic of cycles until fatigue failure,
as corroborated by the two case studies considered in this work, where the estimated entropic indices had values that characterize a
power law behavior, that is, 1< q< 2 for stress and 1< r< 2 for strength.
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