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ON THE FRACTIONAL LANE-EMDEN EQUATION

JUAN DAVILA, LOUIS DUPAIGNE, AND JUNCHENG WEI

ABSTRACT. We classify solutions of finite Morse index of the fractional Lane-
Emden equation
(—A)u = [ulP~ u  in R™.

1. INTRODUCTION
Fix an integer n > 1 and let pg(n) denote the classical Sobolev exponent:
+oo ifn<2

ps(n) =< n+2
n—

ifn>3

A celebrated result of Gidas and Spruck [20] asserts that there is no positive solution
to the Lane-Emden equation

(1.1) — Au = |[ulP" u in R",

whenever p € (1,ps(n)). For p = pg(n), the same equation is known to have (up to
translation and rescaling) a unique positive solution, which is radial and explicit (see
Caffarelli-Gidas-Spruck [4]). Let now p.(n) > ps(n) denote the Joseph-Lundgren
exponent:

+oo ifn<10

pe(n) =4 (n—2)2—4n+8y/n —1
(n —2)(n —10)

This exponent can be characterized as follows: for p > pg(n), the explicit singular

ifn>11

solution ugs(x) = A\x|7% is unstable if and only if p < p.(n). It was proved
by Farina [18] that (1.1) has no nontrivial finite Morse index solution whenever
L <p < pe(n), p # ps(n).

Through blow-up analysis, such Liouville-type theorems imply interior regularity
for solutions of a large class of semilinear elliptic equations: they are known to be
equivalent to universal estimates for solutions of

(1.2) — Lu = f(x,u,Vu) in ),

where L is a uniformly elliptic operator with smooth coefficients, the nonlinearity
f scales like |u|[P~tu for large values of u, and Q is an open set of R™. For precise
statements, see the work of Polacik, Quittner and Souplet [26] in the subcritical
setting, as well as its adaptation to the supercritical case by Farina and two of the
authors [11].

In the present work, we are interested in understanding whether similar results
hold for equations involving a nonlocal diffusion operator, the simplest of which

1



2 J. DAVILA, L. DUPAIGNE, AND J. WEI

is perhaps the fractional laplacian. Given s € (0, 1), the fractional version of the
Lane-Emden equation® reads

(1.3) (=A)u = |ulP~'u in R™
Here we have assumed that u € C??(R"), 0 > s and
|uy)]
1.4 / N gy < oo,
) o T+ )5

so that the fractional laplacian of u
u(z) — u(y)
—A)Yu(z) = A, s d
() ulw) = Ans | T2 CEE

is well-defined (in the principal-value sense) at every point x € R™. The normalizing

n+2s
. 92s—1 ['( 25
constant An,s = WH

The aforementioned classification results of Gidas-Spruck and Caffarelli-Gidas-
Spruck have been generalized to the fractional setting (see Y. Li [24] and Chen-Li-
Ou [8]). The corresponding fractional Sobolev exponent is given by

+oo ifn <2s
ps(n) =9 n+2s
n —2s

is of the order of s(1 — s) as s converges to 0 or 1.

if n>2s

Our main result is the following Liouville-type theorem for the fractional Lane-
Emden equation.

Theorem 1.1. Assume thatn > 1 and 0 < s < o < 1. Let u € C?**(R") N
LY(R™, (1 + |y|)"T25dy) be a solution to (1.3) which is stable outside a compact set
i.e. there exists Ry > 0 such that for every p € C1(R"™ \ Bg,),

(1.5) p [ e do < el oy
o If1 <p<pg(n) orifps(n) <p and
p].—‘(% — ﬁ)F(s -+ ﬁ) - F(n+2s)2
F( s )F(n—Qs __s ) F(n

p—1 2 p—1

(1.6)

then u = 0;
e Ifp=ps(n), then u has finite energy i.e.

ey = [ 1l < 4.

If in addition u is stable, then in fact u = 0.

Remark 1. For p > pg(n), the function
(1.7) ug(z) = Alz| 77T

where ) )
n — 2s s
AP~ — ) _
( 2 P— 1>

1Unlike local diffusion operators, local elliptic regularity for equations of the form (1.2) where
this time L is the generator of a general Markov diffusion, cannot be captured from the sole
understanding of the fractional Lane-Emden equation. For example, further investigations will be
needed for operators of Lévy symbol ¢(£) = [gn—1 |w-£|?*pu(dw), where p is any finite symmetric

measure on the sphere S? 1.



ON THE FRACTIONAL LANE-EMDEN EQUATION 3

and where
r n+2s+2a r n+2s—2a
(1.8) Ma) = 2% (n—2§—2a) (n—2;1+2a)
D= (=)

is a singular solution to (1.3) (see the work by Montenegro and two of the authors
[12] for the case s = 1/2, and the work by Fall [16, Lemma 3.1] for the general
case). In virtue of the following Hardy inequality (due to Herbst [22])

2
Ans s dr < ||¢H2

R |SC‘25 s(R™)

with optimal constant given by

F( n—ZQS )2

F(n—42s)2’

An,s = 228

ug is unstable if only if (1.6) holds. Let us also mention that regular radial solutions
in the case s = 1/2 were constructed by Chipot, Chlebik ad Shafrir [9]. Recently,
Harada [21] proved that for s = 1/2, condition (1.6) is the dividing line for the
asymptotic behavior of radial solutions to (1.3), extending thereby the classical
results of Joseph and Lundgren [23] to the fractional Lane-Emden equation in the
case s = 1/2. A similar technique as in [9] allows us to show that the condition
(1.6) is optimal. Indeed we have:

Theorem 1.2. Assume p > pg(n) and that (1.6) fails. Then there are radial
smooth solutions u > 0 with u(r) — 0 as r — oo of (1.3) that are stable.

It is by now standard knowledge that the fractional laplacian can be seen as a
Dirichlet-to-Neumann operator for a degenerate but local diffusion operator in the
higher-dimensional half-space RT’lz

Theorem 1.3 ([5,25,28]). Take s € (0,1), 0 > s and u € C?°(R™) N LY(R", (1 +
ly[)"+22dy). For X = (x,t) € R, let

a(X) = / P(X.y)uly) dy,
where
P(X,y) = pps t2]X — y|~ (29

and py s is chosen so that [y, P(X,y) dy = 1. Then, u € C*(R}t") n C(RYM),
t'=250,u € C(R™) and

V- (t'7%Va) =0 in R,
Uu=u on 8Rﬁ+1,
N 1-2s9 =~ _ o s n+1
}gr(l)t ot = ks(—A)u on ORI,
where
ra—
(1.9) (=)

Iﬂ?s:m.



4 J. DAVILA, L. DUPAIGNE, AND J. WEI
Applying Theorem 1.3 to a solution of the fractional Lane-Emden equation, we
end up with the equation
V- (t'77*Va) =0 in R
1.10
(1.10) —lim 720,01 = k4|ulP ' on R
t—0

An essential ingredient in the proof of Theorem 1.1 is the following monotonicity
formula

Theorem 1.4. Take a solution to (1.10) u € C*[R’™) N CR}™) such that
t1=259,u € C(R). For zo € ORT, A > 0, let

E(ﬁ,l‘o; A) =

A2 —n 1/ 172V do dt — — / @+t do
2 Jrrt 0B (o) P+ 1 ori 0B o)

s
p+1 /33(950,,\)011@1*1

72542 do.

+1
+ A255j7n71

Then, E is a nondecreasing function of X. Furthermore,

_ .2
d7E _ Azsg%}—nﬂ/ 1-2s <8u n 2s u) o
dX 0B (w0, \)NRH or p—1r

Remark 2. In the above, B(zo, A) denotes the euclidean ball in R*" centered at z
of radius A, o the n-dimensional Hausdorff measure restricted to dB(xg, A), r = | X|
the euclidean norm of a point X = (z,t) € R:’;H, and 9, = V- % the corresponding
radial derivative.

An analogous monotonicity formula has been derived by Fall and Felli [17] to
obtain unique continuation results for fractional equations. Previously, Caffarelli
and Silvestre derived an Almgren quotient formula for the fractional laplacian in [5]
and Caffarelli, Roquejoffre and Savin [6] obtained a related monotonicity formula
to study regularity of nonlocal minimal surfaces. Another monotonicity formula
for fractional problems was obtained by Cabré and Sire [3] and used by Frank,
Lenzmann and Silvestre [19].

The proof of Theorem 1.1 follows an approach used in our earlier work with
Kelei Wang [13] (see also [29]). First we derive suitable energy estimate (Section 2)
and handle the critical and subcrtiicical cases (Section 3). In Section 4 we give
a proof of the monotonicity formula Theorem 1.4. Then we use the monotonicity
formula and a blown-down analysis (Section 6) to reduce to homogeneous singular
solutions. We exclude the existence of stable homogeneous singular solutions in the
optimal range of p (Section 5). Finally we prove Theorem 1.2 in Section 7.

2. ENERGY ESTIMATES

Lemma 2.1. Let u be a solution to (1.3). Assume that u is stable outside some
ball Br, C R"™. Let n € C(R"™\ Bg,) and for x € R™, define

o=y
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Then,
1 2
p+1,2 - 2 e 2
Proof. Multiply (1.3) by un?. Then,
/ |ulPTn? do :/ (=A)uun? d
n R"n,
_ 2 _ 2
[ () = e — )

|z —y|nt2e

:/ / w(@)n’ (@) — ul@)uy) (r*(@) +0° W) + v W) 4o

|z —y|nt2s

:/ / (u(@)n(x) —uly)n(v)* ~ (1) = n()*u(@)uly) ;o

o =y

xTr) — 2u xT)u

‘JJ _y‘n-&-Qs

Using the inequality 2ab < a® + b?, we deduce that

(2.2) il ey = [ Pt de < [ apda

Since u is stable, we deduce that

o= [ ptPdes [ aods
n ]Rn

Going back to (2.2), it follows that

1 2 / +1,2 2 2
—lun||% . mny + ulPTin® de < u®p dx
pH || (R™) R™ | ‘ p—]. Rn

Lemma 2.2. For m >n/2 and x € R", let

23) @)=+ and g = [

Then, there exists a constant C = C(n,s,m) > 0 such that

(n(z) =)

|z —y|nt2

n

(2.4) C 1+ 22) F < p) <C(1+2?) ®

—S8

Proof. Let us prove the upper bound first. Since p is a continuous function, we
may always assume that || > 1. Split the integral

/ (n(z) —n(y))?

o —gpres

in the regions |z — y| < |z|/2, |z|/2 < |z — y| < 2|z|, and |z — y| > 2|z|. When
[z =yl < fxl/2,

m

n(z) = n(y)| < C(1+ [22)~"F |z — y|.

So,

. 2
/ (77(35) 77(+92)) dy S C(l 4 |x|2)—m—1 |:1: _ y|2—n—23 dy
lo—yl<lal/2 [T =yl F2 o=yl <|al/2

<O+ Py ™ <C+aP) 270,
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When [2]/2 < |z — y| < 2],

(n(z) —n(y)) —n—2 2 2
s W = Ol (n(z)” +n(y)) dy
/|w/2<|wy<2|w |z —y[n+2 lyl<2le]
< Cla| "2 (Je| 72 4 1) S C(L+ [2f?) 7270,
where we used the assumption m > §. When |z — y| > 2|z|, then |y| > || and
n(y) < C(1+ |«[*)~/2. Then,

(n(z) —n(y))? . 1
—dySC(HIxI)’”/ - dy
/|xy|>2|m| |z —y| 2 lo—y|>2lz| |7 — Y|P T2
<O +]af) ™ <+ |a]?) 3

Let us turn to the lower bound. Again, we may always assume that |z| > 1. Then,

(n(y) — n(=))? A e/
ooz [ OO = () aw ey

and the estimate follows. O

Corollary 2.3. Let m > n/2, n given by (2.3), R> Ro > 1, ¥ € C>°(R™) be such
that 0 <9 <1,¢% =0 on By and ¢ =1 on R™\ By. Let

25 mw=n(5)e (%) ot pan= [ DR,

There exists a constant C = C(n, s, m, Ry) > 0 such that for all |x| > 3Ry
xz 2 —(n S — 48 z
pr(z) < Cn (E) |z~ +29) 4 R725p <§)

Proof. Fix x such that |z| > R > 3Ry. Using the definition of nr and Young’s
inequality, we have

Lo e (@) v (&) v\ ) - ()
§pR(x) =7 (E) /n ‘.’E — y|n+25 Y + An ¢ <1%0> ‘.’E — y|n+25 Y
z\? 1 (n (%) —n (%)’
(7 /B o k[ e
2
cn(E) g (2
and the result follows. O

Lemma 2.4. Let u be a solution of (1.3) which is stable outside a ball Bg,. Take

pr as in Corollary 2.3 with m € (§,% + @) Then, there exists a constant
C =C(n,s,m,p, Ry) > 0 such that for all R > 3Ry,

/u2de:v§C / u2de;U+R”_28% .
n B3R0

Proof. By Corollary 2.3, if R > |z| > 3Ry, then
pr(z) < C(lz|7"7* + R™)
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and so
[ on@) a7 do < oRTE,
Br\Bsrg,

Similarly, if |x| > R > 3Ry, then

25 o2\
pR(LL') < CR 1+ ﬁ
and so
) |x|2 n22s %""pﬁ
pr(e) o np(z)~ 7 < OR-25H <1+ m)

2m _ n42s p+1

' n on o o ptl —n
Since m € (3,5 + sb5-), we have ¢ o1 < and so

pR(a:)p%inR(x)*p%l dr < CR"™2%5.
R™\Bspg,

]

Now,

4 4

/ u?pr dm:/ u?pr dw—i—/ wprnp" T gt de
n BBRO R"\BgRO
9 1.9 ﬁ P+l _4 T
S/ u”pr dr + </ u[P g dx) (/ PR MR" dx)
Bsn, R™ R™

2
P+1
S/ w?pg de + CRU 25055 </ u[P* iR dw)
Bsry "

By a standard approximation argument, Lemma 2.1 remains valid with 7 = ng and

p = pgr and so the result follows.

Lemma 2.5. Assume that p # = "+23 Let u be a solution to (1.3) which is stable
outside a ball Br, and @ its extenszon solving (1.10). Then, there exists a constant

C = C(n,p, s, Ry,u) > 0 such that

/ 72552 dedt < CRVT2(0-9)—
Br -

for any R > 3Ry.
Proof. According to Theorem 1.3,

t2$
dz
pn5/ ;zc—z|2 —|—t2)7n§23

so that

t25
*<p / e 4z
n,s |x—z‘2—|—t2) 22

So,

R
t
/ 1252 dxdtgpn’s/ u(z)? / pEe dt | dzdz
Br |z|<R,z€R™ 0 (Jz—z]2+1t2) 2

< C’/ u?(z) {(|x — z|2)_%+1_S —(Jz — 2>+ R2)_5+1_S} dzdx
|z|<R,z€R™
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Split this last integral according to | — z| < 2R or |z — z| > 2R. Then,

/ u?(2) {(|x - z|2)7%+175 — |z — 2>+ R2)7%+178} dzdr <
|z|<R,|z—2z|<2R

/ u?(z) (Jz — z|2)7%+17S dzdz < CR?(1—9) / u?(2) dz <
|z|<R,|lz—2|<2R Bsr
p—1

2 p=1
COR21-%) pr1,2 \ 7 -5\ P! <
|u| Nr R <
Bsr

_2
CRO-o </ W(2)pr(2) dz> T oRrrt9 g

where we used Holder’sin equality, then Lemma 2.1 and then Lemma 2.4. For the
region |x — z| > 2R, the mean-value inequality implies that

L O (=) s ) e <

CRQ/ u?(2)|z — z|7(”+25) dzdx < CR””/ uz(z)\z|7(”+25) dz
|z|<R,|z—z|>2R |z|>R

4s

< CRZ/ U2p dz < CR”+2(1_S)_P*1’
[2|>R

where we used again Corollary 2.3 in the penultimate inequality and Lemma 2.4 in
the last one. (]

Lemma 2.6. Let u be a solution to (1.3) which is stable outside a ball Br, and
@ its extension, solving (1.10). Then, there exists a constant C = C(n,p, s,u) > 0
such that

_9gbtl
/ t172%|val|? dx dt +/ |u[Pt! de < CR™ 2% %=1
BrOR} ! BrNORYT!

Proof. The LPT! estimate follows from Lemmata 2.1 and 2.4. Now take a cut-off
function 7 € CHRH") such that n = 1 on R N (Bg \ Bag,) and 7 = 0 on
Bpr, U (R \ Bag), and multiply equation (1.10) by @n?. Then,

Iﬁ:s/ |a|P T n? do = / 72 {va - V(un®)} dxdt
R Ry

(2.6) :/ A @)~ w2} dedr.
R

Since u is stable outside Bp,, so is @ and we deduce that

1
7/ 17251V (an) |* da dt z/ t' =2 {|V(an)|? — @®|Vn|*} dzdt.
p R1+1 R1+1

In other words,

(2.7) p’/R .

n
+

172552 Vn|? do dt > / 17251V (an) |? de dt,
1 R1+1

where ; + = = 1. We then apply Lemma 2.5. (]

1
P
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3. THE SUBCRITICAL CASE

In this section, we prove Theorem 1.1 for 1 < p < pg(n).

Proof. Take a solution u which is stable outside some ball Br,. Apply Lemma
2.4 and let R — +oo. Since p < ps(n), we deduce that u € H*(R™) N LPT1(R").
Multiplying the equation (1.3) by u and integrating, we deduce that

(3.1) |l =l

while multiplying by u* given for A > 0 and = € R™ by
uM(z) = u(Ax)

yields

/ |u‘p—1u)\ :/ (_A>s/2u(_A)s/2u>\ :)\e/ ww’\,

where w = (—A)*/?u. Following Ros-Oton and Serra [27], we use the change of
variable y = vV Az to deduce that

)\S/ ww dx = A%/ wY At/ VA dy

Hence,

n +1 ‘U|p+1 -1
o |ulPT™ = z-V 1 (JulP™ u)z - Vu =
p R " p "

d / 1 A d 2s—m VA, 1/VX
— |ulP~ruut = — A2 wY MtV dy =
d\|y_; Jre NN n
2s—n d 2s—n
2 / v / wY VX dy = Jul}

9 Hs(R™)
In the last equality, we have used the fact that w € C1(R"), as follows by elliptic
regularity. We have just proved the following Pohozaev identity

n n —2s
ot o =

For p < ps(n), the above identity together with (3.1) force u = 0. For p = pg(n), we
are left with proving that there is no stable nontrivial solution. Since u € H*(R"),
we may apply the stability inequlatiy (1.5) with test function ¢ = u, so that

p+1 2_
p <l

This contradicts (3.1) unless u = 0. O
In the following sections, we present several tools to study the supercritical case.

A=1

4. THE MONOTONICITY FORMULA

In this section, we prove Theorem 1.4.
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Proof. Since the equation is invariant under translation, it suffices to consider the
case where the center of the considered ball is the origin zg = 0. Let

Ei(u;A) =

12
(4.1) )\25%_,1 / =28 de di — / me—ld:ﬁ
RTHNB, 2 oryinpy PH 1

For X € R’™, let also

(4.2) U(X;\) = ArTa(AX).
Then, U satisfies the three following properties: U solves (1.10),
(4.3) Ev(u;A) = E1(Us 1),
and, using subscripts to denote partial derivatives,
2
(4.4) AUy = ———U + 17U, .
p—1

Differentiating the right-hand side of (4.3), we find

dE

—Lan) = / t172VU - VU, dz dt — ms/ |UIP~tUy da.

dX RYTINB, ORYTINB,

Integrating by parts and then using (4.4),

dE
L@\ = / 120, Uy do
dX B NR7 T

2s

= )\/ =203 do — / 125U Uy, do
8B NR7H! P =1 Jop Ryt

S
= )\/ HORUR do - —— / t=2U? do
B NR7 T D= aB1NRYH!

Scaling back, the theorem follows. d

A

5. HOMOGENEOUS SOLUTIONS

Theorem 5.1. Let 4 be a stable homogeneous solution of (1.10). Assume that

p> 122 gnd

5.1) pr(g — 20)0(s + 32) N I(nd2e)2
DI — %)~ TEP

Then, u = 0.

Proof. Take standard polar coordinates in RT‘lz X = (z,t) = rf, where r = | X]|
and 6 = % Let 6, = ﬁ denote the component of # in the ¢ direction and
St ={X eR}™ :r =1, 6; >0} denote the upper unit half-sphere.

Step 1. Let @ be a homogeneous solution of (1.10) i.e. assume that for some

¥ e C?(SY),
a(X) =77 Tp(0).
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Then,

(5.2) /S

where K is given by (1.9) and
2 2
b= 5 (n —2s — i > .
p—1 p—1
Indeed, since @ solves (1.10) and is homogeneous, v solves

— div(0]7**V) + 801> =0 on ST
L 1-2s . p—1 n
9111210 0,""°09,¢ = Ks|Y[P" 4 on OSY,

9%725|V,¢}|2 +ﬁ/ 9i72sw2 _ ffs/ |¢|p+17
S 7]

n n
+ St

(5.3)

Multiplying (5.3) by ¢ and integrating, (5.2) follows.
Step 2. For all ¢ € C*(5%),

2
-2
64w [ Wi [ 9125|w?+(” ) o202
osn s 2 s

By definition, @ is stable if for all ¢ € C} (Rf_"’l),

(5.5) ﬁsp/ P62 da g/ 12|V g2 dadt
ORY T Ry

Choose a standard cut-off function 7. € C}(R%) at the origin and at infinity i.e.
X(e,1/6) (1) < Me(r) < X(e/2,2/¢)(r). Let also ¢ € Ct (S%), apply (5.5) with

G(X) =1 T n(r)p(0)  for X € R,

and let € — 0. Inequality (5.4) follows.
Step 3. For a € (0, 252%), z € R™ \ {0}, let

V() = 2| = e

and v, its extension, as defined in Theorem 1.3. Then, 9, is homogeneous i.e. there
exists ¢, € C2(S7) such that for X € R\ {0},

Ta(X) =172 T2, (0).
In addition, for all ¢ € C*(S7),

2
(5.6) / ﬁ*ﬂvw2+<(n_%>&>/"ef%¢
S 2 S

n
+

— / ot / ol-25 g2
631 S

n
+

n
+
2

v(5)

Indeed, according to Fall [16, Lemma 3.1], ¥, is homogeneous. Using the calculus
identity stated by Fall-Felli in [17, Lemma 2.1], we get

2
— div(0] "**V¢a) + ((n — 28) - a2> 01 %¢o =0 on ST

(5.7) 2

o« =1 ondS}.
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Multiply equation (5.7) by ¢?/¢., integrate by parts, apply the calculus identity

2 2

® 2 14 2
Voo -V = |V - |VE| 2
barVE = [V \% ¢

and recall from Fall [16, Lemma 3.1] that

B %g% 120,5, = roA(Q)|z]” n=2e to2s

where A(«) is given by (1.8).

Step 4. For a € (0, 5%)

(5.8) $o < ¢ on ST,

Indeed, on S,

n — 2s 2 n—2s 2
diV(9}2SV¢0)=<2 ) 01700 > (( 5 ) —a2> 01> o

SO ¢ is a sub-solution of (5.7). By the maximum principle, the conclusion follows.

Step 5. End of proof. Fix « € (0, ”_225) given by

n — 2s 2s
2 p—1

2
n—2s 9 2s 2s
— = —2— =
( 2 ) ! p—l(n ’ p—1> ’

where [ is the constant appearing in (5.3).
Use the stability inequality (5.4) with ¢ = %:

1 1—2s o ? n—2s\" 1-2s [ Yo ?
(59) “Sp/asﬂ'” </s¢"’1 () (% )[Jl (%)

Note that a particular case of the identity (5.6) is
(5.10)

so that

2
n — 2s

2
ﬁi_23|V<p|2 + < ) 9i_2s§02 = "QsAn,s ‘PZ "‘/ 0%_28‘15(2)
Sf; a8sn S

st 3
P
v(5)
K
v(5)

v+ [ o1
st

7()

St
Using (5.10) (with ¢ = %), (5.9) becomes

2

Hsp/ WP < R | 92 +/ 017> %5
asr asr sn

By (5.8), we deduce that

2

—2
o [ < [ vt [ o
st asn s

n
+

Using again the identity (5.6), we deduce that

kup / P < a(Ae — A@)) [ 02+ /
asn asr 5

n
+
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Comparing with (5.2), it follows that

(5.11) -1 [ S G- Ma) [0,
asn asn

But from (5.2) and (5.6)

[z a@ [ v

Combined with (5.11), we find that
AMa)p < Ay s
unless ¥ = 0. (]

6. BLOW-DOWN ANALYSIS

Proof of Theorem 1.1. Assume that p > pgs(n). Take a solution u of (1.3) which is
stable outside the ball of radius Ry and let @ be its extension solving (1.10).
Step 1. limy_ 400 E(1,0;)) < 400.

Since E is nondecreasing, it suffices to show that F(u,0;\) is bounded. Write
E = Ey + E5, where Ej is given by (4.1) and

[
p+1Japonrr
By Lemma 2.6, F is bounded. Since E is nondecreasing,
1 p
E(w;)\) < < E(u;t) dt <C + /\sti—"—l/ 2552,
A Ja BaxnRGH
Applying Lemma 2.5, we deduce that E is bounded.

Step 2. There exists a sequence \; — 0o such that (@*?) converges weakly in
oY (R 41725dzdt) to a function 4.

This follows from the fact that (@) is bounded in H} (R} t1=2dzdt) by
Lemma 2.6.

Step 3. 4™ is homogeneous
To see this, apply the scale invariance of F, its finiteness and the monotonicity
formula: given Ry > Ry > 0,

0 = HETOOE(U;)\iRg)—E(u; AiR1)
= lim_ E(@; Ry) — E(a™'; Ry)
TR ZAq\ 2
> liminf t1_25r2_"+1f—51( 25 u +8u ) dx dt
N+ J(Bp)\Br, )rRIH p—11r or
o oo 2
> / t1—2sr2—n+1f_51( 25 L+8u > dx dt
(BRQ\BR1)0R1+1 p—l T (97"

Note that in the last inequality we only used the weak convergence of (4¢) to @
in HY (R} ¢1725dzdt). So,
2s a*® ou

— + =0 a.e. in R7TL
p—1r or ' +
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And so, u® is homogeneous.
Step 4. u* =0

Simply apply Theorem 5.1.
Step 5. () converges strongly to zero in H'(Bpr \ B.;t'~?*dxdt) and (u*?)
converges strongly to zero in LP*1(Bg \ B.) for all R > € > 0. Indeed, by Steps
2 and 3, (@) is bounded in H} (R #1725dzdt) and converges weakly to 0.

It follows that (a:) converges strongly to 0 in L2, (R*!;#1725dzdt). Indeed, by
the standard Rellich-Kondrachov theorem and a diagonal argument, passing to a

subsequence we obtain
/ $1-28 | 2
R} N(BR\A)

as i — oo, for any Br = Br(0) C R"*! and A of the form A = {(z,t) € R} :
0 <t <r/2}, where R,7 > 0. By [15, Theorem 1.2],

/ tk%\ﬂ/\i 2 2/ t1’2S|Vﬂ’\i 2
RYT'NB,(z) RYT'NB,(x)

for any x € R, |2| < R, with a uniform constant C. Covering B N A with
half balls B,(x) N RT‘l, T € 8R7fr+l with finite overlap, we see that

/ 2 P dadt < Crz/ 2 |\Var | dedt < Cr?,
BrNA BrnA

and from this we conclude that (@) converges strongly to 0 in L2 (R’ t1=25dzdt).
Now, using (2.7), (@) converges strongly to 0 in H} (R \ {0}; 1 ~2dxdt)
and by (2.6), the convergence also holds in Lptl(R” \ {0}).

Step 6. 4 =0.
Indeed,

Viu
El(a;A)zEl(aM):/ a2 VO / s g
R7HNB, 2 ORI INB, P + 1
A2
:/ po2s VO / —_|aMPH da+
R?*+NB, 2 OR™TINB, P+1

Vu
/ t1_28| | d dt / |u’\|p+1dx
R™HINB1\B. 2 orT ' nB\B, P11

Vi 2
t1—29 | u | de dt — / |’U,>\|p+1dl‘
2 ORTHNB,\B. P + 1

2
gcs"—2sﬁ+/ p2aVEE dt—/ ——[u* P de
R?*+1NB1\B, 2 OR™ T NB;\B, P+1

Letting A — 400 and then ¢ — 0, we deduce that limy_, ., E1(2;A) = 0. Using
the monotonicity of F,

R} T'NB1\B.

1 2 -
E(u; M) < — E(t) dt < sup Fy + CA IS T
A [\,2)] Bax\Ba



ON THE FRACTIONAL LANE-EMDEN EQUATION 15

and so limy_ 1o F(@;A) = 0. Since u is smooth, we also have E(u;0) = 0. Since
FE is monotone, ¥ = 0 and so u must be homogeneous, a contradiction unless
u=0. O

7. CONSTRUCTION OF RADIAL ENTIRE STABLE SOLUTIONS

Let @y denote the extension of the singular solution us (1.7) to RT‘l defined by

w.(X) = [ PXg)uty) dy

Let B; denote the unit ball in R**! and for A > 0, consider
div (£ 72*Vu) =0 in B; NRYH
(7.1) u=Ais ondB NR}!

— lim (' 7%%u;) = ku?  on By N {t = 0}.

t—0
Take A € (0,1). Since us is a positive supersolution of (7.1), there exists a minimal
solution u = uy. By minimality, the family (u)) is nondecreasing and u) is axially
symmetric, that is, uy(x,t) = ux(r,t) with r = |z|] € [0,1]. In addition, for a fixed
value A € (0,1), uy is bounded, as can be proved by the truncation method of
[1], see also [10] and radially decreasing by the moving plane method (see [7] for a
similar setting). From now on let us assume that ps(n) < p and

F(% - pil)r(s + pil) F(%QSF

PTG = 5 T r(EE)e

p—1 2 p—1

which means that the singular solution ug is stable. Then, uy T us as A 1 1, using
the classical convexity argument in [2] (see also Section 3.2.2 in [14]). Let A\; 11
and

mj = [ux, [z = ux,(0), R =m
so that m;, R; — oo as j — co. Set

vj(z) = m;luAj (z/Rj).

Then 0 < wv; <1 is a bounded solution of
div (' 7%*Vv;) =0 in Bp, NRY™!
vj = A\jis on OBg, N Riﬂ

- %E%(tlizs(vj)t) = ksvf  on Br, N{t=0}.

Moreover v; < us in Bg; N RT‘l and v;(0) = 1. Using elliptic estimates we find
—n+1
(for a subsequence) that (v;) converges uniformly on compact sets of ]RT_ to a
function v that is axially symmetric and solves
co (412 _ : +1
{ div (t*7°°Vv) =0 in R’}

—lim (t'7%%v;) = kP on R™ x {0}.

t—0

Moreover 0 < v < 1, v(0) = 1 and v < @. This v restricted to R” x {0} is a radial,
bounded, smooth solution of (1.3) and from v < @y we deduce that v is stable.
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