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We experimentally study the transport properties of dipolar and fundamental modes on one dimensional
(1D) coupled waveguide arrays. By carefully modulating a wide optical beam, we are able to effectively
excite dipolar or fundamental modes to study discrete diffraction (single-site excitation) and gaussian
beam propagation (multi-site excitation plus a phase gradient). We observe that dipolar modes experi-
ence a larger spreading area due to an effective larger coupling constant, which is found to be more than
two times larger than the one for fundamental modes. Additionally, we study the effect of non-diagonal
disorder and find that while fundamental modes are already trapped on a weakly disorder array, dipoles
are still able to propagate across the system.

� 2017 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
1. Introduction

Waveguide arrays and photonic lattices are an important field
of study where many fundamental and applied problems can be
investigated in a rather simple configuration [1,2]. Most of the the-
oretical and experimental efforts have been focused on studying
transport and localization properties in various contexts, such as
complex beam steering [3–5], Bloch oscillations [6–8], dynamic
localization [9,10], relativistic emulations [11], discrete solitons
[12–14], and many more. Recently, even the absence of transport
and linear localization in complex lattice geometries was investi-
gated [15–20].

Importantly, almost all previous works have considered single-
mode waveguides only. This somehow reduces the complexity of
the studied problem, allowing a more direct verification of theoret-
ical results on simpler experimental setups. But, optical waveg-
uides could also host higher order modes. Their excitation could
promote richer dynamics and new interesting phenomena, as it
has been suggested for cold-atoms loaded in optical potentials
[21–24] (in that context, dipolar modes are known as p-modes).
However, in general, a precise excitation of different modes or
complex spatial structures may be simpler using light than atoms
[15], as we will show along this work.
Elsevier B.V. and Science China Pr
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In this work, we present a first systematic study on the diffrac-
tion properties of dipolar modes in coupled waveguide arrays. We
find that dipoles form another first tight-binding band, that is
fundamentally distinct from the higher-order bands of continuous
periodical systems [25]. Our waveguide arrays are fabricated
using a very precise femtosecond-laser technique [26], which pro-
duces micrometer waveguides disposed on a given two-
dimensional transversal pattern. Light propagating on these
waveguides is well trapped in space, allowing a theoretical
description based on coupled-mode theory, due to the weak cou-
pling interaction between neighboring waveguides. By using a
green laser beam and a modulation setup, we are able to effec-
tively excite fundamental and dipolar modes, and study their
dynamical properties in ordered as well as in disordered waveg-
uide lattices [27].
2. Waveguide modes

A single-mode waveguide could become multimode when
reducing the laser wavelength, or when increasing its cross-
section or refractive index contrast [28,29]. A first excited mode
is denominated ‘‘dipolar” LP11 mode [30], which can have an hor-
izontal or vertical distribution, depending on the particular waveg-
uide geometry. The experimental excitation of higher-order modes
has already been reported in Ref. [31] for highly elliptical two-
dimensional waveguides [26], although a systematic study in the
context of weakly coupled systems is still elusive.
ess. All rights reserved.
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The analytical treatment for finding the modes of elliptical
waveguides is not trivial [32], essentially due to their geometry
and complex refractive index profiles. Therefore, we implement a
numerical finite-difference method to find the propagating modes
of our elliptical waveguides of geometry
�x � �y ¼ 5:2 lm� 13 lm, excited using a green laser of 532 nm.
Waveguide parameters were tuned in order to match our experi-
mental observations, using a bulk fused-silica index n0 ¼ 1:46
and a maximum index contrast of Dn ¼ 0:73� 10�3 (This is
obtained by fitting the experimental index profiles from Ref. [26],
and constructing a continuous index gradient function, where �x
and �y describe the widths of the ellipse shown in Fig. 1a and b).
We look for modes of a single waveguide and find that, in our
highly elliptical regime (�x=�y ¼ 0:40), there are only two possible
solutions: the fundamental mode sketched in Fig. 1a and the verti-
cal dipolar mode shown in Fig. 1b (corresponding to dots shown in
Fig. 1c). We notice that the fundamental mode is well trapped at
the waveguide center, while the dipolar mode presents a more
extended tail in the upper and lower region, with zero amplitude
at the center.

By tuning the ratio �x=�y, we find the possible solutions as a
function of their longitudinal propagation constant b0, as shown
in Fig. 1c. We find that an additional horizontally oriented dipolar
mode appears, as shown by a dashed line in Fig. 1c. This occurs
when the waveguide geometry tends to a circular limit
(�x=�y ¼ 1), where both, horizontal and vertical, dipolar modes
converge and degenerate.

Following the method described in Ref. [27], we computed the
horizontal coupling coefficients for fundamental and dipolar
modes, for two identical waveguides separated –center to center–
by a given distance a (see Fig. 1d). First of all, we observe a typical
Fig. 1. (Color online) Waveguide modes and their constants. (a) Fundamental and (b) dip
profile). (c) Solutions diagram in terms of the waveguide geometry �x=�y and the longitud
(c) and (d) fundamental and dipolar modes are shown in black and red color, respective
exponential decaying tendency for the coupling constant of both
modes [26,31]. Then, we clearly see that the dipolar horizontal
coupling is always larger due to the more extended dipole tail.
As an example, for a distance a ¼ 16 lm, the couplings are

Cf ¼ 0:314 cm�1 and Cd ¼ 0:760 cm�1, for the fundamental (f)
and dipolar (d) modes, respectively (as indicated by dots in
Fig. 1d). It is important to mention that in the configuration
explored along this work (i.e., vertically oriented elliptical waveg-
uides), there is no coupling between fundamental and dipolar
modes. This is due to an exact cancellation of the superposition
integral for any waveguide separation.
3. Transport on a 1D lattice

We focus on a one-dimensional array of identical elliptical
waveguides, as shown in Fig. 2a, where each white region corre-
sponds to the experimental propagating profile, after white-light
illumination. In this configuration, light trapped at each site of
the array interacts only weakly with their surrounding via
nearest-neighbor interactions. We describe the dynamics across
the lattice using a set of coupled-mode equations [1,2,33],

�i
dw j

n

dz
¼ b j

0w
j
n þ C j

nþ1w
j
nþ1 þ C j

nw
j
n�1

� �
; ð1Þ

where w j
n describes the amplitude of the optical field at the nth-site,

for the fundamental (j ¼ f) or dipolar (j ¼ d) modes, while paraxi-
ally propagating along the longitudinal coordinate z. The coeffi-

cients b j
0 describe the waveguide longitudinal propagation

constants, while the coefficients C j
n correspond to the horizontal

coupling coefficients between sites n and n� 1.
olar mode profiles of an elliptical waveguide (dotted ellipses indicate the waveguide
inal propagation constant b0. (d) Coupling constants versus waveguide separation. In
ly.



Fig. 2. (Color online) Discrete diffraction. (a) Microscope image at the output facet of an ordered 1D photonic lattice. (b) Experimental setup. Discrete diffraction for a single-
site (c) fundamental and (d) dipolar mode excitations, using the input profile shown in c1 and d1, respectively. In (c) and (d) an output facet image (top) and an integrated
transversal profile (center) are shown.

C. Cantillano et al. / Science Bulletin 62 (2017) 339–344 341



342 C. Cantillano et al. / Science Bulletin 62 (2017) 339–344
We start our study considering an homogenous ordered lattice

such that C j
n ¼ C j. When injecting light on a single lattice site, a

well-known pattern is observed after evolution, the so-called dis-
crete diffraction [1,2]. Its main feature is to concentrate the energy
not at the center (as in continuous diffraction), but at the outside
external lobes. This linear problem has a formal analytical solution:

w j
nðzÞ ¼ w j

0i
nJnð2C jzÞ, where Jn is the Bessel function of order n. This

pattern is considered as a main signature for a discrete optical sys-
tem, when experiencing first band dynamics.

To experimentally study this, we fabricate an ordered lattice of
81 waveguides (see Fig. 2a) with a lattice constant of a ¼ 16 lm,
on a L ¼ 10 cm long fused silica chip (the geometrical shape of
every waveguide corresponds to a super-gaussian of third order,
with a cross section of about 4� 13 lm2 [34]). We study linear
propagation using an experimental setup based on a sequence of
two Spatial Light Modulators (SLMs) as sketched in Fig. 2b: we first
use a transmission Holoeye LC2012 SLM (SLM1) to create an ampli-
tude profile and, then, we modulate its phase using a reflective
phase-only Holoeye PLUTO SLM (SLM2). In this way, we are able
to excite a lattice injecting a modulated 532 nm laser beam on a
single (or several) waveguide (s) with an input profile, as shown
in Figs. 2c1 and d1, for fundamental and dipolar excitation, respec-
tively. The generation of dipolar input profile requires amplitude as
well as phase modulation in order to mimic the mode profile
shown in Fig. 1b. However, to obtain the right experimental mode
profile is not straightforward. We first inject a basic dipolar profile
and experimentally observe the output image. We look for a clear
dipole profile located at any waveguide and obtain its shape. Then,
we use that shape to create an image in the SLM1 as a new input
profile (of course, in the SLM2 we add the respective phase). We
inject this new profile in the input facet and observe again the out-
put pattern. We repeat this process up to observing only dipoles at
the output profile. This is an experimentally iterative method we
developed in this work, that allows us to obtain very precise input
excitations.

Fig. 2c and d show the experimentally obtained discrete diffrac-
tion patterns for both input excitations. We observe that dipolar
modes experience a larger spreading area compared to a standard
fundamental mode excitation. The dipolar diffraction pattern
shows a very broad profile, similar to the one observed for a similar
lattice but using infrared light at 800 nm [35]. Our results clearly
show the possibility to excite two very different spatial light distri-
butions by simply changing the input profile. This could be used as
a switch between two distinguishable orthogonal states, consider-
ing that the coupling between fundamental and dipolar modes is
always zero in this geometry, without any hybridization [23].

Propagating stationary solutions of model (Eq. (1)) are obtained

using the plane wave (PW) ansatz w j
nðzÞ ¼ w j

0 expðikxnaÞ expðibjzÞ
[4,5]. We find the system’s longitudinal frequencies bj as a function

of the transversal wave-vector kx : bjðkxÞ ¼ b j
0 þ 2C j cosðkxaÞ. This

expression defines two similar linear bands, but shifted in fre-
quency depending on the specific coefficients. Both modes experi-
ence first-band dynamics, but in two completely independent
bands. bjðkxÞ corresponds to the dispersion relation for the lattice
modes, and the derivative with respect to kx gives the transversal
discrete PW velocity

V j
x=a � @bj

@kx
¼ �2C j sinðkxaÞ; ð2Þ

which becomes zero for kxa ¼ mp, with m 2 Z. This velocity finds a

maximum jV j
x=aj ¼ 2C j for kxa ¼ ð2nþ 1Þp=2, with n 2 Z. As the lin-

ear band is bounded, there is a maximum transversal velocity deter-
mined by the coupling coefficients of each excited mode (in fact, the
external propagating lobes in Fig. 2c and d propagate approximately
at this maximum velocity, defining the maximum covered area for
linear transport on a given lattice). In order to test this prediction,
we take advantage of the capability of our experimental setup
and investigate the propagation properties of an ordered lattice
by injecting a tilted gaussian beam. This gaussian profile requires
to be as wider as possible in order to closely represent a PW of sin-
gle wave-vector kx. However, real setups are finite in the number of
waveguides as well as in the propagation coordinate. Therefore, we
implement our experiment using gaussian profiles that cover only 7
sites of the array, and adjusting the gaussian width to better match
the theory (Eq. (2)). Using our SLM setup, we generated discretized
gaussian profiles composed of fundamental or dipolar modes, as
shown in Fig. 3a. We made a fine sweep of the input tilt by varying
the input phase / ¼ kxa in the interval f0;2pg, with step size of
p=60. For both mode configurations, we took 120 output profiles
at z ¼ L and computed their center of mass transversal velocity,

defined as V j
c � X j

c=L, where X j
c ¼ anj

c and nj
c ¼

P
nnjw j

nj2=
P

njw j
nj2.

We collect our experimental results in Fig. 3.
We observe a good agreement between the experimental data

(dots connected by lines) and the theoretical prediction for the
transversal velocity (dashed lines). We made a fit of our experi-
mental data and the theoretical formula (Eq. (2)), obtaining the

coupling coefficients: Cf ¼ 0:316 cm�1 and Cd ¼ 0:761 cm�1 (these
values are almost equal to the numerical coefficients described
before). In the examples shown in Fig. 3, we observe a more visible
dispersion for the dipolar gaussian beam compared to the funda-
mental mode one. This is essentially originated due to the com-
plexity of generating a modulated dipole gaussian profile. But,
nevertheless, the center of mass velocity follows a clear sine func-
tion tendency, validating our experimental method. Additionally,
considering also the discrete diffraction results, we experimentally
validate the use of simple (first band) tight-binding models (Eq.
(1)) to theoretically study dipolar excitations on 1D lattices
configurations.
4. Transport on disordered 1D lattices

Finally, we study the effect of disorder on 1D waveguide arrays,
using fundamental and dipolar excitations. It is well known that
disorder induces localization due to multiple destructive interfer-
ence of randomly distributed scatters [36], what has been already
confirmed experimentally in photonic lattices [37,38]. We fabri-
cated eight lattices with 81 sites each, where disorder was created
by randomly varying the distance between neighboring
waveguides in the interval a 2 f16� d;16þ dg lm, with
d ¼ ð0;1;2;3;4;5;6;7Þ. d is defined as the spacing disorder (a larger
d implies a larger range of possible distances between neighbor
waveguides, therefore an increasing degree of disorder). Our lat-
tices, composed of identical waveguides, present only coupling

(off-diagonal) disorder in model (Eq. (1)); i.e., the coefficients C j
n

are not constant due to the randomness in the horizontal waveg-
uide positions [35,27] (a different waveguide separation produces
a different local coupling coefficient between two neighboring
waveguides, as expected from Fig. 1d). Fig. 4a and b show exam-
ples of an ordered (d ¼ 0) and a disordered (d ¼ 5) lattice. In order
to have statistic, we illuminated every array in 40 different sites
using single-site fundamental or dipolar mode excitations (as
shown in Fig. 2b1 and c1). We obtained 40 output images for every
array, and every mode, and computed the respective participation

ratio Rj � ðP jw j
nj2Þ

2
=
P jw j

nj4. We obtained an averaged value Rj,
including its standard deviation rR, as shown in Fig. 4c. We observe
an overall tendency to localization for both modes as the disorder
strength increases, as expected for disordered finite lattices
[27,35].



Fig. 3. (Color online) Beam propagation. (a) Input profiles. Main figure: velocity Vc=a of a discretized Gaussian beam versus the normalized transversal wavevector kxa. Dots
connected by lines and dashed lines correspond to the experimental and the theoretical data, respectively. Black and red color correspond to fundamental and dipolar modes.
Insets show output intensity profiles corresponding to symbol positions.

Fig. 4. (Color online) Transport in disordered lattices. Microscope image at the output facet of an (a) ordered and (b) disordered one-dimensional photonic lattice. (c)
Averaged participation ratio R versus spacing disorder d. Dots show experimental values for fundamental (black) and dipolar (red) modes (bars indicate the experimental
standard deviation). The shaded regions show the numerical results for the fundamental (gray) and the dipolar (orange) modes. Insets show two examples.
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We numerically integrated model (Eq. (1)) by considering a ran-

dom distribution of coupling constants C j
n, in the interval

fC jðaþ dÞ;C jða� dÞg. We considered the same range of distances
as in the experiments (determined by parameter d), assuming the
dependence of coupling constants presented in Fig. 1d. We gener-
ated 100 realizations for every value of d, and obtained the region
Rj � rR, which is shown by shaded areas in Fig. 4c. First of all, we
find a very good qualitative agreement between our experimental
and numerical results, validating again the utilization of model (Eq.
(1)) to describe the dynamics of fundamental and dipolar modes on
1D lattices. We observe that the fabricated disordered lattices
rapidly conduce to localization for the fundamental mode, while
there is still a good transport for dipolar propagation (see examples
at d ¼ 1). For even stronger disorder, dipolar modes still have the
opportunity to explore the lattice and disseminate the energy,
while the fundamental excitation is already well localized in space.
When disorder is very strong (d > 4), both modes tend to spatially
localize with an almost equal averaged participation ratio of R � 3.
Although there is a strong propagation difference for zero, weak
and intermediate disorder, for stronger one any input excitation
will remain localized as originally predicted in Ref. [36].
5. Conclusions

In conclusion, we have theoretically and experimentally studied
a 1D waveguide array by considering fundamental and dipolar
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mode excitations. We have shown, using single-site and gaussian
beam excitations, that the spreading area is enhanced for dipolar
modes in this lattice. Additionally, we have explored the effect of
considering disorder on a 1D lattice and have shown that its effect
is weaker for dipolar modes, although for stronger disorder both
modes localize. After three different experiments, we validate the
use of model (Eq. (1)) as a good theoretical description to study
the dynamics of fundamental and dipolar modes in a first-band
environment. Extension to hybrid interactions, higher dimensions,
and nonlinear effects [21–23,39–43] are interesting extensions to
be explored in detail in the future. Our experimental results may
open up a new window to perform p-orbital quantum simulations
using photons. Our setup may also provide a more controllable
platform for the study of exotic p-orbital phases, which have been
previously suggested in the context of cold atoms in optical lattices
[24].
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