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Published online: 11 May 2017 – c© Società Italiana di Fisica / Springer-Verlag 2017
Communicated by N. Alamanos

Abstract. An analysis of neutron and proton scattering off 40,48Ca has been carried out. Real and imaginary
potentials have been generated using the Nuclear Structure Method (NSM) for scattering with the Gogny
D1S nucleon-nucleon effective interaction. Observables are well described by NSM for neutron and proton
elastic scattering off 40Ca and for neutron scattering off 48Ca. For proton scattering off 48Ca, NSM yields
a lack of absorption. This discrepancy is attributed to two-fold charge exchange (p, n, p) contribution and
coupling to Gamow-Teller mode which are not included in the present version of NSM. A recipe based on
a Perey-Buck fit of the NSM imaginary potential and Lane model is proposed to overcome this issue in an
approximate way.

1 Introduction

Optical potentials are key for the description of nucleon-
nucleus direct elastic and inelastic scatterings [1]. More-
over, they are used to generate transmission coefficients for
the statistical model of a compound nucleus such as in the
Hauser-Feshbach formalism [2] and beyond [3,4]. Further-
more, the knowledge of the isospin asymmetry dependence
of the potential is convenient when calculating quasielastic
charge-exchange processes. For evaluation purposes, opti-
cal potentials are often fitted in order to reproduce a con-
sistent set of reaction observables. Whenever experimental
data are not available, one can ideally rely on more mi-
croscopic approaches such as Nuclear Field Theory [5,6],
Energy Density Functionals (EDF) [7–10], ab initio ap-
proaches [11,12] or mixed approaches such as g-matrix ef-
fective interaction folded with EDF density [13,14]. More-
over microscopic approaches can be used to guide new
parametrizations of phenomenological potentials, provid-
ing form factors for volume and surface parts of the po-
tential, energy dependence, nonlocality shape and param-
eters, as well as dependence on the isospin asymmetry of
the target nucleus.

In previous attempts [9,15], the Nuclear Structure
Method [7] has been successfully applied to describe nu-
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cleon scattering off 40Ca using Gogny D1S interaction as
sole input. This method is based on Green’s function for-
malism. In its current version, it allows the description of
nucleon scattering off doubly-closed-shell spherical nuclei
including integral and differential cross sections as well
as spin observables below about 30MeV incident energy.
An extension to target nuclei with pairing and deformed
target nuclei will be possible in a near future thanks to
EDF extended reach. It is worth noting that Gogny inter-
action has been originally fitted on structure observables.
The nice agreement with reaction observables provided
by NSM is mainly due to the correct description of the
target-nucleus radius and the good description of collec-
tive excited states of the target nucleus provided by the
Random-Phase Approximation (RPA) for doubly-closed
shell nuclei.

In this work, we apply NSM to nucleon scattering off
both 40Ca and 48Ca in order to study optical potential
dependence on the isospin asymmetry of the target nu-
cleus. In sect. 2, we present a brief reminder of the NSM
formalism. In sect. 3, in order to assess the validity of
the NSM potential, we confront NSM reaction observables
with data. In sect. 4, volume integrals for NSM imaginary
potential are presented with a special focus on the isospin
asymmetry of the target. In sect. 5, general trends of the
NSM potential are extracted by fitting a Perey-Buck-like
equivalent potential [16]. Then an approximation based on
Lane consistency [17] is used in order to recover the miss-
ing absorption in the case of proton scattering off 48Ca.
Finally, in sect. 6 we present the main conclusions of this
study.
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2 Nuclear Structure Method

The NSM formalism has already been presented in some
detail in refs. [9,15]. We briefly introduce here the key
points of the formalism. Equations are presented omitting
spin for simplicity. The NSM potential, V , consists of two
components:

V = V HF + ΔV. (1)

The former is a mean-field potential; the latter is a po-
larization potential built from target-nucleus excitations.
The explicit coupling of the elastic channel to those in-
elastic channels results in a loss of flux which is reflected
in the imaginary part of the complex ΔV potential.

The Hartree-Fock (HF) potential in coordinate space
reads

V HF (r, r′)=
∫

dr1v(r, r1)ρ(r1)δ(r − r′)− v(r, r′)ρ(r, r′),

(2)
where v is the effective NN interaction. ρ(r) and ρ(r, r′)
are the usual local and nonlocal densities [9], respec-
tively. Rearrangement contributions stemming from the
density-dependent term of the interaction are also ac-
counted for [18].

The polarization potential, ΔV in eq. (1), is built by
coupling the elastic channel to the intermediate excited
states of the target nucleus. These excited states are de-
scribed within the RPA formalism [18]. Both excited states
and couplings are generated using the same NN effective
interaction. The resulting potential is nonlocal, energy de-
pendent and complex. Going into more details, the polar-
ization contribution to the potential reads

ΔV = V PP + V RPA − 2V (2), (3)

where V PP and V RPA are contributions from particle-
particle and particle-hole correlations, respectively. The
uncorrelated particle-hole contribution, V (2), is accounted
for once in V PP and twice in V RPA. It is subtracted twice
in order to avoid double counting. When using Gogny in-
teraction, part of particle-particle correlations is already
contained at the HF level. We use the same prescription
as in ref. [19], omitting the real part of V PP while ap-
proximating the imaginary part of V PP by Im[V (2)]. The
resulting potential is not fully dispersive anymore due to
this last term, which does not have any real counterpart.
Then eq. (3) reduces to

ΔV = Im
[
V (2)

]
+ V RPA − 2V (2). (4)

For nucleons with incident energy E, the RPA potential
reads,

V RPA(r, r′, E) =
∑
N �=0

∫∑
λ

[
nλ

E − ελ + EN − iΓ (EN )

+
1 − nλ

E − ελ − EN + iΓ (EN )

]

×ΩN
λ (r)ΩN

λ (r′), (5)

where ni and εi are occupation number and energy of the
single-particle state φi in the HF field, respectively. The
label λ refers to the single-particle state of the intermedi-
ate particle [15]. EN and Γ (EN ) represent the energy and
the width of the N -th excited state of the target, respec-
tively. Additionally,

ΩN
λ (r) =

∑
(p,h)

[
XN,(p,h)Fphλ(r) + Y N,(p,h)Fhpλ(r)

]
, (6)

where X and Y denote the usual RPA amplitudes and

Fijλ(r) =
∫

d3r1φ
∗
i (r1)v(r, r1)

[
1 − P̂

]
φλ(r)φj(r1), (7)

where P̂ is a particle-exchange operator and v is the same
effective NN interaction as in eq. (2). The uncorrelated
particle-hole contribution reads

V (2)(r, r′, E) =
1
2

∑
ij

∫∑
λ

[
ni(1 − nj)nλ

E − ελ + Eij − iΓ (Eij)

+
nj(1 − ni)(1 − nλ)

E − ελ − Eij + iΓ (Eij)

]

×Fijλ(r)F ∗
ijλ(r′), (8)

with Eij = εi − εj , the uncorrelated particle-hole energy.
Calculations are performed according to the following

scheme:

– The nonlocal HF potential, V HF in eq. (2), is cal-
culated self-consistently using Gogny D1S interac-
tion [20]. This is done in coordinate space by diagonal-
ization in a 15 fm box to ensure the correct asymptotic
behavior of single-particle states.

– V HF is used as well to generate the intermediate
single-particle state labeled λ in eqs. (5) and (8). Both
discrete and continuum spectra of the intermediate
single-particle state are accounted for. The contin-
uum single-particle spectrum is generated neither lo-
calizing HF potential nor discretizing in a box. The
integro-differential Schrödinger equation for scattering
with the nonlocal potential is solved following the ma-
trix inversion method exposed in the documentation
of the DWBA code [21] connecting to correspond-
ing asymptotic solution. This method allows to take
into account the resonances in the intermediate single-
particle states known to have a striking effect on ab-
sorption [15,22].

– Target excited states are obtained solving RPA equa-
tions in a harmonic-oscillator basis, including fifteen
major shells [23] and using Gogny D1S interaction.
We account for all the RPA excited states with spin
up to J = 8. The use of a harmonic-oscillator basis
discretizes the excitations of the target nucleus which
results in nonorthogonality between the intermediate
λ state and the RPA excitations. Nevertheless, these
effects are small. One should ideally use continuum-
RPA [24] as starting point for the description of exci-
tations.



Eur. Phys. J. A (2017) 53: 88 Page 3 of 12

0 20 40 60 80 100 120 140 160 180


c.m.

   (deg.)

10
-4

10
-2

10
0

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

d
/d


   
(m

b/
sr

) 9.91

13.9

16.9

25.5

30.3

40.

19.

21.7

3.29

5.3

6.5

2.06

5.88

7.91

(a)n + 
40

Ca

0 20 40 60 80 100 120 140 160 180


c.m.

   (deg)
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

10
4

10
6

(
)

/
R

ut
h

9.86

10.37

13.49

14.51

15.97

18.57

30.3

40.

19.57

21.

23.5

25.

26.3

27.5

(b)p + 
40

Ca

-1
-0.5

0
0.5

1
n + 

40
Ca

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0 20 40 60 80 100 120 140 160 180


c.m.

   (deg)

-1
-0.5

0
0.5

1

9.91

11.

13.9

16.9

A
y(

)

(c)

-1
-0.5

0
0.5

1
p + 

40
Ca

-1
-0.5

0
0.5

1

-1
-0.5

0
0.5

1

0 20 40 60 80 100 120 140 160 180


c.m.

   (deg)

-1
-0.5

0
0.5

1

14.51

15.97

18.57

40.

A
y(

)

(d)

Fig. 1. Differential cross sections for neutron (a) and proton (b) scattering off 40Ca. Comparison between data (symbols),
V HF + ΔV results (solid curves) and Koning-Delaroche potential results (dashed curves). The same for analyzing powers for
neutron (c) and proton (d) scattering. Incident energies are indicated in MeV.

– V RPA and V (2) are obtained using Gogny D1S inter-
action in eqs. (5).

– The first zero-energy Jπ = 1− excited state obtained
with RPA, containing the spurious translational mode,
is removed from the calculation in eqs. (5).

– Escape and damping widths are simulated assigning a
single phenomenological width, Γ (EN ), to RPA states
and uncorrelated particle-hole excitations in eqs. (5)
and (8). Γ (EN ) takes the value of 2, 5, 15 and 50MeV,
for excitation energies of 20, 50, 100 and 200MeV, re-
spectively. For incident energies above about 10MeV,
where the compound elastic contribution is negligible,
cross sections are not very sensitive to the value chosen
for the width [15].

– Two-fold charge exchanges (p, n, p) and (n, p, n) are
not accounted for in the present version of NSM, thus
the intermediate single-particle state λ is of the same
isospin projection than the incident and the outgoing
particle.

The HF propagator is dressed only once. For this reason
the scheme is self-consistent at the HF level and only con-
sistent when considering polarization contributions.

3 Microscopic potential and reaction data

Before going further into the analysis of the NSM poten-
tial, we first check its ability to reproduce experimental
reaction observables. NSM has been applied to neutron
and proton scattering off 40,48Ca using Gogny D1S in-
teraction. We focus on incident energies below 40MeV
where NSM has demonstrated to be promising in the case
of 40Ca target [9,15]. Results are summarized in figs. 1
and 2. References to data are given in ref. [25]. Compound-
elastic corrections furnished by the Hauser-Feshbach for-
malism [2] using the Koning-Delaroche potential [25] with

TALYS [26] are applied to cross sections obtained from
NSM and Koning-Delaroche potentials. This correction re-
sults in an improved description of cross sections for neu-
tron scattering with incident energy below 10MeV.

In the case of neutron scattering off 40,48Ca (figs. 1(a)
and 2(a), respectively), NSM results reasonably agree with
experiment and results based on the Koning-Delaroche
potential up to about 30MeV incident energy. Even if
not perfect, those results are encouraging considering the
fact that Gogny interaction was not initially designed for
scattering purposes. Still, there is room for improvements
for example forging new NN effective interactions includ-
ing scattering observables in the fit procedure as done in
ref. [27]. Regarding proton scattering, NSM yields fair re-
sults for 40Ca target up to 30MeV incident proton energy
(fig. 1(b)) but demonstrates an important lack of absorp-
tion at all incident energies in the case of 48Ca target
(fig. 2(b)), nevertheless, the correct shape of the differen-
tial cross section is retained. In figs. 1(c) and 1(d), we show
the calculated analyzing powers for neutron and proton
scattering off 40Ca, at several incident energies, in good
agreement with experiment. In fig. 2(d), analyzing pow-
ers for proton scattering off 48Ca compare quite well with
experiments. Moreover, agreement with data is compara-
ble to that obtained from the Koning-Delaroche potential.
These results suggest that NSM potential retains the cor-
rect spin-orbit behavior even in the case of proton-neutron
asymmetry in the target nucleus. To our knowledge, ana-
lyzing powers for neutron scattering off 48Ca are not avail-
able experimentally in this energy range. In fig. 2(c), we
present analyzing power predictions between 4.7MeV and
16.8MeV incident neutron energy. NSM description shows
slight differences with Koning-Delaroche predictions.

In fig. 3(a), total cross sections for neutron scattering
from both 40,48Ca targets are in good agreement with ex-
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Fig. 2. Same as fig. 1 for 48Ca.
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Fig. 3. Total cross section for neutron scattering off 40,48Ca
(a). Reaction cross section for proton scattering off 40,48Ca (b).

periment above about 10MeV incident energy. Below that
energy, total cross sections are underestimated by NSM. In
fig. 3(b), we show reaction cross sections for proton scat-
tering from both 40,48Ca targets. NSM results are in good
agreement with experiment. In the case of 48Ca, fewer ex-

perimental measurements are available between 22MeV
and 40MeV.

We wish now to investigate what makes NSM up to
describe neutron and proton scattering off 40Ca and what
makes it fail in reproducing proton scattering off 48Ca.

Charity et al. have investigated extensively the asym-
metry dependence of dispersive optical potentials in cal-
cium isotopes [28–30]. They reached the conclusion that
for proton elastic scattering, an increase in the absorp-
tion is expected in going from 40Ca to 48Ca because of
the coupling to the Gamow-Teller collective mode [29]. It
is argued that this could enhance surface absorption with
strength increasing as ∼ 3(N −Z). On the other hand, no
change is expected for neutrons, as they do not couple to
this resonance. In a further attempt, Waldecker et al. [31]
studied asymmetry from an ab-initio point of view using
Faddeev Random-Phase Approximation (FRPA) [32]. Re-
sults suggest that charge-exchange excitations of the tar-
get interfere only very weakly with the nucleon-nucleus
scattering process. The most striking effect on the poten-
tial related to isospin asymmetry is related to the tensor
term of the bare interaction which plays a major role on
absorption in FRPA.

What does NSM contain? In NSM, the (A + 1)-body sys-
tem consisting of an incident nucleon and A target nucle-
ons, is described as a single-particle state in the HF field
labeled λ in eq. (5) and an RPA state describing target
excitations at the one particle - one hole level. This de-
scription of the (A + 1)-body system allows to span only
partially over the (A + 1)-nucleon Hilbert space. As a re-
sult, at this level of approximation, NSM deals with pro-
cesses involving 0, 1 and 2 nucleons in the continuum,
depending on whether the single-particle state is bound
and the RPA excitation involves bound particle states; the
single-particle state is in the continuum or the RPA ex-
citation involves continuum particle states; and both are
in the continuum, respectively. Thus, NSM gives access
to part of the direct emission of proton, neutron, neutron-
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Fig. 4. (Color online) TALYS evaluations of inelastic cross sections for neutron and proton scattering off 40,48Ca: Total reaction
cross section (with linear scale on the left-hand side) and the main components responsible for absorption (with logarithmic
scale on the right-hand side). Direct and Pre-equilibrium inelastic contributions are summed and are depicted in dotted line.
Compound inelastic contributions are in dashed line.

proton pair and deuteron. Once again, the use of a contin-
uum RPA [24] instead of an RPA projected on harmonic-
oscillator basis [23] would certainly improve the descrip-
tion of these processes. Moreover, in its present version,
NSM does not explicitly account for two-fold charge ex-
changes (n, p, n) and (p, n, p), meaning that the λ interme-
diate single-particle state has the same isospin projection
than the incident particle. This inhibits coupling to the
Gamow-Teller collective mode as well as proton (neutron)
pair direct emission in the case of neutron (proton) scat-
tering. Moreover, heavier composite particles such as tri-
tium and α particles or more generally the direct emission
of more than two nucleons would require a description of
the target nucleus with higher order in perturbation, such
as second RPA [33] or multiparticle-multihole configura-
tion mixing [34]. A direct reaction is a doorway leading
toward compound nucleus formation. The compound nu-
cleus is formed by a sequence of collisions, namely the
pre-equilibrium, leading to increasingly complicated rear-

rangements of the target nucleus. NSM describes only the
first step of this sequence taking into account 2p−1h exci-
tations with coherent particle-hole amplitudes provided by
RPA. The phenomenological width applied to RPA states
makes possible the damping toward compound nucleus.

NSM vs. evaluation. Bearing the above considerations in
mind, we study neutron and proton scattering off 40,48Ca
targets below 40MeV with the nuclear reaction code
TALYS [26]. This evaluation tool deals with numerous re-
action channels including direct, pre-equilibrium and com-
pound reaction mechanisms. In particular, it provides a
quantitative picture of the various particles emitted dur-
ing the scattering process. The direct contribution is ob-
tained through the coupling to experimentally known col-
lective states. The corresponding coupled-channel prob-
lem is solved with ECIS code [35]. The pre-equilibrium
is obtained with the exciton model where target excita-
tions are described within a particle-hole scheme. For in-
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cident energies below about 40MeV, after primary pre-
equilibrium emission, the excitation energy of the residual
nucleus is relatively small and one can safely assume that
further decay of the nucleus proceeds mainly by compound
mechanism [36]. The multiple pre-equilibrium emission is
very weak. In fig. 4, we present the corresponding inelas-
tic cross sections together with the main contributions to
absorption. The distinction between the direct part and
the pre-equilibrium mechanisms is rather arbitrary, espe-
cially under 20MeV, so we present the sum of the two
contributions. In the following we shall refer to it as di-
rect contribution.

For 40,48Ca targets within the energy range considered,
TALYS results suggest that deuteron direct emission is
negligible. As a result, the explicit coupling to intermedi-
ate deuteron is not relevant in this study.

In the case of neutron scattering off 48Ca, the main
components of the absorption ordered by increasing
threshold energy are (n, n′), (n, 2n) and (n, 3n). The
(n, n′) component is led by compound emission below
about 15MeV and by direct emission above. The following
neutron multi-emission components are mostly of com-
pound nature. Good results obtained with NSM are ex-
plained by the fact that (n, n′) is taken into account ex-
plicitly and it is the main doorway state.

The same logic holds for proton scattering off 40Ca
where the main components of absorption are (p, p′),
(p, 2p) and (p, 3p). The direct (p, p′) contribution is de-
scribed within NSM and acts as a doorway that feeds the
compound (p, 2p) and (p, 3p) contributions.

For neutron scattering off 40Ca, the main components
are (n, p), (n, n′) and (n, np). The (n, np) contribution,
not depicted in fig. 4, is mainly compound. The important
contribution from (n, p) is due to a low threshold energy
for this reaction channel, about 500 keV, compared to the
case of (n, n′), of about 3.5MeV. These last two compo-
nents are partly contained in NSM, where (n, n′) is explic-
itly taken into account and (n, p) is partly accounted for
with proton RPA excitations in the continuum. The inclu-
sion of two-fold charge exchange in the formalism would
improve NSM prediction in that case. Moreover, at low en-
ergy TALYS code yields an (n, α) component with some
direct contribution. The coupling to the α intermediate
channel is beyond the scope of this work. Still, results
obtained with NSM for neutron scattering off 40Ca are
reasonable.

In the case of proton scattering off 48Ca, the absorption
is mainly built from (p, n), (p, 2n) and (p, 3n) channels.
The last two contributions are mainly compound while
the (p, n) channel has a direct component expected to
be described only partially by NSM with neutron exci-
tations in the continuum described with RPA. Most part
of (p, n) channel may be obtained from two-fold charge ex-
change. Once again, this contribution is not accounted for
by NSM, which could explain the lack of absorption ob-
served in differential elastic cross section for proton scat-
tering off 48Ca in fig. 2(b).

To conclude this part, there are strong indications that
coupling to Gamow-Teller mode would improve the NSM

description of proton scattering off 48Ca. More generally,
coupling to Gamow-Teller mode should play an important
role when dealing with proton scattering off neutron-rich
targets close to the neutron drip-line as neutron emission
is favored.

NSM & tensor interaction. Waldecker et al. pointed out
the major influence of the tensor component of the bare
interaction on the isospin asymmetry of the optical poten-
tial [31]. In this work, we use Gogny D1S interaction which
does not contain any tensor component. Gogny interaction
can be considered as a parametrization of a g-matrix. Part
of the bare tensor contribution is included in particular in
the central term of Gogny interaction [37]. Moreover, elas-
tic scattering calculations based on g-matrix have shown
small differences with or without the g-matrix tensor com-
ponent. Nonetheless, the addition of a tensor contribution
in Gogny interaction has an effect both on the description
of excited states with RPA [38] and on the coupling ver-
tices in NSM. This effect of the tensor interaction has been
investigated by Robin et al. [39] within a relativistic for-
malism. A consistent inclusion of a tensor contribution in
Gogny interaction could help disentangle this issue. This
is far beyond the scope of this work.

4 Volume integrals

Volume integrals are useful means of comparison between
local potentials as they are well constrained by scatter-
ing data. When considering nonlocal potentials, volume
integrals are well constrained only in a multipole range
depending on incident energy. Nevertheless, they still pro-
vide interesting information. For instance, in a previous
work [9] volume integral of the real part of NSM potential
showed to be well suited for incident energies below about
30MeV and too attractive for energies above this limit.
Here we focus on the imaginary part of NSM potential
which is nonlocal and energy dependent. When solving the
integro-differential Schrödinger equation, it is convenient
to use a multipole expansion of the nonlocal potential

V (rσ, r′σ′;E) =
∑
ljm

Yljm(r̂σ)νlj(r, r′;E)Y†
ljm(r̂′σ′), (9)

where
Yljm (r̂σ) ≡

[
Yl(r̂) ⊗ χ1/2(σ)

]
jm

, (10)

with Y ml

l (r̂) the spherical harmonic and χms

1/2(σ) the spin
function. In the case of a spherical target-nucleus, the po-
tential is diagonal in (l, j), the multipole expansion of
Schrödinger equation is decoupled and it can be solved
independently at a given (l, j) with the corresponding
νlj(r, r′;E) potential. The volume integral of the imagi-
nary part of the nonlocal potential for a given multipole
(l, j) is defined as

J lj
W (E) =

−4π

A

∫
dr r2

∫
dr′r′2 Im[νlj(r, r′, E)], (11)
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Fig. 5. (Color online) Volume integrals of the imaginary part of NSM potential for neutron and proton scattering off 40,48Ca (top
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where A is the nucleon number of the target. In compari-
son, a local potential has volume integral which is indepen-
dent of the multipole. Volume integrals of the imaginary
part of NSM potential for neutron and proton scattering
off 40,48Ca are shown in the top panels of fig. 5. In the lower
panel we present reaction cross sections for each multipole
in order to emphasize multipoles contributing the most for
each incident energy. At low incident energy the potential
needs to be accurate for low multipoles as the Schrödinger
equation is blind to what happens in higher multipoles.
When the incident energy increases the potential needs
an accuracy over higher multipole region. This partial-
wave selectivity is the reason why an energy-dependent
local potential, thus independent of the multipole, can be
efficient in reproducing scattering observables. The only
condition for a local potential to work is to be well tuned
in the multipole region of interest for a given energy.

In the case of neutron scattering in fig. 5, we observe
a reduction of the volume integral going from 40Ca target

to 48Ca using NSM. This effect is observed for incident
neutrons at all energies considered below 40MeV. This is
a clear indication of the asymmetry of the neutron NSM
potential. The asymmetry of the neutron potential in cal-
cium isotopes has been questioned by Charity et al. fit-
ting dispersive potential [29]. This study has motivated
new experiments and a new optical potential analysis by
Mueller et al. [40]. They study the surface and the vol-
ume magnitudes of the potential and conclude that the
neutron imaginary surface potential displays very little
dependence on the neutron-proton asymmetry when go-
ing from 40Ca target to 48Ca one. Using radial integral
rules for Woods-Saxon form factors, one shows that this
behavior of the potential magnitude results in a depletion
of about 6% of the volume integral, where NSM results for
40Ca and 48Ca approach each other. This is mainly due
to the normalization by the total number of nucleons in
eq. (11). The trend displayed in fig. 5 based on NSM is
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the same to the one reported by Mueller et al., although
the asymmetry in the former appears more pronounced.

Below about 30MeV incident energy, NSM potential
for proton scattering provides the opposite trend than the
one obtained with neutrons, featuring an enhancement of
the volume integral going from 40Ca target to 48Ca. When
the incident energy is increased, the asymmetry vanishes
and volume integrals for the two calcium isotopes become
comparable at ∼ 40MeV. Charity et al. deduced the same
behavior for proton scattering doing an optical model
analysis of elastic scattering data [29]. This means that
for proton scattering, the NSM approach retains isospin
asymmetry through couplings to excited states of the tar-
get. The further inclusion of the two-fold charge exchange
component shown to be important in proton scattering off
48Ca in sect. 3 would allow for coupling to Gamow-Teller
modes and should increase both absorption and volume
integrals.

5 Perey-Buck equivalent potential

Presently, NSM ability to reproduce elastic scattering ob-
servables is encouraging but not competitive enough from
the point of view of evaluation standards. Nevertheless,
NSM can provide some guidance for further nonlocal po-
tential parametrizations. Moreover there is a renewal of
interest in the community for nonlocal potentials and their
impact on reaction calculations [41–45]. In this section, we
present results of the fit of NSM imaginary potential us-
ing a Perey-Buck (PB)-like form factor [16]. The potential
ansatz is built from a volume part and a surface part, each
one with a different Gaussian nonlocality. Hopefully, the
fitted potentials shall yield cross sections equivalent to the
ones obtained with NSM. In practice, PB-like imaginary
potential reads

Wn/p(r, r′;E) =

H(s, βv)Wn/p
v (E − E

n/p
F )f(R, rv, av)

+ 4asH(s, βs)Wn/p
s (E − E

n/p
F )f ′(R, rs, as), (12)

where we use notations R = |r + r′|/2 and s = r − r′. v
(s) subscript refers to parameters attributed to the vol-
ume (surface) part of the potential. W

n/p
v/s (E − E

n/p
F ) is

the energy-dependent magnitude of the potential, which
varies for incident neutron and proton. E

n/p
F represents

the Fermi energy, while β corresponds to the nonlocality
parameter. The volume term is built from a Woods-Saxon
form factor,

f(r, r0, a) =
[
1 + exp

(
r − r0A

1/3

a

)]−1

, (13)

and surface term from a Woods-Saxon derivative with re-
spect to r, f ′(r). r0 and a are reduced radius and diffuse-
ness, respectively. The nonlocal form factor reads

H(s, β) =
1

π3/2β3
exp

(
−

∣∣∣∣ sβ
∣∣∣∣
2
)

. (14)

Table 1. PB-like parametrization of NSM for neutron and pro-
ton projectiles for 40,48Ca targets. All parameters are expressed
in fm.

rv rs av as βv βs

0.78 1.254 0.49 (40Ca) 0.78 (48Ca) 0.44 0.35 1.1

We consider a Gaussian shape as in the original Perey-
Buck phenomenological potential. Moreover this shape
has already shown to provide a good description of NSM
imaginary potential nonlocality [15]. It is worth mention-
ing that the Gaussian shape obtained with NSM is not
related to the use of Gogny interaction which is itself built
from Gaussian form factors. The same nonlocality shape is
obtained using Skyrme interactions [19,46]. In the present
work, two different nonlocality parameters are required in
order to describe the surface and the volume contributions
of the potential. Then following Perey et al. [16] prescrip-
tion, the use of |r + r′| ≈ (r + r′) allows for the multipole
decomposition of the potential, as shown in eq. (9),

Hl(r, r′, β) =
4√
πβ3

iljl

(
−i

2rr′

β2

)
exp

(
−r2 + r′2

β2

)
,

(15)
where jl is the spherical Bessel function. Finally the mul-
tipole expansion of the potential reads

W
n/p
l (r, r′;E) =

Hl(r, r′, βv)Wn/p
v (E−E

n/p
F )f(R, rv, av)

+ 4asHl(r, r′, βs)Wn/p
s (E − E

n/p
F )f ′(R, rs, as). (16)

The multipole expansion of the integro-differential
Schrödinger equation can be found for example in ref. [15].
In a first attempt we do not consider any imaginary spin-
orbit contribution. As a consequence the multipole expan-
sion is only l-dependent. Fitted parameters obtained for
incident energies below 40MeV are gathered in table 1.
Except for the diffuseness of the volume component, a
single parameter set is obtained for both 40Ca and 48Ca.
We find a different reduced radius for the surface and the
volume contribution. Surface reduced radius, rs, is close
to the value generally adopted in optical potential analy-
ses. Volume reduced radius, rv, is quite small. This small
value of the volume radius is somehow compensated by
a deeper volume magnitude. Regarding nonlocalities, the
NSM approach predicts a smaller nonlocality parameter
for the volume part of the potential than for the surface
one. Mahzoon et al. have found the same trend in their
optical model analysis with a nonlocal potential [41].

Despite the fact that PB-like potential is a rather sim-
ple ansatz to represent NSM potential, it provides a rough
idea of the shape of the potential. In fig. 6 we present a
sample of the fit for proton scattering off 48Ca at 30MeV.
For imaginary potential we adopt positive values when ab-
sorptive. For sake of concision we only present the first four
multipoles of the potential but a reasonable agreement is
obtained as well for higher multipoles. Diagonal (r = r′)
contributions are fitted using the ansatz of eq. (16). They
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Fig. 6. Sample of PB-like potential fit of NSM for the first four multipoles for proton scattering off 48Ca at 30 MeV (top
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Fig. 7. Comparison between differential elastic cross sections
for proton scattering off 48Ca at 30MeV obtained with NSM
and with the equivalent PB-like potential.

are presented in the top panels of fig. 6. The surface and
the volume nonlocality parameters are adjusted as well by
looking at two transversal cuts of the nonlocal potential at
R = 1.5 fm and R = 4.5 fm, respectively. Corresponding
results are presented in the lower panels of fig. 6. In the
first multipole emissive “wings” appear in the nonlocality
at various incident energies. We do not take this effect into
account in order to keep the form factor used for the fit
as simple as possible. Moreover, the first multipole is ex-
pected to play a major role mainly at very low scattering
energy.

Then we check the ability of the PB-like potential
to describe differential elastic cross section obtained with
NSM. As shown in fig. 7 in the case of proton scattering
off 48Ca at 30MeV, agreement is good enough to consider
that the fit retains the main features of NSM potential.
The same agreement is obtained for all the cases discussed.
Then one can explore the behavior of the magnitudes for

the surface and the volume contributions as a function of
energy and projectile and look for evidences of asymmetry.
Results of the fit of the magnitudes for neutron and proton
scattering for 40,48Ca are summarized in fig. 8. Magnitudes
are depicted as a function of incident energy subtracted
by Fermi energy given in table 2. For simplicity we use
Fermi energies obtained from HF calculations which cor-
responds to the energy of the last fully occupied orbital. In
reality one should determine the Fermi energy taking into
account the energy dependent RPA contribution to the
real part but at this stage our implementations is not yet
suited in order to describe negative energies. Nevertheless,
this contribution is expected to be small.

Results for 40Ca (fig. 8, top panel) show that neutron
and proton magnitudes both follow the same trend for
surface and volume components. This is what is expected
from a Lane consistent potential for scattering off self-
conjugate target nucleus [17]. The same behavior has been
observed by Mueller et al. [40] without imposing Lane con-
sistency during the fit procedure.

Going from 40Ca to 48Ca the proton surface magnitude
is increased whereas the neutron one follows the oppo-
site trend. In the meantime, volume magnitudes for both
neutron and proton are reduced of about 10MeV. Once
again this is a proof of asymmetry already retained at the
level of the coupling to excited states of the target. As
we have seen in sect. 3, NSM leads to a lack of absorp-
tion in the description of proton scattering off 48Ca. By
comparison with TALYS, this has been attributed to the
absence of two-fold charge exchange (p, n, p) contribution
avoiding coupling to Gamow-Teller mode, so we can ex-
pect asymmetry in the proton case to be enhanced when
including two-fold charge exchange. Considering neutron
magnitudes the observed asymmetry with NSM is in dis-
agreement with results obtained by Mueller et al. [40] who
predicted no asymmetry going from 40Ca to 48Ca for neu-
tron scattering.
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like potential fitted from NSM for neutron and proton scatter-
ing off 40,48Ca.

In the Lane model [17], which assumes isospin symme-
try in nuclei, the nucleon-nucleus potential can be decom-
posed into isoscalar V0 and isovector V1 parts,

V (n/p) = V0 ±
(N − Z)

2A
V1, (17)

where (+) stands for neutron projectile and (−) for pro-
ton projectile. N (P ) is the neutron (proton) number in
the target nucleus. As already discussed by Osterfeld et
al. [47], NSM contains by construction Lane inconsistent
terms. Indeed the difference between neutron potential
and proton potential,

V n − V p =
N − Z

A
V1 − Vcc, (18)

can be due not only to the isospin conserving Lane po-
tential as stated in eq. (17) but also to isospin noncon-
serving Coulomb corrections, Vcc. These Coulomb correc-
tions stem from the second-order part of the potential.
Both theoretical [48] and empirical [49] findings indicate
that Coulomb correction weakens the absorption for pro-
tons compared to that for neutrons at the same energy.
Nevertheless, Osterfeld et al. have shown that Coulomb
correction in the case of 40Ca [47] is small, what is con-
firmed by our results on magnitude in fig. 8. Hence one
can safely consider eq. (17) as a reasonable approxima-
tion for 40Ca in the considered energy range. On the op-
posite, Coulomb correction is not negligible in the case of

Table 2. HF Fermi energies in MeV.

En
F (A = 40) Ep

F (A = 40) En
F (A = 48) Ep

F (A = 48)

−16.19 −9.39 −9.77 −17.17
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Fig. 9. Differential elastic cross sections obtained with NSM
(green curve), Koning-Delaroche global potential (magenta
curve) and NSM with Lane correction (blue curve) compared
with data for proton scattering off 48Ca at 12MeV.

48Ca [50]. Neglecting Coulomb correction in eq. (18), one
can in principle recover an upper limit of the absorption
for proton scattering off 48Ca.

In the case of nucleon scattering off 40Ca (N = Z =
20), Lane model leads to the same potential for neutron
and proton projectile. One can parametrize the 40Ca po-
tential using the ansatz of eq. (16). Then using the same
parametrization with A = 48, one gets the isoscalar part
of the potential V FIT

0 extrapolated for 48Ca. Assuming
NSM reasonably describes neutron scattering off 48Ca as
shown in sect. 3, one finally gets an NSM/Lane version of
the proton-48Ca potential,

V p
NSM/Lane(

48Ca) = 2V FIT
0 (48Ca) − V n

NSM (48Ca), (19)

where NSM potential is used for the neutron-48Ca poten-
tial. As a first test case in fig. 9, we present the differen-
tial elastic cross section for proton scattering off 48Ca at
20MeV. NSM/Lane prescription is used for the imaginary
part of the potential whereas the real part is kept as the
one used in NSM calculations presented in sect. 3. The use
of NSM/Lane potential described in eq. (19) greatly im-
proves the description of the cross section by substantially
enhancing the absorption. Cross sections presented in lin-
ear scale are very close to that from the Koning-Delaroche
benchmark.

Higher-order versions of Lane prescription have been
investigated by Holt et al. [12] and could be relevant in
the 48Ca case. Nevertheless, one has to keep in mind that
formally NSM potential contains Lane-inconsistent terms
in the second order terms. So one should be careful in
taking into account the two-fold charge exchange in order
to get a fully reliable description of the potential.
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6 Conclusions

A study of neutron and proton scattering off 40Ca and
48Ca targets has been undertaken using the Nuclear Struc-
ture Method for scattering. Gogny D1S nucleon-nucleon
effective interaction is used consistently throughout the
determination of the optical potential. NSM provides a
reasonable description of neutron scattering off 40,48Ca
and proton scattering off 40Ca below about 30MeV in-
cident energy. On the other hand, a default of absorp-
tion is observed in differential cross sections for proton
scattering off 48Ca for all considered incident energies be-
tween 8MeV and 30MeV. An independent calculation us-
ing TALYS evaluation tool has evidenced the importance
of direct neutron emission in that case. This result points
out the importance of two-fold charge exchange in proton
scattering off 48Ca. This is most probably the case in gen-
eral for proton scattering off neutron-rich targets inclined
to emit neutrons.

The study of multipole dependent volume integrals of
nonlocal NSM imaginary contribution reveals that NSM
predicts asymmetry for neutron scattering going from
40Ca target to the 48Ca one. Above ∼ 30MeV, the asym-
metry tends to diminish leading to comparable contribu-
tions at about 40MeV. Results obtained for proton scat-
tering should be modified when accounting for (p, n, p)
two-fold charge exchange.

Then we have proceeded to a fit of the NSM imagi-
nary potential with a Perey-Buck-like potential extract-
ing in particular magnitudes for neutron and proton pro-
jectiles and for 40Ca and 48Ca targets. Results for neu-
tron and proton potentials for scattering off 40Ca indicate
that Lane-inconsistent terms in the NSM potential are
small in that case. Based on this observation, we have
used Lane prescription to account for the lack of absorp-
tion observed in proton scattering off 48Ca, obtaining a
significant improvement. Nevertheless, the NSM potential
contains Lane-inconsistent terms by construction and the
issue of two-fold charge exchange will have to be faced
in further attempts following, for example, the work by
Osterfeld et al. [47].

Study of heavier double-closed-shell targets is in
progress. Moreover the extension to target nuclei experi-
encing pairing using Gorkov formalism has been initiated
for spherical targets. This will open access to hundred of
new targets.

HFA wishes to thank the colleagues of CEA, DAM, DIF for
their kind hospitality during his stay at Bruyères-le-Châtel,
where part of his contribution to this collaboration took place.
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