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Abstract This paper is devoted to the study of optimal solutions of symmetric cone
programs by means of the asymptotic behavior of central paths with respect to a broad
class of barrier functions. This class is, for instance, larger than that typically found
in the literature for semidefinite positive programming. In this general framework,
we prove the existence and the convergence of primal, dual and primal–dual central
paths. We are then able to establish concrete characterizations of the limit points of
these central paths for specific subclasses. Indeed, for the class of barrier functions
defined at the origin, we prove that the limit point of a primal central path minimizes
the corresponding barrier function over the solution set of the studied symmetric cone
program. In addition, we show that the limit points of the primal and dual central
paths lie in the relative interior of the primal and dual solution sets for the case of the
logarithm and modified logarithm barriers.
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1 Introduction

A usual (linear) symmetric cone program (SCP) consists of minimizing a linear func-
tion subject to the intersection of an affine subspace with a symmetric cone. Prominent
optimization frameworks, such as linear programming, second-order cone program-
ming and semidefinite programming, can be cast as SCPs. Themachinery of Euclidean
Jordan algebras (EJAs) has become essential in the study of symmetric cone program-
ming because of the well-known property that states that every symmetric cone in a
Euclidean vector space can be cast as the cone of square elements of a suitably chosen
EJA (see, for instance, [1, TheoremIII.3.1]).

Interior-pointmethods (IPMs) are efficient tools for solving an SCP. Typically, these
methods use a barrier scheme defined via the logarithm barrier function. The solution
of this barrier scheme is called the central path, and the good properties exhibited by
the asymptotic behavior of this central path are fundamental to achieving convergence
and good performance of IPMs. This topic has been very productive in the last two
decades. We refer the reader to the pioneering works of Nesterov and Todd [2,3],
Faybusovich [4,5] and Schmieta and Alizadeh [6]. For recent developments in this
subject, we refer the reader to the works of Zhang and Zhang [7] and Yang et al. [8].

As noted in [5], the choice of the logarithm barrier function for obtaining the
central path is optimal in the sense of available complexity estimates of corresponding
interior-point algorithms. However, other choices of barrier functions occasionally
have theoretical advantages concerning the characterization of the limit points of their
central paths. This is the case, for instance, in Yu et al. [9], in which the central path,
with respect to the entropy function, is analyzed.

In this work, we consider a generalization of the SCP, allowing the objective func-
tion to be convex (but smooth). To construct the barrier schemes, we use spectral
functions associated with a large class of real-valued barrier functions, which include
the logarithm barrier and the entropy function, among others. We also study the dual
problem of the SCP via a central path, obtained from the optimality conditions of the
barrier schemes associated with the primal problem SCP. Hence, we work with three
central paths: the primal central path, the dual central path and the primal–dual central
path. Our aim is thus to study their asymptotic behavior. More precisely, we prove
the well-definedness of these central paths, we present convergence results, and we
provide characterizations of their limit points in specific situations.

To the best of our knowledge, no general and systematic treatment of central paths
with respect to broad classes of barrier functions for solving symmetric cone programs
exists in the literature. Our main motivation is to bring well-known conic programs
into a common framework for which one can detect the advantages and limitations of
the EJA approach and the considered barrier functions.

The outline of this manuscript is as follows. In Sect. 2, we provide preliminary
materials concerning EJAs. We also present some properties of spectral functions and
introduce the class of barrier functionsweworkwith. InSect. 3,we show that the primal
central paths are well defined, and we introduce the dual and the primal–dual central
paths. In Sect. 4, we present convergence results for the primal, dual and primal–dual
central paths. Finally, Sect. 5 is devoted to the study of the characterization of the limit
points of the central paths.
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2 Preliminaries

2.1 Euclidean Jordan Algebras

We assume that the reader has some familiarity with Euclidean Jordan algebras. For
an exposition of the definitions and main results of this algebra, we refer the reader to
the book by Faraut and Korányi [1].

Throughout this paper, we assume that (V, ◦, 〈·, ·〉), shortly denoted byV, is a (real)
Euclidean Jordan algebra (EJA) of rank r and unit element e ∈ V. For x, y ∈ V, the
symbol 〈x, y〉 denotes the inner product, and x ◦ y denotes the Jordan product. We
use the notation x2 := x ◦ x , and we denote the corresponding symmetric cone as
K := {x2 : x ∈ V}.

An element c ∈ V is an idempotent if c2 = c. An idempotent c is primitive if
it is nonzero and cannot be written as a sum of two nonzero idempotents. A Jordan
frame is a collection {c1, . . . , cr } of primitive idempotents satisfying

∑r
i=1 ci = e and

ci ◦ c j = 0 when i �= j . Every element x ∈ V admits a spectral decomposition (see
[1, TheoremIII.1.2]); that is, there exists a Jordan frame {c1, . . . , cr } and real numbers
λ1, . . . , λr such that x = ∑r

i=1 λi ci . The λi ’s values are uniquely determined by x
and are called the eigenvalues of x .

Let x ∈ V with spectral decomposition x = ∑r
i=1 λi ci . We define the trace of x

by tr(x) := ∑r
i=1 λi and the determinant of x by det(x) := �r

i=1λi . The element x is
invertible if no eigenvalue of x is equal to zero, in which case one defines the inverse
of x as x−1 := ∑r

i=1 λ−1
i ci .

Two elements a, b ∈ V operator commute if a ◦ (b ◦ z) = b ◦ (a ◦ z) for all
z ∈ V. From [6, Theorem27], the operator commutation property is equivalent to the
existence of a Jordan frame {c1, . . . , cr } and real numbers λ1, . . . , λr and μ1, . . . , μr

such that a = ∑r
i=1 λi ci and b = ∑r

i=1 μi ci .
An EJA is said to be scalarizable if there exists a positive constant θ such that

〈x, y〉 = θ tr(x ◦ y) for all x, y ∈ V. This constant is unique and called the scaling
factor of the EJA. Of course, it is given by θ = 〈e,e〉

tr(e) . Without any loss of generality,
we assume that a scalarizable EJA has scaling factor θ = 1. Indeed, we can work with
the inner product 1

θ
〈·, ·〉 on V, which is compatible with the given Jordan structure.

Throughout this work, we assume that the EJA is scalarizable with θ = 1.

2.2 Spectral Sets and Functions

For x ∈ V, the notation λ(x) refers to the (column) vector of the eigenvalues of x
arranged in nondecreasing order (i.e., λ1(x) ≤ λ2(x) ≤ · · · ≤ λr (x)). A set � ⊆ V is
said to be a spectral set if there exists a permutation invariant set Q ⊆ R

r such that
� = {x ∈ V : λ(x) ∈ Q}. A function Φ : V → R ∪ {+∞} is said to be a spectral
function if there exists a permutation invariant function ϕ : Rr → R ∪ {+∞} such
that Φ(x) = Φϕ(x) := ϕ(λ(x)). We note that the domain of Φϕ is given by

domΦϕ =
{

r∑

i=1

ξi ci : (c1, . . . , cr ) ∈ OV, ξ ∈ domϕ

}

, (1)
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where OV denotes the set of vectors (c1, . . . , cr ) ∈ V
r such that {c1, . . . , cr } is a

Jordan frame. Hence, domΦϕ is a spectral set, whose closure is given by

cl
(
domΦϕ

) =
{

r∑

i=1

ξi ci : (c1, . . . , cr ) ∈ OV, ξ ∈ cl (domϕ)

}

. (2)

Let us denote by 	0(X) the set of convex, lower semicontinuous and proper func-
tions defined on a Euclidean space X with values in R∪ {+∞}. The spectral function
Φϕ inherits many properties of ϕ. For instance, if ϕ ∈ 	0(R

r ), then Φϕ ∈ 	0(V) (see
[10, Theorem41]). Moreover, from [10, Theorem30], the conjugate

(
Φϕ

)∗ is also a
spectral function with ϕ∗ as the associated permutation invariant function satisfying
the following relationship:

(
Φϕ

)∗ = Φϕ∗ . (3)

Let f ∈ 	0(V). A fundamental concept used throughout this work is the recession
function of f (see [11,12]), which can be defined as

f∞(d) := lim
t→+∞

f (x + td) − f (x)

t
, ∀d ∈ V, (4)

where x is an arbitrary point in dom f := {x : f (x) < +∞} (the domain of f ).
The next proposition provides a formula to compute the recession function

(
Φϕ

)
∞.

This result is a generalization of [13, Theorem8.1] and [14, Proposition3.3(2)] that,
to our knowledge, has not previously been established for EJAs. Its proof follows the
corresponding one in [13, Theorem8.1], but it is necessary to apply a commutation
principle that has been recently obtained for EJAs in Ramírez, Seeger and Sossa [15].

Proposition 2.1 Let ϕ ∈ 	0 (Rr ) be a permutation invariant function and Φϕ : V →
R ∪ {+∞} be the induced spectral function. Then,

(
Φϕ

)
∞ = Φϕ∞ .

Proof According to [12, Theorem2.5.4], the recession function of f ∈ 	0(V) is equal
to the support function of dom f ∗; that is,

f∞(d) = sup{〈u, d〉 : u ∈ dom f ∗}. (5)

Let d ∈ V; because Φϕ ∈ 	0(V), we have from (5) and (3) the following equality:

(
Φϕ

)
∞ (d) = sup

{〈u, d〉 : u ∈ domΦϕ∗
}
. (6)

Denote by d := ∑r
i=1 λi (d)ci (d) a spectral decomposition of d, and take the elements

uξ := ∑r
i=1 ξi ci (d), with ξ ∈ domϕ∗. In view of (1), we have that uξ ∈ domΦϕ∗ for

all ξ ∈ domϕ∗. Note that 〈uξ , d〉 = ξ T λ(d). Hence, from (6), we obtain

(
Φϕ

)
∞ (d) ≥ sup

{
ξ T λ(d) : ξ ∈ domϕ∗} = ϕ∞(λ(d)) = Φϕ∞(d),

123



J Optim Theory Appl (2017) 172:649–668 653

where the first equality is because of (5). Reciprocally, by taking the closure of
domΦϕ∗ , (6) can be written as

(
Φϕ

)
∞ (d) = sup

{〈u, d〉 : u ∈ cl
(
domΦϕ∗

)}
. (7)

We recall that the closure of a spectral set is spectral, so cl
(
domΦϕ∗

)
is a spectral set.

Assume first that
(
Φϕ

)
∞ (d) < +∞, and let ū ∈ cl

(
domΦϕ∗

)
be an optimal solution

of problem (7). Hence, we can use the commutation principle [15, Theorem2] to
deduce that ū and d operator commute. Therefore, ū and d admit a simultaneous
spectral decomposition, i.e., there exist ξ̄ ∈ R

r and a Jordan frame {c̄1, . . . , c̄r } such
that ū = ∑r

i=1 ξ̄i c̄i , d = ∑r
i=1 λi (d)c̄i . Observe that ξ̄ ∈ cl (domϕ∗) because

ū ∈ cl
(
domΦϕ∗

)
and because of relationship (2). From (7), we then have

(
Φϕ

)
∞ (d) = ξ̄ T λ(d) ≤ sup

{
ξ Tλ(d) : ξ ∈ cl

(
domϕ∗)} = ϕ∞(λ(d)) = Φϕ∞(d).

When
(
Φϕ

)
∞ (d) = +∞, from (6), we have that there exists a sequence {un} ⊂

domΦϕ∗ such that 〈un, d〉 → +∞. By using the Von Neumann’s trace inequality
〈a, b〉 ≤ λ(a)T λ(b) for all a, b ∈ V [10, Theorem23], we conclude that the sequence
{λ(un)} ⊂ domϕ∗ satisfies λ(un)T λ(d) → +∞, which implies that Φϕ∞(d) = +∞.

The proof is complete. ��

2.3 Barrier Functions for Symmetric Cones

Let us denote by C the set of functions v ∈ 	0(R) ∩ C2 (]0,∞[) satisfying the
following:

]0,∞[ ⊆ domv ⊆ [0,∞[, lim
s→0+ v′(s) = −∞ and v′′(s) > 0, ∀s > 0.

We also define the following hypothesis over v:

(H.1) v is sublevel bounded.
(H.2) lims→∞ v′(s) = 0.

Example 2.1 We provide examples of functions that belong to the class C.
Functionswith domv = [0,∞[ (with the convention that these functions take the value
+∞ on negative numbers): v1(s) = s log s − s (with the convention 0 log 0 = 0),
v2(s) = − 1

r s
r , and v3(s) = s − 1

r s
r (with r ∈]0, 1[). Note that v1 and v3 satisfy

(H.1), whereas v2 satisfies (H.2).
Functions with domv =]0,∞[ (with the convention that these functions take the

value+∞ on nonpositive numbers): v4(s) = s−1, v5(s) = − log s (logarithmbarrier),
and v6(s) = s−log s (modified logarithmbarrier). Note that v6 satisfies (H.1), whereas
v4 and v5 satisfy (H.2).

The next proposition presents two technical results concerning the class C.
Proposition 2.2 Let v ∈ C. The following properties are satisfied:
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(a) If v(0) ∈ R, then for every s̄ > 0, there exists L ∈ R such that −v′(s)s ≤ L for
all s ∈]0, s̄].

(b) If v satisfies (H.2), then v∞ is nonnegative.

Proof Part (a). The convexity of v and the fact that v(0) ∈ R imply that −v′(s)s ≤
v(0)− v(s) for all s > 0. Because v is lower semicontinuous on [0,+∞[, the desired
result follows from the fact that v is bounded below on [0, s̄] for every s̄ > 0.

Part (b).We use (4) to deduce that v∞(0) = 0 and v∞(δ) = +∞, ∀δ < 0. Suppose
that δ > 0 and let s > 0. The convexity of v implies that

v(s)

t
+ v′(s)δ − v′(s)s

t
≤ v(tδ)

t
, ∀t > 0.

Letting t and s tend to infinity, we conclude that 0 ≤ v∞(δ). ��
For v ∈ C, we define the function Ψv : V → R ∪ {+∞} to be

Ψv(x) :=
r∑

i=1

v(λi (x)). (8)

Of course, Ψv is a spectral function with ϕv(ξ) = ∑r
i=1 v(ξi ), its associated permu-

tation invariant function. Below, we list some properties that Ψv satisfies. A proof can
be found in [10,16].

Proposition 2.3 Let v ∈ C. Ψv satisfies the following properties:

(a) Ψv is a spectral function that belongs to 	0(V).

(b) int (domΨv) = intK, where intC denotes the interior of a set C.
(c) Ψv is strictly convex and twice continuously differentiable on intK.

(d) ∇Ψv(x) = ∑r
i=1 v′(λi (x))ci (x) for every x = ∑r

i=1 λi (x)ci (x) ∈ intK.

Example 2.2 Consider v5 and v6 as in Example2.1. We then have

Ψv5(x) = − log det(x), ∇Ψv5(x) = −x−1,

Ψv6(x) = tr(x) − log det(x), ∇Ψv6(x) = e − x−1.

3 Central Paths

The (convex) symmetric cone program is defined as follows:

min
x∈V

{ f (x) : Ax = b, x ∈ K}, (P)

where f : V → R is a convex, continuously differentiable function, b ∈ R
m , and

A : V → R
m is a linear map. The classical Lagrangian dual problem associated with

problem (P) is given by

max
(y,s)∈Rm×K

bT y + inf
x∈V

{ f (x) − 〈x,A∗y + s〉}. (D)
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whereA∗ denotes the adjoint of the linear mapA. We denote by FP (FD) the primal
(dual) feasible set and by SP (SD) the primal (dual) solution set.

Remark 3.1 Linear programming, semidefinite programming and second-order cone
programming are particular cases of (P). In fact, this result is obtained by taking the
algebra Rn of n-dimensional vectors, the algebra Sn of n× n symmetric matrices and
the Jordan spin algebra Ln , respectively, with f linear.

Throughout this paper, we suppose that the following standard assumptions are
fulfilled:

( A.1) SP is nonempty.
( A.2) A is surjective.
( A.3) F0

P := FP ∩ intK �= ∅.

These assumptions ensure that SD is a nonempty and compact set and that there is no
duality gap between (P) and (D).

The KKT optimality conditions state that (x, (y, s)) ∈ SP × SD if and only if it
solves the following system of equations

Ax = b, A∗y + s = ∇ f (x), x, s ∈ K, 〈x, s〉 = 0. (9)

We study the solution of (P) by means of the following barrier schemes:

min
x∈V

{ f (x) + μΨv(x) : Ax = b, x ∈ domΨv}, μ > 0, (Pμ)

where v ∈ C and Ψv was defined in (8). The primal central path associated with v is
the set {x(μ) : μ > 0}, where x(μ) is a solution of problem Pμ.

Let g : V → R∪{+∞} be defined by g := f +δ{x :Ax=b},where δC is the indicator
function of C ⊂ V. The problem Pμ can be written as

min
x∈V

fμ(x) := g(x) + μΨv(x).

Note that F0
p ⊆ domg ∩ domΨv . Hence, assumption (A.3) implies that fμ is proper.

Moreover, fμ is strictly convex and lower semicontinuous.
The rest of the section is devoted to establishing that Pμ admits a unique solution

for every μ > 0. To do this, we need two technical lemmas. The first one is obtained
from the continuity of the λi values and the compactness of the set of Jordan frames
OV.

Lemma 3.1 Let {xk} be a sequence of V such that it converges to x ∈ V. Denote
by xk := ∑r

i=1 λi (xk)ci (xk) a spectral decomposition of xk, for every k. There then
exists a spectral decomposition of x, given by x = ∑r

i=1 λi ci , and a subsequence
{xk�

} such that for every i ∈ {1, . . . , r},

lim
�→∞ λi (xk�

) → λi , lim
�→∞ ci (xk�

) = ci .
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Lemma 3.2 Let v ∈ C such that v(0) ∈ R. For every sequence {xk} ⊂ intK converg-
ing to a point on ∂K := K \ intK, there then exists a subsequence {xk�

} such that
lim�→∞〈∇Ψv(xk�

), x̃ − xk�
〉 = −∞ for every x̃ ∈ intK.

Proof Let {xk} ⊂ intK be a sequence such that it converges to x ∈ ∂K, and let
x̃ ∈ intK. Denote by xk := ∑r

i=1 λi (xk)ci (xk) a spectral decomposition of xk . We
then have

〈∇Ψv(xk), x̃ − xk〉 =
r∑

i=1

v′(λi (xk))〈ci (xk), x̃〉 −
r∑

i=1

v′(λi (xk))λi (xk).

Note that for every i , the sequence {λi (xk)} is bounded because {xk} is bounded.
Hence, there exists s̄ > 0 such that for every i , we have that {λi (xk)} ⊂]0, s̄]. Propo-
sition2.2(a) implies that there exists M ∈ R such that

〈∇Ψv(xk), x̃ − xk〉 ≤
r∑

i=1

v′(λi (xk))〈ci (xk), x̃〉 + M, ∀k.

Observe that 0 < 〈ci (xk), x̃〉 ≤ ‖x̃‖ for every k because ci (xk) is a nonzero ele-
ment of K and x̃ ∈ intK. Moreover, from Lemma3.1, we have that there exists
a spectral decomposition of x , x = ∑r

i=1 λi ci , and a subsequence {xk�
} such that

lim�→∞ λi (xk�
) = λi for every i . Let I0 := {i : λi = 0}; note that I0 �= ∅

because x ∈ ∂K. Hence, because v ∈ C1 (]0,∞[) and {〈ci (xk), x̃〉}k is bounded,
the sum

∑
i /∈I0 v′(λi (xk�

))〈ci (xk�
), x̃〉 remains bounded when � goes to ∞, whereas

the sum
∑

i∈I0 v′(λi (xk�
))〈ci (xk�

), x̃〉 goes to −∞ when � goes to ∞ because
lims→0+ v′(s) = −∞. Hence,

lim
�→∞〈∇Ψv(xk�

), x̃ − xk�
〉 ≤ lim

�→∞

r∑

i=1

v′(λi (xk�
))〈ci (xk�

), x̃〉 + M = −∞.

��
Toprove that the primal central path iswell defined (i.e., Pμ admits a unique solution

for all μ > 0), we recall the following proposition [12, Proposition3.1.3] taken from
recession analysis.

Proposition 3.1 Let f ∈ 	0(V). The following statements are equivalents:

(a) f is sublevel bounded (i.e., {x : f (x) ≤ γ } is bounded for all γ > inf f ).
(b) f is coercive (i.e., f∞(d) > 0 for all d �= 0).
(c) The optimal set {x ∈ V : f (x) = inf f } is nonempty and compact.

In the next proposition, we establish the main result of the section, which states
that the primal central path is well defined.

Proposition 3.2 Let v ∈ C. Suppose one of the following conditions holds:

(a) v satisfies (H.1).
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(b) v satisfies (H.2) and SP is bounded.

The primal central path {x(μ) : μ > 0} with respect to v is then well defined and is
contained in the interior of K.

Proof We divide the proof into two parts; in Part 1, we prove the existence and unique-
ness of x(μ), and in Part 2, we prove that this path is in intK. Part1 By using [12,
Theorem2.3.4], we can show that (ϕ+αψ)∞ = ϕ∞+αψ∞, for allϕ,ψ ∈ 	0(V), and
α > 0. This fact and Proposition2.1 imply that ( fμ)∞(d) = g∞(d)+μΨv∞(d), ∀d ∈
V.According to Proposition3.1, to show the existence of x(μ), it is sufficient to prove
that fμ is coercive, that is,

g∞(d) + μΨv∞(d) > 0, ∀d �= 0. (10)

Suppose that v satisfies (H.1). This implies that Ψv is sublevel bounded and thus is
coercive, i.e., Ψv∞(d) > 0, ∀d �= 0. Moreover, because SP �= ∅, we have that g is
bounded below, so g∞ is nonnegative. These facts imply (10).
Suppose that v satisfies (H.2) and SP is bounded. The boundedness of the primal
solution set implies that g is coercive (Proposition3.1), which means that (g∞)(d) >

0, ∀d �= 0. From Proposition2.2(b), we obtain that Ψv∞ is nonnegative. These facts
imply the desired result (10). The strict convexity of fμ ensures the uniqueness of
x(μ).

Part2 If v(0) = +∞, then the result is clear because dom fμ = FP ∩ intK. Suppose
that v(0) ∈ R. The proof that we present is similar to the proof of [17, Theorem3.1].
Assume by contradiction that x(μ) ∈ ∂K, and define the sequence xk := εk x0 + (1−
εk)x(μ),with x0 ∈ FP ∩ intK and {εk} ⊂]0, 1[ a sequence satisfying limk→∞ εk = 0.
Clearly, xk ∈ FP ∩ intK for all k. From the optimality of x(μ) and the convexity of
f and Ψv , we obtain

0 ≤ f (xk) + μΨv(xk) − f (x(μ)) − μΨv(x(μ))

≤ 〈∇ f (xk), xk − x(μ)〉 + μ〈∇Ψv(xk), xk − x(μ)〉.

This inequality and the definition of xk imply that

[(1 − εk)/μ]〈∇ f (xk), x(μ) − x0〉 ≤ 〈∇Ψv(xk), x0 − xk〉. (11)

Note that {xk} converges to x(μ). The left-hand side of (11) then remains bounded
when k → ∞ because f ∈ C1(V). However, from Lemma3.2 we have that the
right-hand side of (11) goes to −∞ for a subsequence {xk�

}, which is a contradiction.
��
Because the primal central path lies in the interior of the cone K, the problem Pμ can
be written as

min
x∈V

{ f (x) + μΨv(x) : Ax = b, x ∈ intK}, μ > 0.
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Hence, the KKT conditions say that there exists y(μ) ∈ R
m such that

Ax(μ) = b, f (x(μ)) + μ∇Ψv(x(μ)) = A∗y(μ), x(μ) ∈ intK. (12)

Note that, because A is surjective, we have the relationship

y(μ) = (AA∗)−1A (∇ f (x(μ)) − s(μ)) ,

where s(μ) := −μ∇Ψv(x(μ)). Hence, the set {(y(μ), s(μ)) : μ > 0} is well defined
and is called the dual central path with respect to v.

The primal–dual central path with respect to v is defined as the set {(x(μ), y(μ),

s(μ)) : μ > 0}.

4 Limiting Behavior of Central Paths

In what follows, we are interested in the behavior of the three central paths defined in
the previous sectionswhenμ goes to 0.We thus focus our analysis only on small values
of μ. Therefore, we henceforth assume that the different central paths are defined on
an interval of the form μ̄ > μ > 0 for some given μ̄ > 0.

Our first result concerns the boundedness of the primal central path (for small values
of μ).

Proposition 4.1 Suppose that SP is bounded. Let v ∈ C such that it satisfies (H.1) or
(H.2). The primal central path {x(μ) : μ̄ > μ > 0} with respect to v is then bounded,
and all its limit points are optimal solutions of (P).

Proof Let x0 ∈ F0
P . By the optimality of x(μ), we have that

g(x(μ)) + μΨv(x(μ)) ≤ g(x0) + μΨv(x
0). (13)

We proceed by contradiction to prove that the primal central path is bounded. We
assume that there exists a sequence {μk} of positive numbers such that

μk → 0, ‖x(μk)‖ → ∞, x(μk)/‖x(μk)‖ → d �= 0.

Dividing (13) by ‖x(μk)‖ and passing to the limit, we obtain g∞(d) ≤ 0, which
contradicts the fact that SP is compact (Proposition3.1). Hence, the primal central
path is bounded.
Let x̄ be a limit point of {x(μ) : μ̄ > μ > 0}; we claim that x̄ lies in SP . Indeed, let
{μk} be a sequence of positive numbers such that limk→∞ x(μk) = x̄ . Let x∗ ∈ SP
and x0 ∈ F0

P . For ε ∈]0, 1], we define

z(ε) := (1 − ε)x∗ + εx0.

Note that z(ε) ∈ F0
P . Hence, by the optimality of x(μk), we have that

f (x(μk)) + μkΨv(x(μk)) ≤ f (z(ε)) + μkΨv(z(ε)).
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By using the convexity of Ψv, the above inequality implies that

μk〈Ψv(z(ε)), x(μk) − z(ε)〉 ≤ f (z(ε)) − f (x(μk)).

By passing to the limit, we obtain that f (x̄) ≤ f (z(ε)). Finally, letting ε → 0, we
have f (x̄) ≤ f (x∗). Thus, x̄ ∈ SP . ��

In the next proposition, we also present a boundedness result for the dual central
path. The proof repeats word for word the arguments in [18, Proposition3.3], substi-
tuting the EJA Sn with the general EJA V.

Proposition 4.2 Suppose that SP is bounded. Let v ∈ C such that it satisfies (H.1) or
(H.2). The dual central path with respect to v is then bounded (for small values of μ),
and all of its limit points are optimal solutions of D.

In the remainder of this section, we discuss the convergence of the primal–dual
central path. The results thatwe present are obtained by assuming that the objective and
barrier spectral functions are analytic. For instance, because the trace and determinant
are polynomial functions on V (see [1, Proposition II.2.1]) and the logarithm function
is analytic on the positive numbers, we deduce that the barrier spectral functions

Ψv5(x) = − log det(x), Ψv6(x) = tr(x) − log det(x),

are analytic on the interior of K.

Recalling the KKT optimality conditions (12) for problem Pμ, we see that the
primal–dual central path is well defined as the unique solution of

Ax = b, x ∈ intK, A∗y + s = ∇ f (x), s + μ∇Ψv(x) = 0. (14)

The strategy that we follow is to define a suitable semi-analytic set from the above
conditions and apply a curve selection lemma [19]. This procedure was used, for
instance, in [20,21]. The key factor for the construction of the semi-analytic set is
to describe intK by a set of elements that satisfy some polynomial inequalities. For
instance, we know that a matrix in Sn is positive definite if and only if its leading
principal minors are positives. We explain how this characterization is extended to the
general context of EJA. Let {c1, . . . , cr } be any Jordan frame. We define V(k) := {x ∈
V : (c1 + · · · + ck) ◦ x = x}, k ∈ {1, . . . , r}, which are subalgebras such that V(1) ⊂
V

(2) ⊂ · · · ⊂ V
(r) = V. Let Pk be the orthogonal projection onto V(k). The principal

minor �k is the polynomial function defined onV by �k(x) := det (k)(Pk(x)), where
det(k) denotes the determinant with respect to the subalgebra V

(k). The following
equivalence [1, SectionVI.3] provides us the desired characterization:

x ∈ intK ⇔ �k(x) > 0, for all k = 1, . . . , r.

Now, we are ready to enunciate the convergence result.
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Proposition 4.3 Suppose that SP is bounded. Let v ∈ C such that it satisfies (H.1)
or (H.2). Assume also that f and Ψv are analytic functions on the interior of their
domains. The primal–dual central path with respect to v is then an analytic curve and
it converges, when μ ↓ 0, to a point in SP × SD .

Proof The analytic curve property comes from [18, Proposition3.4].We take any limit
point (x∗, y∗, s∗) of the primal–dual central path and use the optimality conditions
(9) and (14) to construct the set V as the set of elements (x̄, ȳ, s̄, μ) such that the
following are satisfied:

Ax̄ = 0, A∗ ȳ + s̄ + ∇ f (x∗) − ∇ f (x̄ + x∗) = 0, μ > 0,

s̄ + s∗ + μ∇Ψv(x̄ + x∗) = 0, �k(x̄ + x∗) > 0 for k = 1, . . . , r.

Forμ > 0, the set of conditions that definesV provides a unique element (x̄, ȳ, s̄)given
by x̄ = x(μ) − x∗, ȳ = y(μ) − y∗, and s̄ = s(μ) − s∗. Observe that the zero point is
in the closure of V. Moreover, this set is semi-analytic because the partial derivatives
of f and Ψv are analytic functions and, for k = 1, . . . , r , �k(·) are polynomial
functions. Hence, we can use the curve selection lemma for the semi-analytic set V
[19, Proposition2], and we can follow the same arguments as [20, Theorem4.6.1] and
[21, TheoremA.3] to deduce the convergence of the primal–dual central path. ��

5 Characterization of Limits Points of Central Paths

The next theorem covers the case when v is defined at 0. The theorem shows that the
primal central path is convergent and that its limit point minimizes the spectral barrier
function over the primal solution set.

Theorem 5.1 Let v ∈ C such that v(0) ∈ R. Suppose that one of the following
conditions holds:

(a) v satisfies (H.1).
(b) v satisfies (H.2) and SP is bounded.

The primal central path {x(μ) : μ > 0} then converges, when μ ↓ 0, to the unique
optimal solution of

min{Ψv(x) : x ∈ SP }. (AC)

Proof We start by noting that the problem AC admits a unique solution. Indeed,
because v(0) ∈ R, we get domΨv ∩ SP �= ∅. Therefore, Ψv + δSP ∈ 	0(V). Hence, it
is sufficient to show thatΨv +δSP is coercive (Proposition3.1). We note that (δC )∞ =
δC∞ , where C is a nonempty, closed and convex set, and C∞ denotes its recession set
(see [11,12]). Therefore, we must prove the following:

Ψv∞(d) + δ(SP )∞(d) > 0, ∀d �= 0. (15)

If v satisfies (H.1), then Ψv is sublevel bounded; therefore, (15) is verified (Proposi-
tion3.1). When v satisfies (H.2) and SP is bounded, it follows from Proposition2.2(b)
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thatΨv∞ is nonnegative, and the boundedness of SP is equivalent to (SP )∞ = {0} (see
[12, Proposition2.1.2]). Consequently, (15) is verified. The uniqueness of the optimal
solution of AC follows from the strict convexity of Ψv.

Let x∗ be the unique optimal solution AC .Wenowproceed to prove the convergence
of the primal central path {x(μ) : μ > 0} to x∗ when μ goes to 0. By the optimality
of x(μ), we have that

g(x(μ)) + μΨv(x(μ)) ≤ g(x∗) + μΨv(x
∗). (16)

Because x∗ ∈ SP , (16) implies that

Ψv(x(μ)) ≤ Ψv(x
∗). (17)

Note that when v satisfies (H.2), it follows that SP is bounded; therefore, the bound-
edness of the primal central path (for small values of μ) is ensured by Proposition4.1.
However, SP is not necessarily bounded when v satisfies (H.1), but the boundedness
of {x(μ) : μ̄ > μ > 0} is deduced from (17) and from the fact that Ψv is sublevel
bounded. Hence, let x̄ be an arbitrary limit point of {x(μ) : μ̄ > μ > 0} and denote by
{μk} a sequence of positive values such that x(μk) → x̄ . Passing to the limit in (16)
and (17), we obtain that g(x̄) ≤ g(x∗) and Ψv(x̄) ≤ Ψv(x∗). Thus, x̄ ∈ SP , and by
the uniqueness of x∗, we have that x̄ = x∗. We have proved that limμ↓0 x(μ) = x∗. ��
Remark 5.1 An important portion of the results presented to this point were largely
inspired by the works of Cruz Neto et al. [17] and López and Ramírez [18], which
concern central paths in semidefinite programming. However, note that our results are
valid for a larger class of barrier functions than those used in [17,18]. For instance, in
[18], the authors work with the following two classes of barrier functions:

L1 := {v ∈ C : v(0) = +∞, v is nonincreasing, v satisfies (H.2)},
L2 := {v ∈ C : v(0) ∈ R, v satisfies (H.1)},

that do not include the functions v2, v3 and v6. In addition, SP is assumed to be bounded
in articles [17,18]. However, this hypothesis is required neither in Proposition3.2 nor
in Theorem5.1 when v satisfies (H.1).

We mention that Theorem5.1 was proved in [9, Theorem4.1] for the case Ψv1 ,
where v1(s) = s log s − s. For the general case of when v is not defined at 0, the
characterization of the limit point of the primal central path remains an open question
for symmetric cone programming. A complete characterization was shown in the case
of linear programming by Auslender et al. [22]. For the case of semidefinite program-
ming, Klerk et al. [23] showed that under the strict complementarity assumption, the
central path converges to the analytic center of the optimal set. This characterization
is no longer valid without assuming this hypothesis. However, Halická et al. [24] were
able to provide another characterization for the limit point by means of an optimiza-
tion problem. For the case of second-order cone programming, Terlaky andWang [25]
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discussed the limiting behavior of the central path without assuming strict comple-
mentarity. Their analysis is based on an index set partition introduced by Bonnans and
Ramírez [26].

Recall that the Peirce decomposition of V with respect to an idempotent c ∈ V is
given by

V = V(c, 1) ⊕ V(c, 1/2) ⊕ V(c, 0),

where V(c, �) := {x ∈ V : c ◦ x = �x} with � = 1, 1/2, 0. In the remainder
of this paper, we focus our attention on Peirce decompositions of V with respect to
idempotents obtained from the limit points of the central paths. These decompositions
will provide some information concerning the localization of these limit points. Special
attention will be focused on barriers v5 and v6.

Consider x∗ and (y∗, s∗) arbitrary limit points of the primal and dual central
paths, respectively, with respect to v ∈ C. We have that the relationship s(μ) =
−μ∇Ψv(x(μ)) clearly implies that x(μ) and s(μ) admit a simultaneous spectral
decomposition, namely

x(μ) =
r∑

i=1

λi (μ)ci (μ), s(μ) =
r∑

i=1

δi (μ)ci (μ). (18)

From Lemma3.1, we deduce that there exists a simultaneous spectral decomposition
of x∗ and s∗, namely

x∗ =
r∑

i=1

λ∗
i c

∗
i , s∗ =

r∑

i=1

δ∗
i c

∗
i , (19)

and a sequence {μk} of positive numbers satisfying limk→∞ μk = 0 such that for
every i ∈ {1, . . . , r}, one has

ci (μk) → c∗
i , λi (μk) → λ∗

i , δi (μk) → δ∗
i , when k → ∞. (20)

For x = ∑r
i=1 λi ci , we introduce the index notation

I := {1, . . . , r}, I+(x) := {i ∈ I : λi > 0}, I0(x) := {i ∈ I : λi = 0}. (21)

The Jordan frame in (19) can be partitioned as

{c∗
i : i ∈ I+(x∗)} ∪ {c∗

i : i ∈ I+(s∗)} ∪ {c∗
i : i ∈ I0(x

∗) ∩ I0(s
∗)}.

We define
c∗
B :=

∑

i∈I+(x∗)
c∗
i , c∗

N :=
∑

i∈I0(s∗)
c∗
i . (22)
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The Peirce decompositions of V with respect to the idempotents c∗
B and c∗

N are given,
respectively, by

V = V(c∗
B, 1) ⊕ V(c∗

B, 1/2) ⊕ V(c∗
B , 0), (23)

V = V(c∗
N , 1) ⊕ V(c∗

N , 1/2) ⊕ V(c∗
N , 0). (24)

We use the words primal and dual Peirce decomposition of V to refer the decompo-
sitions (23) and (24), respectively.

In the next proposition, we show that the primal solution set SP is contained in the
subalgebra V(c∗

B, 1) under the assumption that v verifies the following:

(H.3) There exists s̄ > 0 and L ∈ R such that − v′(s)s ≤ L , ∀s ∈]0, s̄].
Note that, if v ∈ C such that v(0) ∈ R, then hypothesis (H.3) is satisfied automati-

cally (see Proposition2.2(a)). Otherwise, when v is not defined at 0, hypothesis (H.3)
is not necessarily fulfilled (see, e.g., v4 in Example2.1). However, particular choices
of functions v can verify (H.3), even when they are not defined at 0 (see, for example,
v5 and v6 in Example2.1).

Proposition 5.1 Suppose that SP is bounded. Let v ∈ C such that it satisfies (H.1)
or (H.2). Assume also that v satisfies (H.3). Let x∗ be an arbitrary limit point of the
primal central path associated with v. We then have that

SP ⊂ V(c∗
B, 1) ∩ FP ,

with c∗
B = ∑

i∈I+(x∗) c
∗
i , where {c∗

1, . . . , c
∗
r } is some Jordan frame associated with x∗.

Proof Let (x, (y, s)) ∈ SP × SD and (x(μ), y(μ), s(μ)) be a point of the primal–dual
central path. From the optimality conditions (9) and (12), we obtain

〈x − x(μ), s − s(μ)〉 = 〈x − x(μ),∇ f (x) − A∗y − ∇ f (x(μ)) + A∗y(μ)〉
= 〈x − x(μ),∇ f (x) − ∇ f (x(μ))〉 ≥ 0, (25)

where the last inequality is due to the monotonicity of ∇ f. Because 〈x, s〉 = 0 and
〈x(μ), s〉 ≥ 0, the above relationship implies that 〈x, s(μ)〉 ≤ 〈x(μ), s(μ)〉. More-
over, from the relationship s(μ) = −μ∇Ψv(x(μ)), we obtain

〈x,−Ψv(x(μ))〉 ≤ 〈x(μ),−Ψv(x(μ))〉. (26)

Let us take spectral decompositions x(μ) = ∑r
i=1 λi (μ)ci (μ), x∗ = ∑r

i=1 λ∗
i c

∗
i , and

the sequence {μk} such that they satisfy (20). Hence, (26) becomes

T (μ) := −
r∑

i=1

v′(λi (μ))〈x, ci (μ)〉 ≤ −
r∑

i=1

v′(λi (μ))λi (μ) =: R(μ).
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By using the index notation (21), we have that T (μ) = T1(μ) + T2(μ), where

T1(μ) := −
∑

i∈I0(x∗)
v′(λi (μ))〈x, ci (μ)〉, T2(μ) := −

∑

i∈I+(x∗)
v′(λi (μ))〈x, ci (μ)〉.

Let s̄ > 0 as in hypothesis (H.3); we introduce the index notation

I≤s̄(x
∗) := {i ∈ I : λ∗

i ≤ s̄}, I>s̄(x
∗) := {i ∈ I : λ∗

i > s̄}.

R(μ) can be partitioned as R(μ) = R1(μ) + R2(μ), where

R1(μ) := −
∑

i∈I≤s̄ (x∗)
v′(λi (μ))λi (μ), R2(μ) := −

∑

i∈I>s̄ (x∗)
v′(λi (μ))λi (μ).

Taking the sequence {μk}, for sufficiently large k, we have the following results:
T1(μk) ≥ 0 because lims→0+ v′(s) = −∞, T2(μk) and R2(μk) are bounded because
of the continuity of v′ on ]0,∞[, and R1(μk) is also bounded by hypothesis (H.3).
Hence, there exists M ≥ 0 such that

0 ≤ T1(μk) ≤ M, for sufficiently large k.

Because limk→∞ v′(λi (μk)) = −∞ for all i ∈ I0(x∗), we conclude that

〈x, c∗
i 〉 = 0, ∀i ∈ I0(x

∗).

Consequently, because c∗
B + ∑

i∈I0(x∗)c∗
i = e, one obtains

x ◦ c∗
B = x ◦

(
e −

∑
i∈I0(x∗)c

∗
i

)
= x .

That is, x ∈ V(c∗
B, 1). We have thus proved that SP ⊂ V(c∗

B, 1). ��
The next theorem improves Proposition5.1 for the cases of the logarithm barrier

function v5(s) = − log s and themodified logarithmbarrier function v6(s) = s−log s.
The theorem also allows us to conclude that the accumulation points of the primal and
dual central paths lie in the relative interior of the primal and dual optimal solution
sets, respectively.

Theorem 5.2 Suppose that SP is bounded. Let x∗ and (y∗, s∗) be arbitrary limit
points of the primal and dual central paths, respectively, associated with v ∈ {v5, v6}.
There then exists a common Jordan frame of x∗ and s∗, namely {c∗

1, . . . , c
∗
r }, such that

SP = V(c∗
B, 1) ∩ FP ,

SD = (
R
m × V(c∗

N , 0)
) ∩ FD,

where, c∗
B = ∑

i∈I+(x∗) c
∗
i and c∗

N = ∑
i∈I0(s∗) c

∗
i . In particular, x∗ ∈ ri(SP ) and

(y∗, s∗) ∈ ri(SD), where ri(C) denotes the relative interior of C.
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Proof Let v ∈ {v5, v6}. Recall that the inclusion

SP ⊆ V(c∗
B , 1) ∩ FP , (27)

was stated in Proposition5.1. We now prove that

SD ⊆ (
R
m × V(c∗

N , 0)
) ∩ FD. (28)

The barrier function v can be written as v(s) = αs − log s, with α equal to 0 or 1.
Let (x, (y, s)) ∈ SP × SD , and let (x(μ), y(μ), s(μ)) be a point of the primal–dual
central path associated with v. Similarly to (25), we obtain

〈x, s(μ)〉 + 〈x(μ), s〉 ≤ 〈x(μ), s(μ)〉. (29)

From relationships s(μ) = −μ∇Ψv(x(μ)) and ∇Ψv(x(μ)) = αe− x(μ)−1, we have
that

〈x(μ), s(μ)〉 = −μα〈x(μ), e〉 + μr, (30)

x(μ)−1 = μ−1s(μ) + αe, (31)

(s(μ) + μαe)−1 = μ−1x(μ). (32)

By adding 〈x, αe〉 to both sides of (29) and by using the relationship (30), we obtain

〈x, μ−1s(μ) + αe〉 + 〈μ−1x(μ), s〉 + 〈x(μ), αe〉 ≤ 〈x, αe〉 + r =: L . (33)

By replacing (31) and (32) in (33), we obtain

〈x, x(μ)−1〉 + 〈(s(μ) + μαe)−1, s〉 + 〈x(μ), αe〉 ≤ L .

Because all terms in the foregoing inequality are nonnegative, we obtain

〈(s(μ) + μαe)−1, s〉 ≤ L . (34)

We take a spectral decomposition of s(μ) and s∗ as in (18) and (19), respectively, and
a sequence {μk} as in (20). Observe that

(s(μk) + μkαe)
−1 =

r∑

i=1

(δi (μk) + μkα)−1ci (μk).

Hence, inequality (34) becomes

r∑

i=1

(δi (μk) + μkα)−1〈ci (μk), s〉 ≤ L .

123



666 J Optim Theory Appl (2017) 172:649–668

Because (δi (μk)+μkα)−1 → +∞when k → +∞ for all i ∈ I0(s∗),we conclude that
〈c∗

i , s〉 = 0, ∀i ∈ I0(s∗), which implies 〈c∗
N , s〉 =

〈∑
i∈I0(s∗) c

∗
i , s

〉
= 0. Therefore,

s ∈ V(c∗
N , 0). Hence, (28) holds.

Let (x, (y, s)) ∈ [
V(c∗

B , 1) ∩ FP
] × [(

R
m × V(c∗

N , 0)
) ∩ FD

]
. To show that (27)

and (28) are indeed equalities, it is sufficient to prove that 〈x, s〉 = 0 because, in this
case, the optimality conditions (9) ensure that (x, (y, s)) belongs to SP × SD . We
proceed to prove this orthogonality condition. Note that

〈x, s〉 = 〈x ◦ c∗
B, s〉 = 〈x, s ◦ c∗

B〉, (35)

where the first equality arises because x ∈ V(c∗
B, 1), and the second equality comes

from the associative property of the inner product with respect to the Jordan product.
Moreover, because s ∈ V(c∗

N , 0), we have

s ◦ c∗
B + s ◦ c∗

T = s ◦ c∗
N = 0,

where, c∗
T = ∑

i∈I0(x∗)∩I0(s∗) c
∗
i . Hence, relationship (35) becomes

〈x, s〉 = 〈x,−s ◦ c∗
T 〉 = −〈x ◦ c∗

T , s〉.

However, x ◦ c∗
T = 0 because x ∈ V(c∗

B , 1), c∗
T ∈ V(c∗

B, 0) and these subalgebras
are orthogonal, i.e., V(c∗

B, 1) ◦ V(c∗
B, 0) = {0} (see [1, Proposition IV.1.1]). We thus

conclude that 〈x, s〉 = 0. ��
Remark 5.2 Because the accumulation points of the primal and dual central paths are
localized in the relative interior of SP and SD , respectively, one can conjecture that,
under some additional assumption (such as strict complementarity condition: there
exists (x, (y, s)) ∈ SP × SD such that x + s ∈ intK), they are solutions of the
following problems:

min{Ψ P
v (x) : x ∈ ri(SP )}, (ACP )

min{Ψ D
v∗ (s) : (y, s) ∈ ri(SD)}. (ACD)

Here, v ∈ {v5, v6} and Ψ P
v and Ψ D

v are functions defined similarly to (8), but with
respect to the subalgebras V (c∗

B, 1) and V (c∗
N , 0), respectively.

Indeed, in the case of linear programming, it was shown in [22, Theorem3.4] and
[22, Theorem3.1] that the primal and dual central paths, with respect to the foregoing
v, converge to the unique solutions of ACP and ACD , respectively.

The same results were shown in [24, Theorem3.2] for the (linear) semidefinite
programming setting, provided we use the logarithm barrier function v5 and that the
strict complementarity assumption is fulfilled. Unfortunately, we are thus far unable
to prove this conjecture.
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6 Conclusions

Primal, dual and primal–dual central paths in symmetric cone programming associated
with a large class of barrier functions have been considered in the paper. We have
proved the existence, the boundedness and the convergence (under some analyticity
assumptions) of these central paths. When the barrier function is defined at the zero
point, we have also proved that the limit point of the central path coincides with the
analytic center of the primal solution set. In amoregeneral case,wehaveproved that the
primal solution set is included in a subalgebra obtained from a Peirce decomposition of
the EJA with respect to a suitable idempotent element, constructed from a limit point
of the primal central path. For the logarithm and modified logarithm barrier functions,
we have proved that the accumulation points of their primal and dual central paths
belong to the relative interior of their primal and dual solution sets, respectively.
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