
Implementing HOTs that Generate Transformations
with Two Input Models

Luis Silvestre, Marı́a Cecilia Bastarrica and Sergio F. Ochoa
Computer Science Department, University of Chile

{lsilvest,cecilia,sochoa}@dcc.uchile.cl

Beauchef 851, Santiago, Chile

Abstract—Model-driven Engineering (MDE) is a paradigm
that promotes the use of models and automatic model transfor-
mations to handle complex software developments. Model trans-
formations promise to reduce the effort for manipulating models.
However, building transformations themselves is not easy. Higher-
order Transformations (HOTs) are a means for automatically
building model transformations. Building HOTs is in itself a
complex task mainly because there are no standard languages
for implementing them, and there are not many HOTs available
in the literature to learn from. This situation is even worse when
more sophisticated HOTs are required with two input models.
We consider a real application to generate transformations for
tailoring software process, because the generated transformation
needs to have two input models: the organizational process and
the project context model. In this paper, we show three different
techniques for implementing this HOT and discuss their benefits
and limitations.

I. INTRODUCTION

MDE is a trend in software engineering where concepts are

represented as models that can be successively transformed

into lower level models, and eventually into source code [16].

Model transformations are a special kind of programs that

take one or more models as input, and produce one or more

models as output. There are mainly two types of transforma-

tions: model-to-model (M2M) and model-to-text (M2T). Even

though these transformations may be written in any program-

ming language, there are transformation languages that pro-

vide high abstraction level primitives for implementing model

transformation. Query/View/Transformation (QVT) [15] and

Atlas Transformation Language (ATL) [11] are some of the

most popular languages for developing M2M transformations,

while TCS [10], MOFScript [12] and ACCELEO [5] are

utilized to implement M2T and T2M transformations. Writing

transformations, regardless of the language, requires more

than just mastering the implementation language. This makes

writing good model transformations a challenging task.

Provided that in MDE everything is treated as a model, a

transformation may also be considered as a model. Therefore,

a transformation model can also be the output (or the input) of

a model transformation. A transformation that either takes a

transformation as input or produces a transformation as output

is called a Higher-order Transformation (HOT) [17]. There is

still no standard language for implementing HOTs, and there

are few successful real world implementation experiences

reported in the literature either. Therefore, it is not clear

Fig. 1. Software process tailoring strategy

Fig. 2. Excerpt of the complexity of writing model transformations

for software engineers how to proceed when they have to

implement HOTs.

In several scenarios, for instance when we want to au-

tomatically adapt a software process to a particular project

context, the HOT must generate a tailoring transformation
with two input models, and produce an output model. Accord-

ing to the proposal presented in [8] (see Fig. 1), a tailoring
transformation can use the organizational process model and

the project context model, in order to generate the software

process particularly adapted to a specific project.

Given the complexity and the skills required to perform

this tailoring activity, using a MDE approach to automate it

seems to be an appealing idea. Although automatic process

tailoring has the potential to be highly useful for software

2013 32nd International Conference of the Chilean Computer Science Society

1522-4902/15 $31.00 © 2015 IEEE

DOI 10.1109/SCCC.2013.12

26

companies, the complexity of writing model transformations

prevents process engineers from taking advantage of it.

Figure 2 shows part of the tailoring transformation that

was used in MDE strategy for tailoring software process [8].

Although this tailoring proposal has shown to be technically

feasible in real scenarios, it clearly has important limitations

when the users (i.e., the process engineers) have to use it in

practice. Therefore, using a HOT for automatically generating

the tailoring transformation is also appealing. However, as

mentioned before, it is not clear how to implement HOTs that

use two input models.

In this paper we show three different techniques for im-

plementing HOTs with to input models: MOFScript [12],

Atlas Model Weaver [4] and a Java program. We analyze the

feasibility of implementing HOTs with each alternative, and

we discuss the benefits and limitations of each one.

Next, Section II reports the main related work. Section III

describes the implementation of the HOT for the application

example. Section IV presents the conclusions and further work.

II. RELATED WORK

According to Tisi et al. [17], “A higher-order transforma-
tion is a model transformation such that its input and/or output
models are themselves transformation models”. They identify

four classes of HOTs: transformation analysis, synthesis, mod-

ification and composition [18]. Provided that we use HOTs for

generating a model transformation, we are using a synthesis

HOT. They acknowledge that this class of HOTs tend to be

too verbose, i.e., it is required a long and complex code for

generating just a small output transformation. This is mainly

the problem we address in this paper: technological approaches

for building HOTs provided that they are always complex.

A promising approach for developing HOTs is the Atlas

Model Weaver (AMW) [4]: it defines a mapping between the

source and the target model, and this mapping model is auto-

matically translated into the model transformation between the

source and the target models. However, the transformations

that can be generated are quite simple, and basically taking

only one input model and producing one output model. The

AMW generates ATL [11] transformations using matching and

allowing traceability.

Didonet del Fabro et al. [7] report the use of ATL to create

a transformation that uses a weaving model to transform a bug

tracking model in Mantis into an equivalent model in Bugzilla.

The authors also provide other examples using AMW and ATL

to generate a model transformation that translates a Kernel

Metametamodel (KM3) into the Structured Query Language

(SQL) data definition language, and vice versa [6]. In both

cases, the input model for the HOT is a weaving model.

Tisi et al. [18] use ATL to define four patterns for building

HOTs, and establish transformations aimed at improving their

use. The literature also reports that there are other languages

that allow implementing these HOTs, such as GReAT [1],

MOFScript [12] and XSLT [3]. However, there is no evidence

indicating that transformations implemented using these lan-

guages can take two input models to generate an output model.

Fig. 3. HOT with two input models to generate the tailoring transformation

III. GENERATING TRANSFORMATIONS WITH TWO INPUT

MODELS

In the MDE approach for tailoring software process, the

tailoring transformation needs to be written in a transforma-

tion language formally defined, such as ATL. The tailoring

transformation includes the constructors and rules for build-

ing the adapted software process model. The transformation

constructors allow the transformation to generate the output

model, and the rules allow the transformation to tailor the

software process model, based on the characteristics of the

project context to be addressed.

We use a HOT to generate the tailoring transformation,

avoiding thus writing it directly. Our HOT takes two input

models: organizational process model that conforms to the

eSPEM (experimental SPEM) Metamodel and organizational
context model that conforms to the SPCM (Software Process

Context Metamodel) [9]. The eSPEM Metamodel is a subset

of SPEM (Software Process Engineering Metamodel) [14].

Figure 3 shows the extended solution defined to adapt the or-

ganizational process model, based on the characteristics of the

software project to be addressed. The organizational process
model has all the activities, tasks, roles and work products for

guiding the software development and includes its potential

variability. The organizational context model indicates the

project attributes that may influence the process tailoring along

with their potential values. The goal is to determine the

technical feasibility to generate the tailoring transformation
using this HOT. Finally, the tailoring transformation takes the

organizational process model and project context model, and

generates the adapted software process model.

Four different techniques were considered for implementing

this HOT. First, we used MOFScript for implementing the

HOT as a M2T transformation. Second, we used the AMW

tool for defining a weaving model with two input models that

would allow us to automatically generate an ATL tailoring

transformation. Finally, we utilized a Java program with the

same purpose.

27

Fig. 4. Excerpt of the HOT implemented in MOFScript

A. Implementing the HOT using MOFScript

MOFScript is a M2T transformation imperative language.

This language implements explicit rule calls and a flat structure

that manages only a few constructors; these characteristics

make it simple and usable. A MOFScript transformation

consists of a set of rules/methods that allow evaluating input

model elements and producing text, either in the standard

output or into a file. Generating a tailoring transformation

written source code can also be considered as a model [2],

and thus a MOFScript M2T transformation plays the role of

a HOT.

Figure 4 shows part of the HOT implemented in MOFScript,

which takes two input models: the organizational software

process model (spemtl) and the organizational context model

(ct). The MOFScript implementation builds the tailoring trans-

formation in two steps: (1) it establishes the relationships

between organizational context model and variation elements

of the organizational process model, in order to select the

process elements to be included in the output, and (2) writes

the tailoring transformation using functions and procedures for

building the tailoring transformation.

Although the generated tailoring transformation is able

to transform an organizational process model into a con-

text adapted model as expected, this transformation is quite

complex. In order to manage project context information

parametrically, the use of a recursive solution is required,

and this is complex to implement it using imperative rules.

Moreover, building generic rules requires sophisticated data

structures that MOFScript is neither able to define nor manage.

B. Implementing the HOT using AMW

AMW is a tool for establishing mappings between models,

and storing them in a model that is called a weaving model [4].

This weaving model conforms to a weaving metamodel and

it is defined as a mapping between elements in metamodels.

Fig. 5. HOT using the AMW tool

As shown in Fig 5, the weaving model is used as input of

a HOT for generating a transformation model that conforms

to the ATL metamodel. This transformation takes Model

1 conforming to the first metamodel (MM1) and produces

as output a Model 2 conforming to the second metamodel

(MM2).

This seems to be a clear and high level declarative solu-

tion. However, for our case we need to generate a model

transformation that takes not one but two input models: the

organizational process model and the organizational context

model. This solution is not technically feasible, because al-

though AMW has no theoretical limitations in the number of

input metamodels for defining the mapping, it is not expressive

enough for specifying conditions, such as including or not a

process element in the output process model, depending on

the value of a project context attribute. Moreover, the AMW

tool does not allow us defining two input metamodels for the

weaving model.

C. Implementing the HOT using Java

We used Java for implementing the HOT trying to avoid the

complexity posed by ATL and MOFScript, and also gaining

flexibility. Even though Java is a general purpose language, it

counts on the JDOM library for dealing with XML files. We

have also built another library (HashMaps) to convert XML

files into XML Metadata Interchange (XMI) models and vice

versa.

Figure 6 shows part of the HOT implemented in Java using

procedures and functions. In this case, the HOT also takes

two input models and generates the tailoring transformation

in a text format (i.e., it performs a M2T transformation),

following the same structure depicted in Figure 4. Given the

flexibility provided by Java, we were successful in building

this HOT. However, we are aware that having a domain-

specific language makes building model transformations more

straightforward and prevents several potential syntax errors

that may be introduced in Java.

IV. CONCLUSIONS AND FUTURE WORK

This article shows three techniques to determine the techni-

cal feasibility to implement HOTs that use two input models.

28

Fig. 6. Generating Transformations with Java

The implemented HOTs must perform the tailoring of a soft-

ware process, and the alternatives used for the implementation

were MOFScript, AMW and an application in Java. The AMW

solution is the most clear and elegant, but it does not support

two input models. Therefore, this is not an option to address

the challenge.

Although MOFScript is a domain-specific language, imple-

menting HOTs that use two input models seems to be imma-

ture, because this language introduces a series of constraints

-no recursion, limited data structures, only a few iterators-

that limit its applicability; or at least, it resulted too limited

for our application. This language is not supported any more.

MOFM2T [13] is a new language that Eclipse is considering

as MOFScript successor, and some of its drawbacks are being

addressed in the new proposal.

The Java solution reached the goal at the expense of clarity.

This solution has the advantage that can be tuned according to

the user needs, and improve the usability when required. For

instance, the GUI implemented as part of the Java application

eases the usability of the solution when it is used by process

engineers. This helps transfer these solutions to the software

industry.

Given the flexibility provided by a general programming

language as Java, we were successful in building the HOT.

However, we are aware that having a domain-specific lan-

guage, such as the AMW tool or MOFScript, makes build-

ing model transformations more straightforward and prevents

several potential syntax errors that may be introduced in Java.

We are now testing the implementation of HOTs using a

transformation language, such as ATL. We expect that in the

near future one of the former solutions will substitute this

one, and thus taking advantage of solutions based on standard

specifications.

ACKNOWLEDGMENT

This work has been partly funded by Project Fondef

GEMS IT13I20010 and Luis Silvestre was also supported

by PhD Scholarship Program of Conicyt, Chile (CONICYT-

PCHA/2013-63130130).

REFERENCES

[1] D. Balasubramanian, A. Narayanan, C. vanBuskirk, and G. Karsai.
The graph rewriting and transformation language: GReAT. Electronic
Communications of the EASST, 1, 2007.

[2] J. Bézivin, F. Büttner, M. Gogolla, F. Jouault, I. Kurtev, and A. Lin-
dow. Model transformations? transformation models! In O. Nierstrasz,
J. Whittle, D. Harel, and G. Reggio, editors, MoDELS, volume 4199 of
Lecture Notes in Computer Science, pages 440–453. Springer, 2006.

[3] J. Clark. XSL Transformations (XSLT). Technical Report Version 1.0,
W3C Recommendation, 1999.

[4] M. Didonet del Fabro and P. Valduriez. Towards the efficient devel-
opment of model transformations using model weaving and matching
transformations. Software and System Modeling, 8(3):305–324, 2009.

[5] Eclipse. Acceleo, 2014. http://www.eclipse.org/acceleo/.
[6] Eclipse. Translating KM3 into SQL using AMW and ATL, 2014.

http://www.eclipse.org/gmt/amw/examples/#AMW KM32SQL.
[7] M. D. D. Fabro, J. Bézivin, and P. Valduriez. Model-driven tool

interoperability: An application in bug tracking. In R. Meersman and
Z. Tari, editors, OTM Conferences (1), volume 4275 of Lecture Notes
in Computer Science, pages 863–881. Springer, 2006.

[8] J. A. Hurtado Alegria, M. C. Bastarrica, S. F. Ochoa, and J. Simmonds.
Mde software process lines in small companies. Journal of Systems and
Software, 86(5):1153–1171, 2013.

[9] J. A. Hurtado-Alegria, M. C. Bastarrica, A. Quispe, and S. F. Ochoa.
An MDE approach to software process tailoring. In D. Raffo, D. Pfahl,
and L. Zhang, editors, ICSSP, pages 43–52, Honolulu, HI, USA, 2011.
ACM.

[10] F. Jouault. TCS: Textual Concrete Syntax, 2014.
https://raweb.inria.fr/rapportsactivite/RA2010/atlanmod/uid20.html.

[11] F. Jouault and I. Kurtev. Transforming models with ATL. In H. Berlin,
editor, Proceedings of the 2005 International Conference on Satellite
Events at the MoDELS, volume 3844 of Lecture Notes in Computer
Science, pages 128–138, Montego Bay, Jamaica, 2006. Springer-Verlag.

[12] J. Oldevik, T. Neple, R. Grønmo, J. Ø. Aagedal, and A.-J. Berre.
Toward standardised model to text transformations. In A. Hartman and
D. Kreische, editors, ECMDA-FA, volume 3748 of Lecture Notes in
Computer Science, pages 239–253. Springer, 2005.

[13] OMG. MOF Model To Text Transformation Language (MOFM2T),
1.0. Technical Report 2008-16-01, Object Management Group, 2008.
http://www.omg.org/spec/MOFM2T/1.0/.

[14] OMG. Software & Systems Process Engineering Metamodel Specifica-
tion (SPEM) Version 2.0. Technical Report 2008-04-01, Object Man-
agement Group, 2008. http://www.omg.org/spec/SPEM/2.0/PDF/.

[15] OMG. Meta Object Facility (MOF) 2.0 Query/View/Transformation
Specification. Technical report, Object Management Group, January
2011. http://www.omg.org/spec/QVT/1.1/PDF/.

[16] D. C. Schmidt. Guest Editor’s Introduction: Model-Driven Engineering.
IEEE Computer, 39(2):25–31, 2006.

[17] M. Tisi, J. Cabot, and F. Jouault. Improving Higher-Order Transfor-
mations Support in ATL. In L. Tratt and M. Gogolla, editors, ICMT,
volume 6142 of Lecture Notes in Computer Science, pages 215–229,
Malaga, Spain, 2010. Springer.

[18] M. Tisi, F. Jouault, P. Fraternali, S. Ceri, and J. Bézivin. On the Use
of Higher-Order Model Transformations. In R. F. Paige, A. Hartman,
and A. Rensink, editors, ECMDA-FA, volume 5562 of Lecture Notes
in Computer Science, pages 18–33, Enschede, The Netherlands, 2009.
Springer.

29

