
Discrete Applied Mathematics 224 (2017) 80–90

Contents lists available at ScienceDirect

Discrete Applied Mathematics

journal homepage: www.elsevier.com/locate/dam

Computing the coarseness with strips or boxes
J.M. Díaz-Báñez a, M.A. Lopez b, C. Ochoa c, P. Pérez-Lantero d,∗

a Departamento Matemática Aplicada II, Universidad de Sevilla, Spain
b Department of Computer Science, University of Denver, USA
c Departamento de Ciencias de la Computación, Universidad de Chile, Chile
d Departamento de Matemática y Ciencia de la Computación, Universidad de Santiago, Chile

a r t i c l e i n f o

Article history:
Received 16 December 2015
Received in revised form 24 November
2016
Accepted 23 February 2017
Available online 22 March 2017

Keywords:
Coarseness
Rectangles
Strips
Computational geometry
Discrepancy

a b s t r a c t

Recently, the concept of coarsenesswas introduced as ameasure of howblended a 2-colored
point set S is. In the definition of this measure, a convex partition Π , that is, a partition
of S into sets {S1, . . . , Sk} of S whose convex hulls are pairwise disjoint, is considered.
The discrepancy of Π , denoted by d(S, Π), is the smallest (bichromatic) discrepancy of the
elements of Π . The coarseness of S, denoted by C(S), is then defined as the maximum of
d(S, Π) over all convex partitions Π of S. Roughly speaking, the value of the coarseness is
high when we can split S into blocks, each with large discrepancy. It has been conjectured
that computing the coarseness is NP-hard. In this paper, we study how to compute the
coarseness for two constrained cases: (1) when the k elements of Π are separated by
k − 1 pairwise parallel lines (strips) and, (2) the case in which the cardinality of the
partition is fixed and the elements of Π are covered by pairwise disjoint axis-aligned
rectangles (boxes). For the first case we present an O(n2 log2 n)-time algorithm, and show
that such a computation problem is 3SUM-hard; for the second, we show that computing
the coarsenesswith k boxes is NP-hard,when k is part of the input. For k fixed,we show that
the coarseness can be computed in O(n2k−1) time and propose more efficient algorithms
for k = 2, 3, 4.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

For both theoretical and practical reasons, there is a large body ofwork considering the partition of point sets into clusters.
A relevant question is whether a given 2-colored set may be separated into parts satisfying certain properties. The following
question was posed in [5]: Given a bicolored point set S, is it possible to partition S so that every component of the partition
can be considered as blue or red or, on the contrary, to decide that the colors are evenly distributed? In the second case, the
points are called well blended and it would be pointless to apply a clustering algorithm.

The problemof assessing the homogeneity of a 2-colored set is related to the discrepancy theory [1,9] and arises naturally
in different areas of computer science, such as computational learning theory, computational geometry, and computer
graphics. For example, in supervised classification of machine learning we are given a labeled training set (for instance, a
point set of samples, each point labeled as a positive or a negative sample) and wewant to find a hypothesis (i.e. a partition)
that can be used as a predictor for future query points [22,25]. In computational geometry, partitioning colored point sets

∗ Corresponding author.
E-mail addresses: dbanez@us.es (J.M. Díaz-Báñez), mlopez@cs.du.edu (M.A. Lopez), cochoa@dcc.uchile.cl (C. Ochoa), pablo.perez.l@usach.cl

(P. Pérez-Lantero).

http://dx.doi.org/10.1016/j.dam.2017.02.022
0166-218X/© 2017 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.dam.2017.02.022
http://www.elsevier.com/locate/dam
http://www.elsevier.com/locate/dam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.dam.2017.02.022&domain=pdf
mailto:dbanez@us.es
mailto:mlopez@cs.du.edu
mailto:cochoa@dcc.uchile.cl
mailto:pablo.perez.l@usach.cl
http://dx.doi.org/10.1016/j.dam.2017.02.022


J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90 81

into monochromatic parts has already been considered bymany authors (see e.g. [4,15,19,20]), and one application of these
problems is the 2-class separability [21].Whenwe have two sets, consisting of, say, red points and blue points, a natural way
to approach their separability is to look for amonochromatic convex partition inwhich the subsets forming the partition are
as big as possible. For instance, when a 2-colored point set is linearly separable, we can partition it into twomonochromatic
parts. Finally, in computer graphics one promising approach is the application of the theory of discrepancy or irregularities
of distribution [14,23].

When a clustering algorithm is considered on a 2-colored point set S, we are implicitly assuming that S can be partitioned
into big monochromatic (or almost monochromatic) blocks. In other words, we expect to find blocks with high bichromatic
discrepancy. Unfortunately, this is not possiblewhen the two classes of points are blended. To detectwell blended point sets,
a reasonable parameter, the so called coarseness of S, has been recently introduced [5]. As pointed in [5], when one attempts
to give a formal definition of well blended point sets, some contradictions and counterexamples may surface. Coarseness
is based on the following idea: the data are not well blended if we are able to split the set into blocks, each with large
discrepancy or, equivalently, the set is well blended if every partition into blocks contain an element with low discrepancy.
The formal definition of coarseness considers the concept of islands [2] as blocks, as follows:

Definition 1. Let S = R∪B be a 2-colored set of n points in the plane. For a subset Y ⊆ S, define∇(Y ) =
|R∩Y |−|B∩Y |

. A
nonempty subset I of S is called an island if there is a convex set C on the plane such that I = C ∩S. A convex partition of S is a
partition of S into islands, with pairwise disjoint convex hulls. The discrepancy of a convex partition Π = {S1, S2, . . . , Sk} of
S, denoted d(S, Π), is the minimum of ∇(Si) for i = 1, . . . , k. The coarseness of S, denoted C(S), is defined as the maximum
of d(S, Π) over all the convex partitions Π of S.

In the case of point sets allowing big blocks of each color, an algorithm to compute the coarseness would naturally give
us a clustering of S in which each cluster contains, as much as possible, a majority of one color. Otherwise, the optimal
partition in the coarseness definition does not necessarily correspond to the best clustering. So, the coarseness problem is
not a clustering algorithm but a measure to explore how the distribution of points is. Refer to [5] for a clear understanding
of the concept of coarseness.

While the general convex partitions considered in the definition of coarseness can be viewed as generalizations of other
geometric models, such as boxes, disks, etc., it is important to emphasize that the cardinality of the convex partition, k, is
not fixed. This fact makes the coarseness computation a difficult problem. It is believed that the problem of computing the
coarseness of a 2-colored point set is NP-hard [5], and an efficient approximation algorithmhas recently been proposed [13].
On the other hand, when k is a fixed value, the coarseness of a bicolored point set can be computed in polynomial time
by using a result of [7]. Using that any set of n points in the plane admits O(n6k−12) k-partitions into disjoint islands, the
coarseness of a 2-colored point set can be computed in O(n6k−11) time, k ≥ 3.

In this paper, we consider the problem of computing the coarseness of bicolored point sets for some special cases. We
consider two types of islands in the convex partitions, namely, islands induced by strips or by rectangles with sides aligned
with the coordinate axes. These types of geometric objects have been used in problems related to covering sets [4] and
supervised clustering [16,6,24]. A remarkable difference is that in this paper we do not consider a covering of the classes
but a convex partition following the definition of coarseness. We solve the open problem posed in [5] on the hardness of
computing the coarseness for two cases: when the elements of the partition are induced by parallel strips, or by exactly k
axis-aligned rectangles.

1.1. Definitions and notation

Let Π = {S1, S2, . . . , Sk} be a convex partition of S. We say that Π is a strip partition if k = 1 or there are k − 1 parallel
lines that simultaneously split S into the islands S1, S2, . . . , Sk. Since any line containing a point of S can be slightly translated
so that the line does not contain any point of S, we assume S∩ℓ = ∅ for every line ℓ among the above k−1 parallel lines. For
convenience, we further assume that such parallel lines divide the plane into k cells labeled so that Si and Si+1 are contained
in adjacent cells, respectively. In this sense, we say that Si and Si+1 are consecutive islands of Π . The strip coarseness of S,
denoted Cs(S), is the maximum of d(S, Π) over all the strip partitions Π of S.

In this paper, all rectangles are assumed to be axis-aligned. Given any X ⊆ S, let H(X) denote the minimum bounding
rectangle (i.e. box hull) of X . We say that Π = {S1, S2, . . . , Sk} is a rectangle partition of S if Π is a partition of S and the
rectangles H(S1),H(S2), . . . ,H(Sk) are pairwise disjoint. The rectangle coarseness of S, denoted Cr(S), is the maximum of
d(S, Π) over all rectangle partitions Π of S and, given a fixed k, the k-rectangle coarseness of S is the maximum of d(S, Π)
over all the rectangle partitions Π of S into k islands.

Let w : S → {−1, +1} be the function such that w(p) = +1 if p ∈ R, and w(p) = −1 if p ∈ B. For every X ⊆ S, let
W (X) =


p∈X w(p). Then, for every X ⊆ S = R ∪ B we have that |X ∩ R| − |X ∩ B| = W (X) and ∇(X) = |W (X)|. We

say that (the color of) X ⊆ S is red if X contains a strict majority of red points, i.e., if W (X) > 0, and that (the color of) X is
blue if X contains a strict majority of blue points, i.e., ifW (X) < 0. For a convex partition Π = {S1, . . . , Sk} of S = R ∪ B, let
ri = |R∩ Si| and bi = |B∩ Si|, for each i ∈ [1..k]. For a given ordered list p1, p2, . . . , pn of the elements of S, and s, t ∈ [1..n]
with s ≤ t , let W (s, t) = W ({ps, . . . , pt}) = w(ps) + · · · + w(pt). Given a point u ∈ R2, let ux and uy denote the x- and
y-coordinates of u, respectively.



82 J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90

1.2. Summary of results

In Section 2, we show that the problem of computing the strip coarseness of S is 3SUM-hard and present an algorithm
that computes Cs(S) in O(n2 log2 n) time and O(n) space. For the rectangle coarseness, Cr(S), we present several results. In
one dimension (Section 3.1), if the input points are already sorted, Cr(S) can be computed in O(n) time, and the k-rectangle
coarseness can be computed in O(n2k) time for any k ≥ 2, and in O(n) time for k = 2, 3, 4. In Section 3.2, we consider the
planar case and show that Cr(S) can be approximated by a constant factor. More precisely, we describe an O(n log n) time
algorithm that computes a rectangle partition Πapx such that

max

Cr(S)/8, Cr(S)/4 − ∇(S)


≤ d(S, Πapx) ≤ Cr(S).

Furthermore, we show that computing the k-rectangle coarseness is NP-hardwhen k is part of the input and, for fixed k ≥ 1,
we show how to compute it in O(n2k−1) time. For k = 2, 3, a faster O(n log n) time algorithm is given, and for k = 4, an
O(n3)-time algorithm.

2. Strip coarseness

The following results describe properties of the strip coarseness.

Lemma 2. There exists an optimal strip partitionΠ of S such that either Π is the trivial partition {S} or every pair of consecutive
islands of Π have different colors.
Proof. This lemma is a direct consequence of Lemma 7 in [5], which states that in a convex partition Π with a minimum
number of islands and d(S, Π) = C(S), the existence of any two islands Si, Sj ∈ Π of equal colors implies that the number
of islands of Π is at least three, and the convex hull of Si ∪ Sj intersects the convex hull of some other island Sk of Π .
Alternatively, the claim can be easily established by noticing that merging any pair of consecutive islands of equal colors
cannot reduce the discrepancy of Π while, at the same time, reducing the number of islands. �

Using Lemma 2, we consider only optimal strip partitions in which every two consecutive islands have different colors.

Lemma 3. There exists an optimal strip partition Π of S containing at most three islands.
Proof. Let Π = {S1, S2, . . . , Sk} be an optimal strip partition of S with the minimum number of islands. For the sake of
contradiction, suppose k > 3. Consider w.l.o.g. thatW (S2) < 0. If ∇(S2) ≤ ∇(S3) (i.e. b2 − r2 ≤ r3 − b3) then

∇(S1) = r1 − b1
≤ r1 − b1 + r3 − b3 − (b2 − r2)
= r1 + r2 + r3 − (b1 + b2 + b3)
= ∇(S1 ∪ S2 ∪ S3).

This implies that the strip partition Π ′
= {S1 ∪ S2 ∪ S3, S4, . . . , Sk} is also an optimal strip partition given that

d(S, Π) = min{∇(S1), . . . ,∇(Sk)}
≤ min{∇(S1), ∇(S4), ∇(S5), . . . ,∇(Sk)}
≤ min{∇(S1 ∪ S2 ∪ S3), ∇(S4), ∇(S5), . . . ,∇(Sk)}
= d(S, Π ′),

a contradiction, since Π was assumed to have the minimum number of islands. An analogous contradiction can be obtained
if we assume that ∇(S2) > ∇(S3). This implies that ∇(S4) ≤ ∇(S2 ∪ S3 ∪ S4). �

The following lemma characterizes the optimal strip partitions that have three elements.

Lemma 4. Let Π = {S1, S2, S3} be an optimal strip partition of S. Then,∇(S2) ≥ ∇(S1) and∇(S2) ≥ ∇(S3), which is equivalent
to d(S, Π) = min{∇(S1), ∇(S3)}.
Proof. By Lemma 2, we can assume that S1 and S3 have equal colors. We may assume w.l.o.g. that S1 and S3 are red, while
S2 is blue. For the sake of contradiction, suppose that ∇(S2) < ∇(S1), that is, b2 − r2 < r1 − b1 which is equivalent to
r1 + r2 − (b1 + b2) > 0. Then, we have

d(S, {S}) = ∇(S)
= r1 + r2 + r3 − (b1 + b2 + b3)
= (r3 − b3) + r1 + r2 − (b1 + b2)
> r3 − b3
= ∇(S3)
≥ min{∇(S1), ∇(S2), ∇(S3)}
= d(S, Π).



J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90 83

The fact d(S, {S}) > d(S, Π) contradicts the optimality of Π . A similar contradiction can be obtained by assuming that
∇(S2) < ∇(S3). The result thus follows. �

Lemma 5. Suppose that the elements of S are located on a horizontal line and denoted p1, p2, . . . , pn from left to right. If the
strip partition Π = {{p1, . . . , pi}, {pi+1, . . . , pj−1}, {pj, . . . , pn}} (i ∈ [1..n − 2] and j ∈ [i + 2..n]) is optimal and {p1, . . . , pi}
is red, then i and j maximize

min

w(p1) + · · · + w(pi), w(pj) + · · · + w(pn)


.

Proof. Assume w.l.o.g. that

W (1, i) = min {W (1, i),W (j, n)} .

Note that W (1, i) = ∇({p1, . . . , pi}) = d(Π, S) by Lemma 4. For the sake of contradiction, suppose that there exist indices
i′ ∈ [1..n − 2] and j′ ∈ [i′ + 2..n] such that

min

W (1, i′),W (j′, n)


> W (1, i).

Since Π is optimal, the strip partition Π ′
= {{p1, . . . , pi′}, {pi′+1, . . . , pj′−1}, {pj′ , . . . , pn}}, where {p1, . . . , pi′} and

{pj′ , . . . , pn} are red, must satisfy d(S, Π ′) ≤ d(S, Π), which implies

∇({pi′+1, . . . , pj′−1}) ≤ max

∇({p1, . . . , pi′}), ∇({pj′ , . . . , pn})


which can be rewritten asW (i′ + 1, j′ − 1)

 ≤ max

W (1, i′),W (j′, n)


since ∇({p1, . . . , pi′}) = W (1, i′), ∇({pi′+1, . . . , pj′−1}) = |W (i′ + 1, j′ − 1)|, and ∇({pj′ , . . . , pn}) = W (j′, n). This, in turn,
implies

d(S, {S}) =
W (1, i′) + W (i′ + 1, j′ − 1) + W (j′, n)


≥

W (1, i′)
 −

W (i′ + 1, j′ − 1)
 +

W (j′, n)


= W (1, i′) + W (j′, n) −
W (i′ + 1, j′ − 1)


= min


W (1, i′),W (j′, n)


+ max


W (1, i′),W (j′, n)


−

W (i′ + 1, j′ − 1)


≥ min

W (1, i′),W (j′, n)


> W (1, i)
= d(Π, S),

contradicting the optimality of Π . The lemma thus follows. �

By using the above lemmas, we obtain the main result of this section: an O(n2 log2 n)-time algorithm to compute the
strip coarseness of a 2-colored point set S. The algorithm is described in the proof of the following theorem.

Theorem 6. Given a 2-colored point set S of n points in the plane, the strip coarseness of S can be computed in O(n2 log2 n) time
and O(n) space.

Proof. By Lemma 3, we compute the three values d1, d2, and d3 where: d1 = d(S, {S}); d2 is the maximum of d(S, {S1, S2})
over all the strip partitions {S1, S2} of S; and d3 is the maximum of d(S, {S1, S2, S3}) over all the strip partitions {S1, S2, S3}
of S. Finally, we return max{d1, d2, d3} as the value of Cs(S). Computing d1 can trivially be done in O(n) time. The value d2
is what Bereg et al. [5] called the linear coarseness and showed how to compute it in O(n2) time. Furthermore, they proved
that computing d2 is 3SUM-hard. The rest of the proof is devoted to showing that d3 can be computed in O(n2 log2 n) time.

By Lemma 2, we can first find an optimal strip partition Π = {S1, S2, S3} subject to S1 and S3 are red and S2 is blue.
Similarly, we can find an optimal strip partition subject to S1 and S3 are blue and S2 is red. Since the two cases are symmetric,
it suffices to focus on the first one.

Every strip partitionΠ = {S1, S2, S3} is induced by two parallel lines ℓ1 and ℓ3, directed in the same direction, where S1 is
to the left of ℓ1, S2 is in between ℓ1 and ℓ3, and S3 is to the right of ℓ3. Let ℓ be any directed line such that no line through two
points of S is perpendicular to ℓ, and label the input points p1, p2, . . . , pn, sorted in the direction of the line ℓ (i.e., according
to their orthogonal projections onto ℓ). We show now how to compute the discrepancy of the optimal strip partition Πℓ

induced by ℓ1 and ℓ3 when ℓ1 and ℓ3 are restricted to be perpendicular to ℓ.
The strip partition Πℓ has the form {{p1, . . . , pi}, {pi+1, . . . , pj−1}, {pj, . . . , pn}}, where the indices i ∈ [1..n − 2] and

j ∈ [i + 2, n] maximize min{W (1, i),W (j, n)} (Lemma 5). Observe that there exists an index t ∈ [2..n − 1] such that
i < t < j. Furthermore, for such an index t we have that W (1, i) = mp(1, t − 1) and W (j, n) = ms(t + 1, n), where for
every pair of indices i, j ∈ [1..n], i ≤ j,mp(i, j) = maxs∈[i..j] W (i, s) and ms(i, j) = maxt∈[i..j] W (t, j).



84 J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90

Such an index t can be found by using a binary search in the range [2..n − 1]. Namely, given a value of t , we compute
both mp(1, t − 1) and ms(t + 1, n). Then, since the sequence {maxs∈[1..i] W (1, s)}ni=1 is ascending and the sequence
{maxs∈[i..n] W (s, n)}ni=1 is descending, we perform the following procedure for the current value of t: If mp(1, t − 1) =

ms(t +1, n), then we have that d(S, Πℓ) = min{mp(1, t −1),W (1, n)−mp(1, t −1)−ms(t +1, n),ms(t +1, n)} and stop
the search. Otherwise, we increase t ifmp(1, t−1) < ms(t+1, n) and decrease t ifmp(1, t−1) > ms(t+1, n), and continue
with the search. If there is no range for t to continue the search, then d(S, Πℓ) = min{mp(1, t −1),ms(t +1, n),W (1, n)−

mp(1, t − 1) − ms(t + 1, n)} for any value of t considered in the search that maximizes min{mp(1, t − 1),ms(t + 1, n)}.
We can use the MCS-tree of Cortés et al. [11] to store the sequence w(p1), w(p2), . . . , w(pn). The MCS-tree is a tree-like

linear-size data structure that maintains a sequence of n numbers over updates of its elements so that the update of any
element costs O(log n) time, and range maximum sum queries can be answered in O(log n) time. In particular, given an
index t ∈ [2..n − 1], a MCS-tree over the sequence w(p1), w(p2), . . . , w(pn) allows us to compute the sums mp(1, t − 1)
andms(t + 1, n) in O(log n) time. Then, the binary search can run in O(log2 n) time.

The overall algorithm to compute d3 is then as follows: We fix a line ℓ, build the MCS-tree over the sequence
w(p1), w(p2), . . . , w(pn) induced by ℓ, and compute d(S, Πℓ) with the binary search. Then, we perform a rotational sweep
with the line ℓ in which we maintain the value of d(S, Πℓ) for each change of the sequence w(p1), w(p2), . . . , w(pn).
There are O(n2) changes in total and each of them can be enacted by performing a swap of two adjacent elements whose
corresponding points in S define a line perpendicular to ℓ. Each swap can be implemented with two O(log n)-time one-
element updates in theMCS-tree. After theMCS-tree is updated, a new value of d(S, Πℓ) is computedwith the binary search
in O(log2 n) time. The value d3 = maxℓ d(S, Πℓ) over all the positions of ℓ is returned.

To perform the rotational sweep and process each swap in the sequence w(p1), w(p2), . . . , w(pn), we iterate over the
set L of at most

n
2


= O(n2) lines through two points of S sorted by slope. To do so, we dualize the points in S to the set of

lines S ′ so that the lines of Lmap to the intersection points between the lines of S ′, and the left-to-right order of such points
maps precisely to the lines of L sorted by slope [12]. The intersection points between the lines of S ′ can be recognized from
left to right with the plane sweep algorithm for segment intersection [12], which runs in O(n log n + s log n) ⊆ O(n2 log n)
time, where s = O(n2) is the number of intersections, and O(n) space. For each intersection point recognized, we perform
the corresponding swap in the sequence w(p1), w(p2), . . . , w(pn) and apply the binary search. Since we apply the binary
search for each of the O(n2) swaps, the overall algorithm runs in O(n2 log2 n) time. �

Corollary 7. Given a set S of colored points on a line, the strip coarseness of S can be computed in O(n) time if the sorted list of
points along the line is given, or in O(n log n) time otherwise.

We finish this section by proving that computing the strip coarseness is 3SUM-hard. The proof uses the construction of
Bereg et al. [5] that shows that computing the linear coarseness, that is, the maximum discrepancy of partitions with two
subsets of the point set, is 3SUM-hard.

Theorem 8. Given a 2-colored point set S of n points, computing the strip coarseness of S is 3SUM-hard.

Proof. Let d2 be the maximum of d(S, {S1, S2}) over all the strip partitions {S1, S2}, and d3 the maximum of d(S, {S1, S2, S3})
over all the strip partitions {S1, S2, S3} of S. Bereg et al. [5] proved that, for every integer d ≥ 1, deciding d2 = d is 3SUM-
hard, making a reduction from an instance {x1, x2, . . . , xn} of 3SUM to a 2-colored point set S. We will show in what follows
that for d = 2 such a point set S satisfies d2 ≥ d3 ≥ 0 = d(S, {S}). Thus, computing Cs(S) = d2 is also 3SUM-hard. Given an
instance {x1, x2, . . . , xn} of 3SUM, Bereg et al. [5] build the point set S = R ∪ B, where R = {pi = (xi − ε, x3i ) : i = 1, . . . , n}
and B = {qi = (xi + ε, x3i ) : i = 1, . . . , n} for some small enough ε > 0. Consider the n red–blue pairs (pi, qi), i ∈ [1..n].
We say that a line separates a pair if the red element is to one of side of the line and the blue one is to the other side. Note
that if a line separates more than one pair, then the red (resp. blue) elements of the pairs are on the same side of the line.
Furthermore, ε satisfies: a line separates three pairs (pi, qi), (pj, qj), and (pk, qk) for different i, j, k ∈ [1..n] if and only if
xi + xj + xk = 0; for every two different pairs there exists a line that separates them; and there does not exist any line
separating at least four different pairs. Under these conditions, d2 ∈ {2, 3}, and d2 = 3 if and only if three different pairs
are separated by the same line. Let Π = {S1, S2, S3} be a strip partition of S, induced by the parallel lines ℓ1 and ℓ2, such
that d3 = d(S, Π). Since the pairs separated by ℓ1 or ℓ2 are the only ones that count to compute ∇(S1), ∇(S2), and ∇(S3),
then we have that ∇(S1), ∇(S3) ≤ 3 which implies d3 ≤ 3. Furthermore, ∇(S1) = ∇(S3) = 3 implies ∇(S2) = 0. Then,
2 = d2 < d3 = 3 cannot happen. Consequently, we always have d3 ≤ d2, and the result follows. �

3. Rectangle coarseness

3.1. One dimension

Let p1, p2, . . . , pn denote the elements of S, sorted from left to right, and consider the sequencew(p1), w(p2), . . . , w(pn).
Observe that, in 1D, the rectangle coarseness and the strip coarseness are equivalent. Consequently, by Corollary 7, this value
can be computed in O(n) time, if the input points are given in sorted order, or in O(n log n) time otherwise. In the following,
we describe algorithms to compute the k-rectangle coarseness, for fixed k.



J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90 85

Theorem 9. The k-rectangle coarseness in one dimension can be computed in O(n2k) time and O(nk) space.

Proof. We solve this problem by means of dynamic programming. Namely, let OPT (j, t) denote the t-rectangle coarseness
of the point set {p1, p2, . . . , pj} for every j, t ∈ [1..n]. OPT (j, t) satisfies the following recurrence:

OPT (j, t) =


0 j < t
|W (1, j)| t = 1
max

s∈[1..j−1]
min {OPT (s, t − 1), |W (s + 1, j)|} 1 < t ≤ j.

Preprocessing w(p1), w(p2), . . . , w(pn) by computing all the prefix sumsW (1, 1),W (1, 2), . . . ,W (1, n), each sumW (s+

1, j) = W (1, j) − W (1, s) can be computed in constant time. This implies that the k-rectangle coarseness of S is equal to
OPT (n, k) and can be computed in O(n2k) time and O(nk) space. �

We consider now the k-rectangle coarseness of S in 1D for the special cases k = 2, 3, 4. In each case, we give anO(n)-time
algorithm by assuming that the sequence w(p1), w(p2), . . . , w(pn) is given. If this sequence is not given, it can be obtained
in O(n log n) time by sorting the elements of S, and the k-rectangle coarseness then computed in O(n log n) time.

Proposition 10. The 2-rectangle coarseness of the set {pi, pi+1, . . . , pj} is given by a convex partition of the form {{pi, . . . , ps},
{ps+1, . . . , pj}} that satisfies the following properties:

1 If W (i, s) > 0 and W (s + 1, j) ≤ 0, then W (i, s) = mp(i, j).
2 If W (i, s) ≤ 0 and W (s + 1, j) > 0, then W (s + 1, j) = ms(i, j).
3 If W (i, s),W (s + 1, j) > 0,W (i, s),W (s + 1, j) < 0, or {W (i, s),W (s + 1, j)} = {−1, 0} then

W (i, s),W (s + 1, j)


=


|W (i, j)|

2


,


|W (i, j)|

2


.

Proof. The proof can be derived from Lemma 12 in [5]. �

Theorem 11. The k-rectangle coarseness in one dimension and k = 2, 3, 4 can be computed in O(n) time if we know the left-to-
right order of S. Otherwise, it can be computed in O(n log n) time.

Proof. Using the data structure of Chen and Chao [10], we can preprocess w(p1), w(p2), . . . , w(pn) in linear time so that,
for any four indices i ≤ j ≤ i′ ≤ j′, the following query can be answered in constant time: compute the maximum sum
W (s, s′) such that i ≤ s ≤ j and i′ ≤ s′ ≤ j′. Notice that, if i = j = i′, then W (s, s′) = W (i, s′) = mp(i, j′), and that if
j = i′ = j′, thenW (s, s′) = W (s, j) = ms(i, j).

Using the above preprocessing and Proposition 10, the 2-rectangle coarseness c2(i, j) of every set of the form
{pi, pi+1, . . . , pj} can be computed in O(1) time. This gives us c2(1, n), the 2-rectangle coarseness of S, in the same time
bound. To compute the 3-rectangle coarseness, we return

max
i∈[2..n−1]

min

c2(1, i), |W (i + 1, n)|


.

Similarly, to compute the 4-rectangle coarseness, we return

max
i∈[2..n−2]

min

c2(1, i), c2(i + 1, n)


.

Each of these two maximum values can be computed in O(n) time. The result follows. �

3.2. Two dimensions

Computing the rectangle coarseness of a 2-colored point set S seems to be as hard as computing the coarseness [5,13].
Similar to the approximate computation of the coarseness given by Díaz-Báñez et al. [13], we show an approximate
computation of the rectangle coarseness with ratio between 1/8 and 1/4, using a notion that we call 2-separable island.
An island S ′

⊆ S is 2-separable if there exists a quadrant (i.e. the intersection of two axis-parallel halfplanes) that contains S ′

and its complement (the union of three quadrants) contains S \ S ′. The proof of the following lemma describes an algorithm
to find a 2-separable island S ′

⊆ S maximizing ∇(S ′). This algorithm can be derived from the techniques of Cortés et al.
[11], combining plane sweeps and the MCS-tree, in order to find a rectangle H that maximizes W (H). We describe it here
for completeness and facilitate understanding of some of the algorithms in this section which use similar techniques.

Lemma 12. Let S = R∪B be 2-colored point set in the plane. A 2-separable island S ′ maximizing ∇(S ′) can be found in O(n log n)
time.



86 J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90

Fig. 1. The four rectangles H1,H2,H3 , and H4 of the rectangle partition {S1, S2, S3, S4}: H1 ≺ H3 and H2 ≺ H4 . Since H3 and H4 are the maximal elements
in ≺, then (M1,M2) = (H4,H3). Note thatM2 = H3 can be separated from the other rectangles with an upper-right quadrant.

Proof. We show how to find a 2-separable island S ′ that maximizes W (S ′) such that there exists an upper-right quadrant
Q satisfying S ′

= S ∩ Q . The other cases where Q is upper-left, lower-left, or lower-right, and/or −W (S ′) is maximized,
can be solved symmetrically. Let p1, p2, . . . , pn denote the elements of S sorted in descending order of y-coordinate. Let ℓ
be a vertical line through or to the left of at least one point of S, and let wℓ : S → {−1, 0, +1} be the following weight
function dependent on ℓ: If p ∈ S is to the left of the line ℓ then wℓ(p) = 0. Otherwise, if p lies on or to the right of ℓ,
then wℓ(p) = w(p). This choice of function allows us to ‘‘discard’’ the points to the left of ℓ by assigning them weight
zero. Consider now the sequence wℓ(p1), wℓ(p2), . . . , wℓ(pn), and observe that an upper-right quadrant Qℓ bounded to the
left by ℓ that maximizes W (Qℓ ∩ S) is bounded below by the horizontal line through a point pi, i ∈ [1..n] that maximizes
Wℓ(1, i) = wℓ(p1) + · · · + wℓ(pi). Furthermore,W (Qℓ ∩ S) = Wℓ(1, i).

The algorithm is then as follows: We start with the line ℓ to the left of all points of S, and sweep S from left to right with
ℓ, keeping track of themaximum ofW (Qℓ ∩S). The sequencewℓ(p1), wℓ(p2), . . . , wℓ(pn) is stored in anMCS-tree [11], such
that every time the line ℓ crosses a point pj of S, j ∈ [1..n], the element wℓ(pj) is updated in O(log n) time in the MCS-tree.
After the update is performed, an index i ∈ [1..n] that maximizesWℓ(1, i) can be found in O(1) time at the root of the MCS-
tree. The 2-separable island S ′ returned is the set {pj : j ∈ [1..i], wℓ(pj) ≠ 0} whereW (Qℓ ∩ S) = Wℓ(1, i) is maximum. The
running time is clearly O(n log n). �

The following lemma shows that every rectangle partition contains a 2-separable island. Given two points u, v ∈ R2, we
write u ≺ v (or say that v dominates u) if ux ≤ vx and uy ≤ vy.

Lemma 13. Let S = R∪ B be 2-colored point set in the plane. Every rectangle partition of S contains a 2-separable island, which
can be separated with a quadrant in any given direction.

Proof. Let {S1, S2, . . . , Sk} be a rectangle partition of S, and letHi = H(Si) for every i ∈ [1..k]. Wewill prove that there exists
an upper-right quadrant that contains a rectangle of the set {H1,H2, . . . ,Hn} and does not intersect any other rectangle of
this set. This implies the lemma. For the other quadrant directions the proof is similar by symmetry.

Given a rectangle H , let v(H) denote the bottom-left vertex of H , and Q (H) the upper-right quadrant with origin
v(H) (which is the inclusion minimum such a quadrant that contains H). For every i ≠ j, we write Hi ≺ Hj if and
only if v(Hi)x ≤ v(Hj)x and v(Hi)y ≤ v(Hj)y. That is, vertex v(Hj) dominates (in the vectorial sense) vertex v(Hi). Ob-
serve that ≺ is a partial order on the rectangles H1,H2, . . . ,Hk, thus there exists at least one maximal rectangle with
respect to ≺. Let {M1,M2, . . . ,Mt} ⊆ {H1,H2, . . . ,Hn} be the set of maximal rectangles with respect to ≺, and assume
v(M1)x < v(M2)x < · · · < v(Mt)x through labeling (refer to Fig. 1). We prove by induction on t that there exists an upper-
right quadrant that contains a rectangle of the set {M1,M2, . . . ,Mt} and does not intersect any other rectangle. If t = 1 this
statement is trivially true. Then, assume t ≥ 2. If Q (M1) does not intersect any rectangle in {M2, . . . ,Mt}, then Q (M1) can
be the desired quadrant. Otherwise, let i ∈ [2..t] be theminimum index such that Q (M1)∩Mi is not empty. Observe that the
vertical line through v(Mi) separates the rectanglesM1,M2, . . . ,Mi−1 from the rectanglesMi,Mi+1, . . . ,Mt . By the inductive
hypothesis, there is an upper-right quadrant containing a rectangle in {Mi,Mi+1, . . . ,Mt} and does not intersect any other
rectangle of this set. By the former argument, such a quadrant neither intersects any rectangle among M1,M2, . . . ,Mi−1.
This completes the proof. �

Theorem 14. Let S = R∪B be 2-colored point set in the plane. In O(n log n) time a rectangle partitionΠapx of S can be computed
such that

max

Cr(S)/8, Cr(S)/4 − ∇(S)


≤ d(S, Πapx) ≤ Cr(S).

Proof. Let S ′
⊆ S be a 2-separable island that maximizes ∇(S ′) = |W (S ′)|, which can be computed in O(n log n) time by

Lemma 12. Díaz-Báñez et al. [13] proved that if there exists an island I of S such that ∇(I) ≥ t for some t , and I is contained



J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90 87

in the intersection of two halfplanes whereas S \ I is contained in the complement of that intersection, then there exists a
convex partitionΠ such that d(S, Π) ≥ max{t/8, t/4−∇(S)}. The convex partitionΠ is obtained by splitting S into two or
four islands by using one or two of the boundary lines of such halfplanes, respectively. Since S ′ is 2-separable, we can take
the two axis-parallel halfplanes defining the quadrant that contains S ′ and completely excludes S \ S ′, and use them in the
arguments of Díaz-Báñez et al. [13] to show that it is possible to give a rectangle partition Πapx such that

max

∇(S ′)/8, ∇(S ′)/4 − ∇(S)


≤ d(S, Πapx).

Since every rectangle partition Π has a 2-separable island (Lemma 13), we have that d(S, Π) ≤ ∇(S ′) for every Π , which
implies

max

Cr(S)/8, Cr(S)/4 − ∇(S)


≤ d(S, Πapx).

The result follows. �

We now turn our attention to k-rectangle coarseness. There are two cases. When k is part of the input, we show that
its computation is NP-hard. When k is fixed, we show how to compute it in O(n2k−1) time. For k = 2, 3, 4, more efficient
algorithms are given.

Theorem 15. Given a 2-colored point set S = R ∪ B in the plane with n points, and a value k ∈ [1..n], it is NP-hard to compute
the k-coarseness of S.

Proof. Wewill reduce from the PerfectMonochromatic RectangleMatching (PMRM) problemwhich is NP-complete [8].
Given a 2-colored point set in the plane, the PMRM problem asks whether there exists a set of pairwise disjoint rectangles
such that each rectangle covers precisely two points of the same color, and that each point is covered by some rectangle.
The PMRM problem is NP-complete even if the points are in general position. Given an instance S = R ∪ B of the PMRM
problem, the answer is affirmative if and only if for k = ⌈|R|/2⌉ + ⌈|B|/2⌉ the k-rectangle coarseness of S is equal to two,
that is, Cr(R ∪ B) = 2. �

Theorem 16. Given a 2-colored point set S = R ∪ B in the plane with n points, and a fixed value k ∈ [1..n], the k-rectangle
coarseness of S can be computed in O(n2k−1) time.

Proof. By Lemma13,we can assume through labeling, that any rectangle partition {S1, S2, . . . , Sk} of S satisfies the following
property: For i = 1, . . . , k, the set Si is a 2-separable island of the set Si ∪ Si+1 ∪ · · · ∪ Sk, which can be separated
using an upper-right quadrant. Accordingly, in the rest of the proof, we assume, without restating this property, that every
2-separable island can be separated using an upper-right quadrant. For every X ⊆ S, let Q (X) denote the minimum upper-
right quadrant that covers X . The algorithm enumerates recursively all rectangle partitions {S1, S2, . . . , Sk}, that is, for each
selection of S1, S2, . . . , Sj−1, j ∈ [1..k−1], it iterates over all possible islands Sj (together with∇(Sj)) such that the following
conditions are satisfied:

(1) Sj is a 2-separable island of the set S \ (S1 ∪ · · · ∪ Sj−1).
(2) For each t ∈ [1..j − 1], we have H(Sj) ∩ Q (St) = ∅.

Both conditions are used to guarantee that, with j − k, all k-rectangle partitions {S1, S2, . . . , Sk} are enumerated. Each
island Si is represented in O(1) space by H(Si). We now show that the above enumeration can be done in O(n2k−1) time.
Assume that the elements of S have been sorted twice, first by x-coordinate and second by y-coordinate.

For j = 1, all the O(n2) pairs (S1, ∇(S1)), where S1 ⊆ S is a 2-separable island of S, can be enumerated in overall O(n2)
time, by using the x- and y-orderings of S.

For j ∈ [2..k − 1], let Sj be a 2-separable island of S \ (S1 ∪ · · · ∪ Sj−1). Note that condition (2) is satisfied if and only
if the upper-right vertex of H(Sj) is not in the region Q (S1) ∪ · · · ∪ Q (Sj−1), whose boundary is precisely the upper-right
staircase defined by the minima of the lower-left vertices of the rectangles H(S1), . . . ,H(Sj−1). Using the x- and y-order of
S, the vertices of such a staircase can be sorted by x- or y-coordinate in O(n) time. Then, using the x- and y-orders of both S
and the vertices of the staircase, all valid pairs (Sj, ∇(Sj)), where Sj satisfies conditions (1) and (2), can be iterated in O(n2)
time.

For j = k, the only island to iterate is Sk = S \ (S1 ∪ · · · ∪ Sk−1), which can be done in O(n) time with arguments similar
to that of the above two cases.

The overall running time is then O(n2k−1). �

Theorem 17. Let S = R∪ B be a 2-colored point set in the plane with n points. For k = 2, 3, the k-rectangle coarseness of S can
be computed in O(n log n) time.

Proof. For k = 2, the islands S1 and S2 can always be separated by an axis-parallel line. Then, computing the 2-rectangle
coarseness of S reduces to computing the 2-rectangle coarseness of two point sets in one dimension, and returning the
maximum between them, which can be done in O(n log n) time (Theorem 11). Such point sets are: the points of S sorted by
x-coordinate, and the points of S sorted by y-coordinate.



88 J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90

Fig. 2. The islands S1, S2 , and S3 are separated by either: (a) two axis-parallel non-intersecting lines, or (b) an axis-parallel line and an axis-parallel half-line.

Fig. 3. The islands S1, S2, S3 , and S4 are separated by four axis-parallel halflines.

For k = 3, S1, S2, and S3 can always be separated by two axis-parallel non-intersecting lines (Case 1, Fig. 2(a)), or an axis-
parallel line and an axis-parallel halfline orthogonal to the line with the apex on it (Case 2, Fig. 2(b)). For Case 1, computing
the 3-rectangle coarseness reduces to computing such a coarseness in two one-dimensional point sets, the x-order of S and
the y-order of S. Then, the 3-rectangle coarseness can be computed in O(n log n) time by Theorem 11.

For Case 2, assumew.l.o.g. the relative positions of S1, S2, and S3 shown in Fig. 2(b). The other configurations for S1, S2, and
S3 can be treated analogously.We sweep S from left to rightwith a vertical line ℓ, and at every event inwhich ℓ crosses a point
of S, the set S1 ⊆ S contains the points to the left ℓ, and {S2, S3}maximizes d(S\S, {S2, S3}), that is, d(S\S, {S2, S3}) is equal to
the 2-rectangle coarseness of the one-dimensional y-order of the points S \ S1 to the right of ℓ1. We maintain the maximum
of ∇(S1), ∇(S2), and ∇(S3) during the sweep. At each event, ∇(S1) can be updated in O(1) time, and d(S \ S, {S2, S3}) in
O(log n) time by using an MCS-tree over the y-order of S with the weight function wℓ(p) (that given p ∈ S returns w(p) if p
is to the right of ℓ, and 0 otherwise, see Lemma 13), and Proposition 10. The running time is O(n log n). �

Theorem 18. Let S = R∪B be a 2-colored point set S in the plane with n points. The 4-rectangle coarseness of S can be computed
in O(n3) time.

Proof. Observe that theminimumof d(S, Π) over all rectangle partitionsΠ = {S1, S2, S3, S4}, such that there exists an axis-
parallel line separating two islands from the other two ones, can be computed in O(n log n) time with an algorithm similar
to that given in Theorem 17 for computing the 3-rectangle coarseness. Namely, we can sweep S with an axis-parallel line
and dynamically maintain the 2-rectangle coarseness of the points to one side of the line, and the 2-rectangle coarseness of
the points to the other side.

Also note that the minimum of d(S, Π) over all rectangle partitions Π = {S1, S2, S3, S4}, such that there exists an
axis parallel line separating one island from the other three ones, can be computed in O(n2 log n) time by computing the
3-rectangle coarseness of O(n) subsets of S.

In the following, we show how to compute in O(n3) time the maximum of d(S, Π) over all rectangles partitions
Π = {S1, S2, S3, S4} for which there is no axis-parallel line separating one or two islands from the other ones. Assume
w.l.o.g. that the relative positions of H(S1),H(S2),H(S3), and H(S4) are as shown in Fig. 3(a), being separated by four axis-
parallel halflines.

Given a point a ∈ R2, let ha and va denote the horizontal and vertical lines passing through a, respectively. Let a, a′
∈ R2

such that ax < a′
x. If ay < a′

y, then let

NW (a, a′) = {(x, y) ∈ S | x < a′

x, y > ay}, SE(a, a′) = {(x, y) ∈ S | x > ax, y < a′

y}.



J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90 89

Otherwise, if ay > a′
y, let

NE(a, a′) = {(x, y) ∈ S | x > ax, y > a′

y}, SW (a, a′) = {(x, y) ∈ S | x > a′

x, y < ay}.

Suppose that we know the x-order of S, denoted Sx and computed inO(n log n) time. Let p and q be two elements of S such
that q is below hp, that is, qy < py. Assume w.l.o.g. that px < qx (the other case, where px > qx, is symmetric). We show now
how to compute in O(n) time the minimum of d(S, Π) subject to p being the topmost point of S3, and q, the bottommost
point of S1 (see Fig. 3(b)). Observe that this is equivalent to finding a pair of points p′, q′

∈ S, as shown in Fig. 3(b), such that:

Π =


NE(q′, q) ∪ {q}


,

NW (p, q′) ∪ {q′

}

,

SW (p, p′) ∪ {p}


,

SE(p′, q) ∪ {p′

}


,

is a rectangle partition of S, and d(S, Π) is maximized, where

d(S, Π) = min

∇


NE(q′, q) ∪ {q}


, ∇


NW (p, q′) ∪ {q′

}

, ∇


SW (p, p′) ∪ {p}


, ∇


SE(p′, q) ∪ {p′

}


.

This can be done as follows:
We first assign a weight α to each element u ∈ Sx so that

α(u) =


min


∇(NE(u, q) ∪ {q}), ∇(NW (p, u) ∪ {u})


ux ∈ (px, qx), uy > py

−∞ otherwise.

This assignment of weights can be done in O(n) time. After that, we preprocess Sx in O(n) time, by using a range maximum
query data structure [3,10,17,18] so that, given any interval of contiguous elements of Sx, a point u of the intervalmaximizing
α(u) can be reported in O(1) time.

Let S ′
x denote the subsequence of Sx composed of the points u such that ux > px and uy < qy, and p1, p2, . . . , pt denote

the left to right ordering of the elements of S ′
x. Observe thatW (SW (p, p1) ∪ {p}) andW (SE(p1, q) ∪ {p1}) can be computed

in O(n) time and that, for j = 2, . . . , t , bothW (SW (p, pj) ∪ {p}) andW (SE(pj, q) ∪ {pj}) can be computed in O(1) time from
W (SW (p, pj−1) ∪ {p}) and W (SE(pj−1, q) ∪ {pj−1}). Then, in O(n) time we can compute the values

β(pj) = min

∇(SW (p, pj) ∪ {p}), ∇(SE(pj, q) ∪ {pj})


for all j ∈ [1..t]. Furthermore, in O(n) time we can also compute for all j ∈ [1..t] the point u(pj) located in the closed strip
bounded by the lines hp and hq, and to the left of the line vpj .

For j = 1, . . . , t , we set p′
= pj and compute the point q′ with a constant-time range maximum query in Sx, that is, q′ is

a point of Sx located between the points p′ and u(p′) that maximizes α(q′). We then return the pair of points p′ and q′ that
maximize min{β(p′), α(q′)}.

Repeating the above O(n)-time algorithm for every two points p, q ∈ S of S where q is below hp, the result follows. �

4. Conclusions and open problems

In this paper, we showed that the coarseness of a 2-colored point set can be efficiently calculated for various cases in
which the type of partitions allowed is constrained. When the point partition is given by parallel lines (in any direction)
the problem can be solved in O(n2 log2 n) time and shown to be 3SUM-hard in two dimensions, and O(n log n) time in one
dimension.When the clusters are given by pairwise-disjoint boxes and the number of boxes is fixed at k, we gave an O(n2k)-
time algorithm in one dimension. For k = 2, 3, 4, O(n log n)-time algorithms are given. We also proved NP-hardness in two
dimensions, and presented algorithms running in O(n log n) time for k = 2, 3, and O(n3) time for k = 4. For a general fixed
value of k, we showed how to compute the k-rectangle coarseness in O(n2k−1) time. We also showed how to compute a
constant-approximation to the k-rectangle coarseness in the general case where k is not constrained.

Various open problems remain, such as finding approximation algorithms for k-rectangle coarseness, and further
studying the computational complexity of rectangle coarseness.

Acknowledgments

J.M. Díaz-Báñezwas partially supported by project FEDERMECMTM2009-08652, andMTM2016-76272-R AEI/FEDER,UE.
C. Ochoa is supported by CONICYT-PCHA/Doctorado Nacional/ 2013-63130161 (Chile). P. Pérez-Lantero was partially
supported by projects CONICYT FONDECYT/Iniciación 11110069 (Chile), CONICYT FONDECYT/Regular 1160543 (Chile), and
Millennium Nucleus Information and Coordination in Networks ICM/FIC RC130003 (Chile).

References

[1] J.R. Alexander, J. Beck,W.W. Chen, 13 geometric discrepancy theory and uniform distribution, in: Handbook of Discrete and Computational Geometry,
2004, p. 279.

[2] C. Bautista-Santiago, J.M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, J. Urrutia, I. Ventura, Computing optimal islands, Oper. Res. Lett. 39 (4) (2011) 246–251.

http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref1
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref2


90 J.M. Díaz-Báñez et al. / Discrete Applied Mathematics 224 (2017) 80–90

[3] M.A. Bender, M. Farach-Colton, G. Pemmasani, S. Skiena, P. Sumazin, Lowest common ancestors in trees and directed acyclic graphs, J. Algorithms 57
(2) (2005) 75–94.

[4] S. Bereg, S. Cabello, J.M. Díaz-Báñez, P. Pérez-Lantero, C. Seara, I. Ventura, The class cover problemwith boxes, Comput. Geom. 45 (7) (2012) 294–304.
[5] S. Bereg, J.M. Díaz-Báñez, D. Lara, P. Pérez-Lantero, C. Seara, J. Urrutia, On the coarseness of bicolored point sets, Comput. Geom. 46 (1) (2013) 65–77.
[6] E. Boros, V. Gurvich, Y. Liu, Comparison of convex hulls and box hulls, Ars Combin. 77 (2005) 193–204.
[7] V. Capoyleas, G. Rote, G. Woeginger, Geometric clusterings, J. Algorithms 12 (2) (1991) 341–356.
[8] L.E. Caraballo, C. Ochoa, P. Pérez-Lantero, J. Rojas-Ledesma, Matching colored points with rectangles, J. Comb. Optim. (2015).
[9] B. Chazelle, The Discrepancy Method: Randomness and Complexity, Cambridge University Press, 2000.

[10] K.-Y. Chen, K.-M. Chao, On the range maximum-sum segment query problem, Discrete Appl. Math. 155 (16) (2007) 2043–2052.
[11] C. Cortés, J.M. Díaz-Báñez, P. Pérez-Lantero, C. Seara, J. Urrutia, I. Ventura, Bichromatic separability with two boxes: A general approach, J. Algorithms

64 (2–3) (2009) 79–88.
[12] M. de Berg, O. Cheong, M. van Kreveld, M. Overmars, Computational Geometry: Algorithms and Applications, third ed., Springer-Verlag TELOS, Santa

Clara, CA, USA, 2008.
[13] J.M. Díaz-Báñez, R. Fabila-Monroy, P. Pérez-Lantero, I. Ventura, New results on the coarseness of bicolored point sets, Inform. Process. Lett. 123 (2017)

1–7.
[14] D.P. Dobkin, D. Eppstein, D.P. Mitchell, Computing the discrepancy with applications to supersampling patterns, ACM Trans. Graph. 15 (4) (1996)

354–376.
[15] A. Dumitrescu, J. Pach, Partitioning colored point sets into monochromatic parts, Internat. J. Comput. Geom. Appl. 12 (05) (2002) 401–412.
[16] J. Eckstein, P.L. Hammer, Y. Liu, M. Nediak, B. Simeone, The maximum box problem and its application to data analysis, Comput. Optim. Appl. 23 (3)

(2002) 285–298.
[17] H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques for geometry problems, in: Proc. of the 16th Annual ACM Symposium on Theory

of Computing, ACM, 1984, pp. 135–143.
[18] D. Harel, R.E. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM J. Comput. 13 (2) (1984) 338–355.
[19] A. Kaneko, M. Kano, Discrete geometry on red and blue points in the plane a survey, in: Discrete and Computational Geometry, Springer, 2003,

pp. 551–570.
[20] S. Majumder, S.C. Nandy, B.B. Bhattacharya, Separating multi-color points on a plane with fewest axis-parallel lines, Fund. Inform. 99 (3) (2010)

315–324.
[21] C. Seara, On Geometric Separability (Ph.D. thesis), Univ. Politecnica de Catalunya, 2002.
[22] P. Serafini, Classifying negative and positive points by optimal box clustering, Discrete Appl. Math. 165 (2014) 270–282.
[23] P. Shirley, Discrepancy as a quality measure for sample distributions, in: Proc. Eurographics, Vol. 91, 1991, pp. 183–194.
[24] V. Spinelli, Supervised box clustering, in: Advances in Data Analysis and Classification, 2016, pp. 1–26.
[25] S.M. Weiss, C.A. Kulikowski, Computer Systems That Learn: Classification and Prediction Methods from Statistics, Neural Nets, Machine Learning, and

Expert Systems, Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 1991.

http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref3
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref4
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref5
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref6
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref7
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref8
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref9
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref10
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref11
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref12
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref13
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref14
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref15
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref16
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref17
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref18
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref19
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref20
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref21
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref22
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref24
http://refhub.elsevier.com/S0166-218X(17)30108-7/sbref25

	Computing the coarseness with strips or boxes
	Introduction
	Definitions and notation
	Summary of results

	Strip coarseness
	Rectangle coarseness
	One dimension
	Two dimensions

	Conclusions and open problems
	Acknowledgments
	References


