THE APPROXIMATE LOEBL-KOMLÓS-SÓS CONJECTURE IV: EMBEDDING TECHNIQUES AND THE PROOF OF THE MAIN RESULT*

JAN HLADKÝ \dagger, JÁNOS KOMLÓS ${ }^{\ddagger}$, DIANA PIGUET§ ${ }^{\S}$, MIKLÓS SIMONOVITS ${ }^{\uparrow}$, maya steinll, and endre szemerédi

Abstract

This is the last of a series of four papers in which we prove the following relaxation of the Loebl-Komlós-Sós conjecture: For every $\alpha>0$ there exists a number k_{0} such that for every $k>k_{0}$, every n-vertex graph G with at least $\left(\frac{1}{2}+\alpha\right) n$ vertices of degree at least $(1+\alpha) k$ contains each tree T of order k as a subgraph. In the first two papers of this series, we decomposed the host graph G and found a suitable combinatorial structure inside the decomposition. In the third paper, we refined this structure and proved that any graph satisfying the conditions of the above approximate version of the Loebl-Komlós-Sós conjecture contains one of ten specific configurations. In this paper we embed the tree T in each of the ten configurations.

Key words. extremal graph theory, Loebl-Komlós-Sós conjecture, tree, regularity lemma, sparse graph, graph decomposition

AMS subject classifications. Primary, 05C35; Secondary, 05C05
DOI. 10.1137/140982878

1. Introduction. This paper concludes a series of four papers in which we provide an approximate solution of the Loebl-Komlós-Sós conjecture. The conjecture reads as follows.
[^0]Conjecture 1.1 (see [EFLS95, Loebl-Komlós-Sós conjecture 1995]). Suppose that G is an n-vertex graph with at least $n / 2$ vertices of degree more than $k-2$. Then G contains each tree of order k.

We discuss the history and state of the art in detail in the first paper [HKP ${ }^{+}$a] of our series. Our main result, which we prove in the present paper, is the approximate solution of the Loebl-Komlós-Sós conjecture and reads as follows.

ThEOREM 1.2 (main result). For every $\alpha>0$ there exists a number k_{0} such that for any $k>k_{0}$ we have the following: Each n-vertex graph G with at least $\left(\frac{1}{2}+\alpha\right) n$ vertices of degree at least $(1+\alpha) k$ contains each tree T of order k.

In the first paper $\left[\mathrm{HKP}^{+} \mathrm{a}\right]$ of the series, we exposed a decomposition technique (the sparse decomposition), and in the second paper $\left[\mathrm{HKP}^{+} \mathrm{b}\right]$, we found a rough combinatorial structure in the host graph G. In $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$, the third paper of the series, we refined this structure and obtained one of ten possible configurations, at least one of which appears in any graph satisfying the hypotheses of Theorem 1.2. These configurations will be reintroduced in section 5 . All the configurations are built up from basic elements which are inherited from the sparse decomposition.

In the present paper, we will embed the tree T in the host graph G using the preprocessing from $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$. Let us give a short outline of this procedure. First, we cut the tree into smaller subtrees, connected by a few vertices. This will be done in section 3 .

We then develop techniques to embed the smaller subtrees in different building blocks of the configurations. Then, for each of the configurations, we show how to combine the embedding techniques for smaller trees to embed the whole tree T. All of this will be done in section 6 . We mention that section 6.1 contains a five-page overview of the embedding procedures, with all the relevant ideas.

Finally, in section 7 , we prove Theorem 1.2, with the help of the main results from the earlier papers $\left[\mathrm{HKP}^{+} \mathrm{a}, \mathrm{HKP}^{+} \mathrm{b}, \mathrm{HKP}^{+} \mathrm{c}\right]$.

2. Notation and preliminaries.

2.1. General notation. The set $\{1,2, \ldots, n\}$ of the first n positive integers is denoted by $[n]$. We frequently employ indexing by many indices. We write superscript indices in parentheses (such as $a^{(3)}$), as opposed to notation of powers (such as a^{3}). We sometimes use subscripts to refer to parameters appearing in a fact/lemma/theorem. For example $\alpha_{\mathrm{T} 1.2}$ refers to the parameter α from Theorem 1.2. We omit rounding symbols when this does not lead to confusion.

We use lower case Greek letters to denote small positive constants. The exception is the letter ϕ, which is reserved for embedding of a tree T in a graph $G, \phi: V(T) \rightarrow$ $V(G)$. The upper case Greek letters are used for large constants.

We write $V(G)$ and $E(G)$ for the vertex set and edge set of a graph G, respectively. Further, $v(G)=|V(G)|$ is the order of G, and $e(G)=|E(G)|$ is its number of edges. If $X, Y \subseteq V(G)$ are two not necessarily disjoint sets of vertices, we write $e(X)$ for the number of edges induced by X, and $e(X, Y)$ for the number of ordered pairs $(x, y) \in X \times Y$ for which $x y \in E(G)$. In particular, note that $2 e(X)=e(X, X)$.

For a graph G, a vertex $v \in V(G)$, and a set $U \subseteq V(G)$, we write $\operatorname{deg}(v)$ and $\operatorname{deg}(v, U)$ for the degree of v and for the number of neighbors of v in U, respectively. We write $\operatorname{mindeg}(G)$ for the minimum degree of $G, \operatorname{mindeg}(U):=\min \{\operatorname{deg}(u):$ $u \in U\}$, and $\operatorname{mindeg}\left(V_{1}, V_{2}\right)=\min \left\{\operatorname{deg}\left(u, V_{2}\right): u \in V_{1}\right\}$ for two sets $V_{1}, V_{2} \subseteq$ $V(G)$. Similar notation is used for the maximum degree, denoted by maxdeg (G). The neighborhood of a vertex v is denoted by $\mathrm{N}(v)$. We set $\mathrm{N}(U):=\bigcup_{u \in U} \mathrm{~N}(u)$. The
symbol "-" is used for two graph operations: if $U \subseteq V(G)$ is a vertex set, then $G-U$ is the subgraph of G induced by the set $V(G) \backslash U$. If $H \subseteq G$ is a subgraph of G, then the graph $G-H$ is defined on the vertex set $V(G)$ and corresponds to deletion of edges of H from G.
2.2. Regular pairs. In this section we introduce the notion of regular pairs which is central for Szemerédi's regularity lemma. We also list some simple properties of regular pairs that will be useful in our embedding process.

Given a graph H and two disjoint sets $U, W \subseteq V(H)$, the density of the pair (U, W) is defined as

$$
\mathrm{d}(U, W):=\frac{e(U, W)}{|U||W|}
$$

Similarly, for a bipartite graph G with color classes U, W, we talk about its bipartite density $\mathrm{d}(G)=\frac{e(G)}{|U||W|}$. For a given $\varepsilon>0$, a pair (U, W) of disjoint sets $U, W \subseteq V(H)$ is called an ε-regular pair if $\left|\mathrm{d}(U, W)-\mathrm{d}\left(U^{\prime}, W^{\prime}\right)\right|<\varepsilon$ for every $U^{\prime} \subseteq U, W^{\prime} \subseteq W$ with $\left|U^{\prime}\right| \geqslant \varepsilon|U|,\left|W^{\prime}\right| \geqslant \varepsilon|W|$. If the pair (U, W) is not ε-regular, then we call it ε irregular. A stronger notion than regularity is that of superregularity, which we recall now. A pair (A, B) is (ε, γ)-superregular if it is ε-regular, mindeg $(A, B) \geqslant \gamma|B|$, and $\operatorname{mindeg}(B, A) \geqslant \gamma|A|$. Note that then (A, B) has bipartite density at least γ.

The following two well-known properties of regular pairs will be useful.
FACT 2.1. Suppose that (U, W) is an ε-regular pair of density d. Let $U^{\prime} \subseteq U$ and $W^{\prime} \subseteq W$ be sets of vertices with $\left|U^{\prime}\right| \geqslant \alpha|U|$ and $\left|W^{\prime}\right| \geqslant \alpha|W|$, where $\alpha>\varepsilon$. Then the pair $\left(U^{\prime}, W^{\prime}\right)$ is a $2 \varepsilon / \alpha$-regular pair of density at least $d-\varepsilon$.

FACT 2.2. Suppose that (U, W) is an ε-regular pair of density d. Then all but at most $\varepsilon|U|$ vertices $v \in U$ satisfy $\operatorname{deg}(v, W) \geqslant(d-\varepsilon)|W|$.
2.3. LKS graphs. Write $\mathbf{L K S}(n, k, \alpha)$ for the class of all n-vertex graphs with at least $\left(\frac{1}{2}+\alpha\right) n$ vertices of degrees at least $(1+\alpha) k$. Write trees (m) for the class of all trees on m vertices. With this notation, Conjecture 1.1 states that every graph in $\mathbf{L K S}(n, k, 0)$ contains every tree from $\operatorname{trees}(k+1)$.

Define $\mathbf{L K S m i n}(n, k, \eta)$ as the set of all graphs $G \in \mathbf{L K S}(n, k, \eta)$ that are edgeminimal in $\mathbf{L K S}(n, k, \eta)$. Write $\mathbb{S}_{\eta, k}(G)$ for the set of all vertices of G that have degree less than $(1+\eta) k$, and set $\mathbb{L}_{\eta, k}(G):=V(G) \backslash \mathbb{S}_{\eta, k}(G)$.

Definition 2.3. Let $\mathbf{L K S s m a l l}(n, k, \eta)$ be the class of graphs $G \in \mathbf{L K S}(n, k, \eta)$ for which we have the following three properties:

1. All the neighbors of every vertex $v \in V(G)$ with $\operatorname{deg}(v)>\lceil(1+2 \eta) k\rceil$ have degree at most $\lceil(1+2 \eta) k\rceil$.
2. All the neighbors of every vertex of $\mathbb{S}_{\eta, k}(G)$ have degree exactly $\lceil(1+\eta) k\rceil$.
3. We have $e(G) \leqslant k n$.
4. Trees. In this section we will show how to partition any given tree into small subtrees, connected by only a few vertices; this is what we call an ℓ-fine partition. This notion is essential for our proof of Theorem 1.2, as we can embed these small subtrees one at a time.

Similar but simpler tree-cutting procedures were used earlier for the dense case of the Loebl-Komlós-Sós conjecture [AKS95, HP16, PS12, Zha11]. There, the small trees were embedded in regular pairs of a regularity lemma decomposition of the host graph G. Since here we use the sparse decomposition instead, we had to take more care when cutting the tree. (In particular, features (h), (i), (j) of Definition 3.3 are needed for the more complex setting here.)

If T is a tree and $r \in V(T)$, then the pair (T, r) is a rooted tree with root r. We write $V_{\text {odd }}(T, r) \subseteq V(T)$ for the set of vertices of T of odd distance from r. $V_{\text {even }}(T, r)$ is defined analogously. Note that $r \in V_{\text {even }}(T, r)$. The distance between two vertices v_{1} and v_{2} in a tree is denoted by $\operatorname{dist}\left(v_{1}, v_{2}\right)$.

We start with a simple well-known fact about the number of leaves in a tree. For completeness we include a proof.

FAct 3.1. Let T be a tree with ℓ vertices of degree at least three. Then T has at least $\ell+2$ leaves.

Proof. Let D_{1} be the set of leaves, D_{2} the set of vertices of degree two, and D_{3} the set of vertices of degree of at least three. Then
$2\left(\left|D_{1}\right|+\left|D_{2}\right|+\left|D_{3}\right|\right)-2=2 v(T)-2=2 e(T)=\sum_{v \in V(T)} \operatorname{deg}(v) \geqslant\left|D_{1}\right|+2\left|D_{2}\right|+3\left|D_{3}\right|$, and the statement follows.

Let T be a tree rooted at r, inducing the partial order \preceq on $V(T)$ (with r as the minimal element). If $a \preceq b$ and $a b \in E(T)$, then we say that b is a child of a and a is the parent of $b . \operatorname{Ch}(a)$ denotes the set of children of a, and the parent of a vertex $b \neq r$ is denoted $\operatorname{Par}(b)$. For a set $U \subseteq V(T)$, write $\operatorname{Par}(U):=\{\operatorname{Par}(u): u \in U \backslash\{r\}\} \backslash U$ and $\operatorname{Ch}(U):=\bigcup_{u \in U} \operatorname{Ch}(u) \backslash U$.

The next simple fact has already appeared in [Zha11, HP16] (and most likely in some other classic texts as well). Nevertheless, for completeness we give a proof here.

FACT 3.2. Let T be a tree with color classes X and Y. Suppose that $v(T) \geqslant 2$. Then the set X contains at least $|X|-|Y|+1$ leaves of T.

Proof. Root T at an arbitrary vertex $r \in Y$. Let I be the set of internal vertices of T that belong to X. Each $v \in I$ has at least one immediate successor in the tree order induced by r. These successors are distinct for distinct $v \in I$, and all lie in $Y \backslash\{r\}$. Thus $|I| \leqslant|Y|-1$. The claim follows.

We say that a tree $T^{\prime} \subseteq T$ is induced by a vertex $x \in V(T)$ if $V\left(T^{\prime}\right)$ is the upclosure of x in $V(T)$, i.e., $V\left(T^{\prime}\right)=\{v \in V(T): x \preceq v\}$. We then write $T^{\prime}=T(r, \uparrow x)$, or $T^{\prime}=T(\uparrow x)$ if the root is obvious from the context and call T^{\prime} an end subtree. Subtrees of T that are not end subtrees are called internal subtrees.

Let T be a tree rooted at r, and let $T^{\prime} \subseteq T$ be a subtree with $r \notin V\left(T^{\prime}\right)$. The seed of T^{\prime} is the \preceq-maximal vertex $x \in V(T) \backslash V\left(T^{\prime}\right)$ for which $x \preceq v$ for all $v \in V\left(T^{\prime}\right)$. We write $\operatorname{Seed}\left(T^{\prime}\right)=x$. A fruit in a rooted tree (T, r) is any vertex $u \in V(T)$ whose distance from r is even and at least four.

We can now state the most important definition of this section, that of a fine partition of a tree. The idea behind this definition is that it will be easier to embed the tree if we do it piecewise. So we partition the tree T into small subtrees $\left(\mathcal{S}_{A} \cup \mathcal{S}_{B}\right.$ in property (a) of Definition 3.3 below) of bounded size (see (e)) and a few cut-vertices (sets W_{A} and W_{B} in (a)). These cut-vertices lie between the subtrees. The partition of the cut-vertices into W_{A} and W_{B} is inherited from the bipartition of T (see (d)). The partition \mathcal{S}_{A} and \mathcal{S}_{B} is given by the position (in W_{A} or in W_{B}) of the cut-vertex (i.e., seed) of the small subtree (see (f) and (g)).

It is of crucial importance that there are not too many seeds (cf. (c)), as they will have to be embedded in special sets. Namely, the set that will accommodate W_{A} needs to be well connected both to the set reserved for W_{B} and to the area of the graph considered for embedding the subtrees from \mathcal{S}_{A}. Another intuitively desirable
property is (k), as the internal subtrees will be more difficult to embed than the end subtrees. This is because they are adjacent to two seeds from $W_{A} \cup W_{B}$, and after embedding (a part) of the internal subtree, we need to come back to the sets reserved for $W_{A} \cup W_{B}$ to embed the second seed.

Definition 3.3 (ℓ-fine partition). Let $T \in \operatorname{trees}(k)$ be a tree rooted at r. An ℓ-fine partition of T is a quadruple $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$, where $W_{A}, W_{B} \subseteq V(T)$ and \mathcal{S}_{A} and \mathcal{S}_{B} are families of subtrees of T such that
(a) the three sets W_{A}, W_{B}, and $\left\{V\left(T^{*}\right)\right\}_{T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}}$ partition $V(T)$ (in particular, the trees in $T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$ are pairwise vertex disjoint),
(b) $r \in W_{A} \cup W_{B}$,
(c) $\max \left\{\left|W_{A}\right|,\left|W_{B}\right|\right\} \leqslant 336 k / \ell$,
(d) for $w_{1}, w_{2} \in W_{A} \cup W_{B}$ the distance $\operatorname{dist}\left(w_{1}, w_{2}\right)$ is odd if and only if one of them lies in W_{A} and the other one in W_{B},
(e) $v\left(T^{*}\right) \leqslant \ell$ for every tree $T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$,
(f) $V\left(T^{*}\right) \cap \mathrm{N}\left(W_{B}\right)=\emptyset$ for every $T^{*} \in \mathcal{S}_{A}$, and $V\left(T^{*}\right) \cap \mathrm{N}\left(W_{A}\right)=\emptyset$ for every $T^{*} \in \mathcal{S}_{B}$,
(g) each tree of $\mathcal{S}_{A} \cup \mathcal{S}_{B}$ has its seeds in $W_{A} \cup W_{B}$,
(h) $\left|\mathrm{N}\left(V\left(T^{*}\right)\right) \cap\left(W_{A} \cup W_{B}\right)\right| \leqslant 2$ for each $T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$,
(i) if $\mathrm{N}\left(V\left(T^{*}\right)\right) \cap\left(W_{A} \cup W_{B}\right)$ contains two distinct vertices z_{1} and z_{2} for some $T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$, then $\operatorname{dist}_{T}\left(z_{1}, z_{2}\right) \geqslant 6$,
(j) if $T_{1}, T_{2} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$ are two internal subtrees of T such that $v_{1} \in T_{1}$ precedes $v_{2} \in T_{2}$, then $\operatorname{dist}_{T}\left(v_{1}, v_{2}\right)>2$,
(k) \mathcal{S}_{B} does not contain any internal tree of T, and
(l) $\sum_{T^{*} \in \mathcal{S}_{A}}, T^{*}$ end subtree of $T \quad v\left(T^{*}\right) \geqslant \sum_{T^{*} \in \mathcal{S}_{B}} v\left(T^{*}\right)$.

An example is given in Figure 1.
Remark 3.4. Suppose that $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ is an ℓ-fine partition of a tree (T, r), and suppose that $T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$ is such that $\left|V\left(T^{*}\right) \cap \mathrm{N}\left(W_{A} \cup W_{B}\right)\right|=2$. Let us root T^{*} at the neighbor r_{1} of its seed, and let r_{2} be the other vertex of $V\left(T^{*}\right) \cap \mathrm{N}\left(W_{A} \cup W_{B}\right)$. Then (d), (f), and (i) imply that r_{2} is a fruit in $\left(T^{*}, r_{1}\right)$.

The following is the main lemma of this section.
Lemma 3.5. Let $T \in \operatorname{trees}(k)$ be a tree rooted at r, and let $\ell \in[k]$. Then T has an ℓ-fine partition.

Proof. First we shall use an inductive construction to get candidates for W_{A}, W_{B}, \mathcal{S}_{A}, and \mathcal{S}_{B}, which we shall modify later on, so that they satisfy all the conditions required by Definition 3.3.

Set $T_{0}:=T$. Now, inductively for $i \geqslant 1$ choose a \preceq-maximal vertex $x_{i} \in V\left(T_{i-1}\right)$ with the property that $v\left(T_{i-1}\left(\uparrow x_{i}\right)\right)>\ell$. We set $T_{i}:=T_{i-1}-\left(V\left(T_{i-1}\left(\uparrow x_{i}\right)\right) \backslash\left\{x_{i}\right\}\right)$. If, say at step $i=i_{\text {end }}$, no such x_{i} exists, then $v\left(T_{i-1}\right) \leqslant \ell$. In that case, set $x_{i}:=r$, set $W_{1}:=\left\{x_{i}\right\}_{i=1}^{i_{\text {end }}}$, and terminate. The fact that $v\left(T_{i-1}-V\left(T_{i}\right)\right) \geqslant \ell$ for each $i<i_{\text {end }}$ implies that

$$
\begin{equation*}
\left|W_{1}\right|-1=i_{\mathrm{end}}-1 \leqslant k / \ell \tag{3.1}
\end{equation*}
$$

Let \mathcal{C} be the set of all components of the forest $T-W_{1}$. Observe that by the choice of the x_{i} each $T^{*} \in \mathcal{C}$ has order at most ℓ.

Let A and B be the color classes of T such that $r \in A$. Now, choosing W_{A} as $W_{1} \cap A$ and W_{B} as $W_{1} \cap B$ and dividing \mathcal{C} adequately into sets \mathcal{S}_{A} and \mathcal{S}_{B} would yield a quadruple that satisfies conditions (a), (b), (c), (d), (e), and (g). To ensure

Fig. 1. A part of an ℓ-fine partition of a tree. Some of the properties from Definition 3.3 are illustrated. The parities obey (d) and (f). The distance between z_{1} and z_{2} is at least 6 , as required in (i). The distance between v_{1} and v_{2} is more than 2 , as required in (j) (since the corresponding subtrees precede one another). On the other hand, (j) does not require the distance between v_{2} and v_{3} to be more than 2.
the remaining properties, we shall refine our tree partition by adding more vertices to W_{1}, thus making the trees in $\mathcal{S}_{A} \cup \mathcal{S}_{B}$ smaller. In doing so, we have to be careful not to end up violating (c). We shall enlarge the set of cut-vertices in several steps, accomplishing sequentially, in this order, also properties (h), (j), (f), (i), and in the last step at the same time (k) and (l). It would be easy to check that during these steps none of the previously established properties is lost, so we will not explicitly check them, except for (c).

For condition (h), first define T^{\prime} as the subtree of T that contains all vertices of W_{1} and all vertices that lie on paths in T which have both end-vertices in W_{1}. Now, if a subtree $T^{*} \in \mathcal{C}$ does not already satisfy (h) for W_{1}, then $V\left(T^{*}\right) \cap V\left(T^{\prime}\right)$ must contain some vertices of degree at least three. We will add the set $Y\left(T^{*}\right)$ of all these vertices to W_{1}. Formally, let Y be the union of the sets $Y\left(T^{*}\right)$ over all $T^{*} \in \mathcal{C}$, and set $W_{2}:=W_{1} \cup Y$. Then the components of $T-W_{2}$ satisfy (h).

Let us bound the size of the set W_{2}. For each $T^{*} \in \mathcal{C}$, note that by Fact 3.1 for $T^{*} \cap T^{\prime}$, we know that $\left|Y\left(T^{*}\right)\right|$ is at most the number of leaves of $T^{*} \cap T^{\prime}$ (minus two). On the other hand, each leaf of $T^{*} \cap T^{\prime}$ has a child in W_{1} (in T). As these children
are distinct for different trees $T^{*} \in \mathcal{C}$, we find that $|Y| \leqslant\left|W_{1}\right|$ and thus

$$
\begin{equation*}
\left|W_{2}\right| \leqslant 2\left|W_{1}\right| \tag{3.2}
\end{equation*}
$$

Next, for condition (j), observe that by setting $W_{3}:=W_{2} \cup \operatorname{Par}_{T}\left(W_{2}\right)$ the components of $T-W_{3}$ fulfill (j). We have

$$
\begin{equation*}
\left|W_{3}\right| \leqslant 2\left|W_{2}\right| \stackrel{(3.2)}{\leqslant} 4\left|W_{1}\right| . \tag{3.3}
\end{equation*}
$$

To ensure condition (f), let R^{*} be the set of the roots (\preceq-minimal vertices) of those components T^{*} of $T-W_{3}$ that contain neighbors of both color classes of T. Setting $W_{4}:=W_{3} \cup R^{*}$, we see that (f) is satisfied for W_{4}. Furthermore, as for each vertex in R^{*} there is a distinct member of W_{3} above it in the order on T, we obtain that

$$
\begin{equation*}
\left|W_{4}\right| \leqslant 2\left|W_{3}\right| \stackrel{(3.3)}{\lessgtr} 8\left|W_{1}\right| . \tag{3.4}
\end{equation*}
$$

Next, we shall aim for a stronger version of property (i), namely,
(i') if $\mathrm{N}\left(V\left(T^{*}\right)\right) \cap\left(W_{A} \cup W_{B}\right)=\left\{z_{1}, z_{2}\right\}$ with $z_{1} \neq z_{2}$ for some $T^{*} \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$, then $\operatorname{dist}_{T}\left(z_{1}, z_{2}\right) \geqslant 8$.
The reason for requiring this strengthening is that later we might introduce additional cut-vertices which would "shorten T^{*} by two."

Consider a component T^{*} of $T-W_{4}$ which is an internal tree of T. If W_{4} contains two distinct neighbors z_{1} and z_{2} of T^{*} such that $\operatorname{dist}_{T}\left(z_{1}, z_{2}\right)<8$, then we call T^{*} short. Observe that there are at most $\left|W_{4}\right|$ short trees, because each of these trees has a unique vertex from W_{4} above it. Let $Z\left(T^{*}\right) \subseteq V\left(T^{*}\right)$ be the vertices on the path from z_{1} to z_{2} (excluding the end-vertices). Then $\left|Z\left(T^{*}\right)\right| \leqslant 7$. Letting Z be the union of the sets $Z\left(T^{*}\right)$ over all short trees in $T-W_{4}$, and setting $W_{5}:=W_{4} \cup Z$, we obtain that

$$
\begin{equation*}
\left|W_{5}\right| \leqslant\left|W_{4}\right|+7\left|W_{4}\right| \stackrel{(3.4)}{\leqslant} 64\left|W_{1}\right| \stackrel{(3.1)}{\leqslant} 64 k / \ell+1 \tag{3.5}
\end{equation*}
$$

We still need to ensure (k) and (l). To this end, consider the set \mathcal{C}^{\prime} of all components of $T-W_{5}$. Set $\mathcal{C}_{A}^{\prime}:=\left\{T^{*} \in \mathcal{C}^{\prime}: \operatorname{Seed}\left(T^{*}\right) \in A\right\}$, and set $\mathcal{C}_{B}^{\prime}:=\mathcal{C}^{\prime} \backslash \mathcal{C}_{A}^{\prime}$. We assume that

$$
\begin{equation*}
\sum_{T^{*} \in \mathcal{C}_{A}^{\prime}}: T^{*} \text { end tree of } T, ~ v\left(T^{*}\right) \geqslant \sum_{T^{*} \in \mathcal{C}_{B}^{\prime}: T^{*} \text { end tree of } T} v\left(T^{*}\right), \tag{3.6}
\end{equation*}
$$

as otherwise we can simply swap A and B. Now, for each $T^{*} \in \mathcal{C}_{B}^{\prime}$ that is not an end subtree of T, set $X\left(T^{*}\right):=V\left(T^{*}\right) \cap \mathrm{N}_{T}\left(W_{5}\right)$. Let X be the union of all such sets $X\left(T^{*}\right)$. Observe that

$$
\begin{equation*}
|X| \leqslant 2\left|W_{5} \cap B\right| \leqslant 2\left|W_{5}\right| \tag{3.7}
\end{equation*}
$$

For $W:=W_{5} \cup X$, all internal trees of $T-W$ have their seeds in A. This will guarantee (k) and, together with (3.6), also (l).

Finally, set $W_{A}:=W \cap A$ and $W_{B}:=W \cap B$, and let \mathcal{S}_{A} and \mathcal{S}_{B} be the sets of those components of $T-W$ that have their seeds in W_{A} and W_{B}, respectively. By construction, $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ has all the properties of an ℓ-fine partition. In particular, for property (c), we find with (3.5) and (3.7) that $|W| \leqslant\left|W_{5}\right|+2\left|W_{5} \cap B\right| \leqslant$ $336 k / \ell$.

For an ℓ-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of a rooted tree (T, r), the trees $T^{*} \in$ $\mathcal{S}_{A} \cup \mathcal{S}_{B}$ are called shrubs. An end shrub is a shrub which is an end subtree. An internal shrub is a shrub which is an internal subtree. A hub is a component of the forest $T\left[W_{A} \cup W_{B}\right]$. Suppose that $T^{*} \in \mathcal{S}_{A}$ is an internal shrub, and r^{*} is its \preceq_{r}-minimal vertex. Then $T^{*}-r^{*}$ contains a unique component with a vertex from $\mathrm{N}_{T}\left(W_{A}\right)$. We call this component principal subshrub, and the other components peripheral subshrubs.

Remark 3.6.
(i) In our proof of Theorem 1.2, we shall apply Lemma 3.5 to a tree $T_{\mathrm{T} 1.2} \in \operatorname{trees}(k)$. The number $\ell_{\mathrm{L} 3.5}$ will be linear in k, and thus (c) of Definition 3.3 tells us that the size of the sets W_{A} and W_{B} is bounded by an absolute constant (depending on $\alpha_{\text {T1.2 }}$ only).
(ii) Each internal tree in \mathcal{S}_{A} of an ℓ-fine partition has a unique vertex from W_{A} above it. Thus with $\ell_{\text {L3.5 }}$ as above, also the number of internal trees in \mathcal{S}_{A} is bounded by an absolute constant. This need not be the case for the number of end trees. For instance, if $\left(T_{\mathrm{T} 1.2}, r\right)$ is a star with $k-1$ leaves and rooted at its center r, then $W_{A}=\{r\}$, while the $k-1$ leaves of $T_{\mathrm{T} 1.2}$ form the end shrubs in \mathcal{S}_{A}.
DEFINITION 3.7 (ordered skeleton). We say that the sequence $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ is an ordered skeleton of the ℓ-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of a rooted tree (T, r) if

- X_{0} is a hub and contains r, and all other X_{i} are either hubs or shrubs,
- $V\left(\bigcup_{i \leqslant m} X_{i}\right)=V(T)$, and
- for each $i=1, \ldots, m$, the subgraph formed by $X_{0} \cup X_{1} \cup \cdots \cup X_{i}$ is connected in T.

Directly from Definition 3.3 we get the following lemma.
Lemma 3.8. Any ℓ-fine partition of any rooted tree has an ordered skeleton.

4. Necessary facts and notation from $\left[\mathbf{H K P}^{+} \mathbf{a}, \mathbf{H K P}^{+} \mathbf{b}, \mathrm{HKP}^{+} \mathbf{c}\right]$.

4.1. Sparse decomposition. We now shift our focus from preprocessing the tree to the host graph. This is where we build on results from the earlier papers in the series. We first recall the notion of dense spots and related concepts introduced in $\left[\mathrm{HKP}^{+} \mathrm{a}\right],\left[\mathrm{HKP}^{+} \mathrm{b}\right]$, and $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$.

Definition $4.1((m, \gamma)$-dense spot, (m, γ)-nowhere-dense $)$. Suppose that $m \in \mathbb{N}$ and $\gamma>0$. An (m, γ)-dense spot in a graph G is a nonempty bipartite subgraph $D=(U, W ; F)$ of G with $\mathrm{d}(D)>\gamma$ and $\operatorname{mindeg}(D)>m$. We call $G(m, \gamma)$-nowheredense if it does not contain any (m, γ)-dense spots.

Definition $4.2((m, \gamma)$-dense cover $)$. Suppose that $m \in \mathbb{N}$ and $\gamma>0$. An (m, γ) dense cover of a graph G is a family \mathcal{D} of edge-disjoint (m, γ)-dense spots such that $E(G)=\bigcup_{D \in \mathcal{D}} E(D)$.

The proofs of the following facts can be found in $\left[\mathrm{HKP}^{+} \mathrm{b}\right]$.
Fact 4.3. Let $(U, W ; F)$ be a $(\gamma k, \gamma)$-dense spot in a graph G of maximum degree at most Ωk. Then $\max \{|U|,|W|\} \leqslant \frac{\Omega}{\gamma} k$.

FACT 4.4. Let H be a graph of maximum degree at most Ωk, let $v \in V(H)$, and let \mathcal{D} be a family of edge-disjoint $(\gamma k, \gamma)$-dense spots. Then fewer than $\frac{\Omega}{\gamma}$ dense spots from \mathcal{D} contain v.

In the following definition, note that a subset of a $(\Lambda, \varepsilon, \gamma, k)$-avoiding set is also $(\Lambda, \varepsilon, \gamma, k)$-avoiding.

Definition $4.5((\Lambda, \varepsilon, \gamma, k)$-avoiding set). Suppose that $k \in \mathbb{N}, \varepsilon, \gamma>0$, and $\Lambda>0$. Suppose that G is a graph, and \mathcal{D} is a family of dense spots in G. A set $\mathbb{E} \subseteq \bigcup_{D \in \mathcal{D}} V(D)$ is $(\Lambda, \varepsilon, \gamma, k)$-avoiding with respect to \mathcal{D} if for every $U \subseteq V(G)$ with $|U| \leqslant \Lambda k$ the following holds for all but at most εk vertices $v \in \mathbb{E}$. There is a dense spot $D \in \mathcal{D}$ with $|U \cap V(D)| \leqslant \gamma^{2} k$ that contains v.

In the next two definitions, we expose the most important tool in the proof of our main result (Theorem 1.2): the sparse decomposition. It generalizes the notion of equitable partition from Szemerédi's regularity lemma. This is explained in $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, section 3.8]. The first step to this end is defining the bounded decomposition.

Definition $4.6((k, \Lambda, \gamma, \varepsilon, \nu, \rho)$-bounded decomposition). Suppose that $k \in \mathbb{N}$ and $\varepsilon, \gamma, \nu, \rho>0$ and $\Lambda>0$. Let $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{s}\right\}$ be a partition of the vertex set of a graph G. We say that $\left(\mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\exp }, \mathbb{E}\right)$ is a $(k, \Lambda, \gamma, \varepsilon, \nu, \rho)$-bounded decomposition of G with respect to \mathcal{V} if the following properties are satisfied:

1. $G_{\exp }$ is $a(\gamma k, \gamma)$-nowhere-dense subgraph of G with $\operatorname{mindeg}\left(G_{\exp }\right)>\rho k$.
2. The elements of \mathbf{V} are pairwise disjoint subsets of $V(G)$.
3. $G_{\text {reg }}$ is a subgraph of $G-G_{\exp }$ on the vertex set $\cup \mathbf{V}$. For each edge $x y \in$ $E\left(G_{\text {reg }}\right)$, there are distinct $C_{x} \ni x$ and $C_{y} \ni y$ from \mathbf{V}, and $G\left[C_{x}, C_{y}\right]=$ $G_{\mathrm{reg}}\left[C_{x}, C_{y}\right]$. Furthermore, $G\left[C_{x}, C_{y}\right]$ forms an ε-regular pair of density at least γ^{2}.
4. We have $\nu k \leqslant|C|=\left|C^{\prime}\right| \leqslant \varepsilon k$ for all $C, C^{\prime} \in \mathbf{V}$.
5. \mathcal{D} is a family of edge-disjoint $(\gamma k, \gamma)$-dense spots in $G-G_{\exp }$. For each $D=(U, W ; F) \in \mathcal{D}$, all the edges of $G[U, W]$ are covered by \mathcal{D} (but not necessarily by D).
6. If $G_{\text {reg }}$ contains at least one edge between $C_{1}, C_{2} \in \mathbf{V}$, then there exists a dense spot $D=(U, W ; F) \in \mathcal{D}$ such that $C_{1} \subseteq U$ and $C_{2} \subseteq W$.
7. For all $C \in \mathbf{V}$ there is $V \in \mathcal{V}$ so that either $C \subseteq V \cap V\left(G_{\exp }\right)$ or $C \subseteq$ $V \backslash V\left(G_{\exp }\right)$. For all $C \in \mathbf{V}$ and $D=(U, W ; F) \in \mathcal{D}$, we have $C \cap U, C \cap W \in$ $\{\emptyset, C\}$.
8. \mathbb{E} is a $(\Lambda, \varepsilon, \gamma, k)$-avoiding subset of $V(G) \backslash \bigcup \mathbf{V}$ with respect to dense spots \mathcal{D}.

We say that the bounded decomposition $\left(\mathbf{V}, \mathcal{D}, G_{\mathrm{reg}}, G_{\mathrm{exp}}, \mathbb{E}\right)$ respects the avoiding threshold b if for each $C \in \mathbf{V}$ we have either $\operatorname{maxdeg}_{G}(C, \mathbb{E}) \leqslant b$ or $\operatorname{mindeg}_{G}(C, \mathbb{E})>$ b.

The members of \mathbf{V} are called clusters. Define the cluster graph $\mathbf{G}_{\text {reg }}$ as the graph on the vertex set \mathbf{V} that has an edge $C_{1} C_{2}$ for each pair $\left(C_{1}, C_{2}\right)$ which has density at least γ^{2} in the graph $G_{\text {reg }}$.

Definition $4.7\left(\left(k, \Omega^{* *}, \Omega^{*}, \Lambda, \gamma, \varepsilon, \nu, \rho\right)\right.$-sparse decomposition). Suppose that $k \in$ \mathbb{N} and $\varepsilon, \gamma, \nu, \rho>0$ and $\Lambda, \Omega^{*}, \Omega^{* *}>0$. Let $\mathcal{V}=\left\{V_{1}, V_{2}, \ldots, V_{s}\right\}$ be a partition of the vertex set of a graph G. We say that $\nabla=\left(\mathbb{H}, \mathbf{V}, \mathcal{D}, G_{\mathrm{reg}}, G_{\mathrm{exp}}, \mathbb{E}\right)$ is $a\left(k, \Omega^{* *}, \Omega^{*}, \Lambda, \gamma, \varepsilon, \nu, \rho\right)$-sparse decomposition of G with respect to $V_{1}, V_{2}, \ldots, V_{s}$ if the following holds:

1. $\mathbb{H} \subseteq V(G), \operatorname{mindeg}_{G}(\mathbb{H}) \geqslant \Omega^{* *} k$, $\operatorname{maxdeg}_{H}(V(G) \backslash \mathbb{H}) \leqslant \Omega^{*} k$, where H is spanned by the edges of $\bigcup \mathcal{D}, G_{\exp }$, and edges incident with \mathbb{H},
2. $\left(\mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\text {exp }}, \mathbb{E}\right)$ is a $(k, \Lambda, \gamma, \varepsilon, \nu, \rho)$-bounded decomposition of $G-\mathbb{H}$ with respect to $V_{1} \backslash \mathbb{H}, V_{2} \backslash \mathbb{H}, \ldots, V_{s} \backslash \mathbb{H}$.
If the parameters do not matter, we call ∇ simply a sparse decomposition, and similarly we speak about a bounded decomposition. We define the graph $G_{\mathcal{D}}$ as the
union (both edgewise, and vertexwise) of all dense spots \mathcal{D}.
FACT 4.8 (see $\left[\mathrm{HKP}^{+}\right.$a, Fact 3.11]). Let $\nabla=\left(\mathbb{H}, \mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\exp }, \mathbb{E}\right)$ be a $\left(k, \Omega^{* *}\right.$, $\left.\Omega^{*}, \Lambda, \gamma, \varepsilon, \nu, \rho\right)$-sparse decomposition of a graph G. Let $x \in V(G) \backslash \mathbb{H}$. Assume that $\mathbf{V} \neq \emptyset$, and let \mathfrak{c} be the size of each of the members of \mathbf{V}. Then there are fewer than

$$
\frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2} \mathfrak{c}} \leqslant \frac{2\left(\Omega^{*}\right)^{2}}{\gamma^{2} \nu}
$$

clusters $C \in \mathbf{V}$ with $\operatorname{deg}_{G_{\mathcal{D}}}(x, C)>0$.
Definition 4.9 (captured edges). In the situation of Definition 4.7, we refer to the edges in $E\left(G_{\text {reg }}\right) \cup E\left(G_{\exp }\right) \cup E_{G}(\mathbb{H}, V(G)) \cup E_{G_{\mathcal{D}}}(\mathbb{E}, \mathbb{E} \cup \bigcup \mathbf{V})$ as captured by the sparse decomposition. Denote by G_{∇} the spanning subgraph of G whose edges are the captured edges of the sparse decomposition. Likewise, the captured edges of a bounded decomposition $\left(\mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\exp }, \mathbb{E}\right)$ of a graph G are those in $E\left(G_{\text {reg }}\right) \cup E\left(G_{\exp }\right) \cup$ $E_{G_{\mathcal{D}}}(\mathbb{E}, \mathbb{E} \cup \bigcup \mathbf{V})$.

The last definition we need is the notion of a regularized matching.
Definition 4.10 ((ε, d, ℓ)-regularized matching). Suppose that $\ell \in \mathbb{N}$ and $d, \varepsilon>$ 0 . A collection \mathcal{N} of pairs (A, B) with $A, B \subseteq V(H)$ is called an (ε, d, ℓ)-regularized matching of a graph H if
(i) $|A|=|B| \geqslant \ell$ for each $(A, B) \in \mathcal{N}$,
(ii) (A, B) induces in H an ε-regular pair of density at least d for each $(A, B) \in$ \mathcal{N}, and
(iii) all involved sets A and B are pairwise disjoint.

Sometimes, when the parameters do not matter, we simply write regularized matching.

We say that a regularized matching \mathcal{N} absorbs a regularized matching \mathcal{M} if for every $(S, T) \in \mathcal{M}$ there exists $(X, Y) \in \mathcal{N}$ such that $S \subseteq X$ and $T \subseteq Y$. In the same way, we say that a family of dense spots \mathcal{D} absorbs a regularized matching \mathcal{M} if for every $(S, T) \in \mathcal{M}$ there exists $(U, W ; F) \in \mathcal{D}$ such that $S \subseteq U$ and $T \subseteq W$.

FACT 4.11 (see $\left[\mathrm{HKP}^{+}\right.$b, Fact 4.3]). Suppose that \mathcal{M} is an (ε, d, ℓ)-regularized matching in a graph H. Then $|C| \leqslant \frac{\operatorname{maxdeg}(H)}{d}$ for each $C \in \mathcal{V}(\mathcal{M})$.
4.2. Shadows. We recall the notion of a shadow given in $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$. Given a graph H, a set $U \subseteq V(H)$, and a number ℓ, we define inductively

$$
\begin{aligned}
& \operatorname{shadow}_{H}^{(0)}(U, \ell):=U \\
& \operatorname{shadow}_{H}^{(i)}(U, \ell):=\left\{v \in V(H): \operatorname{deg}_{H}\left(v, \operatorname{shadow}_{H}^{(i-1)}(U, \ell)\right)>\ell\right\} \text { for } i \geqslant 1 .
\end{aligned}
$$

We call the index i the exponent of the shadow. We abbreviate $\operatorname{shadow}_{H}^{(1)}(U, \ell)$ as shadow $_{H}(U, \ell)$. Further, the graph H is omitted from the subscript if it is clear from the context. Note that the shadow of a set U might intersect U.

The proofs of the following facts can be found in $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$.
FACT 4.12. Suppose H is a graph with $\operatorname{maxdeg}(H) \leqslant \Omega k$. Then for each $\alpha>$ $0, i \in\{0,1, \ldots\}$, and each set $U \subseteq V(H)$, we have

$$
\mid \text { shadow } \left.^{(i)}(U, \alpha k)\left|\leqslant\left(\frac{\Omega}{\alpha}\right)^{i}\right| U \right\rvert\,
$$

FACT 4.13. Let $\alpha, \gamma, Q>0$ be three numbers such that $1 \leqslant Q \leqslant \frac{\alpha}{16 \gamma}$. Suppose that H is a $(\gamma k, \gamma)$-nowhere-dense graph, and let $U \subseteq V(H)$ with $|U| \leqslant Q k$. Then we have

$$
|\operatorname{shadow}(U, \alpha k)| \leqslant \frac{16 Q^{2} \gamma}{\alpha} k
$$

5. Configurations.

5.1. Common settings. Recall the definitions of $\mathbb{S}_{\eta, k}(G)$ and $\mathbb{L}_{\eta, k}(G)$ given in section 2.3. We repeat some common settings that already appeared in $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$ and are outputs of $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Lemma 5.4]. The reader can find explanations in $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, section 5.1] of why the set $\mathbb{X} \mathbb{A}$ (defined again in (5.3)) has excellent properties for accommodating cut-vertices of $T_{\mathrm{T} 1.2}$, and the set $\mathbb{X} \mathbb{B}$ has "half as excellent properties" for accommodating cut-vertices. In particular, the formula defining $\mathbb{X} \mathbb{B}$ suggests that we cannot make use of the set $\mathbb{S}_{\eta, k}(G) \backslash\left(V\left(G_{\exp }\right) \cup \mathbb{E} \cup V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right)$ for the purpose of embedding shrubs neighboring the cut-vertices embedded in $\mathbb{X} \mathbb{B}$. In $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, Setting 3.5] we gave some motivation behind the definition of the sets $V_{+}, L_{\#}, V_{\text {good }}, \mathbb{Y} \mathbb{A}, \mathbb{Y} \mathbb{B}, V_{\rightsquigarrow \mathbb{H}}, \mathbb{J}_{\mathbb{E}}, \mathbb{J}, \mathbb{J}_{1}, \mathbb{J}_{2}, \mathbb{J}_{3}$, and \mathcal{F} in Setting 5.1 below.

SETTING 5.1. We assume that the constants $\Lambda, \Omega^{*}, \Omega^{* *}, k_{0}$ and $\widehat{\alpha}, \gamma, \varepsilon, \varepsilon^{\prime}, \eta, \pi, \rho, \tau, d$ satisfy

$$
\begin{equation*}
\eta \gg \frac{1}{\Omega^{*}} \gg \frac{1}{\Omega^{* *}} \gg \rho \ggg \ggg \frac{1}{\Lambda} \geqslant \varepsilon \geqslant \pi \geqslant \widehat{\alpha} \geqslant \varepsilon^{\prime} \geqslant \nu \gg \tau \gg \frac{1}{k_{0}}>0 \tag{5.1}
\end{equation*}
$$

and that $k \geqslant k_{0}$. By writing $c>a_{1} \gg a_{2} \gg \cdots>a_{\ell}>0$ we mean that there exist suitable nondecreasing functions $f_{i}:(0, c)^{i} \rightarrow(0, c)(i=1, \ldots, \ell-1)$ such that for each $i \in[\ell-1]$ we have $a_{i+1}<f_{i}\left(a_{1}, \ldots, a_{i}\right)$. A suitable choice of these functions in (5.1) is explicitly given in section 7 .

Suppose $G \in \mathbf{L K S s m a l l}(n, k, \eta)$ is given together with its $\left(k, \Omega^{* *}, \Omega^{*}, \Lambda, \gamma, \varepsilon^{\prime}, \nu, \rho\right)$ sparse decomposition

$$
\nabla=\left(\mathbb{H}, \mathbf{V}, \mathcal{D}, G_{\mathrm{reg}}, G_{\mathrm{exp}}, \mathbb{E}\right)
$$

with respect to the partition $\left\{\mathbb{S}_{\eta, k}(G), \mathbb{L}_{\eta, k}(G)\right\}$, and with respect to the avoiding threshold $\frac{\rho k}{100 \Omega^{*}}$. We write

$$
\begin{equation*}
V_{\rightsquigarrow \mathbb{E}}:=\operatorname{shadow}_{G_{\nabla}-\mathbb{H}}\left(\mathbb{E}, \frac{\rho k}{100 \Omega^{*}}\right) \quad \text { and } \quad \mathbf{V}_{\rightsquigarrow \mathbb{E}}:=\left\{C \in \mathbf{V}: C \subseteq V_{\rightsquigarrow \mathbb{E}}\right\} \tag{5.2}
\end{equation*}
$$

The graph $\mathbf{G}_{\text {reg }}$ is the corresponding cluster graph. Let \mathfrak{c} be the size of an arbitrary cluster in $\mathbf{V} .{ }^{1}$ Let G_{∇} be the spanning subgraph of G formed by the edges captured by the sparse decomposition ∇. There are two $(\varepsilon, d, \pi \mathfrak{c})$-regularized matchings \mathcal{M}_{A} and \mathcal{M}_{B} in $G_{\mathcal{D}}$, with the following properties. Following $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, eq. (5.3)] we write

$$
\begin{align*}
& \mathbb{X} \mathbb{A}:=\mathbb{L}_{\eta, k}(G) \backslash V\left(\mathcal{M}_{B}\right) \\
& \mathbb{X} \mathbb{B}:=\left\{v \in V\left(\mathcal{M}_{B}\right) \cap \mathbb{L}_{\eta, k}(G): \widehat{\operatorname{deg}}(v)<(1+\eta) \frac{k}{2}\right\}, \tag{5.3}\\
& \mathbb{X} \mathbb{C}:=\mathbb{L}_{\eta, k}(G) \backslash(\mathbb{X} \mathbb{A} \cup \mathbb{X} \mathbb{B}),
\end{align*}
$$

where $\widehat{\operatorname{deg}}(v)$ on the second line is defined by

$$
\widehat{\operatorname{deg}}(v):=\operatorname{deg}_{G}\left(v, \mathbb{S}_{\eta, k}(G) \backslash\left(V\left(G_{\exp }\right) \cup \mathbb{E} \cup V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right)\right)
$$

[^1]Then we have the following:
(1) $V\left(\mathcal{M}_{A}\right) \cap V\left(\mathcal{M}_{B}\right)=\emptyset$.
(2) $V_{1}\left(\mathcal{M}_{B}\right) \subseteq S^{0}$, where

$$
\begin{equation*}
S^{0}:=\mathbb{S}_{\eta, k}(G) \backslash\left(V\left(G_{\exp }\right) \cup \mathbb{E}\right) \tag{5.4}
\end{equation*}
$$

(3) For each $(X, Y) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}$, there is a dense spot $(U, W ; F) \in \mathcal{D}$ with $X \subseteq U$ and $Y \subseteq W$, and further, either $X \subseteq \mathbb{S}_{\eta, k}(G)$ or $X \subseteq \mathbb{L}_{\eta, k}(G)$, and either $Y \subseteq \mathbb{S}_{\eta, k}(G)$ or $Y \subseteq \mathbb{L}_{\eta, k}(G)$.
(4) For each $X_{1} \in \mathcal{V}_{1}\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$, there exists a cluster $C_{1} \in \mathbf{V}$ such that $X_{1} \subseteq$ C_{1}, and for each $X_{2} \in \mathcal{V}_{2}\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$ there exists $C_{2} \in \mathbf{V} \cup\left\{\mathbb{L}_{\eta, k}(G) \cap \mathbb{E}\right\}$ such that $X_{2} \subseteq C_{2}$.
(5) Each pair of the regularized matching $\mathcal{M}_{\text {good }}:=\left\{\left(X_{1}, X_{2}\right) \in \mathcal{M}_{A}: X_{1} \cup X_{2} \subseteq\right.$ $\mathbb{X} \mathbb{A}\}$ corresponds to an edge in $\mathbf{G}_{\text {reg }}$.
(6) $e_{G_{\nabla}}\left(\mathbb{X} \mathbb{A}, S^{0} \backslash V\left(\mathcal{M}_{A}\right)\right) \leqslant \gamma k n$.
(7) $e_{G_{\mathrm{reg}}}\left(V(G) \backslash V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right) \leqslant \gamma^{2} k n$.
(8) For the regularized matching $\mathcal{N}_{\mathbb{E}}:=\left\{(X, Y) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}:(X \cup Y) \cap \mathbb{E} \neq \emptyset\right\}$, we have $e_{G_{\mathrm{reg}}}\left(V(G) \backslash V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right), V\left(\mathcal{N}_{\mathbb{E}}\right)\right) \leqslant \gamma^{2} \mathrm{kn}$.
(9) $\left|E(G) \backslash E\left(G_{\nabla}\right)\right| \leqslant 2 \rho k n$.
(10) $\left|E\left(G_{\mathcal{D}}\right) \backslash\left(E\left(G_{\mathrm{reg}}\right) \cup E_{G}[\mathbb{E}, \mathbb{E} \cup \bigcup \mathbf{V}]\right)\right| \leqslant \frac{5}{4} \gamma k n$.

We write

$$
\begin{align*}
& V_{+}:=V(G) \backslash\left(S^{0} \backslash V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right) \tag{5.5}\\
&=\mathbb{L}_{\eta, k}(G) \cup V\left(G_{\text {exp }}\right) \cup \mathbb{E} \cup V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right), \tag{5.6}\\
& L_{\#}:=\mathbb{L}_{\eta, k}(G) \backslash \mathbb{L}_{\frac{9}{10} \eta, k}\left(G_{\nabla}\right), \tag{5.7}\\
& V_{\text {good }}::=V_{+} \backslash\left(\mathbb{H} \cup L_{\#}\right), \tag{5.8}\\
& \mathbb{Y} \mathbb{A}:=\operatorname{shadow}_{G_{\nabla}}\left(V_{+} \backslash L_{\#},\left(1+\frac{\eta}{10}\right) k\right) \backslash \operatorname{shadow}_{G-G_{\nabla}}\left(V(G), \frac{\eta}{100} k\right), \tag{5.9}\\
& \mathbb{Y} \mathbb{B}:=\operatorname{shadow}_{G_{\nabla}}\left(V_{+} \backslash L_{\#},\left(1+\frac{\eta}{10}\right) \frac{k}{2}\right) \backslash \operatorname{shadow}_{G-G_{\nabla}}\left(V(G), \frac{\eta}{100} k\right), \tag{5.10}\\
& V_{\rightsquigarrow \mathbb{H}}:=(\mathbb{X} \mathbb{A} \cup \mathbb{X} \mathbb{B}) \cap \operatorname{shadow}_{G}\left(\mathbb{H}, \frac{\eta}{100} k\right), \tag{5.11}\\
& \mathbb{J}_{\mathbb{E}}:=\operatorname{shadow}_{G_{\mathrm{reg}}}\left(V\left(\mathcal{N}_{\mathbb{E}}\right), \gamma k\right) \backslash V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right), \\
& \mathbb{J}_{1}:=\operatorname{shadow}_{G_{\mathrm{reg}}}\left(V(G) \backslash V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right), \gamma k\right) \backslash V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right), \\
& \mathbb{J}:=\left(\mathbb{X} \mathbb{A} \backslash \mathbb{Y}_{\mathbb{A}}\right) \cup((\mathbb{X} \mathbb{A} \cup \mathbb{X} \mathbb{B}) \backslash \mathbb{Y B}) \cup V_{\rightsquigarrow \mathbb{H}} \cup L_{\#} \cup \mathbb{J}_{1} \\
& \cup \operatorname{shadow}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(V_{\rightsquigarrow \mathbb{H}} \cup L_{\#} \cup \mathbb{J}_{\mathbb{E}} \cup \mathbb{J}_{1}, \frac{\eta^{2} k}{10^{5}}\right), \\
& \mathbb{J}_{2}:=\mathbb{X} \mathbb{A} \cap \operatorname{shadow}_{G_{\nabla}}\left(S^{0} \backslash V\left(\mathcal{M}_{A}\right), \sqrt{\gamma} k\right), \\
& \mathbb{J}_{3}::=\mathbb{X} \mathbb{A} \cap \operatorname{shadow}_{G_{\nabla}}\left(\mathbb{X} \mathbb{A}, \eta^{3} k / 10^{3}\right), \\
& \mathcal{F}:=\left\{C \in \mathcal{V}\left(\mathcal{M}_{A}\right): C \subseteq \mathbb{X} \mathbb{A}\right\} \cup \mathcal{V}_{1}\left(\mathcal{M}_{B}\right) .
\end{align*}
$$

For the embedding procedure to run smoothly, the vertex set is split into several classes, the sizes of which have given ratios. It will be important that most vertices have their degrees split according to these ratios. Lemma 5.2 allows us to do so. The motivation behind Lemma 5.2 and Definition 5.3 below is explained in greater detail at the beginning of $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, section 3.2].

Lemma 5.2. For each $p \in \mathbb{N}$ and $a>0$ there exists $k_{0}>0$ such that for each $k>k_{0}$ we have the following.

Suppose that G is a graph of order $n \geqslant k_{0}$ and $\operatorname{maxdeg}(G) \leqslant \Omega^{*} k$ with its $\left(k, \Lambda, \gamma, \varepsilon, k^{-0.05}, \rho\right)$-bounded decomposition $\left(\mathbf{V}, \mathcal{D}, G_{\mathrm{reg}}, G_{\mathrm{exp}}, \mathbb{E}\right)$. As usual, we write G_{∇} for the subgraph captured by $\left(\mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\text {exp }}, \mathbb{E}\right)$, and $G_{\mathcal{D}}$ for the spanning subgraph of G consisting of the edges in \mathcal{D}. Let \mathcal{M} be an $\left(\varepsilon, d, k^{0.95}\right)$-regularized matching in G, and let $\mathbb{B}_{1}, \ldots, \mathbb{B}_{p}$ be subsets of $V(G)$. Suppose that $\Omega^{*} \geqslant 1$ and $\Omega^{*} / \gamma<k^{0.1}$.

Suppose that $\mathfrak{q}_{1}, \ldots, \mathfrak{q}_{p} \in\{0\} \cup[a, 1]$ are reals with $\sum \mathfrak{q}_{i} \leqslant 1$. Then there exist a partition $\mathbb{A}_{1} \cup \cdots \cup \mathbb{A}_{p}=V(G)$ and sets $\bar{V} \subseteq V(G), \overline{\mathcal{V}} \subseteq \mathcal{V}(\mathcal{M})$, and $\overline{\mathbf{V}} \subseteq \mathbf{V}$ with the following properties:
(1) $|\bar{V}| \leqslant \exp \left(-k^{0.1}\right) n,|\bigcup \overline{\mathcal{V}}| \leqslant \exp \left(-k^{0.1}\right) n,|\bigcup \overline{\mathbf{V}}|<\exp \left(-k^{0.1}\right) n$.
(2) For each $i \in[p]$ and each $C \in \mathbf{V} \backslash \overline{\mathbf{V}}$, we have $\left|C \cap \mathbb{A}_{i}\right| \geqslant \mathfrak{q}_{i}\left|\mathbb{A}_{i}\right|-k^{0.9}$.
(3) For each $i \in[p]$ and each $C \in \mathcal{V}(\mathcal{M}) \backslash \overline{\mathcal{V}}$, we have $\left|C \cap \mathbb{A}_{i}\right| \geqslant \mathfrak{q}_{i}\left|\mathbb{A}_{i}\right|-k^{0.9}$.
(4) For each $i \in[p], D=(U, W ; F) \in \mathcal{D}$ and $\operatorname{mindeg}_{D}\left(U \backslash \bar{V}, W \cap \mathbb{A}_{i}\right) \geqslant \mathfrak{q}_{i} \gamma k-$ $k^{0.9}$.
(5) For each $i, j \in[p]$, we have $\left|\mathbb{A}_{i} \cap \mathbb{B}_{j}\right| \geqslant \mathfrak{q}_{i}\left|\mathbb{B}_{j}\right|-n^{0.9}$.
(6) For each $i \in[p]$, each $J \subseteq[p]$, and each $v \in V(G) \backslash \bar{V}$, we have

$$
\operatorname{deg}_{H}\left(v, \mathbb{A}_{i} \cap \mathbb{B}_{J}\right) \geqslant \mathfrak{q}_{i} \operatorname{deg}_{H}\left(v, \mathbb{B}_{J}\right)-2^{-p} k^{0.9}
$$

for each of the graphs $H \in\left\{G, G_{\nabla}, G_{\exp }, G_{\mathcal{D}}, G_{\nabla} \cup G_{\mathcal{D}}\right\}$, where $\mathbb{B}_{J}:=\left(\bigcap_{j \in J} \mathbb{B}_{j}\right) \backslash$ $\left(\bigcup_{j \in[p] \backslash J} \mathbb{B}_{j}\right)$.
(7) For each $i, i^{\prime}, j, j^{\prime} \in[p]\left(j \neq j^{\prime}\right)$, we have

$$
\begin{aligned}
e_{H}\left(\mathbb{A}_{i} \cap \mathbb{B}_{j}, \mathbb{A}_{i^{\prime}} \cap \mathbb{B}_{j^{\prime}}\right) \geqslant \mathfrak{q}_{i} \mathfrak{q}_{i^{\prime}} e_{H}\left(\mathbb{B}_{j}, \mathbb{B}_{j^{\prime}}\right)-k^{0.6} n^{0.6} \\
e_{H}\left(\mathbb{A}_{i} \cap \mathbb{B}_{j}, \mathbb{A}_{i^{\prime}} \cap \mathbb{B}_{j}\right) \geqslant \mathfrak{q}_{i} \mathfrak{q}_{i^{\prime}} e\left(H\left[\mathbb{B}_{j}\right]\right)-k^{0.6} n^{0.6} \quad \text { if } i \neq i^{\prime}, \\
e\left(H\left[\mathbb{A}_{i} \cap \mathbb{B}_{j}\right]\right) \geqslant \mathfrak{q}_{i}^{2} e\left(H\left[\mathbb{B}_{j}\right]\right)-k^{0.6} n^{0.6}
\end{aligned}
$$

for each of the graphs $H \in\left\{G, G_{\nabla}, G_{\exp }, G_{\mathcal{D}}, G_{\nabla} \cup G_{\mathcal{D}}\right\}$.
(8) For each $i \in[p]$, if $\mathfrak{q}_{i}=0$, then $\mathbb{A}_{i}=\emptyset$.

Definition 5.3 (proportional splitting). Let $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{2}>0$ be three positive reals with $\sum_{i} \mathfrak{p}_{i} \leqslant 1$. Under Setting 5.1, suppose that $\left(\mathbb{A}_{0}, \mathbb{A}_{1}, \mathbb{A}_{2}\right)$ is a partition of $V(G) \backslash \mathbb{H}$ which satisfies assertions of Lemma 5.2 with parameter $p_{\mathrm{L} 5.2}:=10$ for graph $G_{\mathrm{L} 5.2}^{*}:=$ $\left(G_{\nabla}-\mathbb{H}\right) \cup G_{\mathcal{D}}$ (here, by union, we mean union of the edges), bounded decomposition $\left(\mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\text {exp }}, \mathbb{E}\right)$, matching $\mathcal{M}_{\mathrm{L} 5.2}:=\mathcal{M}_{A} \cup \mathcal{M}_{B}$, sets $\mathbb{B}_{1}:=V_{\text {good }}, \mathbb{B}_{2}:=\mathbb{X} \mathbb{A} \backslash$ $(\mathbb{H} \cup \mathbb{J}), \mathbb{B}_{3}:=\mathbb{X} \mathbb{B} \backslash \mathbb{J}, \mathbb{B}_{4}:=V\left(G_{\exp }\right), \mathbb{B}_{5}:=\mathbb{E}, \mathbb{B}_{6}:=V_{\rightsquigarrow \mathbb{E}}, \mathbb{B}_{7}:=\mathbb{J}_{\mathbb{E}}, \mathbb{B}_{8}:=\mathbb{L}_{\eta, k}(G)$, $\mathbb{B}_{9}:=L_{\#}, \mathbb{B}_{10}:=V_{\rightsquigarrow \mathbb{H}}$, and reals $\mathfrak{q}_{1}:=\mathfrak{p}_{0}, \mathfrak{q}_{2}:=\mathfrak{p}_{1}, \mathfrak{q}_{3}:=\mathfrak{p}_{2}, \mathfrak{q}_{4}:=\ldots \mathfrak{q}_{10}=0$. Note that by Lemma $5.2(8)$ we have that $\left(\mathbb{A}_{0}, \mathbb{A}_{1}, \mathbb{A}_{2}\right)$ is a partition of $V(G) \backslash \mathbb{H}$. We call $\left(\mathbb{A}_{0}, \mathbb{A}_{1}, \mathbb{A}_{2}\right)$ a proportional $\left(\mathfrak{p}_{0}: \mathfrak{p}_{1}: \mathfrak{p}_{2}\right)$ splitting.

We refer to properties of the proportional $\left(\mathfrak{p}_{0}: \mathfrak{p}_{1}: \mathfrak{p}_{2}\right)$ splitting $\left(\mathbb{A}_{0}, \mathbb{A}_{1}, \mathbb{A}_{2}\right)$ using the numbering of Lemma 5.2; for example, "Definition 5.3(5)" tells us, among other things, that $\left|(\mathbb{X} \mathbb{A} \backslash \mathbb{J}) \cap \mathbb{A}_{0}\right| \geqslant \mathfrak{p}_{0}|\mathbb{X} \mathbb{A} \backslash(\mathbb{J} \cup \mathbb{H})|-n^{0.9}$.

Setting 5.4. Under Setting 5.1, suppose that we are given a proportional $\left(\mathfrak{p}_{0}\right.$: $\left.\mathfrak{p}_{1}: \mathfrak{p}_{2}\right)$ splitting $\left(\mathbb{A}_{0}, \mathbb{A}_{1}, \mathbb{A}_{2}\right)$ of $V(G) \backslash \mathbb{H}$. We assume that

$$
\begin{equation*}
\mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{2} \geqslant \frac{\eta}{100} . \tag{5.13}
\end{equation*}
$$

Let $\bar{V}, \overline{\mathcal{V}}, \overline{\mathbf{V}}$ be the exceptional sets as in Definition 5.3(1).
We write

$$
\begin{equation*}
\mathbb{F}:=\operatorname{shadow}_{G_{\mathcal{D}}}\left(\bigcup \overline{\mathcal{V}} \cup \bigcup \overline{\mathcal{V}}^{*} \cup \bigcup \overline{\mathbf{V}}, \frac{\eta^{2} k}{10^{10}}\right) \tag{5.14}
\end{equation*}
$$

where $\overline{\mathcal{V}}^{*}$ are the partners of $\overline{\mathcal{V}}$ in $\mathcal{M}_{A} \cup \mathcal{M}_{B}$.
We have

$$
\begin{equation*}
|\mathbb{F}| \leqslant \varepsilon n \tag{5.15}
\end{equation*}
$$

For an arbitrary set $U \subseteq V(G)$ and for $i \in\{0,1,2\}$, we write $U^{\upharpoonright i}$ for the set $U \cap \mathbb{A}_{i}$.

For each $(X, Y) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}$ such that $X, Y \notin \overline{\mathcal{V}}$, we write $(X, Y)^{\upharpoonright i}$ for an arbitrary fixed pair $\left(X^{\prime} \subseteq X, Y^{\prime} \subseteq Y\right)$ with the property that $\left|X^{\prime}\right|=\left|Y^{\prime}\right|=\min \left\{\left|X^{\upharpoonright i}\right|,\left|Y^{\upharpoonright i}\right|\right\}$. We extend this notion of restriction to an arbitrary regularized matching $\mathcal{N} \subseteq \mathcal{M}_{A} \cup$ \mathcal{M}_{B} as follows. We set

$$
\mathcal{N}^{\upharpoonright i}:=\left\{(X, Y)^{\upharpoonright i}:(X, Y) \in \mathcal{N} \text { with } X, Y \notin \overline{\mathcal{V}}\right\}
$$

In $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$ it was shown that the above setting yields the following property.
Lemma 5.5 (see $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, Lemma 3.9]). Assume Setting 5.4. Then for each $i \in$ $\{0,1,2\}$ and for each $\mathcal{N} \subseteq \mathcal{M}_{A} \cup \mathcal{M}_{B}$, we have that $\mathcal{N}^{\upharpoonright i}$ is a $\left(\frac{400 \varepsilon}{\eta}, \frac{d}{2}, \frac{\eta \pi}{200} \mathfrak{c}\right)$-regularized matching satisfying

$$
\begin{equation*}
\left|V\left(\mathcal{N}^{\upharpoonright i}\right)\right| \geqslant \mathfrak{p}_{i}|V(\mathcal{N})|-2 k^{-0.05} n \tag{5.16}
\end{equation*}
$$

Moreover, for all $v \notin \mathbb{F}$ and for all $i=0,1,2$, we have $\operatorname{deg}_{G_{\mathcal{D}}}\left(v, V(\mathcal{N})^{\upharpoonright i} \backslash V\left(\mathcal{N}{ }^{\upharpoonright i}\right)\right) \leqslant$ $\frac{\eta^{2} k}{10^{5}}$.
5.2. The ten configurations. Here, we recall the configurations introduced in $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, section 4.1]. Recall also that saying that "we have configuration X," "the graph is in configuration X," or "configuration X occurs" is the same.

We start by giving the definition of configuration $(\diamond \mathbf{1})$. This is a very easy configuration in which a modification of the greedy tree-embedding strategy works.

DEFINITION 5.6 (configuration $(\diamond \mathbf{1})$). We say that a graph G is in configuration $(\diamond \mathbf{1})$ if there exists a nonempty bipartite graph $H \subseteq G$ with $\operatorname{mindeg}_{G}(V(H)) \geqslant k$ and mindeg $(H) \geqslant k / 2$.

We now introduce the configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$ which make use of the set \mathbb{H}. These configurations build on preconfiguration ($\boldsymbol{\&}$).

Definition 5.7 (preconfiguration (\%)). Suppose that we are in Setting 5.1. We say that the graph G is in preconfiguration $(\boldsymbol{Q})\left(\Omega^{\star}\right)$ if the following conditions are satisfied: G contains nonempty sets $L^{\prime \prime} \subseteq L^{\prime} \subseteq \mathbb{L}_{\frac{9}{10} \eta, k}\left(G_{\nabla}\right) \backslash \mathbb{H}$ and a nonempty set $\mathbb{H}^{\prime} \subseteq \mathbb{H}$ such that

$$
\begin{align*}
\operatorname{maxdeg}_{G_{\nabla}}\left(L^{\prime}, \mathbb{H} \backslash \mathbb{H}^{\prime}\right) & <\frac{\eta k}{100} \tag{5.17}\\
\operatorname{mindeg}_{G_{\nabla}}\left(\mathbb{H}^{\prime}, L^{\prime}\right) & \geqslant \Omega^{\star} k \tag{5.18}\\
\operatorname{maxdeg}_{G_{\nabla}}\left(L^{\prime \prime}, \mathbb{L}_{\frac{9}{10} \eta, k}\left(G_{\nabla}\right) \backslash\left(\mathbb{H} \cup L^{\prime}\right)\right) & \leqslant \frac{\eta k}{100} \tag{5.19}
\end{align*}
$$

Definition 5.8 (configuration $(\diamond \mathbf{2})$). Suppose that we are in Setting 5.1. We say that the graph G is in configuration $(\diamond \mathbf{2})\left(\Omega^{\star}, \tilde{\Omega}, \beta\right)$ if the following conditions are satisfied.

The triple $L^{\prime \prime}, L^{\prime}, \mathbb{H}^{\prime}$ witnesses preconfiguration $(\boldsymbol{\&})\left(\Omega^{\star}\right)$ in G. There exist a nonempty set $\mathbb{H}^{\prime \prime} \subseteq \mathbb{H}^{\prime}$, a set $V_{1} \subseteq V\left(G_{\exp }\right) \cap \mathbb{Y} \mathbb{B} \cap L^{\prime \prime}$, and a set $V_{2} \subseteq V\left(G_{\exp }\right)$
with the following properties:

$$
\begin{gathered}
\operatorname{mindeg}_{G_{\nabla}}\left(\mathbb{H}^{\prime \prime}, V_{1}\right) \geqslant \tilde{\Omega} k, \\
\operatorname{mindeg}_{G_{\nabla}}\left(V_{1}, \mathbb{H}^{\prime \prime}\right) \geqslant \beta k, \\
\operatorname{mindeg}_{G_{\text {exp }}}\left(V_{1}, V_{2}\right) \geqslant \beta k, \\
\operatorname{mindeg}_{G_{\exp }}\left(V_{2}, V_{1}\right) \geqslant \beta k .
\end{gathered}
$$

Definition 5.9 (configuration $(\diamond \mathbf{3})$). Suppose that we are in Setting 5.1. We say that the graph G is in configuration $(\diamond \mathbf{3})\left(\Omega^{\star}, \tilde{\Omega}, \zeta, \delta\right)$ if the following conditions are satisfied.

The triple $L^{\prime \prime}, L^{\prime}, \mathbb{H}^{\prime}$ witnesses preconfiguration $(\boldsymbol{@})\left(\Omega^{\star}\right)$ in G. There exist a nonempty set $\mathbb{H}^{\prime \prime} \subseteq \mathbb{H}^{\prime}$, a set $V_{1} \subseteq \mathbb{E} \cap \mathbb{Y} \mathbb{B} \cap L^{\prime \prime}$, and a set $V_{2} \subseteq V(G) \backslash \mathbb{H}$ such that the following properties are satisfied:

$$
\begin{align*}
\operatorname{mindeg}_{G_{\nabla}}\left(\mathbb{H}^{\prime \prime}, V_{1}\right) & \geqslant \tilde{\Omega} k \\
\operatorname{mindeg}_{G_{\nabla}}\left(V_{1}, \mathbb{H}^{\prime \prime}\right) & \geqslant \delta k \\
\operatorname{maxdeg}_{G_{\mathcal{D}}}\left(V_{1}, V(G) \backslash\left(V_{2} \cup \mathbb{H}\right)\right) & \leqslant \zeta k \tag{5.20}\\
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{2}, V_{1}\right) & \geqslant \delta k \tag{5.21}
\end{align*}
$$

Definition 5.10 (configuration $(\diamond \mathbf{4})$). Suppose that we are in Setting 5.1. We say that the graph G is in configuration $(\diamond \mathbf{4})\left(\Omega^{\star}, \tilde{\Omega}, \zeta, \delta\right)$ if the following conditions are satisfied.

The triple $L^{\prime \prime}, L^{\prime}, \mathbb{H}^{\prime}$ witnesses preconfiguration ($\left.\mathbf{(}\right)\left(\Omega^{\star}\right)$ in G. There exist a nonempty set $\mathbb{H}^{\prime \prime} \subseteq \mathbb{H}^{\prime}$ and sets $V_{1} \subseteq \mathbb{Y} \mathbb{B} \cap L^{\prime \prime}, \mathbb{E}^{\prime} \subseteq \mathbb{E}$, and $V_{2} \subseteq V(G) \backslash \mathbb{H}$ with the following properties:

$$
\begin{array}{r}
\operatorname{mindeg}_{G_{\nabla}}\left(\mathbb{H}^{\prime \prime}, V_{1}\right) \geqslant \tilde{\Omega} k, \\
\operatorname{mindeg}_{G_{\nabla}}\left(V_{1}, \mathbb{H}^{\prime \prime}\right) \geqslant \delta k, \\
\operatorname{mindeg}_{G_{\nabla} \cup G_{\mathcal{D}}}\left(V_{1}, \mathbb{E}^{\prime}\right) \geqslant \delta k, \\
\operatorname{mindeg}_{G_{\nabla} \cup G_{\mathcal{D}}}\left(\mathbb{E}^{\prime}, V_{1}\right) \geqslant \delta k, \\
\operatorname{mindeg}_{G_{\nabla} \cup G_{\mathcal{D}}}\left(V_{2}, \mathbb{E}^{\prime}\right) \geqslant \delta k, \\
\operatorname{maxdeg}_{G_{\nabla} \cup G_{\mathcal{D}}}\left(\mathbb{E}^{\prime}, V(G) \backslash\left(\mathbb{H} \cup V_{2}\right)\right) \leqslant \zeta k, \tag{5.25}
\end{array}
$$

Definition 5.11 (configuration $(\diamond \mathbf{5})$). Suppose that we are in Setting 5.1. We say that the graph G is in configuration $(\diamond \mathbf{5})\left(\Omega^{\star}, \tilde{\Omega}, \delta, \zeta, \tilde{\pi}\right)$ if the following conditions are satisfied.

The triple $L^{\prime \prime}, L^{\prime}, \mathbb{H}^{\prime}$ witnesses preconfiguration $(\boldsymbol{\aleph})\left(\Omega^{\star}\right)$ in G. There exist a nonempty set $\mathbb{H}^{\prime \prime} \subseteq \mathbb{H}^{\prime}$ and a set $V_{1} \subseteq\left(\mathbb{Y} \mathbb{B} \cap L^{\prime \prime} \cap \bigcup \mathbf{V}\right) \backslash V\left(G_{\exp }\right)$ such that the following conditions are fulfilled:

$$
\begin{align*}
\operatorname{mindeg}_{G_{\nabla}}\left(\mathbb{H}^{\prime \prime}, V_{1}\right) & \geqslant \tilde{\Omega} k \tag{5.26}\\
\operatorname{mindeg}_{G_{\nabla}}\left(V_{1}, \mathbb{H}^{\prime \prime}\right) & \geqslant \delta k \tag{5.27}\\
\quad \operatorname{mindeg}_{G_{\mathrm{reg}}}\left(V_{1}\right) & \geqslant \zeta k \tag{5.28}
\end{align*}
$$

Further, we have

$$
\begin{equation*}
C \cap V_{1}=\emptyset \quad \text { or } \quad\left|C \cap V_{1}\right| \geqslant \tilde{\pi}|C| \tag{5.29}
\end{equation*}
$$

for every $C \in \mathbf{V}$.

It remains to introduce configurations $(\diamond \mathbf{6})-(\diamond \mathbf{1 0})$. In these configurations the set \mathbb{H} is not utilized. All these configurations make use of Setting 5.4; i.e., the set $V(G) \backslash \mathbb{H}$ is partitioned into three sets $\mathbb{A}_{0}, \mathbb{A}_{1}$, and \mathbb{A}_{2}. The purpose of $\mathbb{A}_{0}, \mathbb{A}_{1}$, and \mathbb{A}_{2} is to embed the hubs, the internal shrubs, and the end shrubs of $T_{\mathrm{T} 1.2}$, respectively. Thus the parameters $\mathfrak{p}_{0}, \mathfrak{p}_{1}$, and \mathfrak{p}_{2} are chosen proportionally to the sizes of these respective parts of $T_{\mathrm{T} 1.2}$.

We first introduce four preconfigurations ($(1),(\bigcirc \mathbf{2})$, ($\mathbf{e x p}$), and ($\mathbf{r e g}$) which are building bricks for configurations $(\diamond \mathbf{6})-(\diamond \mathbf{9})$. The preconfigurations ($\vee \mathbf{1}$) and $(\bigcirc \mathbf{2})$ will be used for embedding end shrubs of a fine partition of the tree $T_{\mathrm{T} 1.2}$, and preconfigurations (exp) and (reg) will be used for embedding its hubs.

An \mathcal{M}-cover of a regularized matching \mathcal{M} is a family $\mathcal{F} \subseteq \mathcal{V}(\mathcal{M})$ with the property that at least one of the elements S_{1} and S_{2} is a member of \mathcal{F} for each $\left(S_{1}, S_{2}\right) \in \mathcal{M}$.

Definition 5.12 (preconfiguration ((01)). Suppose that we are in Settings 5.1 and 5.4. We say that the graph G is in preconfiguration $(\Omega \mathbf{1})\left(\gamma^{\prime}, h\right)$ of $V(G)$ if there are two nonempty sets $V_{0}, V_{1} \subseteq \mathbb{A}_{0} \backslash\left(\mathbb{F} \cup \operatorname{shadow}_{G_{\mathcal{D}}}\left(V_{\rightsquigarrow \mathbb{H}}, \frac{\eta^{2} k}{10^{5}}\right)\right)$ with the following properties:

$$
\begin{align*}
& \operatorname{mindeg}_{G_{\nabla}}\left(V_{0}, V_{\text {good }}^{\mid 2}\right) \geqslant h / 2 \tag{5.30}\\
& \operatorname{mindeg}_{G_{\nabla}}\left(V_{1}, V_{\text {good }}^{\mid 2}\right) \geqslant h \tag{5.31}
\end{align*}
$$

Further, there is an $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-cover \mathcal{F} such that

$$
\begin{equation*}
\operatorname{maxdeg}_{G_{\nabla}}\left(V_{1}, \bigcup \mathcal{F}\right) \leqslant \gamma^{\prime} k \tag{5.32}
\end{equation*}
$$

Definition 5.13 (preconfiguration ((2)). Suppose that we are in Settings 5.1 and 5.4. We say that the graph G is in preconfiguration $(\bigcirc \mathbf{2})(h)$ of $V(G)$ if there are two nonempty sets $V_{0}, V_{1} \subseteq \mathbb{A}_{0} \backslash\left(\mathbb{F} \cup \operatorname{shadow}_{G_{\mathcal{D}}}\left(V_{\rightsquigarrow \mathbb{H}}, \frac{\eta^{2} k}{10^{5}}\right)\right)$ with the following property:

$$
\begin{equation*}
\operatorname{mindeg}_{G_{\nabla}}\left(V_{0} \cup V_{1}, V_{\text {good }}^{\mid 2}\right) \geqslant h \tag{5.33}
\end{equation*}
$$

Definition 5.14 (preconfiguration (exp)). Suppose that we are in Settings 5.1 and 5.4. We say that the graph G is in preconfiguration $(\mathbf{e x p})(\beta)$ if there are two nonempty sets $V_{0}, V_{1} \subseteq \mathbb{A}_{0}$ with the following properties:

$$
\begin{align*}
& \operatorname{mindeg}_{G_{\exp }}\left(V_{0}, V_{1}\right) \geqslant \beta k, \tag{5.34}\\
& \operatorname{mindeg}_{G_{\exp }}\left(V_{1}, V_{0}\right) \geqslant \beta k . \tag{5.35}
\end{align*}
$$

Definition 5.15 (preconfiguration (reg)). Suppose that we are in Settings 5.1 and 5.4. We say that the graph G is in preconfiguration (reg) $\left(\tilde{\varepsilon}, d^{\prime}, \mu\right)$ if there are two nonempty sets $V_{0}, V_{1} \subseteq \mathbb{A}_{0}$ and a nonempty family of vertex-disjoint $\left(\tilde{\varepsilon}, d^{\prime}\right)$ superregular pairs $\left\{\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right\}_{j \in \mathcal{Y}}\right.$ (with respect to the edge set $\left.E(G)\right)$ with $V_{0}:=$ $\bigcup Q_{0}^{(j)}$ and $V_{1}:=\bigcup Q_{1}^{(j)}$ such that

$$
\begin{equation*}
\min \left\{\left|Q_{0}^{(j)}\right|,\left|Q_{1}^{(j)}\right|\right\} \geqslant \mu k \tag{5.36}
\end{equation*}
$$

Definition 5.16 (configuration $(\diamond \mathbf{6})$). Suppose that we are in Settings 5.1 and 5.4. We say that the graph G is in configuration $(\diamond \boldsymbol{6})\left(\delta, \tilde{\varepsilon}, d^{\prime}, \mu, \gamma^{\prime}, h_{2}\right)$ if the following conditions are met.

The vertex sets V_{0}, V_{1} witness preconfiguration $(\mathbf{r e g})\left(\tilde{\varepsilon}, d^{\prime}, \mu\right)$ or preconfiguration $(\mathbf{e x p})(\delta)$ and either preconfiguration $(\Omega \mathbf{1})\left(\gamma^{\prime}, h_{2}\right)$ or preconfiguration $(\Omega \mathbf{2})\left(h_{2}\right)$. There exist nonempty sets $V_{2}, V_{3} \subseteq \mathbb{A}_{1}$ such that

$$
\begin{align*}
\operatorname{mindeg}_{G}\left(V_{1}, V_{2}\right) & \geqslant \delta k, \tag{5.37}\\
\operatorname{mindeg}_{G}\left(V_{2}, V_{1}\right) & \geqslant \delta k, \tag{5.38}\\
\operatorname{mindeg}_{G_{\exp }}\left(V_{2}, V_{3}\right) & \geqslant \delta k, \tag{5.39}\\
\operatorname{mindeg} & G_{\text {exp }} \tag{5.40}\\
\left(V_{3}, V_{2}\right) & \geqslant \delta k .
\end{align*}
$$

Definition 5.17 (configuration $(\diamond \mathbf{7})$). Suppose that we are in Settings 5.1 and 5.4. We say that the graph G is in configuration $(\diamond \mathbf{7})\left(\delta, \rho^{\prime}, \tilde{\varepsilon}, d^{\prime}, \mu, \gamma^{\prime}, h_{2}\right)$ if the following conditions are satisfied.

The sets V_{0}, V_{1} witness preconfiguration $(\mathbf{r e g})\left(\tilde{\varepsilon}, d^{\prime}, \mu\right)$ and either preconfiguration $(\Omega \mathbf{1})\left(\gamma^{\prime}, h_{2}\right)$ or preconfiguration $(\bigcirc \mathbf{2})\left(h_{2}\right)$. There exist nonempty sets $V_{2} \subseteq \mathbb{E}^{\upharpoonright 1} \backslash \bar{V}$ and $V_{3} \subseteq \mathbb{A}_{1}$ such that

$$
\begin{align*}
& \operatorname{mindeg}_{G}\left(V_{1}, V_{2}\right) \geqslant \delta k \tag{5.41}\\
& \operatorname{mindeg}_{G}\left(V_{2}, V_{1}\right) \geqslant \delta k \tag{5.42}\\
& \operatorname{maxdeg}_{G_{\mathcal{D}}}\left(V_{2}, \mathbb{A}_{1} \backslash V_{3}\right)<\rho^{\prime} k \tag{5.43}\\
& \operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{3}, V_{2}\right) \geqslant \delta k \tag{5.44}
\end{align*}
$$

Definition 5.18 (configuration $(\diamond 8)$). Suppose we are in Settings 5.1 and 5.4. We say that the graph G is in configuration $(\diamond 8)\left(\delta, \rho^{\prime}, \varepsilon_{1}, \varepsilon_{2}, d_{1}, d_{2}, \mu_{1}, \mu_{2}, h_{1}, h_{2}\right)$ if the following conditions are met.

The vertex sets V_{0}, V_{1} witness preconfiguration $(\mathbf{r e g})\left(\varepsilon_{2}, d_{2}, \mu_{2}\right)$ and preconfiguration $(\triangle \mathbf{2})\left(h_{2}\right)$. There exist nonempty sets $V_{2} \subseteq \mathbb{A}_{0}, V_{3}, V_{4} \subseteq \mathbb{A}_{1}$, with $V_{3} \subseteq \mathbb{E} \backslash \bar{V}$, and an $\left(\varepsilon_{1}, d_{1}, \mu_{1} k\right)$-regularized matching \mathcal{N} absorbed by $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right) \backslash \mathcal{N}_{\mathbb{E}}$, with $V(\mathcal{N}) \subseteq \mathbb{A}_{1} \backslash V_{3}$, such that

$$
\begin{gather*}
\operatorname{mindeg}_{G}\left(V_{1}, V_{2}\right) \geqslant \delta k, \tag{5.45}\\
\operatorname{mindeg}_{G}\left(V_{2}, V_{1}\right) \geqslant \delta k, \tag{5.46}\\
\operatorname{mindeg}_{G_{\nabla}}\left(V_{2}, V_{3}\right) \geqslant \delta k, \tag{5.47}\\
\operatorname{mindeg}_{G_{\nabla}}\left(V_{3}, V_{2}\right) \geqslant \delta k, \tag{5.48}\\
\operatorname{maxdeg}_{G_{\mathcal{D}}}\left(V_{3}, \mathbb{A}_{1} \backslash V_{4}\right)<\rho^{\prime} k, \tag{5.49}\\
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{4}, V_{3}\right) \geqslant \delta k, \tag{5.50}\\
\operatorname{deg}_{G_{\mathcal{D}}}\left(v, V_{3}\right)+\operatorname{deg}_{G_{\mathrm{reg}}}(v, V(\mathcal{N})) \geqslant h_{1} \text { for each } v \in V_{2} . \tag{5.51}
\end{gather*}
$$

Definition 5.19 (configuration $(\diamond \mathbf{9})$). Suppose we are in Settings 5.1 and 5.4. We say that the graph G is in configuration $(\diamond \mathbf{9})\left(\delta, \gamma^{\prime}, h_{1}, h_{2}, \varepsilon_{1}, d_{1}, \mu_{1}, \varepsilon_{2}, d_{2}, \mu_{2}\right)$ if the following conditions are satisfied.

The sets V_{0}, V_{1} together with the $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-cover \mathcal{F}^{\prime} witness preconfiguration $(\Omega 1)\left(\gamma^{\prime}, h_{2}\right)$. There exists an $\left(\varepsilon_{1}, d_{1}, \mu_{1} k\right)$-regularized matching \mathcal{N} absorbed by $\mathcal{M}_{A} \cup \mathcal{M}_{B}$, with $V(\mathcal{N}) \subseteq \mathbb{A}_{1}$. Further, there is a family $\left\{\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right)\right\}_{j \in \mathcal{Y}}$ as in preconfiguration $(\mathbf{r e g})\left(\varepsilon_{2}, d_{2}, \mu_{2}\right)$. There is a set $V_{2} \subseteq V(\mathcal{N}) \backslash \bigcup \mathcal{F}^{\prime} \subseteq \bigcup \mathbf{V}$ with the
following properties:

$$
\begin{align*}
& \operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{1}, V_{2}\right) \geqslant h_{1} \tag{5.52}\\
& \operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{2}, V_{1}\right) \geqslant \delta k \tag{5.53}
\end{align*}
$$

Our last configuration, configuration ($\diamond \mathbf{1 0}$), will lead to an embedding very similar to the one in the dense case (as treated in [PS12]; this will be explained in detail in subsection 6.1.6). In order to be able to formalize the configuration, we need a preliminary definition. We shall generalize the standard concept of a regularity graph (in the context of regular partitions and Szemerédi's regularity lemma) to graphs with clusters whose sizes are only bounded from below.

Definition $5.20\left(\left(\varepsilon, d, \ell_{1}, \ell_{2}\right)\right.$-regularized graph). Let G be a graph, and let \mathcal{V} be an ℓ_{1}-ensemble that partitions $V(G)$. Suppose that $G[X]$ is empty for each $X \in \mathcal{V}$, and suppose $G[X, Y]$ is ε-regular and of density either 0 or at least d for each $X, Y \in \mathcal{V}$. Further suppose that for all $X \in \mathcal{V}$ it holds that $\left|\cup \mathrm{N}_{G}(X)\right| \leqslant \ell_{2}$. Then we say that (G, \mathcal{V}) is an $\left(\varepsilon, d, \ell_{1}, \ell_{2}\right)$-regularized graph.

A regularized matching \mathcal{M} of G is consistent with (G, \mathcal{V}) if $\mathcal{V}(\mathcal{M}) \subseteq \mathcal{V}$.
Definition 5.21 (configuration $\left.(\diamond \mathbf{1 0})\left(\tilde{\varepsilon}, d^{\prime}, \ell_{1}, \ell_{2}, \eta^{\prime}\right)\right)$. Assume Setting 5.1. The graph G contains an $\left(\tilde{\varepsilon}, d^{\prime}, \ell_{1}, \ell_{2}\right)$-regularized graph (\tilde{G}, \mathcal{V}), and there is an $\left(\tilde{\varepsilon}, d^{\prime}, \ell_{1}\right)$ regularized matching \mathcal{M} consistent with (\tilde{G}, \mathcal{V}). There are a family $\mathcal{L}^{*} \subseteq \mathcal{V}$ and distinct clusters $A, B \in \mathcal{V}$ with
(a) $E(\tilde{G}[A, B]) \neq \emptyset$,
(b) $\operatorname{deg}_{\tilde{G}}\left(v, V(\mathcal{M}) \cup \bigcup \mathcal{L}^{*}\right) \geqslant\left(1+\eta^{\prime}\right) k$ for all but at most $\tilde{\varepsilon}|A|$ vertices $v \in A$ and for all but at most $\tilde{\varepsilon}|B|$ vertices $v \in B$, and
(c) for each $X \in \mathcal{L}^{*}$ we have $\operatorname{deg}_{\tilde{G}}(v) \geqslant\left(1+\eta^{\prime}\right) k$ for all but at most $\tilde{\varepsilon}|X|$ vertices $v \in X$.
6. Embedding trees. In this section we provide an embedding of a tree $T_{\mathrm{T} 1.2} \in$ $\operatorname{trees}(k)$ in the setting of the configurations introduced in section 5.2. In section 6.1 we first give a fairly detailed overview of the embedding techniques used. In section 6.3 we introduce a class of stochastic processes which will be used for some embeddings. Section 6.4 contains a number of lemmas about embedding small trees, which we use for embedding hubs and shrubs of a given fine partition of $T_{\mathrm{T} 1.2}$. Embedding the entire tree $T_{\mathrm{T} 1.2}$ is then handled in the final section 6.5. There we have to distinguish between particular configurations. The configurations are grouped into three categories (sections 6.5.1, 6.5.2, and 6.5.3) corresponding to the similarities between the configurations.
6.1. Overview of the embedding procedures. We outlined the high-level embedding strategy based on the previous work in the dense setting (cf. [PS12]) in $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, section 5.1]. In this section, however, we have already a finer structure given by one of the configurations.

Recall that we are working under Setting 5.1. Given a host graph $G_{\mathrm{T} 1.2}$ with one of the configurations $(\diamond \mathbf{2})-(\diamond \mathbf{1 0})$, we have to embed in it a given tree $T=T_{\mathrm{T} 1.2} \in$ $\operatorname{trees}(k)$, which comes with its (τk)-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$. The τk-fine partition of T will make it possible to combine embeddings of smaller parts of T into one embedding of the whole tree. This means that we will first develop tools for embedding singular shrubs and hubs of the (τk)-fine partition in various basic building bricks of the configurations: the avoiding set \mathbb{E}, the expander $G_{\text {exp }}$, regular pairs, and vertices of huge degree \mathbb{H}. Second, we will combine these basic techniques
to embed the entire tree T. Here, the order in which different parts of T are embedded is important. Also, it will be crucial at some points to reserve places for parts of the tree which will be embedded only later.

In the following subsections, we sketch our embedding techniques. We group them into five categories comprising related configurations: ${ }^{2}$ configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$, configurations $(\diamond \boldsymbol{6})-(\diamond \mathbf{7})$, configuration $(\diamond \mathbf{8})$, configuration $(\diamond \mathbf{9})$, and configuration $(\diamond \mathbf{1 0})$, treated in sections 6.1.1, 6.1.2, 6.1.4, 6.1.5, and 6.1.6, respectively.

To illustrate our embedding techniques in more detail and describe how they combine, we chose to explain the embedding procedure for configuration $(\diamond \mathbf{7})(\exp)(\bigcirc \mathbf{1})$ in even greater detail. This is done in section 6.1.3. Not all of the techniques are used in $(\diamond \mathbf{7})(\mathbf{e x p})(\Omega \mathbf{1})$; in particular, that configuration does not deal with huge-degree vertices (as we do in section 6.1.1) and does not make use of $G_{\text {reg }}$. Yet, at least in this configuration, it may be a useful intermediate step between the description in section 6.1.2 and the full proof in Lemma 6.25.
6.1.1. Embedding overview for configurations $(\diamond 2)-(\diamond 5)$. In each of the configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$ we have sets $\mathbb{H}^{\prime \prime}, \mathbb{H}^{\prime}, L^{\prime \prime}, L^{\prime}$, and V_{1}. Further, we have some additional sets (V_{2} and/or \mathbb{E}^{\prime}) depending on the particular configuration.

A common embedding scheme for configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$ is illustrated in Figure 2. There are two stages of the embedding procedure: The hubs, the shrubs \mathcal{S}_{A},

Fig. 2. An overview of embedding of a tree $T \in \operatorname{trees}(k)$ given with its fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ using configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$. The hubs are embedded between $\mathbb{H}^{\prime \prime}$ and V_{1}, and all the shrubs \mathcal{S}_{A} are embedded in sets specific to particular configurations so that the vertices neighboring the seeds W_{A} are embedded in V_{1}. Parts of the shrubs \mathcal{S}_{B} are embedded directly (using various embedding techniques), while the rest are "suspended," i.e., the ancestors of the unembedded remainders are embedded on vertices which have large degrees in \mathbb{H}^{\prime}. The embedding of \mathcal{S}_{B} is then finalized in the last stage.

[^2]Table 1
Embedding lemmas employed for configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$.

Main embedding lemma: Lemma 6.20		
\Uparrow	\Uparrow	介
Shrubs \mathcal{S}_{A}	Shrubs \mathcal{S}_{B} (stage 1): Lemma 6.19	Shrubs \mathcal{S}_{B} (stage 2): Lemma 6.18
$(\diamond \mathbf{2})$: Lemma 6.5		
$(\diamond$ 3): Lemma 6.15		
$(\diamond 4)$: Lemma 6.16		
$(\diamond 5)$: regularity		

and some parts of the shrubs \mathcal{S}_{B} are embedded in stage 1 , and then in stage 2 the remainders of \mathcal{S}_{B} are embedded. Recall that \mathcal{S}_{A} contains both internal and end shrubs, while \mathcal{S}_{B} contains exclusively end shrubs (Definition $3.3(\mathrm{k})$). We note that here the shrubs \mathcal{S}_{B} are further subdivided, and some parts of them are embedded in stage 1 and some in stage 2 .

- In stage 1 , the hubs of T are embedded in $\mathbb{H}^{\prime \prime}$ and V_{1} so that W_{A} is mapped to $\mathbb{H}^{\prime \prime}$ and W_{B} is mapped to V_{1}.
- In stage 1 , the internal and end shrubs of \mathcal{S}_{A} are embedded using the sets V_{1}, V_{2}, and \mathbb{E}^{\prime} which are specific to the particular configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$. The vertices of \mathcal{S}_{A} neighboring the seeds W_{A} are always embedded in V_{1}. Parts of the shrubs \mathcal{S}_{B} are embedded, while the ancestors of the unembedded remainders are embedded on vertices which have large degrees in \mathbb{H}^{\prime}.
- In stage 2 , the embedding of \mathcal{S}_{B} is finalized. The remainders of \mathcal{S}_{B} are embedded starting with embedding their roots in \mathbb{H}^{\prime}.
A hierarchy of the embedding lemmas used to resolve configurations $(\diamond \mathbf{2})-(\diamond \boldsymbol{5})$ is given in Table 1.
6.1.2. Embedding overview for configurations $(\diamond \boldsymbol{6})-(\diamond \mathbf{7})$. Suppose Settings 5.1 and 5.4 (see Remark 6.1 below for a comment on the constants $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{2}$). Recall that we have in each of these configurations sets $V_{0} \cup V_{1} \subseteq \mathbb{A}_{0}$, sets $V_{2} \cup V_{3} \subseteq \mathbb{A}_{1}$, and set $V_{\text {good }}^{\dagger 2}$.

A common embedding scheme for configurations $(\diamond \boldsymbol{6})$ and $(\diamond \boldsymbol{7})$ is illustrated in Figure 3. The embedding has three parts.

- The hubs of T are embedded between V_{0} and V_{1} so that W_{A} is mapped to V_{1} and W_{B} is mapped to V_{0} using either the preconfiguration (\exp) or (reg). Thus the seeds $W_{A} \cup W_{B}$ are mapped to \mathbb{A}_{0}.
- The internal shrubs of T are embedded in $V_{2} \cup V_{3}$, always putting neighbors of W_{A} into V_{2}. Note that the internal shrubs are therefore embedded in \mathbb{A}_{1}, and thus there is no interference with embedding the hubs. We need to understand why a mere degree of δk (from V_{1} to V_{2}, ensured by (5.37) and (5.41), with $\delta \ll$ 1) is sufficient for embedding internal shrubs of potentially big total order, that is, how to ensure that already embedded internal trees do not cause a blockage later. Here the expansion ${ }^{3}$ ruling between V_{2} and V_{3} comes into play. This property (together with other properties of preconfigurations (exp) and (reg)) will allow-once an internal tree has been embedded-the follow-up hub to be embedded in a place (in V_{1}) which sees very little of the previously embedded internal shrubs.
This is the only part of the embedding process which makes use of the specifics

[^3]

Fig. 3. An overview of embedding a fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of a tree $T \in \operatorname{trees}(k)$ using configurations $(\diamond \mathbf{6})$ and $(\diamond \mathbf{7})$. The hubs are embedded between V_{0} and V_{1}, the internal shrubs are embedded in $V_{2} \cup V_{3}$, and the end shrubs are embedded using $V_{\text {good }}^{\dagger 2}$.

Table 2
Embedding lemmas employed for configurations $(\diamond \mathbf{6})-(\diamond \mathbf{8})$ when embedding a tree $T \in \operatorname{trees}(k)$ with a given fine partition.

of configurations $(\diamond \boldsymbol{6})$ and $(\diamond \boldsymbol{7})$. For this reason we will be able to follow the same embedding scheme as presented here also for configuration ($\diamond \boldsymbol{8}$), the only difference being the embedding of the internal shrubs (see section 6.1.4).

- The end shrubs are embedded in the yet unoccupied part of G. For this we use the properties of preconfiguration $(\Omega \mathbf{1})$ or ($(\mathbf{2})$. The end shrubs are embedded using (but not entirely into) the designated vertex set $V_{\text {good }}^{\dagger 2}$.
The above embedding scheme is divided into two main steps: First the hubs and the internal trees are embedded (see Lemma 6.21), and then this partial embedding is extended to end shrubs (see Lemmas 6.23 and 6.24). A more detailed hierarchy of the embedding lemmas used is given in Table 2.

Remark 6.1. In configuration $(\diamond \boldsymbol{6})$, the number \mathfrak{p}_{1} will be approximately equal to the proportion of the total order of the internal shrubs of a given fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of T, while \mathfrak{p}_{2} will be approximately the proportion of the total order of the end shrubs. The number \mathfrak{p}_{0} is just a small constant.

These numbers-scaled up by k-determine the parameter $h_{1} \approx \mathfrak{p}_{1} k$ (in config-

Table 3
Hierarchy of shadows defining the sets F_{i} as used in section 6.1.3. Some of these shadows are with respect to the graph $G_{\mathcal{D}}$, and some are with respect to the graph $G_{\nabla}-\mathbb{H}$.

Defining formula for sets F_{i}	Formula for sets F_{i} using purely the sets U_{j}
$F_{1} \subseteq$ shadow $\left(U_{2}, \Theta(k)\right)$	$F_{1} \subseteq$ shadow $\left(U_{2}, \Theta(k)\right)$
$F_{2} \subseteq$ shadow $\left(U_{1} \cup F_{1}, \Theta(k)\right)$	$F_{2} \subseteq$ shadow $\left(U_{1}, \Theta(k)\right) \cup$ shadow $^{(2)}\left(U_{2}, \Theta(k)\right)$
$F_{3} \subseteq$ shadow $\left(U_{2} \cup F_{2}, \Theta(k)\right)$	$F_{3} \subseteq$ shadow $\left(U_{2}, \Theta(k)\right) \cup$ shadow $^{(2)}\left(U_{1}, \Theta(k)\right) \cup$ shadow $^{(3)}\left(U_{2}, \Theta(k)\right)$

urations $(\diamond \boldsymbol{8})$ and $(\diamond \boldsymbol{9}))$ and $h_{2} \approx \mathfrak{p}_{2} k$ (in configurations $(\diamond \boldsymbol{6})-(\diamond \boldsymbol{9})$). The properties of these configurations will then allow one to embed all the internal shrubs and end shrubs. Note that the parameter h_{1} does not appear in configurations ($\diamond \mathbf{6}$) and ($\diamond \mathbf{7}$). This suggests that the total order of the internal shrubs is not at all important in configurations ($\diamond \mathbf{6})$ and $(\diamond \boldsymbol{7})$. Indeed, we would succeed even embedding a tree with internal shrubs of total order say $100 k .{ }^{4}$ Here, the expansion properties of the sets $V_{2} \cup V_{3}$ provided by configurations $(\diamond \boldsymbol{6})$ and $(\diamond \boldsymbol{7})$ are explained in footnote 3 .

In view of this it might be tempting to think that the end shrubs in \mathcal{S}_{A} could also be embedded using the same technique as in embedding the internal shrubs into the sets $V_{2} \cup V_{3}$. This is, however, not the case. Indeed, the minimum-degree conditions (5.37), (5.41), and (5.45) allow embedding only a small number of shrubs from a single cut-vertex $x \in W_{A}$, while there may be many end shrubs attached to x; cf. Remark 3.6(ii).
6.1.3. Detailed overview of the embedding process for configuration $(\diamond \mathbf{7})(\exp)(\Omega \mathbf{1})$. The purpose of this section is to further detail the embedding described in section 6.1.2 in the case of configuration $(\diamond \mathbf{7})(\mathbf{e x p})(\bigcirc \mathbf{1})$. We decided to choose this particular subconfiguration since the corresponding embedding exhibits many new features that come with the sparse decomposition.

We assume the same setting as in section 6.1.2 (in particular, recall Remark 6.1).
The embedding process will first deal with hubs and internal shrubs of T. Only after having embedded all those do we turn our attention to end shrubs. We remind the reader that the sets $V_{0} \cup V_{1}, V_{2} \cup V_{3}$, and $V_{\text {good }}^{\mid 2}$ are disjoint, and thus the embeddings into these respective parts do not interfere with each other.

For the purpose of this overview, the sets $U_{i}, i=0,1,2,3$, will refer to the sets of vertices in V_{i} already used by the embedding at the very moment of the embedding procedure that we are presently dealing with. Apart from the sets U_{i} of used vertices, we also define sets of forbidden vertices $F_{i} \subseteq V_{i}$, for $i=1,2,3$, which contain vertices whose use could possibly lead to a situation where we would be stuck with no possibility of extending the given partial embedding. More precisely, the sets F_{i} will consist of those vertices of V_{i} that send $\Theta(k)$ (where the hidden constant in $\Theta(k)$ is much smaller than 1) edges to one of the sets U_{j}, and/or to one of the sets F_{j}. So, F_{i} can be expressed using shadows. More precisely, we set $F_{1}=V_{1} \cap \operatorname{shadow}_{G_{\nabla}-\mathbb{H}}\left(U_{2}, \Theta(k)\right), F_{2}=V_{2} \cap \operatorname{shadow}_{G_{\nabla}-\mathbb{H}}\left(U_{1} \cup F_{1}, \Theta(k)\right)$, and $F_{3}=V_{3} \cap$ shadow $_{G_{\mathcal{D}}}\left(U_{2} \cup F_{2}, \Theta(k)\right)$. These definitions are shown in Table 3. It can be seen from Table 3 that each set F_{i} can be expressed purely in terms of the sets U_{j} using shadows of exponent at most 3 . Note that $\sum_{i}\left|U_{i}\right| \leqslant k$. As we do not use the set \mathbb{H} of large-degree vertices, the sizes of the sets F_{i} will be at most linear in k.

[^4]

Fig. 4. An example of a path-like tree. Cut-vertices of its fine partition are drawn bigger. Shrubs are drawn by a dashed line. Internal shrubs are drawn on a gray background.

Indeed,

$$
\begin{equation*}
\left|F_{i}\right| \leqslant\left|\bigcup_{s=1}^{3} \operatorname{shadow}_{G_{\mathcal{D}} \cup\left(G_{\nabla}-\mathbb{H}\right)}^{(s)}\left(\bigcup_{j} U_{j}, \Theta(k)\right)\right| \stackrel{\mathrm{F} 4.12}{=} O(k) . \tag{6.1}
\end{equation*}
$$

This is crucial in order to use the properties of the expanding graph $G_{\exp }$ and the avoiding set \mathbb{E}.

To keep from cluttering this overview with too many technical details, we chose to explain the embedding procedure on a rather simple type of tree: "path-like" trees. By the term path-like trees we mean trees having the property that the deletion of the external shrubs and the contraction of the internal shrubs, with respect to their fine partition, lead to a path (see Figure 4). Our motivation for working with path-like trees in this overview is that if the tree T is more complex, we face the complication of parallel branching of the embedding procedure. (This complication is handled by using the stochastic process Duplicate as outlined in [HKP ${ }^{+}$a, section 3.6].) Note, however, that the family of path-like trees is general enough that it contains trees with any given ratio of internal shrubs and end shrubs.

At every step of the embedding procedure, we will avoid the sets U_{i} and F_{i}, making an exception for the roots of internal shrubs, which may be mapped even to $F_{2} \backslash U_{2}$. It will be clear from the following why we need this exception and why we can afford it. Note that at the beginning of our embedding procedure, the sets U_{i}, F_{i} are all empty and thus trivial to avoid.

As outlined in Table 2, we shall make use of the settings of (\exp) and of ($\triangle \mathbf{1})$ to embed hubs and to embed the end shrubs, respectively, and the specifics of configuration $(\diamond \boldsymbol{7})$ will be used for embedding the internal shrubs.

Embedding the first hub. We start by embedding the hub containing a fixed root R of T mapping W_{A} to V_{1}, and mapping W_{B} to V_{0}. The hubs are only of size $O(1)$ by Definition 3.3(c). So, the mere minimum-degree conditions (5.34) and (5.35) are sufficient for embedding the hub while avoiding the sets U_{0} and U_{1}. In addition, we wish to avoid the set F_{1}. While embedding the first hub, we have not embedded any internal shrub yet. Therefore, initially, the set U_{2} is empty, and so is the set F_{1}.

The rest of the embedding combines three techniques: embedding internal shrubs, embedding hubs, and embedding end shrubs.

Embedding an internal shrub. Assume that we are at a given time of the embedding process when we have just finished embedding some hub and are about to embed

Fig. 5. Embedding an internal shrub in section 6.1.3. A suitable dense spot D is shown by dashed lines.
the next internal shrub T^{*}. A picture corresponding to the description below is given in Figure 5. As the predecessor p of the root r of the shrub is mapped to V_{1}, (5.41) tells us that the image of p has a substantial degree into V_{2}. Since p was mapped outside of F_{1}, the image of p has a substantial degree into $V_{2} \backslash U_{2}$. The set $V_{2} \backslash U_{2}$ has the avoiding property (see Definition 4.5), and therefore only very few candidates should not be used for the accommodating r, as they are exceptional with respect to the set $U_{3} \cup F_{3}$ (which is of size $O(k)$ by (6.1)). Therefore, we can map r to some nonexceptional vertex in $V_{2} \backslash U_{2}$. In order to embed the children q_{1}, \ldots, q_{ℓ} of r, we shall use the property of the avoiding set; i.e., we use the fact that there is a dense spot D containing the image of r such that

$$
\begin{equation*}
\left|D \cap\left(U_{3} \cup F_{3}\right)\right| \leqslant \gamma^{2} k . \tag{6.2}
\end{equation*}
$$

As the image of r has substantial minimal degree in $D \cap \mathbb{A}_{1}$ by Setting 5.4(4), and only a very small portion of it goes outside of V_{3} (by (5.43)) or to $U_{3} \cup F_{3}$ (by (6.2)), we can map q_{1}, \ldots, q_{ℓ} to $V_{3} \backslash\left(U_{3} \cup F_{3}\right)$ (recall that $\ell \leqslant \tau k$, and τ is the smallest constant in our hierarchy).

The minimum-degree condition (5.44) together with the fact that the children q_{1}, \ldots, q_{ℓ} were embedded outside of F_{3} will ensure that we can map the grandchildren $q_{1}^{\prime}, \ldots, q_{\ell^{\prime}}^{\prime}$ of r to V_{2} while avoiding the set $U_{2} \cup F_{2}$.

As we have seen above, it is enough to avoid U_{2} and the set of exceptional vertices in V_{2} (in the sense of the avoiding set) to be able to further extend the embedding of the internal shrub, by finding (possibly different) dense spots $D_{1}^{\prime}, \ldots, D_{\ell^{\prime}}^{\prime}$ containing $q_{1}^{\prime}, \ldots, q_{\ell}^{\prime}$, respectively, such that $\left|D_{i}^{\prime} \cap\left(U_{3} \cup F-3\right)\right| \leqslant \gamma^{2} k$. We repeat this process until the embedding of T^{*} is finished.

The idea behind defining the set F_{2} is to prevent getting stuck when we need to map the next seed from W_{A} to the set $V_{1} \backslash\left(U_{1} \cup F_{1}\right)$, as here again we have no structural information on V_{2} or between V_{2} and V_{1} that we can exploit (the avoiding property is useful only to go from V_{2} to V_{3}, as it can be combined with the negligible loss of degree outside V_{3}).

Before we turn our attention to further parts of the embedding process, let us contemplate the reason for allowing the embedding of the root r of T^{*} in F_{2} and why we can afford such an exception. If we had to avoid the set F_{2} for the embedding of the roots of the internal shrubs, we would need to include a shadow of F_{2} in F_{1}. On
the other hand, the set F_{2} includes a shadow of F_{1}, so this would create a loop in the definitions. We can afford this exception for the following reason. For any vertex mapped to $V_{2} \backslash F_{2}$, we can ensure that if it has a child belonging to W_{A}, then this child can be mapped to $V_{1} \backslash\left(U_{1} \cup F_{1}\right)$. This, however, is not guaranteed for the roots of the internal shrubs. Therefore, it is important that no root of an internal shrub have a child belonging to W_{A}. This is the reason behind property (i) of Definition 3.3. ${ }^{5}$

Embedding further hubs. Recall that the first hub has already been embedded. We shall now explain how we make use of the expanding property of $G_{\text {exp }}$ from preconfiguration $(\mathbf{e x p})$ to embed any further hub X. First, note that the first vertex of X we are about to embed can be mapped to a suitable $w \in V_{1} \backslash\left(U_{1} \cup F_{1}\right)$, as its predecessor q (which was a part of a previous internal shrub) does not belong to $F_{2}{ }^{6}$ Hence, let us assume that any vertex $x \in W_{A}$ is mapped to some vertex $w \in V_{1} \backslash\left(U_{1} \cup\right.$ F_{1}). We want to pick a prospective candidate among the neighbors of w to which we shall map any given child of x. The only properties required of this candidate are that it be unused and that it have substantial degree into $V_{1} \backslash\left(U_{1} \cup F_{1}\right)$. Only a tiny fraction of the neighbors of w lie in U_{0}, as the size of $W_{A} \cup W_{B}$ is $O(1)$ by Definition 3.3(c). By (5.34), any vertex in $\mathrm{N}(w) \cap\left(V_{0} \backslash U_{0}\right)$ is a suitable prospective candidate, except those that send many edges to $U_{1} \cup F_{1}$ (in $G_{\exp }$). However, there are only very few such vertices by Fact 4.13. Thus, (5.34) tells us that we can accommodate x.

One could argue that while embedding the hubs and internal shrubs, the sets U_{i}, and thus F_{i}, do increase dynamically. However, this is not a real problem and can easily be dealt with. Indeed, in every step of our embedding process, we have a substantial number of candidates we can choose from (of the order of magnitude δk). The size of one hub (respectively, of one internal tree) is of a much smaller order. Therefore, it is enough to update the sets U_{i} and F_{i} only at certain times.

Embedding \mathcal{S}_{B}-shrubs. Once we have embedded all hubs and all internal shrubs, we start embedding shrubs that are adjacent to W_{B}. By Definition $3.3(\mathrm{k})$ these are end shrubs. As explained in $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, section 5.1.1], the embedding of the end shrubs is much easier since we do not have to return to V_{0} and V_{1} for embedding cut-vertices.

Let us note that at this stage of the embedding process, no vertex of \mathbb{A}_{2}, and thus of $V_{\text {good }}^{\dagger 2}$, has been used. The total order of the end shrubs is about $h_{2} \approx \mathfrak{p}_{2} k$. Definition 3.3(l) tells us that the total order of \mathcal{S}_{B} is at most $h_{2} / 2$. Property (5.30) tells us that the degree of the vertices in V_{0} to $V_{\text {good }}^{\mid 2}$ is at least $h_{2} / 2$. As we suspend the embedding of the end shrubs adjacent to vertices in W_{A} until the last stage, there are always enough unused neighbors of vertices from V_{0} lying in $V_{\text {good }}^{\mid 2}$. To extend the embedding from a root to the entire end shrub to which it corresponds, we use our basic techniques that build on the avoiding property, on the properties of the nowheredense graph, ${ }^{7}$ or on exploiting regular pairs. The definitions (5.8) and (5.5) indeed provide us with a setting in which it is possible to extend the embedding from $V_{\text {good }}$ as explained in $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, section 5.1]. The order in which we embed the \mathcal{S}_{B}-shrubs is important in order to fill the end-clusters of regular pairs of $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}$ at the same pace as long as possible.

Embedding \mathcal{S}_{A}-end shrubs. It remains to embed the end shrubs from \mathcal{S}_{A}. We shall use the same techniques we used for \mathcal{S}_{B}-shrubs.

By (5.31), the minimum degree from V_{1} to $V_{\text {good }}^{\dagger 2}$ is at least h_{2}, and the total order

[^5]

FIG. 6. An overview of embedding a fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of a tree $T \in \operatorname{trees}(k)$ using configuration $(\diamond 8)$. The hubs are embedded between V_{0} and V_{1}. The roots of the internal shrubs are embedded in V_{2}. Some of the subshrubs of the internal shrubs are embedded in $V_{3} \cup V_{4}$ and some in \mathcal{N}; principal subshrubs are always embedded in $V_{3} \cup V_{4}$. The end shrubs are embedded using the properties of $V_{\text {good }}^{\dagger 2}$.
of all end shrubs (including those from \mathcal{S}_{B}) is slightly less than h_{2}. Therefore, there are always sufficient unused neighbors of vertices from V_{1} in $V_{\text {good }}^{\mid 2}$. Finally, (5.32) means that we do not need to care whether we fill the end-clusters of regular pairs of $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\ulcorner 2}$ in a balanced way.
6.1.4. Embedding overview for configuration $(\diamond 8)$. Suppose we are in Settings 5.1 and 5.4. We are working with sets $V_{0}, V_{1}, V_{\text {good }}^{\mid 2}, V_{2}, V_{3}$, and V_{4} and with a regularized matching \mathcal{N} coming from the configuration.

The embedding scheme follows Table 2 and is illustrated in Figure 6. The embedding of the hubs and of the external shrubs is done in the same way as in configurations $(\diamond \boldsymbol{6})$ and $(\diamond \boldsymbol{7})$. Here we only describe the way the internal shrubs are embedded. Their roots are embedded in V_{2}. From that point we proceed embedding subshrub by subshrub. Some of the subshrubs get embedded between V_{3} and V_{4}. This pair of sets has the same expansion property as the pair V_{2}, V_{3} in configuration $(\diamond \boldsymbol{7})$. In particular, it allows us to avoid the shadow of the already occupied set so that the follow-up hub can be embedded in a location almost isolated from the previous images, similarly as described in section 6.1.2. For this reason we make sure that principal subshrubs get embedded here. The degree condition from V_{2} to V_{3} is too weak to ensure that all remaining subshrubs are embedded between V_{3} and V_{4}. Therefore we might have to embed some subshrubs in \mathcal{N}. Condition (5.51)—where h_{1} is approximately the order of the internal shrubs, as in Remark 6.1-indicates that it should be possible to accommodate all the subshrubs. For technical reasons, the order in which different

Fig. 7. An overview of embedding a fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of a tree $T \in \operatorname{trees}(k)$ using configuration $(\diamond \mathbf{9})$. The hubs are embedded between V_{0} and V_{1}, the internal shrubs are embedded using the regularity method in \mathcal{N}, and the end shrubs are embedded using $V_{\text {good }}^{\dagger 2}$.
types of subshrubs are embedded is very important.
6.1.5. Embedding overview for configuration ($\diamond \mathbf{9})$. The embedding process in configuration $(\diamond \mathbf{9})$ follows the same scheme as in configurations $(\diamond \mathbf{6})-(\diamond \mathbf{8})$, but the embedding of the internal shrubs follows the regularity method. Assuming the simplest situation $\mathcal{F}=\mathcal{V}_{2}(\mathcal{N})$ and $V_{2}=V_{1}(\mathcal{N})$, we would have $\operatorname{mindeg}_{G_{\text {reg }}}\left(V_{1}, V_{1}(\mathcal{N})\right) \geqslant$ h_{1} (cf. (5.52)). See Figure 7 for an illustration. Similarly as above, the hubs are embedded between V_{0} and V_{1}. The internal shrubs are accommodated using the regularity method in \mathcal{N}, and the end shrubs are embedded in $V_{\text {good }}^{\mid 2}$ using preconfiguration ($(\mathbf{1})$. The embedding lemma for this configuration is given in Lemma 6.26.
6.1.6. Embedding overview for configuration ($\diamond 10$). Configuration ($\diamond 10$) is very closely related to the structure obtained by Piguet and Stein [PS12] in their solution of the dense approximate case of Conjecture 1.1. ${ }^{8}$

Theorem 6.2 (Piguet and Stein [PS12]). For any $q>0$ and $\alpha>0$ there exists a number n_{0} such that for any $n>n_{0}$ and $k>q n$ the following holds. Each n-vertex graph G with at least $n / 2$ vertices of degree at least $(1+\alpha) k$ contains each tree of order $k+1$.

Let us describe their proof first. Piguet and Stein prove that when $k>q n$ (for some fixed $q>0$ and k sufficiently large), the cluster graph ${ }^{9} \mathbf{G}_{\text {reg }}$ of a graph $G \in \mathbf{L K S}(n, k, \eta)$ contains the following structure (cf. [PS12, Lemma 8]). There is a set of clusters $\mathbf{L} \subseteq \mathbf{V}$ such that each cluster in \mathbf{L} contains only vertices of captured degrees at least $\left(1+\frac{\eta}{2}\right) k$. There are a matching $M \subseteq \mathbf{G}_{\text {reg }}$ and an edge $A B$, with $A, B \in \mathbf{L}$. One of the following conditions is satisfied:

[^6](H1) M covers $\mathrm{N}_{\mathbf{G}_{\text {reg }}}(\{A, B\})$.
(H2) M covers $\mathrm{N}_{\mathbf{G}_{\mathrm{reg}}}(A)$, and the vertices in B have captured degrees at least $\left(1+\frac{\eta}{2}\right) \frac{k}{2}$ into $\bigcup(\mathbf{L} \cup V(M))$. Further, each edge in M has at most one end-vertex in $\mathrm{N}_{\mathbf{G}_{\text {reg }}}(A)$.
Piguet and Stein use structures (H1) and (H2) to embed any given tree $T \in$ $\operatorname{trees}(k)$ in G using the regularity method; see sections 3.6 and 3.7 in [PS12], respectively. Actually, a slight relaxation of (H1) and (H2) would be sufficient for the embedding to work, as can be easily seen from their proof. Again, there is a set of clusters $\mathbf{L} \subseteq \mathbf{V}$ such that each cluster in \mathbf{L} contains only vertices of captured degrees at least $\left(1+\frac{\eta}{2}\right) k$, there is a matching $M \subseteq \mathbf{G}_{\text {reg }}$, and there is an edge $A B, A, B \in \mathbf{L}$. One of the following conditions is satisfied:
($\mathbf{H 1}^{\prime}$) The vertices in $A \cup B$ have captured degrees at least $\left(1+\frac{\eta}{2}\right) k$ into the vertices of $\bigcup(\mathbf{L} \cup V(M))$.
($\mathbf{H 2}^{\prime}$) The vertices in A have captured degrees at least $\left(1+\frac{\eta}{2}\right) k$ into the vertices of $\bigcup V(M)$, and the vertices in B have captured degrees at least $\left(1+\frac{\eta}{2}\right) \frac{k}{2}$ into $\bigcup(\mathbf{L} \cup V(M))$. Further, each edge in M has at most one end-vertex in $\mathrm{N}_{\mathbf{G}_{\mathrm{reg}}}(A)$.
It can be seen that configuration $(\diamond \mathbf{1 0})$ is a direct counterpart to $\left(\mathbf{H 1}^{\prime}\right) .{ }^{10}$ (The counterpart of $\left(\mathbf{H} \mathbf{2}^{\prime}\right)$ is contained in configuration $(\diamond \mathbf{9})$, and the similarity is somewhat weaker.)

The embedding lemma for configuration $(\diamond \mathbf{1 0})$ is stated in Lemma 6.27.
6.2. The role of random splitting. The random splitting as introduced in Setting 5.4 is used in configurations $(\diamond \mathbf{6})-(\diamond \mathbf{9})$; the set \mathbb{A}_{0} will host the cut-vertices $W_{A} \cup W_{B}$, the set \mathbb{A}_{1} will host the internal shrubs, and the set \mathbb{A}_{2} will (essentially) host the end shrubs of a (τk)-fine partition of $T_{\mathrm{T} 1.2}$.

The need for introducing the random splitting is dictated by configurations ($\diamond \boldsymbol{6})-$ $(\diamond \mathbf{9})$. To see this, let us try to follow the embedding plan from, for example, section 6.1.2 without the random splitting, i.e., dropping the conditions $\subseteq \mathbb{A}_{0}$, $\subseteq \mathbb{A}_{1}$, $\subseteq \mathbb{A}_{2}$ from Definitions 5.12-5.17. Then the sets V_{2} and V_{3} in Figure 3, which will host the internal shrubs, may interfere with V_{0} and V_{1}, whose primary purpose is to host W_{A} and W_{B}. In particular, the conditions on degrees between V_{0} and V_{1} given by (5.34) and (5.35) in Definition 5.14, or given by the superregularity in Definition 5.15 (in which $\beta_{\mathrm{D} 5.14}>0$, or $d_{\mathrm{D} 5.15}^{\prime} \mu_{\mathrm{D} 5.15}>0$ are tiny), may be insufficient for embedding greedily all the cut-vertices and all the internal shrubs of $T_{\mathrm{T} 1.2}$. It should be noted that this problem occurs even in preconfiguration (exp), i.e., the expanding property does not add enough strength to the minimum-degree conditions. ${ }^{11}$ Restricting V_{0} and V_{1} to host only the cut-vertices (only $O(1 / \tau)=o(k)$ of them in total; cf. Definition 3.3(c)) resolves the problem.

The above justifies the distinction between the space \mathbb{A}_{0} for embedding the cutvertices and the space $\mathbb{A}_{1} \cup \mathbb{A}_{2}$ for embedding the shrubs. There are some other approaches which do not need to further split $\mathbb{A}_{1} \cup \mathbb{A}_{2}$, but doing so seems to be the most convenient.
6.3. Stochastic process Duplicate (ℓ). Let us introduce a class of stochastic processes, which we call Duplicate $(\ell)(\ell \in \mathbb{N})$. These are discrete processes $\left(X_{1}, Y_{1}\right)$,

[^7]$\left(X_{2}, Y_{2}\right), \ldots,\left(X_{q}, Y_{q}\right) \in\{0,1\}^{2}$ (where $q \in \mathbb{N}$ is arbitrary) satisfying the following:

- For each $i \in[q]$, we have
(a) $X_{i}=Y_{i}=0$ (deterministically), or
(b) $X_{i}=Y_{i}=1$ (deterministically), or
(c) exactly one of X_{i} and Y_{i} is one, and in that case $\mathbf{P}\left[X_{i}=1\right]=\frac{1}{2}$.
- If the distribution of $\left(X_{i}, Y_{i}\right)$ is according to (c), then the random choice is made independently of the values $\left(X_{j}, Y_{j}\right)(j<i)$.
- We have $\sum_{i=1}^{q}\left(X_{i}+Y_{i}\right) \leqslant \ell$.

We note that this definition is not deep and its purpose is only to adopt the language we shall use later. The following lemma asserts that the first and second components of a process Duplicate (ℓ) are typically balanced.

Lemma 6.3. Suppose $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{q}, Y_{q}\right)$ is a process in Duplicate (ℓ). Then for any $a>0$ we have

$$
\mathbf{P}\left[\sum_{i=1}^{q} X_{q}-\sum_{i=1}^{q} Y_{q} \geqslant a\right] \leqslant \exp \left(-\frac{a^{2}}{2 \ell}\right) .
$$

Proof. We shall use the following version of the Chernoff bound for sums of independent random variables Z_{i}, with distribution $\mathbf{P}\left[Z_{i}=1\right]=\mathbf{P}\left[Z_{i}=-1\right]=\frac{1}{2}$:

$$
\begin{equation*}
\mathbf{P}\left[\sum_{i=1}^{n} Z_{i} \geqslant a\right] \leqslant \exp \left(-\frac{a^{2}}{2 n}\right) . \tag{6.3}
\end{equation*}
$$

Let $J \subseteq[q]$ be the set of all indices i with $X_{i}+Y_{i}=1$. By the definition of Duplicate (ℓ), we have $|J| \leqslant \ell$. By (6.3) we have

$$
\mathbf{P}\left[\sum_{J}\left(X_{i}-Y_{i}\right) \geqslant a\right] \leqslant \exp \left(-\frac{a^{2}}{2|J|}\right) \leqslant \exp \left(-\frac{a^{2}}{2 \ell}\right) .
$$

We shall use the stochastic process Duplicate to guarantee that certain fixed vertex sets do not get overfilled during our tree-embedding procedure. The basic setting is given in Lemma 6.12. This lemma is then applied in Lemmas 6.13 and 6.14, which are tailored to configurations $(\diamond \mathbf{6})$ and $(\diamond \mathbf{7})$. The way we use Duplicate was sketched in $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, section 3.6].
6.4. Embedding small trees. When embedding the tree $T_{\mathrm{T} 1.2}$ in our proof of Theorem 1.2, it will be important to control where different bits of $T_{\mathrm{T} 1.2}$ go. This motivates the following notation. Let $X_{1}, \ldots, X_{\ell} \subseteq V(T)$ be arbitrary vertex sets of a tree T, and let $V_{1}, \ldots, V_{\ell} \subseteq V(G)$ be arbitrary vertex sets of a graph G. Then an embedding $\phi: V(T) \rightarrow V(G)$ of T in G is an ($X_{1} \hookrightarrow V_{1}, \ldots, X_{\ell} \hookrightarrow V_{\ell}$)-embedding if $\phi\left(X_{i}\right) \subseteq V_{i}$ for each $i \in[\ell]$.

We provide several sufficient conditions for embedding a small tree with additional constraints.

The first lemma deals with embeddings using an avoiding set.
Lemma 6.4. Let $\Lambda, k \in \mathbb{N}$, and let $\varepsilon, \gamma \in\left(0, \frac{1}{2}\right)$ with $\gamma^{2}>\varepsilon$. Suppose \mathbb{E} is a $(\Lambda, \varepsilon, \gamma, k)$-avoiding set with respect to a set \mathcal{D} of $(\gamma k, \gamma)$-dense spots in a graph H. Suppose that $\left(T_{1}, r_{1}\right), \ldots,\left(T_{\ell}, r_{\ell}\right)$ are rooted trees with $\left|\bigcup_{i} T_{i}\right| \leqslant \gamma k / 2$. Let $U \subseteq V(H)$ with $|U| \leqslant \Lambda k$, and let $U^{*} \subseteq \mathbb{E}$ with $\left|U^{*}\right| \geqslant \varepsilon k+\ell$. Then there are mutually disjoint $\left(r_{i} \hookrightarrow U^{*}, V\left(T_{i}\right) \backslash\left\{r_{i}\right\} \hookrightarrow V(H) \backslash U\right)$-embeddings of the trees $\left(T_{i}, r_{i}\right)$ in H.

Proof. Since \mathbb{E} is $(\Lambda, \varepsilon, \gamma, k)$-avoiding, there exists a set $Y \subseteq \mathbb{E}$ with $|Y| \leqslant \varepsilon k$, such that each vertex v in $\mathbb{E} \backslash Y$ has degree at least γk into some $(\gamma k, \gamma)$-dense spot $D \in \mathcal{D}$ with $|U \cap V(D)| \leqslant \gamma^{2} k$. In particular, $U^{*} \backslash Y$ is large enough so that we can embed all vertices r_{i} there. We successively extend this embedding to an embedding of $\bigcup_{i} T_{i}$, finding at each step a suitable image in $V(D) \backslash U$ for one neighbor of an already embedded vertex $v \in \bigcup_{i} V\left(T_{i}\right)$. This is possible since the image of v has degree at least $\gamma k-|U \cap V(D)|>\gamma k / 2 \geqslant \sum_{i} v\left(T_{i}\right)$ into $V(D) \backslash U$.

The next lemma deals with embedding a tree into a nowhere-dense graph, a prime example of which is the graph $G_{\text {exp }}$.

Lemma 6.5. Let $k \in \mathbb{N}$, let $Q \geqslant 1$, and let $\gamma, \zeta \in(0,1)$ be such that $128 Q \gamma \leqslant \zeta^{2}$. Let H be a $(\gamma k, \gamma)$-nowhere-dense graph. Let $\left(T_{1}, r_{1}\right), \ldots,\left(T_{\ell}, r_{\ell}\right)$ be rooted trees of total order less than $\zeta k / 4$. Let $V_{1}, V_{2}, U, U^{*} \subseteq V(H)$ be four sets with $U^{*} \subseteq V_{1}$, $|U|<Q k,\left|U^{*}\right|>\frac{32 Q^{2} \gamma}{\zeta} k+\ell$, and $\operatorname{mindeg}_{H}\left(V_{j}, V_{3-j}\right) \geqslant \zeta k$ for $j=1,2$. Then there are mutually disjoint $\left(r_{i} \hookrightarrow U^{*}, V_{\text {even }}\left(T_{i}\right) \hookrightarrow V_{1} \backslash U, V_{\text {odd }}\left(T_{i}\right) \hookrightarrow V_{2} \backslash U\right)$-embeddings of the trees $\left(T_{i}, r_{i}\right)$ in H.

Proof. Set $B:=\operatorname{shadow}_{H}(U, \zeta k / 2)$. By Fact 4.13, we have $|B| \leqslant \frac{32 Q^{2} \gamma}{\zeta} k \leqslant \zeta k / 4$. In particular, $U^{*} \backslash B$ is large enough to accommodate the images $\phi\left(r_{i}\right)$ of all vertices r_{i}.

Successively, extend ϕ, in each step mapping a neighbor u of some already embedded vertex $v \in \bigcup_{i} V\left(T_{i}\right)$ to a yet unused neighbor of $\phi(v)$ in $V_{j} \backslash(B \cup U)$, where j is either 1 or 2 , depending on the parity of $\operatorname{dist}_{T}(r, v)$. This is possible as $\phi(v)$, lying outside B, has at least $\zeta k / 2$ neighbors in $V_{i} \backslash U$. Thus $\phi(v)$ has at least $\zeta k / 4$ neighbors in $V_{i} \backslash(U \cup B)$, which is more than $\sum_{i} v\left(T_{i}\right)$.

Lemmas 6.7-6.9 deal with embedding trees in a regular or a superregular pair. Before stating them, we give an auxiliary lemma that will be used in the proof of Lemma 6.8.

Lemma 6.6. Let $\left\{x_{i}\right\}_{i=1}^{s},\left\{y_{i}\right\}_{i=1}^{s}$ be two families of reals in $[0, K]$, with $\sum_{i} x_{i}>$ 0 . Write $X:=\sum_{i} x_{i}, Y:=\sum_{i} y_{i}$, and $\gamma:=Y / X$. Then for each $X^{\prime} \in[0, X]$ there is a set $I \subseteq[s]$ such that
(a) $\sum_{i \in I} x_{i} \leqslant X^{\prime} \leqslant \sum_{i \in I} x_{i}+K$, and
(b) $\sum_{i \in I} y_{i}-K \leqslant \gamma X^{\prime} \leqslant \sum_{i \in I} y_{i}+2 K$.

Proof. Inductively construct sets $J_{\ell} \subseteq[s]$ as follows for $\ell=1, \ldots, s$. We start by setting $J_{1}=\emptyset$. In step ℓ, if $\gamma \sum_{j \in J_{\ell}} x_{j} \geqslant \sum_{j \in J_{\ell}} y_{j}$, then choose $j_{\ell} \in[s] \backslash J_{\ell}$ such that $\gamma x_{j \ell} \leqslant y_{j \ell}$. Otherwise, take $j_{\ell} \in[s] \backslash J_{\ell}$ with $\gamma x_{j_{\ell}}>y_{j \ell}$. The existence of such an index j_{ℓ} follows by averaging. Set $J_{\ell+1}:=J_{\ell} \cup\left\{j_{\ell}\right\}$. Our procedure ensures that for each ℓ we have

$$
\begin{equation*}
\sum_{j \in J_{\ell}} y_{j}-K \leqslant \gamma \sum_{j \in J_{\ell}} x_{j} \leqslant \sum_{j \in J_{\ell}} y_{j}+K \tag{6.4}
\end{equation*}
$$

Now for a given X^{\prime}, let p be the largest integer such that $\sum_{j \in J_{p}} x_{j} \leqslant X^{\prime}$. Setting $I:=J_{p}$, we clearly have (a), while the first inequality in (b) holds because of (6.4) (first inequality) for $\ell=p$. For the second inequality in (b), it is enough to focus on the case $p \neq s$, as otherwise $X=X^{\prime}$ and consequently $\gamma X^{\prime}=\sum_{i \in I} y_{j}$. But then, by the definition of p and by (6.4) (second inequality) for $\ell=p+1$,

$$
\gamma X^{\prime} \leqslant \gamma \sum_{i \in J_{p+1}} x_{i} \leqslant \sum_{i \in J_{p+1}} y_{i}+K \leqslant \sum_{i \in I} y_{i}+2 K,
$$

as desired.
Lemma 6.7. Let $\varepsilon>0$ and $\beta>2 \varepsilon$. Let (C, D) be an ε-regular pair in a graph H, with $|C|=|D|=: \ell$, and with density $\mathrm{d}(C, D) \geqslant 3 \beta$. Suppose that there are sets $X \subseteq C, Y \subseteq D$, and $X^{*} \subseteq X$ satisfying $\min \{|X|,|Y|\} \geqslant 4 \frac{\varepsilon}{\beta} \ell$ and $\left|X^{*}\right|>\frac{\beta}{2} \ell$. Let (T, r) be a rooted tree of order $v(T) \leqslant \varepsilon \ell$. Then there exists an $\left(r \hookrightarrow X^{*}, V_{\text {even }}(T) \hookrightarrow\right.$ $\left.X, V_{\text {odd }}(T) \hookrightarrow Y\right)$-embedding of T in H.

Proof. We shall construct an embedding $\phi: V(T) \rightarrow X \cup Y$ satisfying the requirements of the lemma. Fact 2.1 implies that (X, Y) is $\beta / 2$-regular of density greater than 2β. By Fact 2.2 , there are sets $X^{\prime} \subseteq X$ and $Y^{\prime} \subseteq Y$ with $\left|X^{\prime}\right|>(1-\beta / 2)|X|$ and $\left|Y^{\prime}\right|>(1-\beta / 2)|Y|$ such that mindeg $\left(X^{\prime}, Y\right) \geqslant \frac{3}{2} \beta|Y|$ and mindeg $\left(Y^{\prime}, X\right) \geqslant \frac{3}{2} \beta|X|$. Then

$$
\begin{equation*}
\operatorname{mindeg}\left(H\left[X^{\prime}, Y^{\prime}\right]\right) \geqslant \beta \min \{|X|,|Y|\} \geqslant 2 \varepsilon \ell>v(T) \tag{6.5}
\end{equation*}
$$

Choose any vertex in $X^{*} \cap X^{\prime}$ (which is nonempty by the above calculations) for $\phi(r)$. By (6.5) we can greedily extend ϕ to an embedding $\phi: V(T) \rightarrow X^{\prime} \cup Y^{\prime}$.

Lemma 6.8. Let $\beta, \varepsilon>0$ and $\ell \in \mathbb{N}$ be such that $\varepsilon \leqslant \beta^{2} / 8$. Let (C, D) be an ε-regular pair with $|C|=|D|=\ell$ of density $\mathrm{d}(C, D) \geqslant 3 \beta$ in a graph H. Let $\left(T_{1}, r_{1}\right),\left(T_{2}, r_{2}\right), \ldots,\left(T_{s}, r_{s}\right)$ be rooted trees with $v\left(T_{i}\right) \leqslant \varepsilon \ell$ for all $i \in[s]$. Let $U \subseteq$ $V(H)$ fulfill $|C \cap U|=|D \cap U|$, and let $X^{*} \subseteq(C \cup D) \backslash U$ be such that

$$
\begin{equation*}
\left|X^{*}\right| \geqslant \sum_{i=1}^{s} v\left(T_{i}\right)+50 \beta \ell \tag{6.6}
\end{equation*}
$$

Then there are mutually disjoint $\left(r_{i} \hookrightarrow X^{*}, V\left(T_{i}\right) \hookrightarrow(C \cup D) \backslash U\right)$-embeddings of the trees $\left(T_{i}, r_{i}\right)$ in H.

Proof. Let us write $M:=\left|X^{*} \cap C\right|$ and $m:=\left|X^{*} \cap D\right|$. Without loss of generality, we assume that $M \geqslant m$. For each $i \in[s]$, let us write a_{i} and b_{i} for the number of vertices of T_{i} at even and odd distance from r_{i}, respectively. Furthermore, we write $A:=\sum_{i} a_{i}, B:=\sum_{i} b_{i}$, and $\gamma:=B / A$. In the first step, we shall partition the set $[s]$ into three sets, I_{1}, I_{2}, and $I^{\prime \prime}$, according to three cases:
(C1) $m \leqslant 4 \beta \ell$,
(C2) $m>4 \beta \ell$, and $2(m-4 \beta \ell) \geqslant A+B$,
(C3) $m>4 \beta \ell$, and $2(m-4 \beta \ell)<A+B$.
Once this has been done, we will show how to embed the rooted trees T_{i} using this partition.

In case (C1), we set $I_{1}=I_{2}:=\emptyset$ and $I^{\prime \prime}:=[s]$. For cases (C2), and (C3), we first partition $[s]$ into two sets I and $I^{\prime \prime}$ and will make use of an auxiliary set I^{\prime} in order to obtain I_{1} and I_{2} as follows. In case (C2), set $I:=[s], I^{\prime \prime}:=\emptyset$, and $I^{\prime}:=I$. In case (C3), we apply Lemma 6.6 with input $\left(x_{i}\right)_{i \in[s]}:=\left(a_{i}\right)_{i \in[s]},\left(y_{i}\right)_{i \in[s]}:=\left(b_{i}\right)_{i \in[s]}$, $X^{\prime}:=\frac{2 A}{A+B}(m-4 \beta \ell)$, and the bound $K:=\frac{\beta}{4} \ell$. The bound $X^{\prime} \leqslant X=A$ required in Lemma 6.6 follows from the second property of case (C3). The lemma yields a set
$I \subseteq[s]$ such that

$$
\begin{align*}
\sum_{I} a_{i} & \leqslant \frac{2 A}{A+B}(m-4 \beta \ell), \tag{6.7}\\
\frac{2 A}{A+B}(m-4 \beta \ell) & \leqslant \sum_{I} a_{i}+\frac{\beta}{4} \ell, \tag{6.8}\\
\sum_{I} b_{i}-\frac{\beta}{4} \ell & \leqslant \frac{2 B}{A+B}(m-4 \beta \ell), \tag{6.9}\\
\frac{2 B}{A+B}(m-4 \beta \ell) & \leqslant \sum_{I} b_{i}+\frac{\beta}{2} \ell . \tag{6.10}
\end{align*}
$$

Bound (6.8) can be used to bound $\sum_{I^{\prime \prime}} a_{i}$ for the complementary set $I^{\prime \prime}:=[s] \backslash I$ as follows:

$$
\begin{align*}
\sum_{I^{\prime \prime}} a_{i} & \leqslant A-\left(\frac{2 A}{A+B}(m-4 \beta \ell)-\frac{\beta}{4} \ell\right)=A\left(1-\frac{2(m-4 \beta \ell)}{A+B}\right)+\frac{\beta}{4} \ell \\
& \leqslant(M+m-50 \beta \ell)\left(1-\frac{2(m-4 \beta \ell)}{M+m-50 \beta \ell}\right)+\frac{\beta}{4} \ell \leqslant M-m-40 \beta \ell, \tag{6.11}
\end{align*}
$$

where we employed the bound $A \leqslant A+B \leqslant M+m-50 \beta \ell$ from (6.6). Likewise, we have from (6.10) that

$$
\begin{equation*}
\sum_{I^{\prime \prime}} b_{i} \leqslant M-m-40 \beta \ell . \tag{6.12}
\end{equation*}
$$

The main feature of Lemma 6.6 is that the ratio $\sum_{I} b_{i}: \sum_{I} a_{i}$ is almost exactly γ. In order to even out a small imperfection we may have, let us introduce a dummy pair $\left(a_{0}, b_{0}\right)$, with $0<a_{0}, b_{0} \leqslant \beta \ell / 2$, such that for $I^{\prime}:=I \cup\{0\}$, we have

$$
\frac{\sum_{I^{\prime}} b_{i}}{\sum_{I^{\prime}} a_{i}}=\gamma .
$$

The existence of such a pair (a_{0}, b_{0}) follows from the properties of Lemma 6.6.
In cases (C2) and (C3), we apply Lemma 6.6 to further partition the set I. More specifically, the input of Lemma 6.6 consists of $X^{\prime}:=\frac{A}{A+B}(m-4 \beta \ell),\left(x_{i}\right)_{i \in I^{\prime}}:=$ $\left(a_{i}\right)_{i \in I^{\prime}},\left(y_{i}\right)_{i \in I^{\prime}}:=\left(b_{i}\right)_{i \in I^{\prime}}$, and $K:=\frac{\beta}{2} \ell$. Lemma 6.6 gives an index set $J_{1} \subseteq I^{\prime}$. Set $I_{1}:=J_{1} \backslash\{0\} \subseteq I$. We have that

$$
\begin{align*}
\sum_{I_{1}} a_{i} & \leqslant \frac{A}{A+B}(m-4 \beta \ell), \tag{6.13}\\
\frac{A}{A+B}(m-4 \beta \ell) & \leqslant \sum_{I_{1}} a_{i}+\beta \ell, \tag{6.14}\\
\sum_{I_{1}} b_{i}-\frac{\beta}{2} \ell & \leqslant \frac{B}{A+B}(m-4 \beta \ell), \tag{6.15}\\
\frac{B}{A+B}(m-4 \beta \ell) & \leqslant \sum_{I_{1}} b_{i}+\frac{3}{2} \beta \ell . \tag{6.16}
\end{align*}
$$

Set $I_{2}:=I \backslash I_{1}$. From (6.7) and (6.14) we have

$$
\begin{equation*}
\sum_{I_{2}} a_{i} \leqslant \frac{2 A}{A+B}(m-4 \beta \ell)-\left(\frac{A}{A+B}(m-4 \beta \ell)-\beta \ell\right)=\frac{A}{A+B}(m-4 \beta \ell)+\beta \ell \tag{6.17}
\end{equation*}
$$

Similarly, (6.9) and (6.16) give

$$
\begin{equation*}
\sum_{I_{2}} b_{i} \leqslant \frac{B}{A+B}(m-4 \beta \ell)+2 \beta \ell . \tag{6.18}
\end{equation*}
$$

We shall now see how the partition $[s]=I_{1} \cup I_{2} \cup I^{\prime \prime}$ gives us instructions to embed the trees T_{1}, \ldots, T_{s} one by one. The trees $T_{i}, i \in I_{1}$, are embedded in the bipartite graph $\left(W,\left(D \cap X^{*}\right) \backslash U\right)$, where W is an arbitrary subset of $C \cap X^{*}$ of size m, with the root r_{i} embedded in W. The trees $T_{i}, i \in I_{2}$, are embedded in the bipartite graph $\left(D \cap X^{*}, W\right)$, with the root r_{i} embedded in $D \cap X^{*}$. Finally, the trees $T_{i}, i \in I^{\prime \prime}$, are embedded in $\left(\left(C \cap X^{*}\right) \backslash W, D \backslash\left(X^{*} \cup U\right)\right)$, with the root embedded in $\left(C \cap X^{*}\right) \backslash W$. We can embed the trees $\left(T_{i}\right)_{i \in I_{1} \cup I_{2}}$ as described above, by repetitively using Lemma 6.7, as we have enough space for the embeddings: Summing up (6.13) and (6.18), we have

$$
\sum_{I_{1}} a_{i}+\sum_{I_{2}} b_{i} \leqslant m-4 \beta \ell+2 \beta \ell=|W|-2 \beta \ell
$$

and similarly from (6.15) and (6.17), we have

$$
\sum_{I_{1}} b_{i}+\sum_{I_{2}} a_{i} \leqslant m-4 \beta \ell+\frac{3}{2} \beta \ell \leqslant\left|D \cap X^{*}\right|-2 \beta \ell .
$$

Likewise, the trees $\left(T_{i}\right)_{i \in I^{\prime \prime}}$ can be embedded in $\left(\left(C \cap X^{*}\right) \backslash W, D \backslash\left(X^{*} \cup U\right)\right)$ with the help of Lemma 6.7, as (6.11) says that $\sum_{I^{\prime \prime}} a_{i} \leqslant\left|\left(C \cap X^{*}\right) \backslash W\right|-40 \beta \ell$, and as (6.12) says that $\sum_{I^{\prime \prime}} b_{i} \leqslant\left|\left(C \cap X^{*}\right) \backslash W\right|-40 \beta \ell \leqslant\left|D \backslash\left(X^{*} \cup U\right)\right|-40 \beta \ell$.

Lemma 6.9. Let $d>10 \varepsilon>0$. Suppose that (A, B) forms an (ε, d)-superregular pair with $|A|,|B| \geqslant \ell$. Let $U_{A} \subseteq A, U_{B} \subseteq B$ be such that $\left|U_{A}\right| \leqslant|A| / 2$ and $\left|U_{B}\right| \leqslant$ $d|B| / 4$. Let (T, r) be a rooted tree of order at most dl/4, and let $v \in A \backslash U_{A}$ be arbitrary. Then there exists an $\left(r \hookrightarrow v, V_{\text {even }}(T, r) \hookrightarrow A \backslash U_{A}, V_{\text {odd }}(T, r) \hookrightarrow B \backslash U_{B}\right)$-embedding of T.

Sketch of the proof. The lemma is a variant of Lemma 6.7 with only two qualitative differences. First, the assumptions of the lemma are stronger in that we now have superregularity rather than regularity. Second, the assertion of the lemma is stronger in that we can map the root of the tree on a specific vertex $r \hookrightarrow v$, rather than into a specified set $r_{\text {L6.7 }} \hookrightarrow X_{\text {L6.7 }}^{*}$. The proof scheme of Lemma 6.7 indeed gives this stronger assertion under the current assumptions. To see this, note that in the proof of Lemma 6.7, it was enough to map r to an arbitrary vertex which had enough degree into the destination set ($B \backslash U_{B}$ in the present lemma) of its children. In the current setting, any $v \in A \backslash U_{A}$ can serve as such a vertex as $\operatorname{deg}\left(v, B \backslash U_{B}\right) \geqslant \operatorname{deg}(v, B)-\left|U_{B}\right| \geqslant d|B|-d|B| / 4=\frac{3}{4} d|B|$, where the last inequality uses the superregularity of (A, B).

Suppose that we have to embed a rooted tree (T, r), and its root was already mapped on a vertex $\phi(r)$. Suppose that r has degree $\ell_{X}+\ell_{Y}$ into a regular pair (X, Y), where $\ell_{X}:=\operatorname{deg}(\phi(r), X), \ell_{Y}:=\operatorname{deg}(\phi(r), Y)$, with $\ell_{X} \geqslant \ell_{Y}$, say. The hope

Fig. 8. An example of a rooted tree (T, r), depicted on the left. The forest $T-r$ has three components (I), (II), (III) of total order 12. Say the vertex r is embedded so that for the regular pair (X, Y) we have $\operatorname{deg}(\phi(r), X)=8, \operatorname{deg}(\phi(r), Y)=4$ (neighborhoods of $\phi(r)$ are hatched). While the greedy strategy does not work (middle), splitting the process into a balanced and an unbalanced stage (right) does-here the components (I) and (II) are embedded in the balanced stage, and the component (III) is embedded in the unbalanced stage.
is that we can embed T in (X, Y) as long as $v(T)$ is a bit smaller than $\ell_{X}+\ell_{Y}$. For this, the greedy strategy does not work (see Figure 8), and we need to be somewhat more careful. We split the embedding process into two stages. In the first stage we choose a subset of the components of $T-r$ of total order approximately $2 \min \left(\ell_{X}, \ell_{Y}\right)=2 \ell_{Y}$. When embedding these, we choose orientations of each component in such a way that the image is approximately balanced with respect to X and Y. In the second stage we embed the remaining components so that their roots are embedded in X. We refer to the first stage as embedding in a balanced way, and to the second stage as embedding in an unbalanced way.

The next lemma says that each regular pair can be filled up in a balanced way by trees.

Lemma 6.10. Let G be a graph, let $v \in V(G)$ be a vertex, let \mathcal{M} be an $(\varepsilon, d, \nu k)$ regularized matching in G, and let $\left\{f_{C D}\right\}_{(C, D) \in \mathcal{M}}$ be a family of integers between $-\tau k$ and τk. Suppose (T, r) is a rooted tree,

$$
v(T) \leqslant\left(1-\frac{4\left(\varepsilon+\frac{\tau}{\nu}\right)}{d-2 \varepsilon}\right)|V(\mathcal{M})|
$$

with the property that each component of $T-r$ has order at most τk. If $V(\mathcal{M}) \subseteq$ $\mathrm{N}_{G}(v)$, then there exists an $(r \hookrightarrow v, V(T-r) \hookrightarrow V(\mathcal{M}))$-embedding ϕ of T such that for each $(C, D) \in \mathcal{M}$ we have $|C \cap \phi(T)|+f_{C D}=|D \cap \phi(T)| \pm \tau k$.

The proof of Lemma 6.10 is standard, and it is given, for example, in [HP16, Lemma 5.12].

Lemma 6.10 suggests the following definitions. The discrepancy of a set X with respect to a pair of sets (C, D) is the number $|C \cap X|-|D \cap X| . X$ is s-balanced with respect to a regularized matching \mathcal{M} if the discrepancy of X with respect to each $(C, D) \in \mathcal{M}$ is at most s in absolute value.

Lemma 6.11. Let G be a graph, let $v \in V(G)$ be a vertex, let \mathcal{M} be an $(\varepsilon, d, \nu k)$ regularized matching in G with an \mathcal{M}-cover \mathcal{F}, and let $U \subseteq V(G)$. Suppose (T, r) is a rooted tree with

$$
v(T)+|U| \leqslant \operatorname{deg}_{G}(v, V(\mathcal{M}) \backslash \bigcup \mathcal{F})-\frac{4\left(\varepsilon+\frac{\tau}{\nu}\right)}{d-2 \varepsilon}|V(\mathcal{M})|
$$

such that each component of $T-r$ has order at most τk. Then there exists an $(r \hookrightarrow$ $v, V(T-r) \hookrightarrow V(\mathcal{M}) \backslash U)$-embedding ϕ of T.

The proof of Lemma 6.11 is again standard, and we omit it.
The following lemma uses a probabilistic technique to embed a shrub while reserving a set of vertices in the host graph for later use. We wish the reserved set to use about as much space inside certain given sets P_{i} as the image of our shrub does. (In later applications the sets P_{i} correspond to neighborhoods of vertices which are still "active.")

Lemma 6.12 will find an immediate application in all the remaining lemmas of this subsection. However, it is really necessary only for Lemmas 6.13-6.14, which deal with embedding shrubs in the presence of one of the configurations $(\diamond \mathbf{6})-(\diamond 8)$. For Lemmas 6.15 and 6.16 , which are for configurations $(\diamond \mathbf{3})$ and $(\diamond 4)$, a simpler auxiliary lemma (without reservations) would suffice.

Lemma 6.12. Let H be a graph, let $X^{*}, X_{1}, X_{2}, P_{1}, P_{2}, \ldots, P_{L} \subseteq V(H)$, and let $\left(T_{1}, r_{1}\right), \ldots,\left(T_{\ell}, r_{\ell}\right)$ be rooted trees, such that $L \leqslant k,\left|P_{j}\right| \leqslant k$ for each $j \in[L]$, and $\left|X^{*}\right| \geqslant 2 \ell$. Suppose that mindeg $\left(X_{1} \cup X^{*}, X_{2}\right) \geqslant 2 \sum v\left(T_{i}\right)$ and $\operatorname{mindeg}\left(X_{2}, X_{1}\right) \geqslant$ $2 \sum v\left(T_{i}\right)$.

Then there exist $\left(r_{i} \hookrightarrow X^{*}, V_{\text {even }}\left(T_{i}, r_{i}\right) \backslash\left\{r_{i}\right\} \hookrightarrow X_{1}, V_{\text {odd }}\left(T_{i}, r_{i}\right) \hookrightarrow X_{2}\right)$-embeddings ϕ_{i} of T_{i} in G, which are pairwise disjoint, and a set $C \subseteq\left(X_{1} \cup X_{2}\right) \backslash \bigcup \phi_{i}\left(T_{i}\right)$ of size $\sum v\left(T_{i}\right)$ such that for each $j \in[L]$ we have

$$
\begin{equation*}
\left|P_{j} \cap \bigcup \phi_{i}\left(T_{i}\right)\right| \leqslant\left|P_{j} \cap C\right|+k^{3 / 4} . \tag{6.19}
\end{equation*}
$$

Proof. Let $m:=\sum v\left(T_{i}\right)$.
We construct pairwise disjoint random $\left(r_{i} \hookrightarrow X^{*}, V_{\text {even }}\left(T_{i}, r_{i}\right) \backslash\left\{r_{i}\right\} \hookrightarrow X_{1}\right.$, $\left.V_{\text {odd }}\left(T_{i}, r_{i}\right) \hookrightarrow X_{2}\right)$-embeddings ϕ_{i} and a set $C \subseteq V(H) \backslash \bigcup \phi_{i}\left(T_{i}\right)$ which satisfies (6.19) with positive probability. Then the statement follows.

Enumerate the vertices of $\bigcup T_{i}$ as $\bigcup V\left(T_{i}\right)=\left\{v_{1}, \ldots, v_{m}\right\}$ such that $v_{i}=r_{i}$ for $i=1, \ldots, \ell$, and such that for each $j>\ell$ we have that the parent of v_{j} lies in the set $\left\{v_{1}, \ldots, v_{j-1}\right\}$. Pick pairwise disjoint sets $A_{1}, \ldots, A_{\ell} \subseteq X^{*}$ of size two. Choose uniformly and independently at random an element $x_{j} \in A_{j}$. Denote the other element of A_{j} as y_{j}.

Now, successively for $i=\ell+1, \ldots, m$, we shall define vertices x_{i} and y_{i}. Let r denote the root of the tree in which v_{i} lies, and let $v_{s}=\operatorname{Par}\left(v_{i}\right)$ be the parent of v_{i}. We shall choose $x_{i}, y_{j} \in X_{j_{i}}$ where $j_{i}=\operatorname{dist}\left(r, v_{i}\right) \bmod 2+1$. In step i, proceed as follows. Since $x_{s} \in X_{j_{s}}$ (or since $x_{s} \in X^{*}$), we have

$$
\operatorname{deg}\left(x_{s}, X_{j_{i}} \backslash \bigcup_{h<i}\left\{x_{h}, y_{h}\right\}\right) \geqslant 2 .
$$

Hence, we may take an arbitrary subset $A_{i} \subseteq\left(\mathrm{~N}\left(x_{s}\right) \cap X_{j_{i}}\right) \backslash \bigcup_{h<i}\left\{x_{h}, y_{h}\right\}$ of size exactly two. As above, randomly label its elements as x_{i} and y_{i} independently of all other choices.

The choices of the maps $\left(v_{j} \mapsto x_{j}\right)_{j=1}^{m}$ determine $\phi_{1}, \ldots, \phi_{\ell}$. Then the set $C:=$ $\left\{y_{1}, \ldots, y_{m}\right\}$ has size exactly m and avoids $\bigcup \phi_{i}\left(T_{i}\right)$.

For each $j \in[L]$ we set up a stochastic process $\mathfrak{S}^{(j)}=\left(\left(X_{i}^{(j)}, Y_{i}^{(j)}\right)\right)_{i=1}^{m}$, defined by $X_{i}^{(j)}=\mathbf{1}_{\left\{x_{i} \in P_{j}\right\}}$ and $Y_{i}^{(j)}=\mathbf{1}_{\left\{y_{i} \in P_{j}\right\}}$. Note that $\mathfrak{S}^{(j)} \in \operatorname{Duplicate}\left(\left|P_{j}\right|\right) \subseteq$ Duplicate (k). Thus, for a fixed $j \in[L]$, by Lemma 6.3 , the probability that $\mid P_{j} \cap$ $\left(\bigcup \phi_{i}\left(T_{i}\right)\right)\left|>\left|P_{j} \cap C\right|+k^{3 / 4}\right.$ is at most $\exp (-\sqrt{k} / 2)$. Using the union bound over all
$j \in[L]$, we get that property (6.21) holds with probability at least

$$
1-L \cdot \exp \left(-\frac{\sqrt{k}}{2}\right)>0
$$

This finishes the proof.
We now get to the first application of Lemma 6.12.
Lemma 6.13. Assume we are in Setting 5.1. Suppose that we are given sets $V_{2}, V_{3} \subseteq V(G)$ such that we have

$$
\begin{equation*}
\operatorname{mindeg}_{H}\left(V_{2}, V_{3}\right) \geqslant \delta k \quad \text { and } \quad \operatorname{mindeg}_{H}\left(V_{3}, V_{2}\right) \geqslant \delta k \tag{6.20}
\end{equation*}
$$

where $\delta>300 / k$ and H is a $(\gamma k, \gamma)$-nowhere dense subgraph of G. Suppose that $U, U^{*}, P_{1}, P_{2}, \ldots, P_{L} \subseteq V(G)$ and $L \leqslant k$ are such that $|U| \leqslant \frac{\delta}{24 \sqrt{\gamma}} k, U^{*} \subseteq V_{2}$, $\left|U^{*}\right| \geqslant \frac{\delta}{4} k$, and $\left|P_{j}\right| \leqslant k$ for each $j \in[L]$. Let (T, r) be a rooted tree of order at most $\delta k / 8$.

Then there exist an $\left(r \hookrightarrow U^{*}, V_{\text {even }}(T, r) \backslash\{r\} \hookrightarrow V_{2} \backslash U, V_{\text {odd }}(T, r) \hookrightarrow V_{3} \backslash U\right)$ embedding ϕ of T in G and a set $C \subseteq\left(V_{2} \cup V_{3}\right) \backslash(U \cup \phi(T))$ of size $v(T)$ such that for each $j \in[L]$ we have

$$
\begin{equation*}
\left|P_{j} \cap \phi(T)\right| \leqslant\left|P_{j} \cap C\right|+k^{3 / 4} \tag{6.21}
\end{equation*}
$$

Proof. Set $B:=\operatorname{shadow}_{G_{\exp }}(U, \delta k / 4)$. Then by Fact 4.13, we have that $|B| \leqslant$ $64 \frac{\gamma}{\delta}\left(\frac{\delta}{24 \sqrt{\gamma}}\right)^{2} k \leqslant \frac{\delta}{4} k-2$. In particular, $X^{*}:=U^{*} \backslash B$ has size at least 2. Set $X_{1}:=$ $V_{2} \backslash(U \cup B)$, and set $X_{2}:=V_{3} \backslash(U \cup B)$. Using (6.20), we find that

$$
\operatorname{mindeg}_{G_{\exp }}\left(X_{1}, X_{2}\right) \geqslant \delta k-\operatorname{maxdeg}_{G_{\exp }}\left(X_{1}, U\right)-|B| \geqslant \delta k-\frac{\delta}{4} k-\frac{\delta}{4} k \geqslant 2 v(T)
$$

and similarly, mindeg $G_{G_{\exp }}\left(X_{2}, X_{1}\right) \geqslant 2 v(T)$. We may thus apply Lemma 6.12 to obtain the desired embedding ϕ and the set C.

Lemma 6.14. Assume Settings 5.1 and 5.4. Suppose that we are given sets $Y_{1}, Y_{2} \subseteq$ $\mathbb{A}_{1} \backslash \bar{V}$ with $Y_{1} \subseteq \mathbb{E}$, and that
(i) $\operatorname{maxdeg}_{G_{\mathcal{D}}}\left(Y_{1}, \mathbb{A}_{1} \backslash Y_{2}\right) \leqslant \frac{\eta \gamma}{400}$, and
(ii) $\operatorname{mindeg}_{G_{\mathcal{D}}}\left(Y_{2}, Y_{1}\right) \geqslant \delta k$.

Suppose that $U, U^{*}, P_{1}, P_{2}, \ldots, P_{L} \subseteq V(G)$ are sets such that $|U| \leqslant \frac{\Lambda \delta}{2 \Omega^{*}} k, U^{*} \subseteq$ Y_{1}, with $\left|U^{*}\right| \geqslant \frac{\delta}{4} k,\left|P_{j}\right| \leqslant k$ for each $j \in[L]$, and $L \leqslant k$. Suppose $\left(T_{1}, r_{1}\right), \ldots,\left(T_{\ell}, r_{\ell}\right)$ are rooted trees of total order at most $\delta k / 1000$. Suppose further that $\delta<\eta \gamma / 100$, $\varepsilon^{\prime}<\delta / 1000$, and $k>1000 / \delta$.

Then there exist pairwise disjoint $\left(r_{i} \hookrightarrow U^{*}, V_{\text {even }}\left(T_{i}, r_{i}\right) \hookrightarrow Y_{1} \backslash U, V_{\text {odd }}\left(T_{i}, r_{i}\right) \hookrightarrow\right.$ $\left.Y_{2} \backslash U\right)$-embeddings ϕ_{i} of T_{i} in G and a set $C \subseteq V\left(G-\bigcup \phi_{i}\left(T_{i}\right)\right)$ of size $\sum v\left(T_{i}\right)$ such that for each $j \in[L]$ we have that

$$
\begin{equation*}
\left|P_{j} \cap \bigcup \phi_{i}\left(T_{i}\right)\right| \leqslant\left|P_{j} \cap C\right|+k^{3 / 4} \tag{6.22}
\end{equation*}
$$

Proof. Set $U^{\prime}:=\operatorname{shadow}_{G_{\mathcal{D}}}(U, \delta k / 2) \cup U$. By Fact 4.12, we have $\left|U^{\prime}\right| \leqslant \Lambda k$. As Y_{1} is a $\left(\Lambda, \varepsilon^{\prime}, \gamma, k\right)$-avoiding set, by Definition 4.5 there exists a set $B \subseteq Y_{1}$, $|B| \leqslant \varepsilon^{\prime} k$, such that for all $v \in Y_{1} \backslash B$ there exists a dense spot $D_{v} \in \mathcal{D}$ with $v \in V\left(D_{v}\right)$ and $\left|V\left(D_{v}\right) \cap U^{\prime}\right| \leqslant \gamma^{2} k$. As Y_{1} is disjoint from \bar{V}, by Definition 5.3(4)
and by (5.13), we have that $\operatorname{deg}_{D_{v}}\left(v, V\left(D_{v}\right)^{\mid 1}\right) \geqslant \frac{\eta \gamma}{200} k$. By (6.14), we have that $\operatorname{deg}_{G_{\mathcal{D}}}\left(v, V\left(D_{v}\right)^{\upharpoonright 1} \backslash Y_{2}\right)<\frac{\eta \gamma}{400} k$, and hence,

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(v,\left(V\left(D_{v}\right)^{\upharpoonright 1} \cap Y_{2}\right) \backslash U^{\prime}\right) \geqslant \frac{\eta \gamma k}{400}-\gamma^{2} k \geqslant \frac{\eta \gamma k}{800}
$$

Thus,

$$
\begin{equation*}
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(Y_{1} \backslash B, Y_{2} \backslash\left(U^{\prime} \cup B\right)\right) \geqslant \frac{\eta \gamma k}{800}-\varepsilon^{\prime} k \geqslant 2 \sum v\left(T_{i}\right) \tag{6.23}
\end{equation*}
$$

Further, by the definition of U^{\prime} and by (6.14), we have

$$
\begin{equation*}
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(Y_{2} \backslash U^{\prime}, Y_{1} \backslash(U \cup B)\right) \geqslant \frac{\delta k}{2}-\varepsilon^{\prime} k \geqslant 2 \sum v\left(T_{i}\right) \tag{6.24}
\end{equation*}
$$

Set $X^{*}:=U^{*} \backslash B$, and note that $\left|X^{*}\right| \geqslant \delta k / 4-\varepsilon^{\prime} k \geqslant 2 \ell$. Set $X_{1}:=Y_{1} \backslash(U \cup B)$ and $X_{2}:=Y_{2} \backslash\left(U^{\prime} \cup B\right)$. Inequalities (6.23) and (6.24) guarantee that we may apply Lemma 6.12 to obtain the desired embeddings ϕ_{i}.

Lemma 6.15. Assume Setting 5.1. Suppose that the sets $L^{\prime}, L^{\prime \prime}, \mathbb{H}^{\prime}, \mathbb{H}^{\prime \prime}, V_{1}, V_{2}$ witness configuration $(\diamond \mathbf{3})(0,0, \gamma / 4, \delta)$. Suppose that $U, U^{*} \subseteq V(G)$ are sets such that $|U| \leqslant k, U^{*} \subseteq V_{1},\left|U^{*}\right| \geqslant \frac{\delta}{4} k$. Suppose (T, r) is a rooted tree of order at most $\delta k / 1000$. Suppose further that $\delta \leqslant \gamma / 100, \varepsilon^{\prime}<\delta / 1000$, and $4 \Omega^{*} / \delta \leqslant \Lambda$.

Then there exists an $\left(r \hookrightarrow U^{*}, V_{\text {even }}(T, r) \backslash\{r\} \hookrightarrow V_{1} \backslash U, V_{\text {odd }}(T, r) \hookrightarrow V_{2} \backslash U\right)$ embedding of T in G.

Proof. The proof of this lemma is very similar to that of Lemma 6.14 (in fact, even easier). Set $U^{\prime}:=\operatorname{shadow}_{G_{\mathcal{D}}}(U, \delta k / 2) \cup U$, and note that $\left|U^{\prime}\right| \leqslant \Lambda k$ by Fact 4.12. As V_{1} is $\left(\Lambda, \varepsilon^{\prime}, \gamma, k\right)$-avoiding, by Definition 4.5 there is a set $B \subseteq V_{1},|B| \leqslant \varepsilon^{\prime} k$, such that for all $v \in V_{1} \backslash B$ there exists a dense spot $D_{v} \in \mathcal{D}$ with $\operatorname{deg}_{D_{v}}\left(v, V\left(D_{v}\right) \backslash\right.$ $\left.U^{\prime}\right) \geqslant \gamma k / 2$. By (5.20), we know that $\operatorname{deg}_{G_{\mathcal{D}}}\left(v, V\left(D_{v}\right) \backslash V_{2}\right) \leqslant \gamma k / 4$, and hence, $\operatorname{deg}_{G_{\mathcal{D}}}\left(v,\left(V\left(D_{v}\right) \cap V_{2}\right) \backslash U^{\prime}\right) \geqslant \gamma k / 4$. Thus,

$$
\begin{equation*}
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{1} \backslash B, V_{2} \backslash U^{\prime}\right) \geqslant \frac{\gamma k}{4} \geqslant 2 v(T) . \tag{6.25}
\end{equation*}
$$

Further, by the definition of U^{\prime} and by (5.21), we have

$$
\begin{equation*}
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(V_{2} \backslash U^{\prime}, V_{1} \backslash U\right) \geqslant \frac{\delta k}{2} \geqslant 2 v(T) \tag{6.26}
\end{equation*}
$$

Set $X^{*}:=U^{*} \backslash B$, and note that $\left|X^{*}\right| \geqslant \delta k / 4-\varepsilon^{\prime} k \geqslant 2$. Set $X_{1}:=V_{1} \backslash(U \cup B)$ and $X_{2}:=V_{2} \backslash\left(U^{\prime} \cup B\right)$. Inequalities (6.25) and (6.26) guarantee that we may apply Lemma 6.12 (with empty sets P_{i}) to obtain the desired embedding ϕ.

Lemma 6.16. Assume Setting 5.1. Suppose that the sets $L^{\prime}, L^{\prime \prime}, \mathbb{H}^{\prime}, \mathbb{H}^{\prime \prime}, V_{1}, \mathbb{E}^{\prime}, V_{2}$ witness configuration $(\diamond 4)(0,0, \gamma / 4, \delta)$. Suppose that $U \subseteq V(G), U^{*} \subseteq V_{1}$ are sets such that $|U| \leqslant k$ and $\left|U^{*}\right| \geqslant \frac{\delta}{4} k$. Suppose (T, r) is a rooted tree of order at most $\delta k / 20$ with a fruit r^{\prime}. Suppose further that $4 \varepsilon^{\prime} \leqslant \delta \leqslant \gamma / 100$, and $\Lambda \geqslant 300\left(\frac{\Omega^{*}}{\delta}\right)^{3}$.

Then there is an $\left(r \hookrightarrow U^{*}, r^{\prime} \hookrightarrow V_{1} \backslash U, V(T) \backslash\left\{r, r^{\prime}\right\} \hookrightarrow\left(\mathbb{E}^{\prime} \cup V_{2}\right) \backslash U\right)$-embedding of T in G.

Proof. Set

$$
U^{\prime}:=\tilde{U} \cup \operatorname{shadow}_{G_{\nabla-\mathbb{H}}}(U, \delta k / 4) \cup \operatorname{shadow}_{G_{\nabla}-\mathbb{H}}^{(2)}(\tilde{U}, \delta k / 4),
$$

and let

$$
U^{\prime \prime}:=\tilde{U} \cup \operatorname{shadow}_{G_{\mathcal{D}}}\left(U^{\prime}, \delta k / 2\right)
$$

We use Fact 4.12 to see that $\left|U^{\prime}\right| \leqslant \frac{\delta}{4 \Omega^{*}} \Lambda k$ and $\left|U^{\prime \prime}\right| \leqslant \Lambda k$. We then use Definition 4.5 and (5.25) to find a set $B \subseteq \mathbb{E}^{\prime}$ of size at most $\varepsilon^{\prime} k$ such that

$$
\begin{equation*}
\operatorname{mindeg}_{G_{\mathcal{D}}}\left(\mathbb{E}^{\prime} \backslash B, V_{2} \backslash U^{\prime \prime}\right) \geqslant 2 v(T) \tag{6.27}
\end{equation*}
$$

Using (6.27), and employing (5.22) and (5.24), we see that we may apply Lemma 6.12 with $X_{\mathrm{L} 6.12}^{*}:=U^{*}, X_{1, \mathrm{~L} 6.12}:=\mathbb{E}^{\prime} \backslash\left(B \cup U^{\prime}\right)$, and $X_{2, \mathrm{~L} 6.12}:=V_{2} \backslash U^{\prime \prime}$ (and with empty sets $\left.P_{i}\right)$ to embed the tree $T-T\left(r, \uparrow r^{\prime}\right)$ rooted at r. Then embed $T\left(r, \uparrow r^{\prime}\right)$ by applying Lemma 6.12 a second time, using (5.22) and (5.23).
6.5. Main embedding lemmas. For this section, we need to introduce the notion of a ghost. The idea behind this notion is that once we use a set U for the embedding of our tree, the remainder of the graph cannot be used as before. Namely, if U covers part of a cluster of some matching edge, then we will not be able to fill up the partner cluster using usual regularity embedding techniques. ${ }^{12}$ The ghost of U will block the unusable part of the partner cluster, and we will know that we cannot expect to fill it up.

Given a regularized matching \mathcal{N}, we call an involution $\mathfrak{d}: V(\mathcal{N}) \rightarrow V(\mathcal{N})$ with the property that $\mathfrak{d}(S)=T$ for each $(S, T) \in \mathcal{N}$ a matching involution.

Assume Setting 5.1, and fix a matching involution \mathfrak{b} for $\mathcal{M}_{A} \cup \mathcal{M}_{B}$. For any set $U \subseteq V(G)$, we then define

$$
\operatorname{ghost}(U):=U \cup \mathfrak{b}\left(U \cap V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right)
$$

Clearly, we have that $|\operatorname{ghost}(U)| \leqslant 2|U|$, and $|\operatorname{ghost}(U) \cap S|=|\operatorname{ghost}(U) \cap T|$ for each $(S, T) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}$.

The notion of a ghost extends to other regularized matchings. If \mathcal{N} is a regularized matching and \mathfrak{d} is a matching involution for \mathcal{N}, then we write $\operatorname{ghost}_{\mathfrak{d}}(U):=U \cup \mathfrak{d}(U \cap$ $V(\mathcal{N}))$.
6.5.1. Embedding in configuration $(\diamond 1)$. This subsection contains an easy observation that each tree of order k is contained in G if the graph G contains configuration ($\diamond \mathbf{1}$).

Lemma 6.17. Let G be a graph, and let $A, B \subseteq V(G)$ be such that mindeg $(G[A, B])$ $\geqslant k / 2$, and mindeg $(A) \geqslant k$. Then each tree of order k is contained in G.

Proof. Let $T \in \operatorname{trees}(k)$ have color classes X and Y, with $|X| \geqslant k / 2 \geqslant|Y|$. By Fact 3.2, for the set W of those leaves of T that lie in X, we have $|X \backslash W| \leqslant k / 2$. We embed $T-W$ greedily in G, mapping Y to A and $X \backslash W$ to B. We then embed W using the fact that mindeg $(A) \geqslant k$.
6.5.2. Embedding in configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$. In this section we show how to embed $T_{\mathrm{T} 1.2}$ in the presence of configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$. As outlined in section 6.1.1 our main embedding lemma, Lemma 6.20, builds on Lemma 6.19, which handles stage 1 of the embedding, and Lemma 6.18, which handles stage 2.

Lemma 6.18. Assume we are in Setting 5.1. Suppose $L^{\prime \prime}, L^{\prime}, \mathbb{H}^{\prime}$ witness preconfiguration $(\boldsymbol{\&})\left(\frac{10^{5} \Omega^{*}}{\eta}\right)$. Let (T, r) be a rooted tree of order at most $\gamma^{2} \nu k / 6$. Let $U \subseteq V(G)$ with $|U|+v(T) \leqslant k$, and let $v \in \mathbb{H}^{\prime} \backslash U$. Then there exists an $(r \hookrightarrow v, V(T) \hookrightarrow$ $V(G) \backslash U)$-embedding of (T, r).

[^8]Proof. We proceed by induction on the order of T. The base case $v(T) \leqslant 2$ obviously holds. Let us assume Lemma 6.18 is true for all trees T^{\prime} with $v\left(T^{\prime}\right)<v(T)$.

Let $U_{1}:=\operatorname{shadow}_{G_{\nabla}}(U-\mathbb{H}, \eta k / 200)$ and $U_{2}:=\bigcup\left\{C \in \mathbf{V}:|C \cap U| \geqslant \frac{1}{2}|C|\right\}$. We have $\left|U_{1}\right| \leqslant \frac{200 \Omega^{*}}{\eta} k$ by Fact 4.12, and $\left|U_{2}\right| \leqslant 2|U|$. Set

$$
\begin{aligned}
& L_{\mathbb{E}}:=L^{\prime} \cap \operatorname{shadow}_{G_{\nabla}}\left(\mathbb{E}, \frac{\eta k}{50}\right), \\
& L_{\mathbb{H}}:=L^{\prime} \cap \operatorname{shadow}_{G_{\nabla}}\left(\mathbb{H},|U \cap \mathbb{H}|+\frac{\eta k}{50}\right), \\
& L_{\mathbb{V}}:=L^{\prime} \cap \operatorname{shadow}_{G_{\mathrm{reg}}}\left(V\left(G_{\mathrm{reg}}\right),\left(1+\frac{\eta}{50}\right) k-|U \cap \mathbb{H}|\right) .
\end{aligned}
$$

Observe that $L \mathbf{V} \subseteq \bigcup \mathbf{V}$ and that since $L^{\prime} \subseteq \mathbb{L}_{\frac{9}{10} \eta, k}\left(G_{\nabla}\right) \backslash \mathbb{H}$, we have

$$
L^{\prime} \subseteq V\left(G_{\text {exp }}\right) \cup \mathbb{E} \cup L_{\mathbb{H}} \cup L_{\mathbb{E}} \cup L_{\mathbf{V}} .
$$

As by (5.18) we have $\operatorname{deg}_{G}\left(v, L^{\prime}\right) \geqslant \frac{10^{5} \Omega^{*} k}{\eta}>5\left(\left|U \cup U_{1} \cup U_{2}\right|+v(T)+\eta k\right)$, one of the following five cases must occur.

Case I: $\operatorname{deg}_{G}\left(v, V\left(G_{\text {exp }}\right) \backslash U\right)>v(T)+\eta k$. Lemma 6.5 gives an embedding of the forest $T-r$ (whose components are rooted at neighbors of r). The input sets/parameters of Lemma 6.5 are $Q_{\mathrm{L} 6.5}:=1, \zeta_{\mathrm{L} 6.5}:=12 \sqrt{\gamma}, U_{\mathrm{L} 6.5}^{*}:=\left(\mathrm{N}_{G}(v) \cap\right.$ $\left.V\left(G_{\exp }\right)\right) \backslash U, U_{\mathrm{L} 6.5}:=U$, and $V_{1}=V_{2}:=V\left(G_{\exp }\right)$.

Case II: $\operatorname{deg}_{G}(v, \mathbb{E} \backslash U)>v(T)+\eta k$. Lemma 6.4 gives an embedding of the forest $T-r$ (whose components are rooted at neighbors of r). The input sets/parameters of Lemma 6.4 are $U_{\mathrm{L} 6.4}^{*}:=\left(\mathrm{N}_{G}(v) \cap \mathbb{E}\right) \backslash U, U_{\mathrm{L} 6.4}:=U$, and $\varepsilon_{\mathrm{L} 6.4}:=\varepsilon^{\prime} \leqslant \eta$. Here and below, we implicitly assume parameters of the same name to be the same, i.e., $\gamma_{\mathrm{L} 6.4}:=\gamma$.

Case III: $\operatorname{deg}_{G}\left(v, L_{\mathbb{E}} \backslash\left(U \cup U_{1}\right)\right)>v(T)+\eta k$. We only outline the strategy. Embed the children of r in $L_{\mathbb{E}} \backslash\left(U \cup U_{1}\right)$ using a map $\phi: \mathrm{Ch}_{T}(r) \rightarrow L_{\mathbb{E}} \backslash\left(U \cup U_{1}\right)$. By definition of $L_{\mathbb{E}}$ and U_{1}, we have $\operatorname{deg}_{G_{\nabla}}(\phi(w), \mathbb{E} \backslash U)>\frac{\eta k}{100}$ for each $w \in \mathrm{Ch}_{T}(r)$. Now, for every $w \in \mathrm{Ch}_{T}(r)$ we can proceed as in Case II to extend this embedding to the rooted tree $(T(r, \uparrow w), w)$. That is, Case III is "Case II with an extra step in the beginning."

Case IV: $\operatorname{deg}_{G}\left(v, L_{\mathbb{H}} \backslash U\right)>v(T)+\eta k$. We embed the children $\mathrm{Ch}_{T}(r)$ of r in distinct vertices of $L_{\mathbb{H}} \backslash U$. This is possible by the assumption of Case IV.

Now, (5.17) implies that $\operatorname{mindeg}_{G_{\nabla}}\left(L_{\mathbb{H}}, \mathbb{H}^{\prime}\right) \geqslant|U \cap \mathbb{H}|+\frac{\eta k}{100}$. Consequently, $\operatorname{mindeg}_{G_{\nabla}}\left(L_{\mathbb{H}}, \mathbb{H}^{\prime} \backslash U\right) \geqslant \frac{\eta k}{100}$. Therefore, for each $w \in \mathrm{Ch}_{T}(r)$ embedded in $L_{\mathbb{H}} \backslash U$, we can find an embedding of $\mathrm{Ch}_{T}(w)$ in $\mathbb{H}^{\prime} \backslash U$ such that the images of grandchildren of r are disjoint. We fix such an embedding. We can now apply induction. More specifically, for each grandchild u of r we embed the rooted tree ($T(r, \uparrow u), u$) using Lemma 6.18 (employing induction) using the updated set U, to which the images of the newly embedded vertices were added.

Case $\mathrm{V}: \operatorname{deg}_{G}\left(v, L_{\mathbf{V}} \backslash\left(U \cup U_{1} \cup U_{2}\right)\right) \geqslant v(T)$. Let u_{1}, \ldots, u_{ℓ} be the children of r. Let us consider arbitrary distinct neighbors $x_{1}, \ldots, x_{\ell} \in L_{\mathbf{V}} \backslash\left(U \cup U_{1} \cup U_{2}\right)$ of v. Let $T_{i}:=T\left(r, \uparrow u_{i}\right)$. We sequentially embed the rooted trees $\left(T_{i}, u_{i}\right), i=1, \ldots, \ell$, writing ϕ for the embedding. In step i, consider the set $W_{i}:=\left(U \cup \bigcup_{j<i} \phi\left(T_{j}\right)\right) \backslash \mathbb{H}$. Let $D_{i} \in \mathbf{V}$ be the cluster containing x_{i}. By the definitions of $L_{\mathbf{V}}$ and of U_{1},

$$
\operatorname{deg}_{G_{\mathrm{reg}}}\left(x_{i}, V\left(G_{\mathrm{reg}}\right) \backslash W_{i}\right) \geqslant \frac{\eta k}{50}-\frac{\eta k}{200} \geqslant \frac{\eta k}{100} .
$$

Fact 4.8 yields a cluster $C_{i} \in \mathbf{V}$ for which

$$
\operatorname{deg}_{G_{\text {reg }}}\left(x_{i}, C_{i} \backslash W_{i}\right) \geqslant \frac{\eta}{100} \cdot \frac{\gamma \mathfrak{c}}{2\left(\Omega^{*}\right)^{2}}>\frac{\gamma^{2} \mathfrak{c}}{2}+v(T)>\frac{12 \varepsilon^{\prime} \mathfrak{c}}{\gamma^{2}}+v(T) .
$$

In particular, there is at least one edge from $E\left(G_{\text {reg }}\right)$ between C_{i} and D_{i}, and therefore, $\left(C_{i}, D_{i}\right)$ forms an ε^{\prime}-regular pair of density at least γ^{2} in $G_{\text {reg }}$. Map u_{i} to x_{i}, and let F_{1}, \ldots, F_{m} be the components of the forest $T_{i}-u_{i}$. We now sequentially embed the trees F_{j} in the pair $\left(D_{i}, C_{i}\right)$ using Lemma 6.7, with $X_{\text {L6.7 }}:=C_{i} \backslash\left(W_{i} \cup \bigcup_{q<j} \phi\left(F_{q}\right)\right)$, $X_{\mathrm{L} 6.7}^{*}:=\mathrm{N}_{G_{\mathrm{reg}}}\left(x_{i}, X_{\mathrm{L} 6.7}\right), Y_{\mathrm{L} 6.7}:=D_{i} \backslash\left(W_{i} \cup\left\{x_{i}\right\} \cup \bigcup_{q<j} \phi\left(F_{q}\right)\right), \varepsilon_{\mathrm{L} 6.7}:=\varepsilon^{\prime}$, and $\beta_{\mathrm{L} 6.7}:=\gamma^{2} / 3$.

We are now ready for the lemma that will handle stage 1 in configurations ($\diamond \mathbf{2})-$ ($\triangle \mathbf{5}$).

Lemma 6.19. Assume we are in Setting 5.1, with $L^{\prime \prime}, L^{\prime}, \mathbb{H}^{\prime}$ witnessing preconfiguration $(\boldsymbol{\oplus})\left(\Omega^{\dagger}\right)$ in G. Let $U \subseteq V(G) \backslash \mathbb{H}$, and let (T, r) be a rooted tree with $v(T) \leqslant k / 2$ and $|U|+v(T) \leqslant k$. Suppose that each component of $T-r$ has order at most τk. Let $x \in\left(L^{\prime \prime} \cap \mathbb{Y} \mathbb{B}\right) \backslash \bigcup_{i=0}^{2} \operatorname{shadow}_{G_{\nabla}}^{(i)}(\operatorname{ghost}(U), \eta k / 1000)$.

Then there is a subtree T^{\prime} of T with $r \in V\left(T^{\prime}\right)$ which has an $\left(r \hookrightarrow x, V\left(T^{\prime}\right) \backslash\right.$ $\{r\} \hookrightarrow V(G) \backslash \mathbb{H})$-embedding ϕ. Further, the components of $T-T^{\prime}$ can be partitioned into two (possibly empty) families \mathcal{C}_{1} and \mathcal{C}_{2}, such that the following two assertions hold:
(a) If $\mathcal{C}_{1} \neq \emptyset$, then $\operatorname{mindeg}_{G_{\nabla}}\left(\phi\left(\operatorname{Par}\left(V\left(\cup \mathcal{C}_{1}\right)\right)\right), \mathbb{H}^{\prime}\right)>k+\frac{\eta k}{100}-v\left(T^{\prime}\right)$.
(b) $\operatorname{Par}\left(V\left(\bigcup \mathcal{C}_{2}\right)\right) \subseteq\{r\}$, and $\operatorname{deg}_{G_{\nabla}}\left(x, \mathbb{H}^{\prime}\right)>\frac{k}{2}+\frac{\eta k}{100}-v\left(T^{\prime} \cup \bigcup \mathcal{C}_{1}\right)$.

Proof. Let \mathcal{C} be the family of all components of $T-r$. We start by defining \mathcal{C}_{2}. Then we have to distribute $T-\bigcup \mathcal{C}_{2}$ between T^{\prime} and \mathcal{C}_{1}. First, we find a set $\mathcal{C}_{M} \subseteq \mathcal{C} \backslash \mathcal{C}_{2}$ which fits into the matching $\mathcal{M}_{A} \cup \mathcal{M}_{B}$ (and thus will form a part of $\left.T^{\prime}\right)$. Then, we consider the remaining components of $\mathcal{C} \backslash \mathcal{C}_{2}$. Some of these will be embedded entirely; of others we only embed the root and leave the rest for \mathcal{C}_{1}. Everything embedded will become a part of T^{\prime}.

Throughout the proof we write shadow for shadow G_{∇}.
Set $\overline{V_{\text {good }}}:=V_{\text {good }} \backslash$ shadow $\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)$, and choose $\tilde{\mathcal{C}} \subseteq \mathcal{C}$ such that

$$
\begin{equation*}
\operatorname{deg}_{G_{\nabla}}\left(x, \overline{V_{\text {good }}}\right)-\frac{\eta k}{30}<\sum_{S \in \mathcal{\mathcal { C }}} v(S) \leqslant \max \left\{0, \operatorname{deg}_{G_{\nabla}}\left(x, \overline{V_{\text {good }}}\right)-\frac{\eta k}{40}\right\} . \tag{6.28}
\end{equation*}
$$

Set $\mathcal{C}_{2}:=\mathcal{C} \backslash \tilde{\mathcal{C}}$. Note that this choice clearly satisfies the first part of (b). Let us now verify the second part of (b). For this, we calculate

$$
\begin{aligned}
\operatorname{deg}_{G_{\nabla}}\left(x, \mathbb{H}^{\prime}\right) \geqslant & \operatorname{deg}_{G_{\nabla}}\left(x, V_{+} \backslash L_{\#}\right)-\operatorname{deg}_{G_{\nabla}}\left(x, \text { shadow }\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right) \\
& -\operatorname{deg}_{G_{\nabla}}\left(x, V_{+} \backslash\left(L_{\#} \cup \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right) \cup \mathbb{H}\right)\right) \\
& -\operatorname{deg}_{G_{\nabla}}\left(x, \mathbb{H} \backslash \mathbb{H}^{\prime}\right) .
\end{aligned}
$$

To get a lower bound on the first term, we use that $x \in \mathbb{Y} \mathbb{B}$ and (5.10). To get an upper bound on the second term, we use that $x \notin \operatorname{shadow}^{(2)}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)$. To control the third term, we can use (6.28). To get an upper bound on the fourth term,
we use that $x \in L^{\prime}$ and (5.17). Hence,

$$
\begin{aligned}
\operatorname{deg}_{G_{\nabla}}\left(x, \mathbb{H}^{\prime}\right) & \geqslant\left(\frac{k}{2}+\frac{\eta k}{20}\right)-\frac{\eta k}{1000}-\left(\sum_{S \in \tilde{\mathcal{C}}} v(S)+\frac{\eta k}{30}\right)-\frac{\eta k}{100} \\
& >\frac{k}{2}-\sum_{S \in \tilde{\mathcal{C}}} v(S)+\frac{\eta k}{20} \\
& \geqslant \frac{k}{2}-v\left(T^{\prime} \cup \bigcup \mathcal{C}_{1}\right)+\frac{\eta k}{100}
\end{aligned}
$$

as needed for (b).
Now, set

$$
\begin{equation*}
\mathcal{M}:=\left\{\left(X_{1}, X_{2}\right) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}: \operatorname{deg}_{G_{\mathcal{D}}}\left(x,\left(X_{1} \cup X_{2}\right) \backslash \mathbb{E}\right)>0\right\} \tag{6.29}
\end{equation*}
$$

Claim 6.19.1. We have $|V(\mathcal{M})| \leqslant \frac{4\left(\Omega^{*}\right)^{2}}{\gamma^{2}} k$.
Proof of Claim 6.19.1. Indeed, let $\left(X_{1}, X_{2}\right) \in \mathcal{M}$, i.e., $\left(X_{1}, X_{2}\right) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}$ with $\operatorname{deg}_{G_{\mathcal{D}}}\left(x,\left(X_{1} \cup X_{2}\right) \backslash \mathbb{E}\right)>0$. Then, using property 4 of Setting 5.1, we see that there exists a cluster $C_{\left(X_{1}, X_{2}\right)} \in \mathbf{V}$ such that $\operatorname{deg}_{G_{\mathcal{D}}}\left(x, C_{\left(X_{1}, X_{2}\right)}\right)>0$, and either $X_{1} \subseteq C_{\left(X_{1}, X_{2}\right)}$ or $X_{2} \subseteq C_{\left(X_{1}, X_{2}\right)}$. In particular, there exists a dense spot $\left(A_{\left(X_{1}, X_{2}\right)}, B_{\left(X_{1}, X_{2}\right)} ; F_{\left(X_{1}, X_{2}\right)}\right) \in \mathcal{D}$ such that $x \in A_{\left(X_{1}, X_{2}\right)}$, and $X_{1} \subseteq B_{\left(X_{1}, X_{2}\right)}$ or $X_{2} \subseteq B_{\left(X_{1}, X_{2}\right)}$. By Fact 4.4, there are at most $\frac{\Omega^{*}}{\gamma}$ such dense spots; let Z denote the union of all vertices contained in these spots. Fact 4.3 implies that $|Z| \leqslant \frac{2\left(\Omega^{*}\right)^{2}}{\gamma^{2}} k$. Thus $|V(\mathcal{M})| \leqslant 2|V(\mathcal{M}) \cap Z| \leqslant 2|Z| \leqslant \frac{4\left(\Omega^{*}\right)^{2}}{\gamma^{2}} k$.

First we shall embed as many components from $\tilde{\mathcal{C}}$ in \mathcal{M} as possible. To this end, consider an inclusion-maximal subset \mathcal{C}_{M} of $\tilde{\mathcal{C}}$ with

$$
\begin{equation*}
\sum_{S \in \mathcal{C}_{M}} v(S) \leqslant \operatorname{deg}_{G_{\nabla}}(x, V(\mathcal{M}))-\frac{\eta k}{1000} \tag{6.30}
\end{equation*}
$$

We aim to utilize the degree of x into $V(\mathcal{M})$ to embed \mathcal{C}_{M} in $V(\mathcal{M})$, using the regularity method.

Remark 6.19.2. This remark (which may as well be skipped at a first reading) is aimed at those readers who are wondering about a seeming inconsistency of the defining formulas (6.29) for \mathcal{M} and (6.30) for \mathcal{C}_{M}. That is, (6.29) involves the degree in $G_{\mathcal{D}}$ and excludes the set \mathbb{E}, while (6.30) involves the degree in G_{∇}. The setting in (6.29) was chosen so that it allows us to control the size of \mathcal{M} in Claim 6.19.1, crucially relying on property 4 of Setting 5.1. Such a control is necessary to make the regularity method work. Indeed, in each regular pair there may be a small number of atypical vertices, ${ }^{13}$ and we must avoid these vertices when embedding the components by the regularity method. Thus without the control on $|\mathcal{M}|$ it might happen that the degree of x is unusable because x sees very small numbers of atypical vertices in an enormous number of sets corresponding to \mathcal{M}-vertices. On the other hand, the edges that x sends to \mathbb{E} can be utilized by other techniques in later stages. Once we have

[^9]defined \mathcal{M} we want to use the full degree into $V(\mathcal{M})$ to ensure we can embed the shrubs as balanced as possible into the \mathcal{M}-edges. This is necessary, as otherwise part of the degree of x might be unusable for the embedding, e.g., because it might go to \mathcal{M}-vertices whose partners are already full.

For each $(C, D) \in \mathcal{M}$ we choose a family $\mathcal{C}_{C D} \subseteq \mathcal{C}_{M}$ maximal such that

$$
\begin{equation*}
\sum_{S \in \mathcal{C}_{C D}} v(S) \leqslant \operatorname{deg}_{G_{\nabla}}(x,(C \cup D) \backslash \operatorname{ghost}(U))-\left(\frac{\gamma}{\Omega^{*}}\right)^{3}|C| \tag{6.31}
\end{equation*}
$$

and further, we require $\mathcal{C}_{C D}$ to be disjoint from families $\mathcal{C}_{C^{\prime} D^{\prime}}$ defined in previous steps. We claim that $\left\{\mathcal{C}_{C D}\right\}_{(C, D) \in \mathcal{M}}$ forms a partition of \mathcal{C}_{M}, i.e., all the elements of \mathcal{C}_{M} are used. Indeed, otherwise, by the maximality of $\mathcal{C}_{C D}$ and since the components of $T-r$ have size at most τk, we obtain

$$
\begin{align*}
\sum_{S \in \mathcal{C}_{C D}} v(S) & \geqslant \operatorname{deg}_{G_{\nabla}}(x,(C \cup D) \backslash \operatorname{ghost}(U))-\left(\frac{\gamma}{\Omega^{*}}\right)^{3}|C|-\tau k \tag{6.32}\\
& \stackrel{(5.1)}{\geqslant} \operatorname{deg}_{G_{\nabla}}(x,(C \cup D) \backslash \operatorname{ghost}(U))-2\left(\frac{\gamma}{\Omega^{*}}\right)^{3}|C|
\end{align*}
$$

for each $(C, D) \in \mathcal{M}$. Then we have

$$
\begin{aligned}
\sum_{S \in \mathcal{C}_{M}} v(S) & >\sum_{(C, D) \in \mathcal{M}} \sum_{S \in \mathcal{C}_{C D}} v(S) \\
\text { (by (6.32)) } & \geqslant \sum_{(C, D) \in \mathcal{M}}\left(\operatorname{deg}_{G_{\nabla}}(x,(C \cup D) \backslash \operatorname{ghost}(U))-2\left(\frac{\gamma}{\Omega^{*}}\right)^{3}|C|\right) \\
\text { (by C6.19.1 and F4.11) } & \geqslant \operatorname{deg}_{G_{\nabla}}(x, V(\mathcal{M}) \backslash \operatorname{ghost}(U))-2\left(\frac{\gamma}{\Omega^{*}}\right)^{3} \cdot \frac{2\left(\Omega^{*}\right)^{2}}{\gamma^{2}} k \\
\text { (as } x \notin \operatorname{shadow(ghost(U)))} & \geqslant \operatorname{deg}_{G_{\nabla}}(x, V(\mathcal{M}))-\frac{\eta k}{1000} \\
\text { (by (6.30)) } & \geqslant \sum_{S \in \mathcal{C}_{M}} v(S),
\end{aligned}
$$

a contradiction.
We use Lemma 6.8 to embed the components of $\mathcal{C}_{C D}$ in $(C \cup D) \backslash \operatorname{ghost}(U)$ with the following setting: $C_{\mathrm{L} 6.8}:=C, D_{\mathrm{L} 6.8}:=D, U_{\mathrm{L} 6.8}:=\operatorname{ghost}(U), X_{\mathrm{L} 6.8}^{*}:=$ $\left(\mathrm{N}_{G_{\nabla}}(x) \cap(C \cup D)\right) \backslash U_{\mathrm{L} 6.8}$, and $\left(T_{i}, r_{i}\right)$ are the rooted trees from $\mathcal{C}_{C D}$, with the roots being the neighbors of r. The constants in Lemma 6.8 are $\varepsilon_{\mathrm{L} 6.8}:=\varepsilon^{\prime} / 8, \beta_{\mathrm{L} 6.8}:=\sqrt{\varepsilon^{\prime}}$, and $\ell_{\mathrm{L} 6.8}:=|C| \geqslant \nu \pi k$. The rooted trees in $\mathcal{C}_{C D}$ are smaller than $\varepsilon_{\mathrm{L} 6.8} \ell_{\mathrm{L} 6.8}$ by (5.1). Condition (6.6) is satisfied by (6.31) and since $\left(\gamma / \Omega^{*}\right)^{3} \geqslant 50 \sqrt{\varepsilon^{\prime}}$.

It remains to deal with the components of $\tilde{\mathcal{C}} \backslash \mathcal{C}_{M}$. In what follows we shall assume that $\tilde{\mathcal{C}} \backslash \mathcal{C}_{M} \neq \emptyset$ (otherwise skip this step and go directly to the definition of T^{\prime} and \mathcal{C}_{1}, with $p=0$). Thus, by our choice of \mathcal{C}_{M}, we have

$$
\begin{equation*}
\sum_{S \in \mathcal{C}_{M}} v(S) \geqslant \operatorname{deg}_{G_{\nabla}}(x, V(\mathcal{M}))-\frac{\eta k}{900} \tag{6.33}
\end{equation*}
$$

Let $T_{1}, T_{2}, \ldots, T_{p}$ be the trees of $\tilde{\mathcal{C}} \backslash \mathcal{C}_{M}$ rooted at the vertices $r_{i} \in \operatorname{Ch}(r) \cap V\left(T_{i}\right)$ neighboring r. We shall sequentially extend our embedding of \mathcal{C}_{M} to subtrees $T_{i}^{\prime} \subseteq T_{i}$.

Let $U_{i} \subseteq V(G)$ be the union of the images of $\bigcup \mathcal{C}_{M} \cup\{r\}$ and of $T_{1}^{\prime}, \ldots, T_{i}^{\prime}$ under this embedding.

Suppose that we have embedded the trees $T_{1}^{\prime}, \ldots, T_{i}^{\prime}$ for some $i=0,1, \ldots, p-1$. We claim that at least one of the following holds:
$\left(\right.$ V1) $\operatorname{deg}_{G_{\nabla}}\left(x, V\left(G_{\exp }\right) \backslash\left(U \cup U_{i}\right)\right) \geqslant \frac{\eta k}{1000}$,
(V2) $\operatorname{deg}_{G_{\nabla}}\left(x, \mathbb{E} \backslash\left(U \cup U_{i}\right)\right) \geqslant \frac{\eta k}{1000}$, or
(V3) $\operatorname{deg}_{G_{\nabla}}\left(x, L^{\prime} \backslash\left(V\left(G_{\exp }\right) \cup \mathbb{E} \cup U \cup U_{i} \cup \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right)\right) \geqslant \frac{\eta k}{1000}$.
Indeed, suppose that none of (V1)-(V3) holds. Then, first note that since $U \subseteq$ $\operatorname{ghost}(U)$ and since $x \notin \operatorname{shadow}(\operatorname{ghost}(U), \eta k / 1000)$, we have

$$
\begin{equation*}
\operatorname{deg}_{G_{\nabla}}(x, U) \leqslant \frac{\eta k}{1000} \tag{6.34}
\end{equation*}
$$

Also,

$$
\begin{equation*}
\operatorname{deg}_{G_{\mathcal{D}}}\left(x, V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right) \leqslant \operatorname{deg}_{G_{\mathcal{D}}}(x, V(\mathcal{M}) \cup \mathbb{E}) \tag{6.35}
\end{equation*}
$$

We can now use (6.34), (6.35), and the definition of $V_{\text {good }}$ to get

$$
\begin{aligned}
& \operatorname{deg}_{G_{\nabla}}\left(x, V_{\text {good }} \backslash \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right) \\
& \leqslant \\
& \quad \operatorname{deg}_{G_{\nabla}}\left(x,\left(V(\mathcal{M}) \cup V\left(G_{\exp }\right) \cup \mathbb{E} \cup L^{\prime}\right) \backslash\left(U \cup \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right)\right) \\
& \quad+\operatorname{deg}_{G_{\nabla}}\left(x, \mathbb{L}_{\frac{9}{10} \eta, k}\left(G_{\nabla}\right) \backslash\left(\mathbb{H} \cup L^{\prime}\right)\right)+\frac{\eta k}{1000} .
\end{aligned}
$$

Using (5.19), we get

$$
\begin{aligned}
\operatorname{deg}_{G_{\nabla}} & \left(x, V_{\text {good }} \backslash \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right) \\
\leqslant & \operatorname{deg}_{G_{\nabla}}\left(x,\left(V\left(G_{\exp }\right) \cup \mathbb{E} \cup L^{\prime}\right) \backslash\left(V(\mathcal{M}) \cup U \cup \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right)\right) \\
& +\operatorname{deg}_{G_{\nabla}}(x, V(\mathcal{M}))+\frac{\eta k}{100}+\frac{\eta k}{1000}
\end{aligned}
$$

Recall that we do not have (V1), (V2), (V3). Using (6.33), we get

$$
\begin{aligned}
\operatorname{deg}_{G_{\nabla}} & \left(x, V_{\text {good }} \backslash \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right) \\
& \leqslant 3 \cdot \frac{\eta k}{1000}+\sum_{j=1}^{i} v\left(T_{j}^{\prime}\right)+\sum_{S \in \mathcal{C}_{M}} v(S)+\frac{\eta k}{900}+\frac{\eta k}{100}+\frac{\eta k}{1000} \\
& <\sum_{S \in \tilde{\mathcal{C}}} v(S)+\frac{\eta k}{40}
\end{aligned}
$$

a contradiction to (6.28).
In cases (V1)-(V2) we shall embed the entire tree $T_{i+1}^{\prime}:=T_{i+1}$. In case (V3) we either embed the entire tree $T_{i+1}^{\prime}:=T_{i+1}$ or embed only one vertex $T_{i+1}^{\prime}:=r_{i+1}$ (that will only happen in case (V3c)). In the latter case, we keep track of the components
of $T_{i+1}-r_{i+1}$ in the set $\mathcal{C}_{1, i+1}$ (we tacitly assume we set $\mathcal{C}_{1, i+1}:=\emptyset$ in all cases other than $(\mathbf{V 3 c}))$. The union of the sets $\mathcal{C}_{1, i}$ will later form the set \mathcal{C}_{1}. Let us go through our three cases in detail.

In case (V1) we embed T_{i+1} rooted at r_{i+1} using Lemma 6.5 for one tree (i.e., $\left.\ell_{\mathrm{L} 6.5}:=1\right)$ with the following sets/parameters: $H_{\mathrm{L6} 6}:=G_{\text {exp }}, U_{\mathrm{L} 6.5}:=U \cup U_{i}$, $U_{\mathrm{L} 6.5}^{*}:=\mathrm{N}_{G_{\nabla}}(x) \cap\left(V\left(G_{\exp }\right) \backslash\left(U \cup U_{i}\right)\right), V_{1}=V_{2}:=V\left(G_{\exp }\right), Q_{\mathrm{L} 6.5}:=1, \zeta_{\mathrm{L} 6.5}:=\rho$, and $\gamma_{\text {L6.5 }}:=\gamma$. Note that $\left|U \cup U_{i}\right|<k$, that $\left|\mathrm{N}_{G_{\nabla}}(x) \cap\left(V\left(G_{\exp }\right) \backslash\left(U \cup U_{i}\right)\right)\right| \geqslant$ $\eta k / 1000>32 \gamma k / \rho+1$, that $v\left(T_{i+1}\right) \leqslant \tau k<\rho k / 4$, and that $128 \gamma<\rho^{2}$.

In case (V2) we embed T_{i+1} rooted at r_{i+1} using Lemma 6.4 for one tree (i.e., $\left.\ell_{\text {L6.4 }}:=1\right)$ with the following setting: $H_{\text {L6.4 }}:=G-\mathbb{H}, \mathbb{E}_{\mathrm{L} 6.4}:=\mathbb{E}, U_{\mathrm{L6.4}}:=U \cup U_{i}$, $U_{\mathrm{L} 6.4}^{*}:=\mathrm{N}_{G_{\nabla}}(x) \cap\left(\mathbb{E} \backslash\left(U \cup U_{i}\right)\right), \Lambda_{\mathrm{L} 6.4}:=\Lambda, \gamma_{\mathrm{L} 6.4}:=\gamma$, and $\varepsilon_{\mathrm{L} 6.4}:=\varepsilon^{\prime}$. Note that $\left|U \cup U_{i}\right| \leqslant k<\Lambda k$, that $\left|\mathrm{N}_{G_{\nabla}}(x) \cap\left(\mathbb{E} \backslash\left(U \cup U_{i}\right)\right)\right| \geqslant \eta k / 1000>2 \varepsilon^{\prime} k$, and that $v\left(T_{i+1}\right) \leqslant \tau k<\gamma k / 2$.

We commence case (V3) with an auxiliary claim.
Claim 6.19.3. There exists a cluster $C_{0} \in \mathbf{V}$ such that

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(x,\left(C_{0} \cap L^{\prime}\right) \backslash\left(V\left(G_{\exp }\right) \cup U \cup U_{i} \cup \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right)\right) \geqslant \frac{\varepsilon^{\prime}}{\gamma^{2}} \mathfrak{c}
$$

Proof of Claim 6.19.3. Observe that $L^{\prime} \backslash\left(V\left(G_{\exp }\right) \cup \mathbb{E} \cup \mathbb{H} \cup U \cup U_{i}\right) \subseteq \cup \mathbf{V}$. Furthermore, since $x \in \bigcup \mathbf{V}$, we have

$$
E_{G_{\nabla}}\left[x, L^{\prime} \backslash\left(V\left(G_{\exp }\right) \cup \mathbb{E} \cup U \cup U_{i} \cup \text { shadow }\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right)\right] \subseteq E\left(G_{\mathcal{D}}\right)
$$

By Fact 4.8, there are at most $\frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2} \mathfrak{c}}$ clusters $C \in \mathbf{V}$ such that $\operatorname{deg}_{G_{\mathcal{D}}}(x, C)>0$. Using the assumption (V3), there exists a cluster $C_{0} \in \mathbf{V}$ such that

$$
\begin{aligned}
\operatorname{deg}_{G_{\mathcal{D}}} & \left(x,\left(C_{0} \cap L^{\prime}\right) \backslash\left(V\left(G_{\exp }\right) \cup U \cup U_{i} \cup \operatorname{shadow}\left(\operatorname{ghost}(U), \frac{\eta k}{1000}\right)\right)\right) \\
& \geqslant \frac{\eta k}{1000} \cdot \frac{\gamma^{2} \mathfrak{c}}{2\left(\Omega^{*}\right)^{2} k} \stackrel{(5.1)}{\geqslant} \frac{\varepsilon^{\prime}}{\gamma^{2}} \mathfrak{c}
\end{aligned}
$$

as desired.
Let us take a cluster C_{0} from Claim 6.19.3. We embed the root r_{i+1} of T_{i+1} in an arbitrary neighbor y of x in $\left(C_{0} \cap L^{\prime}\right) \backslash\left(V\left(G_{\exp }\right) \cup U \cup U_{i} \cup\right.$ shadow (ghost $\left.\left.(U), \frac{\eta k}{1000}\right)\right)$.

Let $H \subseteq G$ be the subgraph of G consisting of all edges in dense spots \mathcal{D} and all edges incident with \mathbb{H}^{\prime}. As by (5.17) y has at most $\eta k / 100$ neighbors in $\mathbb{H} \backslash \mathbb{H}^{\prime}$, and since $y \in L^{\prime} \subseteq \mathbb{L}_{9 \eta / 10, k}\left(G_{\nabla}\right)$ and $y \notin \operatorname{shadow}\left(U, \frac{\eta k}{100}\right)$, we find that

$$
\begin{aligned}
\operatorname{deg}_{H}\left(y, V(G) \backslash\left(\left(U \cup U_{i}\right) \cup\left(\mathbb{H} \backslash \mathbb{H}^{\prime}\right)\right)\right) & \geqslant\left(1+\frac{9 \eta}{10}\right) k-\frac{\eta k}{1000}-\left|U_{i}\right|-\frac{\eta k}{100} \\
& >k-\left|U_{i}\right|+\frac{\eta k}{2}
\end{aligned}
$$

Therefore, one of the three following subcases must occur (recall that $y \notin \mathbb{E}$ as $y \in$ $\left.C_{0} \in \mathbf{V}\right)$:
$(\mathbf{V} 3 \mathbf{a}) \operatorname{deg}_{G_{\nabla}}\left(y, \mathbb{E} \backslash\left(U \cup U_{i}\right)\right) \geqslant \frac{\eta k}{6}$,
$(\mathbf{V} 3 \mathbf{b}) \operatorname{deg}_{G_{\mathrm{reg}}}\left(y, \bigcup \mathbf{V} \backslash\left(U \cup U_{i}\right)\right) \geqslant \frac{\eta k}{6}$, or
(V3c) $\operatorname{deg}_{G_{\nabla}}\left(y, \mathbb{H}^{\prime}\right) \geqslant k-\left|U_{i}\right|+\frac{\eta k}{6}$.

In case (V3a) we embed the components of $T_{i+1}-r_{i+1}$ (as trees rooted at the children of r_{i+1}) using the same technique as in case (V2), with Lemma 6.4.

In (V3b) we embed the components of $T_{i+1}-r_{i+1}$ (as trees rooted at the children of r_{i+1}). By Fact 4.8 there exists a cluster $D \in \mathbf{V}$ such that

$$
\begin{equation*}
\operatorname{deg}_{G_{\mathrm{reg}}}\left(y, D \backslash\left(U \cup U_{i}\right)\right) \geqslant \frac{\eta k}{6} \cdot \frac{\gamma^{2} \mathfrak{c}}{2\left(\Omega^{*}\right)^{2} k}>\frac{\gamma^{2}}{2} \mathfrak{c} . \tag{6.36}
\end{equation*}
$$

We use Lemma 6.7 with input $\varepsilon_{\text {L6.7 }}:=\varepsilon^{\prime}, \beta_{\mathrm{L} 6.7}:=\gamma^{2}, C_{\mathrm{L} 6.7}:=D, D_{\mathrm{L} 6.7}:=C_{0}$, $X_{\mathrm{L} 6.7}^{*}=X_{\mathrm{L} 6.7}:=D \backslash\left(U \cup U_{i}\right)$, and $Y_{\mathrm{L} 6.7}:=C_{0} \backslash\left(U \cup U_{i} \cup\{y\}\right)$ to embed the tree T_{i+1} into the pair $\left(C_{0}, D\right)$, by embedding the components of $T_{i+1}-r_{i+1}$ one after the other. The numerical conditions of Lemma 6.7 hold because of Claim 6.19.3 and because of (6.36).

In case (V3c) we set $T_{i+1}^{\prime}:=r_{i+1}$ and define $\mathcal{C}_{1, i+1}$ as the set of all components of $T_{i+1}-r_{i+1}$. Then $\phi\left(\operatorname{Par}\left(\bigcup \mathcal{C}_{1, i+1}\right) \cap V\left(T_{i+1}^{\prime}\right)\right)=\{y\}$ and

$$
\begin{equation*}
\operatorname{deg}_{G_{\nabla}}\left(y, \mathbb{H}^{\prime}\right) \geqslant k-\left|U_{i}\right|+\frac{\eta k}{6} . \tag{6.37}
\end{equation*}
$$

When all the trees T_{1}, \ldots, T_{p} are processed, we define $T^{\prime}:=\{r\} \cup \bigcup \mathcal{C}_{M} \cup \bigcup_{i=1}^{p} T_{i}^{\prime}$ and set $\mathcal{C}_{1}:=\bigcup_{i=1}^{p} \mathcal{C}_{1, i}$. Thus (a) is also satisfied by (6.37) for $i=p$, since $\left|T^{\prime}\right|=\left|U_{p}\right|$. This finishes the proof of the lemma.

It turns out that our techniques for embedding a tree $T \in \operatorname{trees}(k)$ for configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$ are very similar. In Lemma 6.20 we resolve these tasks at one time. The proof of Lemma 6.20 follows the same basic strategy for each of the configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$ and differs only in the elementary procedures of embedding shrubs of T.

Lemma 6.20. Suppose that we are in Setting 5.1, and one of the following configurations can be found in G :
(a) configuration $(\diamond \mathbf{2})\left(\left(\Omega^{*}\right)^{2}, 5\left(\Omega^{*}\right)^{9}, \rho^{3}\right)$,
(b) configuration $(\diamond \mathbf{3})\left(\left(\Omega^{*}\right)^{2}, 5\left(\Omega^{*}\right)^{9}, \gamma / 2, \gamma^{3} / 100\right)$,
(c) configuration $(\diamond 4)\left(\left(\Omega^{*}\right)^{2}, 5\left(\Omega^{*}\right)^{9}, \gamma / 2, \gamma^{4} / 100\right)$, or
(d) configuration $(\diamond \mathbf{5})\left(\left(\Omega^{*}\right)^{2}, 5\left(\Omega^{*}\right)^{9}, \varepsilon^{\prime}, 2 /\left(\Omega^{*}\right)^{3}, \frac{1}{\left(\Omega^{*}\right)^{5}}\right)$.

Let (T, r) be a rooted tree of order k with a (τk)-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$. Then $T \subseteq G$.

Proof. First observe that each of the configurations given by (a)-(d) contains two sets $\mathbb{H}^{\prime \prime} \subseteq \mathbb{H}$ and $V_{1} \subseteq V(G) \backslash \mathbb{H}$ with

$$
\begin{align*}
& \operatorname{mindeg}_{G_{\nabla}}\left(\mathbb{H}^{\prime \prime}, V_{1}\right) \geqslant 5\left(\Omega^{*}\right)^{9} k, \tag{6.38}\\
& \operatorname{mindeg}_{G_{\nabla}}\left(V_{1}, \mathbb{H}^{\prime \prime}\right) \geqslant \varepsilon^{\prime} k . \tag{6.39}
\end{align*}
$$

For any seed $z \in W_{A} \cup W_{B}$ we define $T(z)$ as the forest consisting of all components of $T-\left(W_{A} \cup W_{B}\right)$ that contain children of z. Throughout the proof, we write ϕ for the current partial embedding of T into G.

Overview of the embedding procedure. As outlined in section 6.1.1 the embedding scheme is the same for configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$. The embedding ϕ is defined in two stages. In stage 1, we embed the seeds $W_{A} \cup W_{B}$, all the internal shrubs, all the end shrubs of \mathcal{S}_{A}, and a part ${ }^{14}$ of the end shrubs of \mathcal{S}_{B}. In stage 2 we embed the rest

[^10]

Fig. 9. Stage 1 of the embedding in the proof of Lemma 6.20. Starting from an already embedded seed $x \in W_{A}$, we extend the embedding (in this order) to (1) all the children $y \in W_{B}$ of x in the same hub (in gray), (2) a part $T^{\prime}(y)$ of the forest $T(y)$, (3) all the grandchildren $x^{\prime} \in W_{A}$ of x in the same hub, (4) the forest $T(x)$ together with the bordering cut-vertices $x^{*} \in W_{A}$.
of \mathcal{S}_{B}. Which part of \mathcal{S}_{B} is embedded in stage 1 and which part in stage 2 will be determined during stage 1 . We first give a rough outline of both stages listing some conditions which we require to be met, and then we describe each of the stages in detail.

Stage 1 is defined in $\left|W_{A} \cup\{r\}\right|$ steps. First we map r to any vertex in $\mathbb{H}^{\prime \prime}$. Then in each step we pick a vertex $x \in W_{A}$ for which the embedding ϕ has already been defined but such that ϕ is not yet defined for any of the children of x. In this step we embed $T(x)$, together with all the children and grandchildren of x, in the hub which contains x. For each child $y \in W_{B} \cap \operatorname{Ch}(x)$, Lemma 6.19 determines a subforest $T^{\prime}(y) \subseteq T(y)$, which is embedded in stage 1 , and sets $\mathcal{C}_{1}(y)$ and $\mathcal{C}_{2}(y)$, which will be embedded in stage 2 .

The embedding in each step of stage 1 will be defined so that the following properties hold:
(*1) All vertices from W_{A} are mapped to $\mathbb{H}^{\prime \prime}$.
(*2) All vertices except for W_{A} are mapped to $V(G) \backslash \mathbb{H}$.
(*3) For each $y \in W_{B}$ and for each $v \in \operatorname{Par}\left(V\left(\bigcup \mathcal{C}_{1}(y)\right)\right)$, we have that

$$
\operatorname{deg}_{G}\left(\phi(v), \mathbb{H}^{\prime}\right) \geqslant k+\frac{\eta k}{100}-v\left(T^{\prime}(y)\right) .
$$

(*4) For each $y \in W_{B}$ and for each $v \in \operatorname{Par}\left(V\left(\bigcup \mathcal{C}_{2}(y)\right)\right)$, we have that

$$
\operatorname{deg}_{G}\left(\phi(v), \mathbb{H}^{\prime}\right) \geqslant \frac{k}{2}+\frac{\eta k}{100}-v\left(T^{\prime}(y) \cup \bigcup \mathcal{C}_{1}(y)\right) .
$$

In stage 2, we shall utilize properties $\left({ }^{*} 3\right)$ and $\left({ }^{*} 4\right)$ to embed $T_{B}^{*}:=\bigcup \mathcal{S}_{B}-$ $\bigcup_{y \in W_{B}} T^{\prime}(y)$. Stage 2 is substantially simpler than stage 1 ; this is due to the fact that T_{B}^{*} consists only of end shrubs.

The embedding step of stage 1 . The embedding step is the same for configurations $(\diamond \mathbf{2})-(\diamond \mathbf{5})$, except for the embedding of internal shrubs. The order of the embedding steps is illustrated in Figure 9.

In each step we select a seed $x \in W_{A}$ already embedded in G but such that none of $\operatorname{Ch}(x)$ are embedded. By $\left({ }^{*} 1\right)$, or by the choice of $\phi(r)$, we have $\phi(x) \in \mathbb{H}^{\prime \prime}$. So by (6.38) we have

$$
\begin{equation*}
\operatorname{deg}_{G_{\nabla}}\left(\phi(x), V_{1} \backslash U\right) \geqslant 5\left(\Omega^{*}\right)^{9} k-k . \tag{6.40}
\end{equation*}
$$

First, we embed successively in $\left|W_{B} \cap \operatorname{Ch}(x)\right|$ steps the seeds $y \in W_{B} \cap \operatorname{Ch}(x)$ together with components $T^{\prime}(y) \subseteq T(y)$ which will be determined on the way. Suppose that in a certain step we are to embed $y \in W_{B} \cap \operatorname{Ch}(x)$ and the (to be determined) tree $T^{\prime}(y)$. Let

$$
F:=\bigcup_{i=0}^{2} \operatorname{shadow}_{G_{\nabla}-\mathbb{H}}^{(i)}\left(\operatorname{ghost}(U), \frac{\eta k}{10^{5}}\right)
$$

where U is the set of vertices used by the embedding ϕ in previous steps. Since $|U| \leqslant k$, Fact 4.12 gives us that $|F| \leqslant \frac{10^{10}\left(\Omega^{*}\right)^{2}}{\eta^{2}} k$. We embed y anywhere in $\left(\mathrm{N}_{G}(\phi(x)) \cap V_{1}\right) \backslash F$; cf. (6.38). Note that then (*2) holds for y. We use Lemma 6.19 in order to embed $T^{\prime}(y) \subseteq T(y)$ (the subtree $T^{\prime}(y)$ is determined by Lemma 6.19). Lemma 6.19 ensures that $\left({ }^{*} 3\right)$ and $\left({ }^{*} 4\right)$ hold and that we have $\phi\left(V\left(T^{\prime}(y)\right)\right) \subseteq V(G) \backslash \mathbb{H}$.

Also, we map the vertices $x^{\prime} \in W_{A} \cap \operatorname{Ch}(y)$ to $\mathbb{H}^{\prime \prime} \backslash U$. To justify this step, employing (${ }^{*} 2$), it is enough to prove that

$$
\begin{equation*}
\operatorname{deg}\left(\phi(y), \mathbb{H}^{\prime \prime}\right) \geqslant\left|W_{A}\right| \tag{6.41}
\end{equation*}
$$

Indeed, on the one hand, we have $\left|W_{A}\right| \leqslant 336 / \tau$ by Definition 3.3(c). On the other hand, we have that $\phi(y) \in V_{1}$, and thus (6.39) applies. We can thus embed x^{\prime} as planned, ensuring $\left(^{*} 1\right)$ and finishing the step for y.

Next, we sequentially embed the components \tilde{T} of $T(x)$. In the following, we describe such an embedding procedure only for an internal shrub \tilde{T}, with x^{*} denoting the other neighbor of \tilde{T} in $W_{A}\left(c f .\left({ }^{*} 1\right)\right)$. The case when \tilde{T} is an end shrub is analogous: Actually it is even easier as we do not have to worry about placing x^{*} well. The actual embedding of \tilde{T} together with x^{*} depends on the configuration we are in. We shall slightly abuse notation by letting U now denote everything embedded before the tree \tilde{T}.

For configuration $(\diamond \mathbf{2})$, we use Lemma 6.5 for one tree, namely $\tilde{T}-x^{*}$, using the following setting: $Q_{\mathrm{L} 6.5}:=1, \gamma_{\mathrm{L} 6.5}:=\gamma, \zeta_{\mathrm{L} 6.5}:=\rho^{3}, H_{\mathrm{L} 6.5}:=G_{\mathrm{exp}}, U_{\mathrm{L} 6.5}:=U$, and $U_{\mathrm{L} 6.5}^{*}:=\left(\mathrm{N}_{G_{\nabla}}(\phi(x)) \cap V_{1}\right) \backslash U$ (this last set is large enough by (6.40)). The child of x gets embedded in $\left(\mathrm{N}_{G_{\nabla}}(\phi(x)) \cap V_{1}\right) \backslash U$, the vertices at odd distance from x get embedded in V_{1}, and the vertices at even distance from x get embedded in V_{2}. In particular, $\operatorname{Par}_{T}\left(x^{*}\right)$, the parent of x^{*}, gets embedded in V_{1}. After this, we accommodate x^{*} in a vertex in $\mathbb{H}^{\prime \prime} \backslash U$ which is adjacent to $\phi\left(\operatorname{Par}_{T}\left(x^{*}\right)\right)$. This is possible by the same reasoning as in (6.41).

For configuration $(\diamond \mathbf{3})$, we use Lemma 6.15 to embed \tilde{T} with the setting $\gamma_{\mathrm{L} 6.15}:=$ $\gamma, \delta_{\mathrm{L} 6.15}:=\gamma^{3} / 100, U_{\mathrm{L} 6.15}:=U$, and $U_{\mathrm{L} 6.15}^{*}:=\left(\mathrm{N}_{G_{\nabla}}(\phi(x)) \cap V_{1}\right) \backslash U$ (this last set is large enough by (6.40)). Then the child of x gets embedded in $\left(\mathrm{N}_{G_{\nabla}}(\phi(x)) \cap V_{1}\right) \backslash U$, vertices of \tilde{T} of odd distance to x (i.e., of even distance to the root of \tilde{T}) get embedded in $V_{1} \backslash U$, and vertices of even distance get embedded in $V_{2} \backslash U$. We extend the embedding by mapping x^{*} to a suitable vertex in $\mathbb{H}^{\prime \prime} \backslash U$ adjacent to $\phi\left(\operatorname{Par}_{T}\left(x^{*}\right)\right)$ in the same way as above.

For configuration $(\diamond 4)$, we use Lemma 6.16 to embed \tilde{T} with the setting $\gamma_{\mathrm{L} 6.16}:=$ $\gamma, \delta_{\mathrm{L} 6.16}:=\gamma^{4} / 100, U_{\mathrm{L} 6.16}:=U$, and $U_{\mathrm{L} 6.16}^{*}:=\left(\mathrm{N}_{G_{\nabla}}(\phi(x)) \cap V_{1}\right) \backslash U$ (this last set is large enough by (6.40)). The fruit $r_{\text {L6.16 }}^{\prime}$ in the lemma is chosen as $\operatorname{Par}_{T}\left(x^{*}\right)$. Note that this is indeed a fruit (in \tilde{T}) because of Definition 3.3(i). Then the child of x gets embedded in $\left(\mathrm{N}_{G_{\nabla}}(\phi(x)) \cap V_{1}\right) \backslash U$, the vertex $r_{\text {L6.16 }}^{\prime}=\operatorname{Par}_{T}\left(x^{*}\right)$ gets embedded in $V_{1} \backslash U$, and the rest of T gets embedded in $\left(\mathbb{E}^{\prime} \cup V_{2}\right) \backslash U$. This allows us to extend the embedding to x^{*} as above.

In configuration ($\diamond \mathbf{5}$), let $\mathbf{W} \subseteq \mathbf{V}$ denote the set of those clusters which have at least a $\frac{1}{2\left(\Omega^{*}\right)^{5}}$-fraction of their vertices contained in the set

$$
U^{\prime}:=U \cup \operatorname{shadow}_{G_{\mathrm{reg}}}\left(U, \frac{k}{\left(\Omega^{*}\right)^{3}}\right)
$$

We get from Fact 4.12 that $\left|U^{\prime}\right| \leqslant 2\left(\Omega^{*}\right)^{4} k$, and consequently $\left|U^{\prime} \cup \bigcup \mathbf{W}\right| \leqslant 4\left(\Omega^{*}\right)^{9} k$. By (6.40) we can find a vertex $v \in\left(\mathrm{~N}_{G}(\phi(x)) \cap V_{1}\right) \backslash\left(U^{\prime} \cup \bigcup \mathbf{W}\right)$.

We use the fact that $v \notin \operatorname{shadow}_{G_{\text {reg }}}\left(U, k /\left(\Omega^{*}\right)^{3}\right)$ together with inequality (5.28) to see that $\operatorname{deg}_{G_{\text {reg }}}\left(v, V\left(G_{\text {reg }}\right) \backslash U\right) \geqslant k /\left(\Omega^{*}\right)^{3}$. Now, since there are only boundedly many clusters seen from v (cf. Fact 4.8), there must be a cluster $D \in \mathbf{V}$ such that

$$
\begin{equation*}
\operatorname{deg}_{G_{\mathrm{reg}}}(v, D \backslash U) \geqslant \frac{\gamma^{2}}{2 \cdot\left(\Omega^{*}\right)^{5}}|D| \geqslant \gamma^{3}|D| . \tag{6.42}
\end{equation*}
$$

Let C be the cluster containing v. We have $\left|\left(C \cap V_{1}\right) \backslash U\right| \geqslant \frac{1}{2\left(\Omega^{*}\right)^{5}}|C| \geqslant \gamma^{3}|C|$ because of (5.29) and since $C \notin \mathbf{W}$. Thus, by Fact 2.1, $\left(\left(C \cap V_{1}\right) \backslash U, D \backslash U\right)$ is a $2 \varepsilon^{\prime} / \gamma^{3}$-regular pair of density at least $\gamma^{2} / 2$. We can therefore embed \tilde{T} in this pair using the regularity method. Moreover, by (6.42), we can do so by mapping the child z of x to v. Thus the parent of x^{*} (lying at even distance to z) will be embedded in $\left(C \cap V_{1}\right) \backslash U$. We can then extend our embedding to x^{*} as above.

This finishes our embedding of $T(x)$. Note that in all cases we have $\phi\left(x^{*}\right) \in \mathbb{H}^{\prime \prime}$ and $\phi(V(\tilde{T})) \subseteq V(G) \backslash \mathbb{H}$, as required by $\left({ }^{*} 1\right)$ and ($\left.{ }^{*} 2\right)$.

The embedding steps of stage 2 . For $i=1,2$, set $Z_{B}:=\bigcup_{y \in W_{B}} \operatorname{Ch}\left(T^{\prime}(y)\right) \cap \bigcup \mathcal{C}_{i}(y)$.
First, we embed all the vertices $z \in Z_{2}$ in \mathbb{H}^{\prime}. By ($\left.{ }^{*} 2\right)$, until now, only vertices of $W_{A} \cup Z_{2}$ are mapped to \mathbb{H}^{\prime}, and using (*4) and the properties (c), (k), and (1) of Definition 3.3, we see that

$$
\begin{aligned}
\operatorname{deg}_{G}\left(\phi(\operatorname{Par}(z)), \mathbb{H}^{\prime}\right) & \geqslant \frac{\eta k}{100}+\frac{k}{2}-\sum_{y \in W_{B}} v\left(T^{\prime}(y) \cup \bigcup \mathcal{C}_{1}(y)\right) \\
& >\left|W_{A}\right|+\left|Z_{2}\right| .
\end{aligned}
$$

So there is space for the vertex z in $\mathbb{H}^{\prime} \cap \phi\left(\mathrm{N}_{G}(\operatorname{Par}(z))\right)$.
Next, we embed all the vertices $z \in Z_{1}$ in \mathbb{H}^{\prime}. By $\left({ }^{*} 2\right)$, until now only vertices of $W_{A} \cup Z_{2} \cup Z_{1}$ are mapped to \mathbb{H}^{\prime}, and by (${ }^{*} 3$) we have, similarly as above,

$$
\operatorname{deg}_{G}\left(\phi(\operatorname{Par}(z)), \mathbb{H}^{\prime}\right)>\left|W_{A}\right|+\left|Z_{2}\right|+\left|Z_{1}\right| .
$$

So z can be embedded in $\mathbb{H}^{\prime} \cap \mathrm{N}_{G}(\phi(\operatorname{Par}(z)))$ as planned.
Finally, for $z \in Z_{1} \cup Z_{2}$, denote by T_{z} the component of $\mathcal{C}_{1} \cup \mathcal{C}_{2}$ that contains z. We use Lemma 6.18 to embed the rest of the rooted tree $\left(T_{z}, z\right)$. (Note that our parameters work because of (5.1).) Once all rooted trees $\left(T_{z}, z\right)$ with $z \in Z_{1} \cup Z_{2}$ have been processed, we have finished stage 2 and thus the proof of the lemma.
6.5.3. Embedding in configurations $(\diamond 6)-(\diamond 10)$. We follow the schemes outlined in sections 6.1.2, 6.1.4, 6.1.5, and 6.1.6.

Embedding a tree $T_{\mathrm{T} 1.2} \in \operatorname{trees}(k)$ using configuration $(\diamond \mathbf{6}),(\diamond \mathbf{7})$, or $(\diamond \mathbf{8})$ has two parts: First the internal part of $T_{T 1.2}$ is embedded, and then this partial embedding is extended to end shrubs of $T_{\mathrm{T} 1.2}$ as well. Lemma 6.21 (for configurations ($\triangleright \boldsymbol{6}$) and $(\diamond \mathbf{7})$) and Lemma 6.22 (for configuration $(\diamond \mathbf{8})$) are used for the former part, and Lemmas 6.23 and 6.24 (depending on whether we have ($(\mathbf{1})$ or $(\varsigma \mathbf{2})$) are used for the latter. Lemma 6.25 then puts these two pieces together.

Embedding using configurations $(\diamond \mathbf{9})$ and $(\diamond \mathbf{1 0})$ is resolved in Lemmas 6.26 and 6.27, respectively.

Lemma 6.21. Suppose we are in Settings 5.1 and 5.4, and we have one of the following two configurations:

- configuration $(\diamond \boldsymbol{6})\left(\delta_{6}, \tilde{\varepsilon}, d^{\prime}, \mu, 1,0\right)$ or
- configuration $(\diamond \mathbf{7})\left(\delta_{7}, \frac{\eta \gamma}{400}, \tilde{\varepsilon}, d^{\prime}, \mu, 1,0\right)$,
with $10^{5} \sqrt{\gamma}\left(\Omega^{*}\right)^{2} \leqslant \delta_{6}^{4} \leqslant 1,10^{2} \sqrt{\gamma}\left(\Omega^{*}\right)^{3} / \Lambda \leqslant \delta_{7}^{3}<\eta^{3} \gamma^{3} / 10^{6}$, $d^{\prime}>10 \tilde{\varepsilon}>0$, and $d^{\prime} \mu \tau k \geqslant 4 \cdot 10^{3}$. Both configurations contain distinguished sets $V_{0}, V_{1} \subseteq \mathbb{A}_{0}$ and $V_{2}, V_{3} \subseteq \mathbb{A}_{1}$.

Suppose that $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ is a (τk)-fine partition of a rooted tree (T, r) of order at most k such that $\left|W_{A} \cup W_{B}\right| \leqslant k^{0.1}$. Let T^{\prime} be the tree induced by all the cut-vertices $W_{A} \cup W_{B}$ and all the internal shrubs.

Then there exists an embedding ϕ of T^{\prime} such that

$$
\phi\left(W_{A}\right) \subseteq V_{1}, \quad \phi\left(W_{B}\right) \subseteq V_{0}, \quad \text { and } \quad \phi\left(T^{\prime}-\left(W_{A} \cup W_{B}\right)\right) \subseteq \mathbb{A}_{1}
$$

Proof. For simplicity, let us assume that $r \in W_{A}$. The case when $r \in W_{B}$ is similar. The (τk)-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ induces a (τk)-fine partition in T^{\prime}. By Lemma 3.8, the tree T^{\prime} has an ordered skeleton $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$, where the X_{i} are either shrubs or hubs (X_{0} being a hub).

Our strategy is as follows. We sequentially embed the hubs and the internal shrubs in the order given by the ordered skeleton. For embedding the hubs we use Lemma 6.5 in preconfiguration ($\mathbf{e x p}$), and Lemma 6.9 in preconfiguration ($\mathbf{r e g}$). For embedding the internal shrubs, we use Lemmas 6.13 and 6.14 if we have configurations $(\diamond \mathbf{6})$ and $(\diamond \mathbf{7})$, respectively.

Throughout, ϕ denotes the current (partial) embedding of $\left(X_{0}, X_{1} \ldots, X_{m}\right)$. In consecutive steps, we extend ϕ. We define auxiliary sets $D_{i} \subseteq V(G)$, which will serve for reserving space for the roots of the shrubs X_{i}. So the set $Z_{<i}:=\bigcup_{j<i}\left(\phi\left(X_{j}\right) \cup D_{j}\right)$ contains what is already used and what should (mainly) be avoided.

Let $W_{A, i}:=W_{A} \cap V\left(X_{i}\right)$ and $W_{B, i}:=W_{B} \cap V\left(X_{i}\right)$. For each $y \in W_{A, j}$ with $j \leqslant i$ let

$$
S_{y}:=\left(V_{2} \cap \mathrm{~N}_{G}(\phi(y))\right) \backslash Z_{<i}
$$

except if the latter set has size $>k$; in that case we choose a subset of size k. This is a target set for the roots of shrubs adjacent to y.

Also, in the case when X_{i} is a shrub, we write r_{i} for its root, and f_{i} for the only other vertex neighboring $W_{A} \cup W_{B}$. Note that f_{i} is a fruit of $\left(X_{i}, r_{i}\right)$.

The value $h=6$ or $h=7$ indicates whether we have configuration ($\diamond \mathbf{6})$ or $(\diamond \mathbf{7})$. Define

$$
\begin{equation*}
F_{i}:=\operatorname{shadow}_{G-\mathbb{H}}\left(Z_{<i}, \frac{\delta_{h} k}{4}\right) \cup Z_{<i} . \tag{6.43}
\end{equation*}
$$

Define $U_{i}:=F_{i}$ if we have preconfiguration (exp) (note that in that case we have configuration $(\diamond \boldsymbol{6})$). To define U_{i} in the case of preconfiguration (reg), we make use of the superregular pairs $\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right)(j \in \mathcal{Y})$. Set

$$
\begin{equation*}
U_{i}:=F_{i} \cup \bigcup\left\{Q_{1}^{(j)}: j \in \mathcal{Y},\left|Q_{1}^{(j)} \cap F_{i}\right| \geqslant \frac{\left|Q_{1}^{(j)}\right|}{2}\right\} \tag{6.44}
\end{equation*}
$$

In either case, we have $\left|U_{i}\right| \leqslant 2\left|F_{i}\right|$.

Finally, set

$$
\begin{equation*}
W_{i}:=\operatorname{shadow}_{G-\mathbb{H}}\left(U_{i}, \frac{\delta_{h} k}{2}\right) \cup Z_{<i} \tag{6.45}
\end{equation*}
$$

We will now show how to embed successively all X_{i}. At each step i, our embedding ϕ will have the following properties:
(a) $\phi\left(W_{A, i}\right) \subseteq V_{1} \backslash F_{i}$, and $\phi\left(W_{B, i}\right) \subseteq V_{0}$.
(b) For each $y \in W_{A, j}$ with $j \leqslant i$ we have $\left|S_{y} \cap \phi\left(X_{i}\right)\right| \leqslant\left|S_{y} \cap D_{i}\right|+k^{3 / 4}$.
(c) $\left|Z_{<i+1}\right| \leqslant 2 k$.
(d) $D_{i} \subseteq \mathbb{A}_{1} \backslash\left(\phi\left(X_{i}\right) \cup Z_{<i}\right)$.
(e) $\phi\left(X_{i}-r_{i}\right)$ is disjoint from $\bigcup_{j<i} D_{j}$.
(f) $\phi\left(f_{i}\right) \in V_{2} \backslash W_{i}$ if X_{i} is a shrub.
(g) $\phi\left(X_{i}\right) \subseteq \mathbb{A}_{1}$ if X_{i} is a shrub.
(We remark that since r_{i} is not defined for hubs X_{i}, condition (e) means that $\phi\left(X_{i}\right)$ is disjoint from $\bigcup_{j<i} \cup D_{j}$ for hubs X_{i}.)

It is clear that conditions (a) and (g) ensure that in step m we have found the desired embedding for T^{\prime}.

Before we show how to embed each X_{i} fulfilling the properties above, let us quickly derive a useful bound. By Fact 4.12 and (c), we have that $\left|F_{i}\right| \leqslant \frac{9 \Omega^{*}}{\delta_{h}} k$ for all $i \leqslant m$. Thus, using $\left|U_{i}\right| \leqslant 2\left|F_{i}\right|$, and Fact 4.12 and (c) again, we get that

$$
\begin{equation*}
\left|W_{i}\right| \leqslant \frac{38\left(\Omega^{*}\right)^{2}}{\delta_{h}^{2}} k \tag{6.46}
\end{equation*}
$$

Now suppose we are at step i with $0 \leqslant i \leqslant m$. That is, we have already embedded all X_{j} with $j<i$ and are about to embed X_{i}.

First assume that X_{i} is a hub. Note that if $i \neq 0$, then there is exactly one fruit f_{ℓ} with $\ell<i$ which neighbors X_{i}. Set $N_{i}:=\mathrm{N}_{G}\left(\phi\left(f_{\ell}\right)\right)$ in this case, and let $N_{i}:=V(G)$ for $i=0$. We distinguish between the two preconfigurations we might be in.

Suppose first we are in preconfiguration (exp). Recall that then we are in configuration ($\diamond \mathbf{6}$).

We use Lemma 6.5 to embed the single tree X_{i} with the following setting: $\ell_{\text {L6.5 }}:=$ $1, V_{1, \mathrm{~L} 6.5}:=V_{1}, V_{2, \mathrm{~L} 6.5}:=V_{0}, U_{\mathrm{L} 6.5}^{*}:=\left(N_{i} \cap V_{1}\right) \backslash U_{i}=\left(N_{i} \cap V_{1}\right) \backslash F_{i}, U_{\mathrm{L} 6.5}:=U_{i}=F_{i}$, $Q_{\mathrm{L} 6.5}:=\frac{18 \Omega^{*}}{\delta_{6}}, \zeta_{\mathrm{L} 6.5}:=\delta_{6}$, and $\gamma_{\mathrm{L} 6.5}:=\gamma$. Note that $U_{\mathrm{L} 6.5}^{*}$ is large enough by (f) for ℓ and by (5.38) and (5.42), respectively. Lemma 6.5 gives an embedding of the tree X_{i} such that $\phi\left(V_{\text {even }}\left(X_{i}\right)\right) \subseteq V_{1} \backslash F_{i}$ and $\phi\left(V_{\text {odd }}\left(X_{i}\right)\right) \subseteq V_{0} \backslash F_{i}$, which maps the root of X_{i} to the neighborhood of its parent's image. Note that this ensures (a) and (e) for step i, and setting $D_{i}:=\emptyset$ we also ensure (c) and (d). Property (b) holds since $V_{2} \cap \phi\left(X_{i}\right)=\emptyset$. Since X_{i} is a hub, (f) and (g) are empty.

Suppose now we are in preconfiguration (reg). Then let $j \in \mathcal{Y}$ be such that $\left(N_{i} \cap Q_{1}^{(j)}\right) \backslash U_{i} \neq \emptyset$. Such an index j exists by (f) for ℓ and by (5.38) and (5.42), respectively, if $i \neq 0$, and trivially if $i=0$. We shall use Lemma 6.9 to embed X_{i} in $\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right)$. More precisely, we use Lemma 6.9 with $A_{\mathrm{L} 6.9}:=Q_{1}^{(j)}, B_{\mathrm{L} 6.9}:=Q_{0}^{(j)}$, $\varepsilon_{\mathrm{L} 6.9}:=\tilde{\varepsilon}, d_{\mathrm{L} 6.9}:=d^{\prime}, \ell_{\mathrm{L} 6.9}:=\mu k, U_{A}:=U_{i} \cap A, U_{B}:=\phi\left(W_{B,<i}\right) \cap B$ (then $\left|U_{A}\right| \leqslant|A| / 2$ by the definition of U_{i} and the choice of $\left.j\right)$.

Lemma 6.9 yields a $\left(V_{\text {even }}\left(X_{i}\right) \hookrightarrow V_{1} \backslash F_{i}, V_{\text {odd }}\left(X_{i}\right) \hookrightarrow V_{0}\right)$-embedding of X_{i}, which maps the root of X_{i} to the neighborhood of its parent's image. Setting $D_{i}:=\emptyset$, we have (a)-(g).

So let us now assume that X_{i} is a shrub. The parent y of the root r_{i} of X_{i} lies in $W_{A, \ell}$ for some $\ell<i$. By (a) for ℓ, we mapped y to a vertex $\phi(y) \in V_{1} \backslash F_{\ell}$. As
$\operatorname{deg}_{G}\left(\phi(y), V_{2}\right) \geqslant \delta_{h} k$ (by (5.37) and (5.41), respectively), and since $\phi(y) \notin F_{\ell}$, we have

$$
\begin{equation*}
\left|S_{y}\right| \geqslant \frac{3 \delta_{h} k}{4} \tag{6.47}
\end{equation*}
$$

Using (b) for all j with $\ell \leqslant j<i$, and using that the sets D_{j} are pairwise disjoint by (d), we see that

$$
\begin{aligned}
\left|S_{y} \cap \phi\left(X_{0} \cup \cdots \cup X_{i-1}\right)\right| & =\left|S_{y} \cap \phi\left(X_{\ell} \cup \cdots \cup X_{i-1}\right)\right| \\
& \leqslant\left|S_{y} \cap \bigcup_{\ell \leqslant j<i} D_{j}\right|+m \cdot k^{3 / 4} \leqslant\left|S_{y} \cap \bigcup_{0 \leqslant j<i} D_{j}\right|+m \cdot k^{3 / 4} .
\end{aligned}
$$

Therefore, and as by (d) and (e) the sets $\phi\left(X_{0} \cup \cdots \cup X_{i-1}\right)$ and $\bigcup_{0 \leqslant j<i} D_{j}$ are disjoint except for the at most $m \leqslant\left|W_{A} \cup W_{B}\right| \leqslant k^{0.1}$ roots r_{j} of shrubs X_{j}, and since $k \gg 1$, we have
$\left|S_{y}\right| \geqslant\left|S_{y} \cap \phi\left(X_{0} \cup \cdots \cup X_{i-1}\right)\right|+\left|S_{y} \cap \bigcup_{0 \leqslant j<i} D_{j}\right|-m \geqslant 2\left|S_{y} \cap \phi\left(X_{0} \cup \cdots \cup X_{i-1}\right)\right|-k^{0.9}$.
Thus,

$$
\left|S_{y} \backslash \phi\left(X_{0} \cup \cdots \cup X_{i-1}\right)\right| \geqslant \frac{\left|S_{y}\right|-k^{0.9}}{2} \stackrel{(6.47)}{\geqslant} \frac{3 \delta_{h} k}{8}-\frac{k^{0.9}}{2}>\frac{\delta_{h} k}{3}
$$

So for $U^{*}:=S_{y} \backslash \phi\left(X_{0} \cup \cdots \cup X_{i-1}\right)$ we have that $\left|U^{*}\right| \geqslant \frac{\delta_{h} k}{3}$. If we have configuration $(\diamond \boldsymbol{6})$ or $(\diamond \boldsymbol{7})$, we use Lemma 6.13 or 6.14 , respectively, with input $U_{\mathrm{L} 6.13-6.14}:=W_{i}, U_{\mathrm{L} 6.13-6.14}^{*}:=U^{*}, L_{\mathrm{L} 6.13-6.14}:=\left|W_{A, i}\right|, \gamma_{\mathrm{L} 6.13-6.14}:=\gamma$, the family $\left\{P_{t}\right\}_{\text {L6.13-6.14 }}:=\left\{S_{y}\right\}_{y \in W_{A, j}, j<i}$, and the rooted tree $\left(X_{i}, r_{i}\right)$ with fruit f_{i}. Further, for configuration $(\diamond \boldsymbol{6})$, set $\delta_{\mathrm{L} 6.13}:=\delta_{6}, V_{2, \mathrm{~L} 6.13}:=V_{2}$, and $V_{3, \mathrm{~L} 6.13}:=V_{3}$, and for configuration $(\diamond 7)$, set $\delta_{\mathrm{L} 6.14}:=\delta_{7}, \ell_{\mathrm{L} 6.14}:=1, Y_{1, \mathrm{~L} 6.14}:=V_{2}$, and $Y_{2, \mathrm{~L} 6.14}:=V_{3}$. The output of Lemma 6.13 or 6.14 , respectively, is the extension of our embedding ϕ to X_{i}, and a set $D_{i}:=C_{\text {L6.13-6.14 }} \subseteq\left(V_{2} \cup V_{3}\right) \backslash\left(W_{i} \cup \phi\left(X_{i}\right)\right)$ for which property (a) (which is empty) and properties (b)-(g) hold.

Lemma 6.22. Suppose that we are in Settings 5.1 and 5.4, and suppose further that we have configuration $(\diamond \mathbf{8})\left(\delta, \frac{\eta \gamma}{400}, \varepsilon_{1}, \varepsilon_{2}, d_{1}, d_{2}, \mu_{1}, \mu_{2}, h_{1}, 0\right)$, with $2 \cdot 10^{5}\left(\Omega^{*}\right)^{6} / \Lambda \leqslant$ $\delta^{6}, \delta<\gamma^{2} \eta^{4} /\left(10^{16}\left(\Omega^{*}\right)^{2}\right), d_{2}>10 \varepsilon_{2}>0, d_{2} \mu_{2} \tau k \geqslant 4 \cdot 10^{3}$, and $\max \left\{\varepsilon_{1}, \tau / \mu_{1}\right\} \leqslant$ $\eta^{2} \gamma^{2} d_{1} /\left(10^{10}\left(\Omega^{*}\right)^{3}\right)$. Recall that we have distinguished sets V_{0}, \ldots, V_{4} and a regularized matching \mathcal{N}.

Let $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ be a (τk)-fine partition of a rooted tree (T, r) of order at most k. Let T^{\prime} be the tree induced by all the cut-vertices $W_{A} \cup W_{B}$ and all the internal shrubs. Suppose that

$$
\begin{equation*}
v\left(T^{\prime}\right)<h_{1}-\frac{\eta^{2} k}{10^{5}} \tag{6.48}
\end{equation*}
$$

Then there exists an embedding ϕ of T^{\prime} such that $\phi\left(W_{A}\right) \subseteq V_{1}, \phi\left(W_{B}\right) \subseteq V_{0}$, and $\phi\left(T^{\prime}\right) \subseteq \mathbb{A}_{0} \cup \mathbb{A}_{1}$.

Proof. We assume that $r \in W_{A}$. The case when $r \in W_{B}$ is similar.
Let \mathcal{K} be the set of all hubs of the (τk)-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of T. For each such hub $K \in \mathcal{K}$ set $Y_{K}:=K \cup \mathrm{Ch}_{T^{\prime}}(K)$. We call the subgraphs Y_{K} extended
hubs. Set $\mathcal{Y}:=\left\{Y_{K}: K \in \mathcal{K}\right\}$ and $W_{C}:=V(\cup \mathcal{Y} \backslash \cup \mathcal{K})$. Since $W_{C} \subseteq V\left(T^{\prime}\right)$, we clearly have that $\left|W_{C}\right| \leqslant\left|W_{A} \cup W_{B}\right|$.

Note that the forest $T^{\prime}-\bigcup \mathcal{Y}$ consists of the set \mathcal{P} of peripheral subshrubs of internal shrubs of ($W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}$), and the set \mathcal{S} consists of principal subshrubs of internal shrubs of $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$. It is not difficult to observe that there is a sequence $\left(X_{0}, X_{1}, \ldots, X_{m}\right)$ such that $X_{i}=\left(M_{i}, Y_{i}, \mathcal{P}_{i}\right), M_{i} \in \mathcal{S}$ and $\mathcal{P}_{i} \subseteq \mathcal{P}$ for each $i \leqslant m$, and such that we have the following:
(I) $M_{0}=\emptyset$ and Y_{0} contains r.
(II) \mathcal{P}_{i} are exactly those peripheral subshrubs whose parents lie in Y_{i}.
(III) The parent f_{i} of Y_{i} lies in M_{i} (unless $i=0$).
(IV) The parent r_{i} of M_{i} lies in some Y_{j} with $j<i$ (unless $i=0$).
(V) $\bigcup_{i \leqslant m} V\left(M_{i} \cup Y_{i} \cup \bigcup \mathcal{P}_{i}\right)=V\left(T^{\prime}\right)$.

See Figure 10 for an illustration.

Fig. 10. An example of a sequence $\left(X_{0}, X_{1}, X_{2}, X_{3}, \ldots\right)$ in Lemma 6.22.
We now successively embed the elements of X_{i}, except possibly for a part of the subshrubs in \mathcal{P}_{i}. The omitted peripheral subshrubs will be embedded at the very end, after having completed the inductive procedure that we will now describe.

We shall make use of the following lemmas: Lemma 6.9 (for embedding hubs), Lemmas 6.10 and 6.7 (for embedding peripheral subshrubs in \mathcal{N}), and Lemma 6.14 (for embedding principal subshrubs in $V_{3} \cup V_{4}$).

Throughout, ϕ denotes the current (partial) embedding of T^{\prime}. In each step i we embed $M_{i} \cup Y_{i}$ and a subset of \mathcal{P}_{i}, and denote by $\phi\left(X_{i}\right)$ the image of these sets (as far as it is defined). We also define an auxiliary set $D_{i} \subseteq V(G)$ which will ensure that there is enough space for the roots of the subshrubs M_{ℓ} with $\ell>i$. Set

$$
Z_{<i}:=\bigcup_{j<i}\left(\phi\left(X_{j}\right) \cup D_{j}\right) .
$$

Our plan for embedding the various parts of X_{i} is depicted in Figure 11, which is a refined version of Figure 6.

Let $W_{O, i}:=W_{O} \cap V\left(Y_{i}\right)$ for $O=A, B, C$. For each $y \in W_{C, i}$, let

$$
S_{y}:=\left(V_{3} \cap \mathrm{~N}_{G}(\phi(y))\right) \backslash Z_{<i},
$$

Fig. 11. Embedding a part of the internal tree in Lemma 6.22.
except if this set has size greater than k, in which case we choose any subset of size k. Similarly as in the preceding lemma, this is a target set for the roots of the principal subshrub adjacent to y.

Fix a matching involution \mathfrak{d} for \mathcal{N}, and for $\ell=1,2$ define

$$
\begin{equation*}
F_{i}^{(\ell)}:=Z_{<i} \cup \operatorname{shadow}_{G-\mathbb{H}}^{(\ell)}\left(\operatorname{ghost}_{\mathfrak{d}}\left(Z_{<i}\right), \frac{\delta k}{8}\right) \tag{6.49}
\end{equation*}
$$

We use the superregular pairs $\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right)(j \in \mathcal{Y})$ to define

$$
\begin{equation*}
U_{i}:=F_{i}^{(2)} \cup \bigcup\left\{Q_{1}^{(j)}: j \in \mathcal{Y},\left|Q_{1}^{(j)} \cap F_{i}^{(2)}\right| \geqslant \frac{\left|Q_{1}^{(j)}\right|}{2}\right\} \tag{6.50}
\end{equation*}
$$

We have

$$
\begin{equation*}
\left|U_{i}\right| \leqslant 2\left|F_{i}^{(2)}\right| \tag{6.51}
\end{equation*}
$$

Finally, for $\ell=1,2$, set

$$
\begin{equation*}
W_{i}^{(\ell)}:=\operatorname{shadow}_{G-\mathbb{H}}^{(\ell)}\left(U_{i}, \frac{\delta k}{2}\right) . \tag{6.52}
\end{equation*}
$$

We will now show how to define successively our embedding. At each step i, the embedding ϕ will be defined for $M_{i} \cup Y_{i}$ and a subset of \mathcal{P}_{i}, and it will have the following properties:
(a) $\phi\left(W_{A, i}\right) \subseteq V_{1} \backslash F_{i}^{(2)}$, and $\phi\left(W_{B, i}\right) \subseteq V_{0}$.
(b) $\phi\left(W_{C, i}\right) \subseteq V_{2} \backslash F_{i}^{(1)}$.
(c) $\phi\left(f_{i}\right) \in V_{2} \backslash\left(F_{i}^{(1)} \cup W_{i}^{(1)}\right)$.
(d) For each $y \in W_{C, j}$ with $j \leqslant i$, we have $\left|S_{y} \cap \phi\left(X_{i}\right)\right| \leqslant\left|S_{y} \cap D_{i}\right|+2 k^{3 / 4}$.
(e) $\left|Z_{<i+1}\right| \leqslant 2 k$.
(f) $D_{i} \subseteq V_{3} \backslash\left(\phi\left(X_{i}\right) \cup Z_{<i}\right)$.
(g) $\phi\left(X_{i} \backslash\left(V\left(M_{i}\right) \cap \operatorname{Ch}\left(W_{C}\right)\right)\right)$ is disjoint from $\bigcup_{j<i} D_{j} .{ }^{15}$

[^11](h) $\phi\left(X_{i}\right) \subseteq \mathbb{A}_{1} \cup \phi\left(Y_{i} \cup f_{i}\right)$.
(i) If $P \in \mathcal{P}_{i}$ is not embedded in step i, then for its parent $w \in W_{C}$ we have that
$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(\phi(w), V_{3}\right) \geqslant h_{1}-\left|\phi\left(X_{i}\right) \cap V(\mathcal{N})\right|-\frac{\eta^{2} k}{10^{6}}
$$

Note that for (h), since f_{0} is not defined, we assume $\phi\left(f_{0}\right)=\emptyset$.
Before continuing, let us remark that (h) together with (f) implies that at each step i we have

$$
\begin{equation*}
\left|Z_{<i} \cap \mathbb{A}_{0}\right| \leqslant 3 \cdot\left(\left|W_{A}\right|+\left|W_{B}\right|\right) \stackrel{\mathrm{D} 3.3(\mathrm{c})}{\leqslant} \frac{2016}{\tau}<\frac{\delta k}{8} \tag{6.53}
\end{equation*}
$$

Also note that by Fact 4.12 and by (e), we have

$$
\begin{equation*}
\left|F_{i}^{(2)}\right| \leqslant \frac{65\left(\Omega^{*}\right)^{2}}{\delta^{2}} k \tag{6.54}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|W_{i}^{(2)}\right| \leqslant \frac{520\left(\Omega^{*}\right)^{4}}{\delta^{4}} k \tag{6.55}
\end{equation*}
$$

By (b) and by (5.47) we have that $\left|S_{y}\right| \geqslant \frac{7 \delta k}{8}$. Now, using (d), (f), and (g), we can calculate similarly as in the previous lemma that at each step i we have

$$
\begin{equation*}
\left|S_{y} \backslash \bigcup_{\ell \leqslant i} \phi\left(X_{\ell}\right)\right| \geqslant \frac{3 \delta k}{8} \tag{6.56}
\end{equation*}
$$

Now assume we are at step i of the inductive procedure, that is, we have already dealt with X_{0}, \ldots, X_{i-1} and wish to embed (parts of) X_{i}.

We start with embedding M_{i}, except if $i=0$, when we go directly to embedding Y_{0}. We shall embed M_{i} in $V_{3} \cup V_{4}$, except for the fruit f_{i}, which will be mapped to V_{2}. The embedding has three stages. First we embed $M_{i}-M_{i}\left(\uparrow f_{i}\right)$, then we embed f_{i}, and finally we embed the forest $M_{i}\left(\uparrow f_{i}\right)-f_{i}$. The embedding of $M_{i}-M_{i}\left(\uparrow f_{i}\right)$ is an application of Lemma 6.14 analogous to the case of configuration $(\diamond \mathbf{7})$ in the previous lemma, Lemma 6.21. That is, set $Y_{1, \mathrm{L6.14}}:=V_{3}$ and $Y_{2, \mathrm{~L} 6.14}:=V_{4}$, and let

$$
U_{\mathrm{L} 6.14}^{*}:=S_{r_{i}} \backslash \bigcup_{\ell<i} \phi\left(X_{i}\right),
$$

where r_{i} lies in W_{C} by (23), and

$$
U_{\mathrm{L} 6.14}:=F_{i}^{(2)} \cup W_{i}^{(2)}
$$

Note that

$$
\left|U_{\mathrm{L} 6.14}\right| \leqslant \frac{10^{3}\left(\Omega^{*}\right)^{4}}{\delta^{4}} k \leqslant \frac{\delta \Lambda}{2 \Omega^{*}} k
$$

and that by (6.56) (which we use for $i-1$), also

$$
\left|U_{\mathrm{L} 6.14}^{*}\right| \geqslant \frac{3 \delta k}{8}
$$

The family $\left\{P_{1}, \ldots, P_{L}\right\}_{\mathrm{L} 6.14}$ is the same as $\left\{S_{y}\right\}_{y \in \cup_{j<i} W_{C, j}}$. There is only one tree to be embedded, namely $M_{i}-M_{i}\left(\uparrow f_{i}\right)$. It is not difficult to check that all the conditions
of Lemma 6.14 are fulfilled. Lemma 6.14 gives an embedding of $M_{i}-M_{i}\left(\uparrow f_{i}\right)$ in $V_{3} \cup V_{4} \subseteq \mathbb{A}_{1}$, with the property that $\operatorname{Par}\left(f_{i}\right)$, the parent of the fruit f_{i}, is mapped to $V_{3} \backslash\left(F_{i}^{(2)} \cup W_{i}^{(2)}\right)$. The lemma further gives a set $D^{\prime}:=C_{\mathrm{L} 6.14}$ of size $v\left(M_{i}-M_{i}\left(\uparrow f_{i}\right)\right)$ such that

$$
\left|S_{y} \cap \phi\left(M_{i}-M_{i}\left(\uparrow f_{i}\right)\right)\right| \leqslant\left|S_{y} \cap D^{\prime}\right|+k^{0.75}
$$

for each $y \in \bigcup_{j<i} W_{C, j}$.
Using the degree condition (5.48) we can embed f_{i} to

$$
V_{2} \backslash\left(F_{i}^{(1)} \cup W_{i}^{(1)}\right)
$$

(recall that (6.53) asserts that only very little space in V_{2} is occupied). This ensures (c) for i.

To embed $M_{i}\left(\uparrow f_{i}\right)-f_{i}$ we use Lemma 6.14 again . This time the parameters are $Y_{1, \mathrm{~L} 6.14}:=V_{3}, Y_{2, \text { L6.14 }}:=V_{4}$,

$$
\begin{aligned}
& U_{\mathrm{L} 6.14}^{*}:=\left(\mathrm{N}_{G}\left(\phi\left(f_{i}\right)\right) \cap V_{3}\right) \backslash\left(Z_{<i} \cup \phi\left(M_{i}-M_{i}\left(\uparrow f_{i}\right)\right)\right), \quad \text { and } \\
& U_{\mathrm{L} 6.14}:=Z_{<i} \cup \phi\left(M_{i}-M_{i}\left(\uparrow f_{i}\right)\right) \cup D^{\prime} .
\end{aligned}
$$

Note that $\left|U_{\mathrm{L} 6.14}^{*}\right| \geqslant \frac{\delta k}{4}$ by (5.47), by the fact that $\phi\left(f_{i}\right) \notin W_{i}^{(1)}$, and as $v\left(T_{i}\right)+i<$ $\delta k / 8$. The family $\left\{P_{1}, \ldots, P_{L}\right\}_{\mathrm{L} 6.14}$ is $\left\{S_{y}\right\}_{y \in \cup_{j<i} W_{C, j}}$. The trees to be embedded are the components of $M_{i}\left(\uparrow f_{i}\right)-f_{i}$ rooted at the children of f_{i}. All the conditions of Lemma 6.14 are fulfilled. The lemma provides an embedding in $V_{3} \cup V_{4} \subseteq \mathbb{A}_{1}$. It further gives a set $D^{\prime \prime}:=C_{\text {L6.14 }}$ of size $v\left(M_{i}\left(\uparrow f_{i}\right)\right)-1$ such that

$$
\left|S_{y} \cap \phi\left(M_{i}\left(\uparrow f_{i}\right)-f_{i}\right)\right| \leqslant\left|S_{y} \cap D^{\prime \prime}\right|+k^{0.75}
$$

for each $y \in \bigcup_{j<i} W_{C, j}$. Then $D_{i}:=V_{3} \cap\left(D^{\prime} \cup D^{\prime \prime}\right)$ is such that for each $y \in \bigcup_{j<i} W_{C, j}$,

$$
\begin{equation*}
\left|S_{y} \cap \phi\left(M_{i}\right)\right| \leqslant\left|S_{y} \cap D_{i}\right|+2 k^{0.75}, \tag{6.57}
\end{equation*}
$$

as $S_{y} \subseteq V_{3}$ and $\phi\left(f_{i}\right) \notin V_{3}$. Note that this choice of D_{i} also ensures (e) for i, and we have by the choices of $U_{\mathrm{L} 6.14}^{*}$ and $U_{\mathrm{L} 6.14}$ in both applications of Lemma 6.14 that

$$
\begin{equation*}
D_{i} \subseteq V_{3} \backslash\left(\phi\left(M_{i}\right) \cup Z_{<i}\right) \quad \text { and } \quad \phi\left(X_{i} \backslash\left(V\left(M_{i}\right) \cap \operatorname{Ch}\left(W_{C}\right)\right)\right) \cap \bigcup_{j<i} D_{j}=\emptyset \tag{6.58}
\end{equation*}
$$

We now turn to embedding Y_{i}. Our plan is to first use Lemma 6.9 to embed $Y_{i} \backslash W_{C}$ in $\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right)$ for an appropriate index j. After that, we shall show how to embed $W_{C, i}$.

If $i=0$, then take an arbitrary $j \in \mathcal{Y}$. Otherwise note that by (23), the parent f_{i} of the root of Y_{i} lies in M_{i}. Note that f_{i} is a fruit in M_{i}. Let $j \in \mathcal{Y}$ be such that $\left(\mathrm{N}_{G}\left(\phi\left(f_{i}\right)\right) \cap Q_{1}^{(j)}\right) \backslash U_{i} \neq \emptyset$. Such an index j exists by (5.46) and by the fact that $\phi\left(f_{i}\right) \notin W_{i}^{(1)}$ by (c) for i.

We use Lemma 6.9 with $A_{\mathrm{L} 6.9}:=Q_{1}^{(j)}, B_{\mathrm{L} 6.9}:=Q_{0}^{(j)}, \varepsilon_{\mathrm{L} 6.9}:=\varepsilon_{2}, d_{\mathrm{L} 6.9}:=d_{2}$, $\ell_{\mathrm{L} 6.9}:=\mu_{2} k, U_{A}:=U_{i} \cap A_{\mathrm{L} 6.9}, U_{B}:=Z_{<i} \cap B_{\mathrm{L} 6.9}$. By the choice of j and the definition of U_{i}, we find that U_{A} is small enough, and using (6.53) we see that U_{B} is also small enough. Lemma 6.9 yields a $\left(V_{\text {even }}\left(Y_{i}-W_{C}\right) \hookrightarrow V_{1} \backslash F_{i}^{(2)}, V_{\text {odd }}\left(Y_{i}-W_{C}\right) \hookrightarrow V_{0}\right)$ embedding of $Y_{i}-W_{C}$. We clearly see condition (a) satisfied for i.

We now embed successively the vertices of the set $W_{C, i}=\left\{w_{\ell}: \ell=1, \ldots,\left|W_{C, i}\right|\right\}$. By the definition of the set W_{C}, we know that the parent x of w_{ℓ} lies in $W_{A, i}$. Combining (5.45) with the fact that $\phi(x) \in V_{1} \backslash F_{i}^{(2)}$ by (a) for i, we have that

$$
\left|\mathrm{N}_{G}\left(\phi(x), V_{2} \backslash\left(F_{i}^{(1)} \backslash Z_{<i}\right)\right)\right| \geqslant \frac{7 \delta k}{8}
$$

Thus by (6.53) and since $V_{2} \subseteq \mathbb{A}_{0}$, we can accommodate w_{ℓ} in $V_{2} \backslash F_{i}^{(1)}$. This is as desired for (b) in step i.

We now turn to \mathcal{P}_{i}. We will embed a subset of these peripheral subshrubs in \mathcal{N}. This procedure is divided into two stages. First we shall embed as many subshrubs as possible in \mathcal{N} in a balanced way, with the help of Lemma 6.10. When it is no longer possible to embed any subshrub in a balanced way in \mathcal{N}, we embed in \mathcal{N} as many of the leftover subshrubs as possible in an unbalanced way. For this part of the embedding we use Lemma 6.7.

By (23) all the parents of the subshrubs in \mathcal{P}_{i} lie in $W_{C, i}$. For $w_{\ell} \in W_{C, i}$, let $\mathcal{P}_{i, \ell}$ denote the set of all subshrubs in \mathcal{P}_{i} adjacent to w_{ℓ}. In the first stage, we shall embed, successively for $j=1, \ldots,\left|W_{C, i}\right|$, either all or none of $\mathcal{P}_{i, j}$ in \mathcal{N} in a balanced way. Assume inductively that

$$
\begin{equation*}
\phi\left(\bigcup_{p<j} \mathcal{P}_{i, p}\right) \text { is }(\tau k) \text {-balanced with respect to } \mathcal{N} \tag{6.59}
\end{equation*}
$$

Construct a regularized matching \mathcal{N}_{j} absorbed by \mathcal{N} as follows: Let $\mathcal{N}_{j}:=$ $\left\{\left(X_{1}^{\prime}, X_{2}^{\prime}\right):\left(X_{1}, X_{2}\right) \in \mathcal{N}\right\}$, where for $\left(X_{1}, X_{2}\right) \in \mathcal{N}$ we define $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ as the maximal balanced unoccupied subpair seen from $\phi\left(w_{j}\right)$; i.e., for $b=1,2$, we take

$$
X_{b}^{\prime} \subseteq\left(X_{b} \cap \mathrm{~N}_{G_{\mathrm{reg}}}\left(\phi\left(w_{j}\right)\right)\right) \backslash\left(\phi\left(\bigcup_{p<j} \mathcal{P}_{i, p}\right) \cup \bigcup_{\ell<i} \phi\left(X_{\ell}\right)\right)
$$

maximal subject to $\left|X_{1}^{\prime}\right|=\left|X_{2}^{\prime}\right|$. If $\left|V\left(\mathcal{N}_{j}\right)\right| \geqslant \frac{\eta^{2} k}{10^{7} \Omega^{*}}$, then we shall embed $\mathcal{P}_{i, j}$; otherwise we do not embed $\mathcal{P}_{i, j}$ in this step. So assume we decided to embed $\mathcal{P}_{i, j}$. Recall that the total order of the subshrubs in this set is at most τk. Using the same argument as for Claim 6.19.1, we have

$$
\left|\bigcup\left\{X \cup Y:(X, Y) \in \mathcal{N}, \operatorname{deg}_{G_{\mathcal{D}}}\left(\phi\left(w_{j}\right), X \cup Y\right)>0\right\}\right| \leqslant \frac{4\left(\Omega^{*}\right)^{2}}{\gamma^{2}} k
$$

Thus, there exists a subpair $\left(X_{1}^{\prime}, X_{2}^{\prime}\right) \in \mathcal{N}_{j}$ of some $\left(X_{1}, X_{2}\right) \in \mathcal{N}$ with

$$
\begin{equation*}
\frac{\left|X_{1}^{\prime}\right|}{\left|X_{1}\right|} \geqslant \frac{\frac{\eta^{2}}{10^{7} \Omega^{*}} k}{\frac{4\left(\Omega^{*}\right)^{2}}{\gamma^{2}} k} \geqslant \frac{\gamma^{2} \eta^{2}}{10^{8}\left(\Omega^{*}\right)^{3}} . \tag{6.60}
\end{equation*}
$$

In particular, $\left(X_{1}^{\prime}, X_{2}^{\prime}\right)$ forms a $\frac{2 \cdot 10^{8} \varepsilon_{1}\left(\Omega^{*}\right)^{3}}{\gamma^{2} \eta^{2}}$-regular pair of density at least $d_{1} / 2$ by Fact 2.1. We use Lemma 6.10 to embed $\mathcal{P}_{i, j}$ in $\mathcal{M}_{\mathrm{L} 6.10}:=\left\{\left(X_{1}^{\prime}, X_{2}^{\prime}\right)\right\}$. The family $\left\{f_{C D}\right\}_{\text {L6.10 }}$ consists of a single number $f_{\left(X_{1}^{\prime}, X_{2}^{\prime}\right)}$ which is the discrepancy of $\bigcup_{p<j} \phi\left(\mathcal{P}_{i, p}\right)$ with respect to $\left(X_{1}, X_{2}\right)$. This guarantees that (6.59) is preserved. This finishes the j th step. We repeat this step until $j=\left|W_{C, i}\right|$; then we go to the next stage.

Denote by \mathcal{Q}_{i} the set of all $P \in \mathcal{P}_{i}$ that have not been embedded in the first stage. Note that for each $Q \in \mathcal{Q}_{i}$, with $Q \in \mathcal{P}_{i, j}$, say, and for each $\left(X_{1}, X_{2}\right) \in \mathcal{N}$, there is a $b_{\left(X_{1}, X_{2}\right)} \in\{1,2\}$ such that for

$$
O_{j}:=\bigcup_{\left(X_{1}, X_{2}\right) \in \mathcal{N}}\left(X_{b_{\left(X_{1}, X_{2}\right)}} \cap \mathrm{N}_{G_{\mathrm{reg}}}\left(\phi\left(w_{j}\right)\right)\right) \backslash\left(\phi\left(\bigcup_{p<j} \mathcal{P}_{i, p}\right) \cup \bigcup_{\ell<i} \phi\left(X_{\ell}\right)\right)
$$

we have that

$$
\begin{equation*}
\left|O_{j}\right|<\frac{\eta^{2} k}{10^{7} \Omega^{*}} . \tag{6.61}
\end{equation*}
$$

The fact that O_{j} is small implies that there is an \mathcal{N}-cover such that the $G_{\text {reg }}{ }^{-}$ neighborhood of w_{j} restricted to this cover is essentially exhausted by the image of T^{\prime}.

In the second stage, we shall embed some of the peripheral subshrubs of \mathcal{Q}_{i}. They will be mapped in an unbalanced way to \mathcal{N}. We will do this in steps $j=1, \ldots,\left|W_{C, i}\right|$ and denote by \mathcal{R}_{j} the set of those $\mathcal{P} \subseteq \mathcal{Q}_{i}$ embedded until step j. At step j, we decide to embed $\mathcal{P}_{i, j}$ if $\mathcal{P}_{i, j} \subseteq \mathcal{Q}_{i}$ and

$$
\begin{equation*}
\operatorname{deg}_{G_{\mathrm{reg}}}\left(\phi\left(w_{j}\right), V(\mathcal{N}) \backslash \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i}\right)\right)-\left|\bigcup \mathcal{R}_{j-1}\right| \geqslant \frac{\eta^{2} k}{10^{6}} \tag{6.62}
\end{equation*}
$$

Let

$$
\tilde{\mathcal{N}}:=\left\{(X, Y) \in \mathcal{N}:\left|(X \cup Y) \cap Z_{<i}\right|<\frac{\gamma^{2} \eta^{2}}{10^{9}\left(\Omega^{*}\right)^{2}}|X|\right\} .
$$

As by (b) we know that w_{j} was embedded in $V_{2} \backslash F_{i}^{(1)}$, we have

$$
\begin{equation*}
\operatorname{deg}_{G_{\text {reg }}}\left(\phi\left(w_{j}\right), V(\mathcal{N} \backslash \tilde{\mathcal{N}})\right) \leqslant \frac{2 \cdot 10^{9}\left(\Omega^{*}\right)^{2}}{\gamma^{2} \eta^{2}} \cdot \frac{\delta k}{8} \leqslant \frac{\eta^{2}}{10^{7}} k . \tag{6.63}
\end{equation*}
$$

Using (6.61)-(6.63), calculations similar to those in (6.60) show the existence of a pair $(X, Y) \in \tilde{\mathcal{N}}$ with

$$
\begin{aligned}
\operatorname{deg}_{G_{\mathrm{reg}}} & \left(\phi\left(w_{j}\right),(X \cup Y) \backslash\left(O_{j} \cup \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i}\right)\right)\right)-\left|(X \cup Y) \cap \phi\left(\bigcup \mathcal{R}_{j-1}\right)\right| \\
& \geqslant \frac{\gamma^{2} \eta^{2}}{10^{8}\left(\Omega^{*}\right)^{2}}|X \cup Y| .
\end{aligned}
$$

Then by the definition of $\tilde{\mathcal{N}}$ and setting $Z_{<i}^{+}:=\operatorname{ghost}_{\mathfrak{\jmath}}\left(Z_{<i}\right)$, we get that

$$
\begin{aligned}
\operatorname{deg}_{G_{\mathrm{reg}}} & \left(\phi\left(w_{j}\right),(X \cup Y) \backslash\left(Z_{<i}^{+} \cup O_{j} \cup \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i}\right)\right)\right)-\left|(X \cup Y) \cap \phi\left(\bigcup \mathcal{R}_{j-1}\right)\right| \\
& \geqslant \frac{\gamma^{2} \eta^{2}}{10^{9}\left(\Omega^{*}\right)^{2}}|X \cup Y| .
\end{aligned}
$$

By the definition of O_{j}, all of the degree counted here goes to one side of the matching
edge (X, Y), say to X. So

$$
\begin{align*}
& \operatorname{deg}_{G_{\mathrm{reg}}}\left(\phi\left(w_{j}\right), X \backslash\left(Z_{<i}^{+} \cup \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i} \cup \bigcup \mathcal{R}_{j-1}\right)\right)\right)-\left|Y \cap \phi\left(\bigcup \mathcal{R}_{j-1}\right)\right| \tag{6.64}\\
& \quad \geqslant \frac{\gamma^{2} \eta^{2}}{10^{9}\left(\Omega^{*}\right)^{2}}|X| \\
& \quad \geqslant 12 \frac{\varepsilon_{1}}{d_{1}}|X|+\tau k . \tag{6.65}
\end{align*}
$$

Furthermore, we claim that

$$
\begin{equation*}
\left|Y \backslash\left(Z_{<i}^{+} \cup \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i} \cup \bigcup \mathcal{R}_{j-1}\right)\right)\right| \geqslant \frac{\gamma^{2} \eta^{2}}{10^{10}\left(\Omega^{*}\right)^{2}}|Y| \geqslant 12 \frac{\varepsilon_{1}}{d_{1}}|Y|+\tau k \tag{6.66}
\end{equation*}
$$

Indeed, otherwise we get by (6.64) that

$$
\left|X \backslash\left(Z_{<i}^{+} \cup \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i}\right)\right)\right|>\left|Y \backslash\left(Z_{<i}^{+} \cup \phi\left(\bigcup \mathcal{P}_{i} \backslash \mathcal{Q}_{i}\right)\right)\right|+\frac{\gamma^{2} \eta^{2}}{10^{10}\left(\Omega^{*}\right)^{2}}|X|
$$

which is impossible by (6.59) and since $|X| \geqslant \mu_{1} k$.
Hence, by (6.65) and (6.66), we can embed $\mathcal{P}_{i, j}$ into the unoccupied part (X, Y) using Lemma 6.7 repeatedly. ${ }^{16}$

Note that if some $\mathcal{P}_{i, j}$ has not been embedded in either of the two stages, then the vertex w_{j} must have a somewhat insufficient degree in \mathcal{N}. More precisely, employing (6.62) we see that $\operatorname{deg}_{G_{\text {reg }}}\left(\phi\left(w_{j}\right), V(\mathcal{N})\right)-\left|\phi\left(X_{i}\right) \cap V(\mathcal{N})\right|<\frac{\eta^{2} k}{10^{6}}$. Combining this with (5.51), we find that

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(\phi\left(w_{j}\right), V_{3}\right) \geqslant h_{1}-\left|\phi\left(X_{i}\right) \cap V(\mathcal{N})\right|-\frac{\eta^{2} k}{10^{6}}
$$

in other words, (i) holds for i.
This finishes step i of the embedding procedure. Recall that the sets V_{3} and $V(\mathcal{N})$ are disjoint. Hence, by (a) and (b), the principal subshrubs are the only parts of T^{\prime} that were embedded in V_{3} (and possibly elsewhere). Thus, using (6.58), we see that $(\mathrm{f}),(\mathrm{g})$, and (h) are satisfied for i. Also, by (6.57), (d) holds for i.

After having completed the inductive procedure, we still have to embed some peripheral subshrubs. Let us take sequentially those $P \in \mathcal{P}$ which were not embedded. Say w is the parent of P. By (i) we have

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(\phi(w), V_{3} \backslash \operatorname{Im}(\phi)\right) \geqslant h_{1}-|\operatorname{Im}(\phi) \cap V(\mathcal{N})|-\left|\operatorname{Im}(\phi) \cap V_{3}\right|-\frac{\eta^{2} k}{10^{6}} \stackrel{(6.48)}{\geqslant} \frac{\eta^{2} k}{10^{6}}
$$

An application of Lemma 6.14 in which $Y_{1, \mathrm{~L} 6.14}:=V_{3}, Y_{2, \mathrm{~L} 6.14}:=V_{4}, U_{\mathrm{L} 6.14}:=\operatorname{Im}(\phi)$, $U_{\text {L6.14 }}^{*}:=\mathrm{N}_{G_{\mathcal{D}}}(\phi(w)) \cap V_{3} \backslash \operatorname{Im}(\phi)$, and $\left\{P_{1}, \ldots, P_{L}\right\}_{\mathrm{L} 6.14}:=\emptyset$ gives an embedding of P in $V_{3} \cup V_{4} \subseteq \mathbb{A}_{1}$.

By conditions (a), (b), (c), and (h) we have thus found the desired embedding for T^{\prime}.

Lemma 6.23. Suppose that we are in Settings 5.1 and 5.4 , and that the sets V_{0} and V_{1} witness preconfiguration $(\Omega \mathbf{1})\left(2 \eta^{3} k / 10^{3}, h\right)$. Suppose that $U \subseteq \mathbb{A}_{0} \cup \mathbb{A}_{1}$. Suppose

[^12]that $\left\{x_{j}\right\}_{j=1}^{\ell} \subseteq V_{0}$ and $\left\{y_{j}\right\}_{j=1}^{\ell^{\prime}} \subseteq V_{1}$ are sets of distinct vertices. ${ }^{17}$ Let $\left\{\left(T_{j}, r_{j}\right)\right\}_{j=1}^{\ell}$ and $\left\{\left(T_{j}^{\prime}, r_{j}^{\prime}\right)\right\}_{j=1}^{\ell^{\prime}}$ be families of rooted trees such that each component of $T_{j}-r_{j}$ and of $T_{j}^{\prime}-r_{j}^{\prime}$ has order at most τk.
\[

$$
\begin{align*}
\sum_{j} v\left(T_{j}\right) & \leqslant \frac{h}{2}-\frac{\eta^{2} k}{1000}, \tag{6.67}\\
\sum_{j} v\left(T_{j}\right)+\sum_{j} v\left(T_{j}^{\prime}\right) & \leqslant h-\frac{\eta^{2} k}{1000} \tag{6.68}\\
|U|+\sum_{j} v\left(T_{j}\right)+\sum_{j} v\left(T_{j}^{\prime}\right) & \leqslant k \tag{6.69}
\end{align*}
$$
\]

then there exist $\left(r_{j} \hookrightarrow x_{j}, V\left(T_{j}\right) \backslash\left\{r_{j}\right\} \hookrightarrow V(G) \backslash U\right)$-embeddings of T_{j} and $\left(r_{j}^{\prime} \hookrightarrow\right.$ $\left.y_{j}, V\left(T_{j}^{\prime}\right) \backslash\left\{r_{j}^{\prime}\right\} \hookrightarrow V(G) \backslash U\right)$-embeddings of T_{j}^{\prime} in G, all mutually disjoint.

Proof. The embedding has three stages. In stage I we embed some components of $T_{j}-r_{j}$ (for all $\left.j=1, \ldots, \ell\right)$ in the parts of $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-edges which are "seen in a balanced way from x_{j}." In stage II we embed the remaining components of $T_{j}-r_{j}$. Last, in stage III we embed all the components $T_{j}^{\prime}-r_{j}^{\prime}\left(\right.$ for all $\left.j=1, \ldots, \ell^{\prime}\right)$.

Let us first give a bound on the total size of $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-vertices $C \in \mathcal{V}\left(\mathcal{M}_{A} \cup\right.$ $\left.\mathcal{M}_{B}\right), C \subseteq \bigcup \mathbf{V}$, seen from a given vertex via edges of $G_{\mathcal{D}}$. This bound will be used repeatedly.

Claim 6.23.1. Let $v \in V(G)$. Then for $\mathcal{U}:=\left\{C \in \mathcal{V}\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right): C \subseteq\right.$ $\left.\bigcup \mathbf{V}, \operatorname{deg}_{G_{\mathcal{D}}}(x, C)>0\right\}$ we have

$$
\begin{align*}
|\bigcup \mathcal{U}| & \leqslant \frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2}} \tag{6.70}\\
|\mathcal{U}| & \leqslant \frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2} \pi \mathfrak{c}} \tag{6.71}
\end{align*}
$$

Proof of Claim 6.23.1. Let $\mathbf{U} \subseteq \mathbf{V}$ be the set of those clusters which intersect $\mathrm{N}_{G_{\mathcal{D}}}\left(x_{j}\right)$. Using the same argument as in the proof of Claim 6.19.1, we get that $|\bigcup \mathbf{U}| \leqslant \frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2}}$, i.e., (6.70) holds. Also, (6.71) follows since $\mathcal{M}_{A} \cup \mathcal{M}_{B}$ is $(\varepsilon, d, \pi \mathfrak{c})$ regularized.

Stage I: We proceed inductively for $j=1, \ldots, \ell$. Suppose that we embedded some components $\mathcal{F}_{1}, \ldots, \mathcal{F}_{j-1}$ of the forests $T_{1}-r_{1}, \ldots, T_{j-1}-r_{j-1}$. We write F_{j-1} for the partial images of this embedding. We inductively assume that

$$
\begin{equation*}
F_{j-1} \text { is } \tau k \text {-balanced with respect to } \mathcal{M}_{A} \cup \mathcal{M}_{B} \text {. } \tag{6.72}
\end{equation*}
$$

For each $(A, B) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}$ with $\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j},(A \cup B) \backslash \mathbb{E}\right)>0$, take a subpair $\left(A^{\prime}, B^{\prime}\right)$, such that

$$
A^{\prime} \subseteq\left(A \cap \mathrm{~N}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(x_{j}\right)\right)^{\upharpoonright 2} \backslash F_{j-1} \quad \text { and } \quad B^{\prime} \subseteq\left(B \cap \mathrm{~N}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(x_{j}\right)\right)^{\upharpoonright 2} \backslash F_{j-1}
$$

and such that

$$
\left|A^{\prime}\right|=\left|B^{\prime}\right|=\min \left\{\left|\left(A \cap \mathrm{~N}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(x_{j}\right)\right)^{\mid 2} \backslash F_{j-1}\right|,\left|\left(B \cap \mathrm{~N}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(x_{j}\right)\right)^{\mid 2} \backslash F_{j-1}\right|\right\}
$$

[^13]These pairs comprise a regularized matching \mathcal{N}_{j}. (Pairs $(A, B) \in \mathcal{M}_{A} \cup \mathcal{M}_{B}$ with

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j},(A \cup B) \backslash \mathbb{E}\right)=0
$$

are not considered for the construction of \mathcal{N}_{j}.)
Let $\mathcal{M}_{j}:=\left\{\left(A^{\prime}, B^{\prime}\right) \in \mathcal{N}_{j}:\left|A^{\prime}\right|>\alpha|A|\right\}$ for

$$
\alpha:=\frac{\eta^{3} \gamma^{2}}{10^{10}\left(\Omega^{*}\right)^{2}} .
$$

By Fact $2.1, \mathcal{M}_{j}$ is a $(2 \varepsilon / \alpha, d / 2, \alpha \pi \mathfrak{c})$-regularized matching.
CLAIM 6.23.2. We have $\left|V\left(\mathcal{M}_{j}\right)\right| \geqslant\left|V\left(\mathcal{N}_{j}\right)\right|-\frac{\eta^{3} k}{10^{9}}$.
Proof of Claim 6.23.2. By (6.70), and by property 4 of Setting 5.1, we have

$$
\left|V\left(\mathcal{M}_{j}\right)\right| \geqslant\left|V\left(\mathcal{N}_{j}\right)\right|-\alpha \cdot 2 \cdot \frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2}}
$$

Let \mathcal{F}_{j} be a maximal set of components of $T_{j}-r_{j}$ for which

$$
\begin{equation*}
v\left(\mathcal{F}_{j}\right) \leqslant\left|V\left(\mathcal{M}_{j}\right)\right|-\frac{\eta^{3} k}{10^{9}} \tag{6.73}
\end{equation*}
$$

Observe that if \mathcal{F}_{j} does not contain all the components of $T_{j}-r_{j}$, then

$$
\begin{equation*}
v\left(\mathcal{F}_{j}\right) \geqslant\left|V\left(\mathcal{M}_{j}\right)\right|-\frac{\eta^{3} k}{10^{9}}-\tau k \geqslant\left|V\left(\mathcal{M}_{j}\right)\right|-\frac{2 \eta^{3} k}{10^{9}} \tag{6.74}
\end{equation*}
$$

Lemma 6.10 yields an embedding of \mathcal{F}_{j} in \mathcal{M}_{j}. Further, the lemma together with the induction hypothesis (6.72) guarantees that the embedding can be chosen so that the new image set F_{j} is τk-balanced with respect to $\mathcal{M}_{A} \cup \mathcal{M}_{B}$. We fix this embedding, thus ensuring (6.72) for step i. If \mathcal{F}_{j} does not contain all the components of $T_{j}-r_{j}$, then (6.74) gives

$$
\begin{equation*}
\left|V\left(\mathcal{M}_{j}\right) \backslash F_{j}\right| \leqslant \frac{2 \eta^{3} k}{10^{9}} \tag{6.75}
\end{equation*}
$$

After stage I: Let \mathcal{N}^{*} be a maximal regularized matching contained in $\left(\mathcal{M}_{A} \cup\right.$ $\left.\mathcal{M}_{B}\right)^{\upharpoonright 2}$ which avoids F_{ℓ}. We need two auxiliary claims.

Claim 6.23.3. We have

$$
\operatorname{maxdeg}_{G_{\mathcal{D}}}\left(V_{0} \cup V_{1}, V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2} \backslash\left(V\left(\mathcal{N}^{*}\right) \cup F_{\ell} \cup \mathbb{E}\right)\right)<\frac{\eta^{3} k}{10^{9}}
$$

Proof of Claim 6.23.3. Let us consider an arbitrary vertex $x \in V_{0} \cup V_{1}$. By (6.71) the number of $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-vertices $C \subseteq \bigcup \mathbf{V}$ for which $\operatorname{deg}_{G_{\mathcal{D}}}(x, C)>0$ is at most $\frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2} \pi c}$.

Due to (6.72), we have for each $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-edge (A, B) that

$$
\begin{equation*}
\left|(A \cup B)^{\mid 2} \backslash\left(V\left(\mathcal{N}^{*}\right) \cup F_{\ell}\right)\right| \leqslant \tau k . \tag{6.76}
\end{equation*}
$$

Thus summing (6.76) over all $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-edges (A, B) with $\operatorname{deg}_{G_{\mathcal{D}}}(x,(A \cup B) \backslash$ $\mathbb{E})>0$, we get

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(x, V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2} \backslash\left(V\left(\mathcal{N}^{*}\right) \cup F_{\ell} \cup \mathbb{E}\right)\right) \leqslant \frac{4\left(\Omega^{*}\right)^{2} k}{\gamma^{2} \pi \mathfrak{c}} \cdot \tau k
$$

The claim now follows by (5.1).

Claim 6.23.4. Let $j \in[\ell]$ be such that \mathcal{F}_{j} does not consist of all the components of $T_{j}-r_{j}$. Then there exists an \mathcal{N}^{*}-cover \mathcal{X}_{j} such that $\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathcal{X}_{j}\right) \leqslant \frac{3 \eta^{3} k}{10^{9}}$.

Proof of Claim 6.23.4. First, we define an $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-cover \mathcal{R}_{j} as follows. For an $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-edge (A, B), let \mathcal{R}_{j} contain A if

$$
\left|\left(A \cap \mathrm{~N}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(x_{j}\right)\right)^{\upharpoonright 2} \backslash F_{j-1}\right| \leqslant\left|\left(B \cap \mathrm{~N}_{G_{\mathcal{D}} \cup G_{\nabla}}\left(x_{j}\right)\right)^{\mid 2} \backslash F_{j-1}\right|
$$

and B otherwise. Observe that by the definition of \mathcal{N}_{j}, we have

$$
\begin{equation*}
\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathcal{R}_{j} \backslash V\left(\mathcal{N}_{j}\right)\right)=0 \tag{6.77}
\end{equation*}
$$

Also, we have $V\left(\mathcal{N}^{*}\right) \cap \bigcup \mathcal{R}_{j} \cap V\left(\mathcal{M}_{j}\right) \subseteq V\left(\mathcal{N}^{*}\right) \cap V\left(\mathcal{M}_{j}\right) \subseteq V\left(\mathcal{M}_{j}\right) \backslash F_{j}$. In particular, (6.75) gives that

$$
\begin{equation*}
\left|V\left(\mathcal{N}^{*}\right) \cap \bigcup \mathcal{R}_{j} \cap V\left(\mathcal{M}_{j}\right)\right| \leqslant \frac{2 \eta^{3} k}{10^{9}} . \tag{6.78}
\end{equation*}
$$

Let \mathcal{X}_{j} be the restriction of \mathcal{R}_{j} to \mathcal{N}^{*}. We then have

$$
\begin{aligned}
\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathcal{X}_{j}\right) & =\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{N}^{*}\right) \cap \bigcup \mathcal{R}_{j}\right) \\
\text { (by (6.77)) } & \leqslant \operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{N}^{*}\right) \cap \bigcup \mathcal{R}_{j} \cap V\left(\mathcal{M}_{j}\right)\right)+\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{N}_{j}\right) \backslash V\left(\mathcal{M}_{j}\right)\right) \\
\text { (by (6.78), C6.23.2) } & \leqslant \frac{3 \eta^{3} k}{10^{9}}
\end{aligned}
$$

For every $j \in[\ell]$ we define $\mathcal{N}_{j}^{*} \subseteq \mathcal{N}^{*}$ as those \mathcal{N}^{*}-edges (A, B) for which we have

$$
\left((A \cup B) \backslash \bigcup \mathcal{X}_{j}\right) \cap \mathbb{E}=\emptyset
$$

Stage II: We shall inductively for $j=1, \ldots, \ell$ embed those components of $T_{j}-r_{j}$ that are not included in \mathcal{F}_{j}; let us denote the set of these components by \mathcal{K}_{j}. There is nothing to do when $\mathcal{K}_{j}=\emptyset$, so let us assume otherwise.

We write $\mathbf{L}:=\left\{C \in \mathbf{V}: C \subseteq \mathbb{L}_{\eta, k}(G)\right\}$. Let $K \in \mathcal{K}_{j}$ be a component that has not been embedded yet. We write U^{\prime} for the total image of what has been embedded (in stage I, and in stage II so far), combined with U. We claim that x_{j} has a substantial degree into one of four specific vertex sets.

Claim 6.23.5. At least one of the following four cases occurs:
(U1) $\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{N}_{j}^{*}\right) \backslash \bigcup \mathcal{X}_{j}\right)-\left|U^{\prime} \cap V\left(\mathcal{N}_{j}^{*}\right)\right| \geqslant \frac{\eta^{2} k}{10^{4}}$,
(U2) $\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \mathbb{E} \backslash U^{\prime}\right) \geqslant \frac{\eta^{2} k}{10^{4}}$,
(U3) $\operatorname{deg}_{G_{\nabla}}\left(x_{j}, V\left(G_{\exp }\right) \backslash U^{\prime}\right) \geqslant \frac{\eta^{2} k}{10^{4}}$,
$(\mathbf{U 4}) \operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathbf{L} \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup U^{\prime}\right)\right) \geqslant \frac{\eta^{2} k}{10^{4}}$.

Proof. Write $U^{\prime \prime}:=\left(U^{\prime}\right)^{\dagger 2}=U^{\prime} \backslash U$. By (5.30), we have

$$
\begin{aligned}
\frac{h}{2} \leqslant & \operatorname{deg}_{G_{\nabla}}\left(x_{j}, V_{\text {good }}^{\mid 2}\right) \\
\leqslant & \operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{N}_{j}^{*}\right)^{\mid 2} \backslash \bigcup \mathcal{X}_{j}\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \mathbb{E}^{\mid 2} \backslash\left(V\left(\mathcal{N}_{j}^{*}\right) \cup V\left(G_{\exp }\right) \cup \bigcup \mathcal{X}_{j}\right)\right) \\
& +\operatorname{deg}_{G_{\nabla}}\left(x_{j}, V\left(G_{\exp }\right)^{\mid 2}\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathbf{L}^{\mid 2} \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup V\left(\mathcal{N}_{j}^{*}\right)\right)\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2} \backslash\left(V\left(\mathcal{N}^{*}\right) \cup \mathbb{E}\right)\right)+\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathcal{X}_{j}\right) \\
\text { (by c6.23.3, C6.23.4) } \leqslant & \operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V\left(\mathcal{N}_{j}^{*}\right) \backslash \bigcup \mathcal{X}_{j}\right)-\left|U^{\prime} \cap V\left(\mathcal{N}_{j}^{*}\right)\right| \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \mathbb{E}^{\mid 2} \backslash\left(V\left(\mathcal{N}_{j}^{*}\right) \cup \bigcup \mathcal{X}_{j} \cup U^{\prime \prime}\right)\right) \\
& +\operatorname{deg}_{G_{\nabla}}\left(x_{j}, V\left(G_{\exp }\right)^{\mid 2} \backslash U^{\prime \prime}\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathbf{L}^{\mid 2} \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup V\left(\mathcal{N}_{j}^{*}\right) \cup U^{\prime \prime}\right)\right) \\
& +\frac{4 \eta^{3} k}{10^{9}}+\left|U^{\prime \prime}\right| .
\end{aligned}
$$

The claim follows since $\left|U^{\prime \prime}\right| \leqslant \frac{h}{2}-\frac{\eta^{2} k}{1000}$ by (6.67).
We now briefly describe how to embed K in each of the cases (U1)-(U4).

- In case ($\mathbf{U} 1)$ recall that each $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-edge contains at most one \mathcal{N}_{j}^{*}-edge. Thus by (6.70) we get that there is an $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)$-edge (A, B) with

$$
\begin{align*}
& \operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j},\left(V\left(\mathcal{N}_{j}^{*}\right) \cap(A \cup B)\right) \backslash \bigcup \mathcal{X}_{j}\right)-\left|V\left(\mathcal{N}_{j}^{*}\right) \cap U^{\prime} \cap(A \cup B)\right| \tag{6.79}\\
& \quad \geqslant \frac{\eta^{2} k}{10^{4}} \cdot \frac{\gamma^{2}}{2\left(\Omega^{*}\right)^{2} k} \cdot|A| .
\end{align*}
$$

Let us fix this edge (A, B), and let (A^{\prime}, B^{\prime}) be the corresponding edge in \mathcal{N}_{j}^{*}. Suppose without loss of generality that $B \in \mathcal{X}_{j}$. We can now embed K in $\left(A^{\prime}, B^{\prime}\right)$ using Lemma 6.7 with the following input: $C_{\mathrm{L} 6.7}:=A^{\prime}, D_{\mathrm{L} 6.7}:=$ $B^{\prime}, X_{\mathrm{L} 6.7}:=A^{\prime} \backslash U^{\prime}, X_{\mathrm{L} 6.7}^{*}:=\mathrm{N}_{G_{\mathcal{D}}}\left(x_{j}, A^{\prime} \backslash U^{\prime}\right), Y_{\mathrm{L} 6.7}:=B^{\prime} \backslash U^{\prime}, \varepsilon_{\mathrm{L} 6.7}:=$ $\frac{8 \cdot 10^{4}\left(\Omega^{*}\right)^{2} \varepsilon}{\gamma^{2} \eta^{2}}, \beta_{\mathrm{L} 6.7}:=d / 6$. With the help of (6.79), we get that

$$
\min \left\{X_{\mathrm{L} 6.7}, Y_{\mathrm{L} 6.7}\right\} \geqslant\left|X_{\mathrm{L} 6.7}^{*}\right| \geqslant \frac{\gamma^{2} \eta^{2}|A|}{4 \cdot 10^{4}\left(\Omega^{*}\right)^{2}} \geqslant 4 \frac{\varepsilon_{\mathrm{L} 6.7}}{\beta_{\mathrm{L} 6.7}}\left|A^{\prime}\right| .
$$

- In case (U2) we embed K using Lemma 6.4 with the following input: $\varepsilon_{\text {L6.4 }}:=$ $\varepsilon^{\prime}, U_{\mathrm{L} 6.4}:=U^{\prime}, U_{\mathrm{L} 6.4}^{*}:=\mathrm{N}_{G_{\mathcal{D}}}\left(x_{j}, \mathbb{E} \backslash U^{\prime}\right), \ell:=1$.
- In case (U3) we embed K using Lemma 6.5 with the following input: $H_{\text {L6.5 }}:=$ $G_{\exp }, V_{1, \mathrm{~L} 6.5}:=V_{2, \mathrm{~L} 6.5}:=V\left(G_{\exp }\right), U_{\mathrm{L} 6.5}:=U^{\prime}, U_{\mathrm{L} 6.5}^{*}:=\mathrm{N}_{G_{\text {exp }}}\left(x_{j}, V\left(G_{\exp }\right) \backslash\right.$ $\left.U^{\prime}\right), Q_{\mathrm{L} 6.5}:=1, \zeta_{\mathrm{L} 6.5}:=\rho, \ell_{\mathrm{L} 6.5}:=1$.
- In case (U4) we proceed as follows: As $\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, V_{\rightsquigarrow H \mathbb{H}}\right)<\frac{\eta^{2} k}{10^{5}}$ (cf. Definition 5.12), we have

$$
\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, \bigcup \mathbf{L} \backslash\left(L_{\#} \cup V\left(G_{\text {exp }}\right) \cup V_{\rightsquigarrow \nVdash \mathbb{H}} \cup U^{\prime}\right)\right) \geqslant \frac{2 \eta^{2} k}{10^{5}} .
$$

$$
\begin{align*}
\operatorname{deg}_{G_{\mathcal{D}}}\left(x_{j}, A \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup V_{\rightsquigarrow \mathbb{H}} \cup U^{\prime}\right)\right) & \geqslant \frac{2 \eta^{2} k}{10^{5}} \cdot \frac{\gamma^{2}}{2\left(\Omega^{*}\right)^{2} k} \cdot|A| \tag{6.80}\\
& =\frac{\eta^{2} \gamma^{2}}{10^{5}\left(\Omega^{*}\right)^{2}} \cdot|A| .
\end{align*}
$$

Recall that by the definition of $L_{\#}$ and $V_{\rightsquigarrow \mathbb{H}}$ (see (5.7) and (5.11)), we have that

$$
\operatorname{mindeg}_{G_{\nabla}}\left(A \backslash\left(L_{\#} \cup V_{\rightsquigarrow \mathbb{H}}\right), V(G) \backslash \mathbb{H}\right) \geqslant\left(1+\frac{4 \eta}{5}\right) k
$$

Thus, for the set

$$
A^{*}:=\left(\mathrm{N}_{G_{\mathcal{D}}}\left(x_{j}\right) \cap A\right) \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup V_{\rightsquigarrow \mathbb{H}} \cup U^{\prime}\right)
$$

at least one of the following subcases must occur:
(U4a) For at least $\frac{1}{2}\left|A^{*}\right|$ vertices $v \in A^{*}$ we have $\operatorname{deg}_{G_{\nabla}}\left(v, \mathbb{E} \backslash U^{\prime}\right) \geqslant \frac{2 \eta k}{5}$.
(U4b) For at least $\frac{1}{2}\left|A^{*}\right|$ vertices $v \in A^{*}$ we have $\operatorname{deg}_{G_{\mathrm{reg}}}\left(v, \bigcup \mathbf{V} \backslash U^{\prime}\right) \geqslant \frac{2 \eta k}{5}$. In case (U4a) we embed K using Lemma 6.4. The details are very similar to (U2). As for case (U2b), let us take an arbitrary vertex $v \in A^{*}$ with $\operatorname{deg}_{G_{\mathrm{reg}}}\left(v, \bigcup \mathbf{V} \backslash U^{\prime}\right) \geqslant \frac{2 \eta k}{5}$. In particular, using (6.70), we find a cluster $B \in \mathbf{V}$ with

$$
\begin{equation*}
\operatorname{deg}_{G_{\mathrm{reg}}}\left(v, B \backslash U^{\prime}\right) \geqslant \frac{\gamma^{2} \eta}{10\left(\Omega^{*}\right)^{2}}|B| \tag{6.81}
\end{equation*}
$$

Map the root r_{K} of K to v, and embed $K-r_{K}$ in (A, B) using Lemma 6.7^{18} with the following input: $C_{\mathrm{L} 6.7}:=B, D_{\mathrm{L} 6.7}:=A, X_{\mathrm{L} 6.7}:=B \backslash U^{\prime}, Y_{\mathrm{L} 6.7}:=$ $A \backslash U^{\prime}, X_{\mathrm{L} 6.7}^{*}:=\mathrm{N}_{G_{\mathrm{reg}}}\left(v, B \backslash U^{\prime}\right), \beta_{\mathrm{L} 6.7}:=\gamma^{2} \eta /\left(10\left(\Omega^{*}\right)^{2}\right), \varepsilon_{\mathrm{L} 6.7}:=\varepsilon^{\prime}$. By (6.80) and (6.81) we see that $X_{\mathrm{L} 6.7}, Y_{\mathrm{L} 6.7}$, and $X_{\mathrm{L} 6.7}^{*}$ are large enough.
Stage III: In this stage we embed the trees $\left\{T_{j}^{\prime}\right\}_{j=1}^{\ell^{\prime}}$. The embedding techniques are as in stage II. The cover \mathcal{F}^{\prime} from Definition 5.12 plays the same role as the covers \mathcal{X}_{j} in stage II. Observe that \mathcal{F}^{\prime} is universal, whereas the covers \mathcal{X}_{j} are specific for each vertex x_{j}. A second simplification is that in stage III we use the regularized matching $\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}$ for embedding (in a counterpart of (U1)) instead of \mathcal{N}_{j}^{*}.

Again we proceed inductively for $j=1, \ldots, \ell$, embedding the components of $T_{j}^{\prime}-r_{j}^{\prime}$, which we denote by \mathcal{K}_{j}^{\prime}. Let $K \in \mathcal{K}_{j}^{\prime}$ be a component that has not been embedded yet. We write U^{\prime} for the total image of what has been embedded (in stages I, II, and in stage III so far), combined with U, and we let $U^{\prime \prime}=U^{\prime} \cap \mathbb{A}_{2}$. We claim that y_{j} has a substantial degree into one of four specific vertex sets.

Claim 6.23.6. At least one of the following four cases occurs:
$\left(\mathbf{U 1}{ }^{\prime}\right) \operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, V\left(\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}\right) \backslash\left(\mathbb{E} \cup \bigcup \mathcal{F}^{\prime}\right)\right)-\mid U^{\prime \prime} \cap\left(\bigcup \mathcal{F}^{\prime} \cup\left(V\left(\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}\right) \backslash\right.\right.$ $\mathbb{E}) \left\lvert\, \geqslant \frac{\eta^{2} k}{10^{4}}\right.$.
$\left(\mathbf{U 2}^{\prime}\right) \operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \mathbb{E} \backslash U^{\prime}\right) \geqslant \frac{\eta^{2} k}{10^{4}}$.
$\left(\mathbf{U 3}^{\prime}\right) \operatorname{deg}_{G_{\nabla}}\left(y_{j}, V\left(G_{\exp }\right) \backslash U^{\prime}\right) \geqslant \frac{\eta^{2} k}{10^{4}}$.
$\left(\mathbf{U} 4^{\prime}\right) \operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \cup \mathbf{L} \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup U^{\prime}\right)\right) \geqslant \frac{\eta^{2} k}{10^{4}}$.

[^14]Proof. As $y_{j} \in V_{1}$, we have that

$$
\begin{aligned}
h \leqslant & \operatorname{deg}_{G_{\nabla}}\left(y_{j}, V_{\mathrm{good}}^{\mid 2}\right) \\
\leqslant & \operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, V\left(\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}\right) \backslash\left(\mathbb{E} \cup V\left(G_{\exp }\right) \cup \bigcup \mathcal{F}^{\prime}\right)\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \mathbb{E}^{\mid 2} \backslash\left(V\left(G_{\exp }\right) \cup \bigcup \mathcal{F}^{\prime}\right)\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \bigcup \mathcal{F}^{\prime}\right)+\operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \bigcup \mathbf{L}^{\mid 2} \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)\right)\right) \\
& +\operatorname{deg}_{G_{\nabla}}\left(y_{j}, V\left(G_{\exp }\right)^{\mid 2}\right)+\operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\upharpoonright 2} \backslash V\left(\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}\right)\right) \\
\text { (by L5.5) } \leqslant & \operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, V\left(\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}\right) \backslash\left(\mathbb{E} \cup V\left(G_{\exp }\right) \cup \bigcup \mathcal{F}^{\prime}\right)\right) \\
& -\left|U^{\prime \prime} \cap\left(\bigcup \mathcal{F}^{\prime} \cup\left(V\left(\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right)^{\mid 2}\right) \backslash \mathbb{E}\right)\right) \backslash V\left(G_{\exp }\right)\right| \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \mathbb{E}^{\mid 2} \backslash\left(U^{\prime \prime} \cup V\left(G_{\exp }\right) \cup \bigcup \mathcal{F}^{\prime}\right)\right)+\operatorname{deg}_{G_{\nabla}}\left(y_{j}, V\left(G_{\exp }\right)^{\mid 2} \backslash U^{\prime \prime}\right) \\
& +\operatorname{deg}_{G_{\mathcal{D}}}\left(y_{j}, \bigcup \mathbf{L}^{\mid 2} \backslash\left(L_{\#} \cup V\left(G_{\exp }\right) \cup V\left(\mathcal{M}_{A} \cup \mathcal{M}_{B}\right) \cup U^{\prime \prime}\right)\right) \\
& +\frac{2 \eta^{3} k}{10^{3}}+\frac{\eta^{2} k}{10^{5}}+\left|U^{\prime \prime}\right| .
\end{aligned}
$$

The claim follows since $\left|U^{\prime \prime}\right| \leqslant \sum_{j}\left|T_{j}\right|+\sum_{j}\left|T_{j}^{\prime}\right| \leqslant h-\frac{\eta^{2} k}{1000}$.
Cases ($\left.\mathbf{U} 1^{\prime}\right)-\left(\mathbf{U} 4^{\prime}\right)$ are treated analogously to cases (U1)-(U4).
Lemma 6.24. Suppose that we are in Settings 5.1 and 5.4, and that the sets V_{0} and V_{1} witness preconfiguration $(\bigcirc \mathbf{2})(h)$. Suppose that $U \subseteq \mathbb{A}_{0} \cup \mathbb{A}_{1}$ and $|U| \leqslant k$. Suppose that $\left\{x_{j}\right\}_{j=1}^{\ell} \subseteq V_{0} \cup V_{1}$ are distinct vertices. Let $\left\{\left(T_{j}, r_{j}\right)\right\}_{j=1}^{\ell}$ be a family of rooted trees such that each component of $T_{j}-r_{j}$ has order at most τk.

If $\sum_{j} v\left(T_{j}\right) \leqslant h-\eta^{2} k / 1000$ and $|U|+\sum_{j} v\left(T_{j}\right) \leqslant k$, then there exist disjoint $\left(r_{j} \hookrightarrow x_{j}, V\left(T_{j}\right) \backslash\left\{r_{j}\right\} \hookrightarrow V(G) \backslash U\right)$-embeddings of T_{j} in G.

Proof. The proof is contained in the proof of Lemma 6.23. It suffices to repeat the first two stages of the embedding process of that proof. In that setting, we use $h_{\text {L6.23 }}=2 h$. Note that the condition $\left\{x_{j}\right\} \subseteq V_{0}$ in the setting of Lemma 6.23 gives us the same possibilities for embedding as the condition $\left\{x_{j}\right\} \subseteq V_{0} \cup V_{1}$ in the current setting (cf. (5.30) and (5.33)).

Lemma 6.25. Suppose that we are in Settings 5.1 and 5.4, and that at least one of the following configurations occurs:

- configuration $(\diamond \boldsymbol{6})\left(\frac{\eta^{3} \rho^{4}}{\left.10^{14}\left(\Omega^{*}\right)^{4}\right)}, 4 \pi, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}, \frac{3 \eta^{3}}{2 \cdot 10^{3}}, h\right)$,
- configuration $(\diamond \boldsymbol{7})\left(\frac{\eta^{3} \gamma^{3} \rho}{\left.10^{12}\left(\Omega^{*}\right)^{4}\right)}, \frac{\eta \gamma}{400}, 4 \pi, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}, \frac{3 \eta^{3}}{2 \cdot 10^{3}}, h\right)$, or
- configuration $(\diamond \mathbf{8})\left(\frac{\eta^{4} \gamma^{4} \rho}{\left.10^{15}\left(\Omega^{*}\right)^{5}\right)}, \frac{\eta \gamma}{400}, \frac{4 \varepsilon}{\mathfrak{p}_{1}}, 4 \pi, \frac{d}{2}, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\mathfrak{p}_{1} \pi \mathfrak{c}}{2 k}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}, h_{1}, h\right)$. Suppose that $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ is a (τk)-fine partition of a rooted tree (T, r) of order k. If the total order of the end shrubs is at most $h-2 \frac{\eta^{2} k}{10^{3}}$ and the total order of the internal shrubs is at most $h_{1}-2 \frac{\eta^{2} k}{10^{5}}$, then $T \subseteq G$.

Proof. Let T^{\prime} be the tree induced by all the cut-vertices $W_{A} \cup W_{B}$ and all the internal shrubs. Summing up the order of the internal shrub and the cut-vertices, we get that $v\left(T^{\prime}\right)<h_{1}-\frac{\eta^{2} k}{10^{5}}$. Fix an embedding of T^{\prime} as in Lemma 6.21 (in configurations ($\diamond \boldsymbol{6})$ and $(\diamond \boldsymbol{7})$), or as in Lemma 6.22 (in configuration $(\diamond \boldsymbol{8})$). This embedding now extends to external shrubs by Lemma 6.23 (in preconfiguration ($\triangle \mathbf{1}$), which can only
occur in configurations $(\diamond \boldsymbol{6})$ and $(\diamond \boldsymbol{7})$) or by Lemma 6.24 (in preconfiguration $(\bigcirc \mathbf{2})$). It is important to remember here that by Definition 3.3(1), the total order of end shrubs in \mathcal{S}_{B} is at most half the size of the total order of all end shrubs.

The next lemma completely resolves Theorem 1.2 in the case of configuration ($\diamond \mathbf{9}$).
Lemma 6.26. Suppose we are in Settings 5.1 and 5.4, and assume we have configuration $(\diamond \mathbf{9})\left(\delta, \frac{2 \eta^{3}}{10^{3}}, h_{1}, h_{2}, \varepsilon_{1}, d_{1}, \mu_{1}, \varepsilon_{2}, d_{2}, \mu_{2}\right)$ with $d_{2}>10 \varepsilon_{2}>0,4 \cdot 10^{3} \leqslant d_{2} \mu_{2} \tau k$, $\max \left\{d_{1}, \tau / \mu_{1}\right\} \leqslant \gamma^{2} \eta^{2} /\left(4 \cdot 10^{7}\left(\Omega^{*}\right)^{2}\right), d_{1}^{2} / 6>\varepsilon_{1} \geqslant \tau / \mu_{1}$, and $\delta k>10^{3} / \tau$.

Suppose that $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ is a (τk)-fine partition of a rooted tree (T, r) of order k. If the total order of the internal shrubs of $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ is at most $h_{1}-\frac{\eta^{2} k}{10^{5}}$, and the total order of the end shrubs is at most $h_{2}-2 \frac{\eta^{2} k}{10^{3}}$, then $T \subseteq G$.

Proof. Let $V_{0}, V_{1}, V_{2}, \mathcal{N},\left\{Q_{0}^{(j)}, Q_{1}^{(j)}\right\}_{j \in \mathcal{Y}}$, and \mathcal{F}^{\prime} witness $(\diamond \mathbf{9})$. The embedding process has two stages. In the first stage we embed the hubs and the internal shrubs of T. In the second stage we embed the end shrubs. The hubs will be embedded in $V_{0} \cup V_{1}$, and the internal shrubs will be embedded in $V(\mathcal{N})$. Lemma 6.23 will be used to embed the end shrubs.

The hubs of $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ are embedded in such a way that W_{A} is embedded in V_{1} and W_{B} is embedded in V_{0}. We embed each hub using Lemma 6.9 with the following input: $\varepsilon_{\mathrm{L} 6.9}:=\varepsilon_{2}, d_{\mathrm{L} 6.9}:=d_{2}, \ell_{\mathrm{L} 6.9}:=\mu_{2} k, U_{A} \cup U_{B}$ is the image of the seeds $W_{A} \cup W_{B}$ embedded so far, and $\left\{A_{\mathrm{L} 6.9}, B_{\mathrm{L} 6.9}\right\}:=\left\{Q_{0}^{(j)}, Q_{1}^{(j)}\right\}$, where $j \in \mathcal{Y}$ is arbitrary for the first hub, and for all other hubs P has the property that

$$
\mathrm{N}_{G_{\mathcal{D}}}(\phi(\operatorname{Par}(P))) \cap Q_{1}^{(j)} \backslash U_{A} \neq \emptyset
$$

(We shall argue the existence of such j later.) The following facts are used to guarantee that the assumptions of Lemma 6.9 are met:

- Only hubs are embedded into $V_{0} \cup V_{1}$ at this stage of the embedding.
- The total order of hubs is bounded by Definition 3.3(c).
- The pairs $\left\{\left(Q_{0}^{(j)}, Q_{1}^{(j)}\right)\right\}_{j \in \mathcal{Y}}$ are superregular.

Let us now return to the question of an existence of a suitable index j. This follows from the fact that

$$
\begin{equation*}
\phi(\operatorname{Par}(P)) \in V_{2}, \tag{6.82}
\end{equation*}
$$

together with condition (5.53). We shall ensure (6.82) during our embedding of the internal shrubs; see below.

We now describe how to embed an internal shrub $T^{*} \in \mathcal{S}_{A}$ whose parent $u \in W_{A}$ is embedded in a vertex $x \in V_{1}$. Let $w \in V\left(T^{*}\right)$ be the unique neighbor of a vertex from $W_{A} \backslash\{u\}$ (cf. Definition 3.3(h)). Let U be the image of the part of T embedded so far. The next claim will be useful for finding a suitable \mathcal{N}-edge for accommodating T^{*}.

Claim 6.26.1. There exists an \mathcal{N}-edge (A, B) or an \mathcal{N}-edge (B, A) such that

$$
\min \left\{\left|\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2} \cap(A \backslash U)\right|,|B \backslash U|\right\} \geqslant 100 d_{1}|A|+\tau k .
$$

Proof of $\operatorname{Claim} 6.26 .1$. For the purpose of this claim we reorient \mathcal{N} so that $V_{2}(\mathcal{N}) \subseteq$ $\bigcup \mathcal{F}^{\prime}$.

Suppose the claim fails to be true. Then for each $(A, B) \in \mathcal{N}$ we have $\mid \mathrm{N}_{G_{\mathcal{D}}}(x) \cap$ $V_{2} \cap(A \backslash U)\left|<100 d_{1}\right| A \mid+\tau k$ or $|B \backslash U|<100 d_{1}|A|+\tau k$. In either case we get

$$
\begin{equation*}
\left|\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2} \cap A\right|-|U \cap(A \cup B)|<100 d_{1}|A|+\tau k \tag{6.83}
\end{equation*}
$$

We write $S:=\bigcup\{V(D): D \in \mathcal{D}, x \in V(D)\}$. Combining Facts 4.3 and 4.4, we get that

$$
\begin{equation*}
|S| \leqslant \frac{2\left(\Omega^{*}\right)^{2} k}{\gamma^{2}} \tag{6.84}
\end{equation*}
$$

Let us look at the number

$$
\begin{equation*}
\lambda:=\sum_{(A, B) \in \mathcal{N}}\left(\left|\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2} \cap A\right|-|U \cap(A \cup B)|\right) . \tag{6.85}
\end{equation*}
$$

For a lower bound on λ, we write $\lambda=\left|\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2}\right|-|U \cap V(\mathcal{N})|$. (Note that $V_{2} \subseteq V(\mathcal{N})$ as we are in configuration $(\diamond 9)$.) The first term is at least h_{1} by (5.52), while the second term is at most $h_{1}-\frac{\eta^{2} k}{10^{5}}$ by the assumptions of the lemma. Thus $\lambda \geqslant \frac{\eta^{2} k}{10^{5}}$.

For an upper bound on λ we only consider those \mathcal{N}-edges (A, B) for which $\mathrm{N}_{G_{\mathcal{D}}}(x) \cap A \neq \emptyset$. In that case $A \subseteq S$ (cf. Setting 5.1(3)). Thus, since \mathcal{N} is $\left(\varepsilon_{1}, d_{1}, \mu_{1} k\right)$ regularized, we get that

$$
\begin{equation*}
\left|\left\{(A, B) \in \mathcal{N}: \mathrm{N}_{G_{\mathcal{D}}} \cap A \neq \emptyset\right\}\right| \leqslant \frac{|S|}{\mu_{1} k} \tag{6.86}
\end{equation*}
$$

Consequently,

$$
\begin{aligned}
\lambda & \leqslant \sum_{(A, B) \in \mathcal{N}, \mathrm{N}_{G_{\mathcal{D}}}(x) \cap A \neq \emptyset}\left(\left|\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2} \cap A\right|-|U \cap(A \cup B)|\right) \\
\text { (by (6.83),(6.86))} & \leqslant 100 d_{1}|S|+\frac{|S|}{\mu_{1} k} \tau k \\
\text { (by (6.84)) } & <\frac{\eta^{2} k}{10^{5}},
\end{aligned}
$$

a contradiction. This finishes the proof of the claim.
By symmetry we suppose that Claim 6.26 .1 gives an \mathcal{N}-edge (A, B) such that $\min \left\{\left|\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2} \cap(A \backslash U)\right|,|B \backslash U|\right\} \geqslant 100 d_{1}|A|+\tau k$. We apply Lemma 6.7 with input $C_{\mathrm{L} 6.7}:=A, D_{\mathrm{L} 6.7}:=B, X_{\mathrm{L} 6.7}=X_{\mathrm{L} 6.7}^{*}:=\mathrm{N}_{G_{\mathcal{D}}}(x) \cap V_{2} \cap(A \backslash U), Y_{\mathrm{L} 6.7}:=B \backslash U$, $\varepsilon_{\mathrm{L} 6.7}:=\varepsilon_{1}, \beta_{\mathrm{L} 6.7}:=d_{1} / 3$. Then there exists an embedding of T^{*} in $V(\mathcal{N}) \backslash U$ such that w is embedded in V_{2}. This ensures (6.82).

We remark that there may be several internal shrubs extending from $u \in W_{A}$. However, Claim 6.26.1 and the subsequent application of Lemma 6.7 allow a sequential embedding of these shrubs. This finishes the first stage of the embedding process.

For the second stage, i.e., the embedding of the end shrubs of $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$, we first recall that the total order of end shrubs in \mathcal{S}_{A} is at most $h_{2}-2 \frac{\eta^{2} k}{10^{3}}$, and the total order of end shrubs in \mathcal{S}_{B} is at most $\frac{1}{2}\left(h_{2}-2 \frac{\eta^{2} k}{10^{3}}\right)$ by Definition 3.3(l). The embedding is a straightforward application of Lemma 6.23.

The next lemma resolves Theorem 1.2 in the presence of configuration $(\diamond \mathbf{1 0})$.
Lemma 6.27. Suppose we are in Setting 5.1. For every $\eta^{\prime}, d^{\prime}, \Omega>0$ there exists a number $\tilde{\varepsilon}>0$ such that for every $\nu^{\prime}>0$ satisfying

$$
\begin{equation*}
\frac{\eta^{\prime} \nu^{\prime}}{200 \Omega}>\tau \tag{6.87}
\end{equation*}
$$

there exists a number k_{0} such that the following holds for each $k>k_{0}$.
If G is a graph with configuration $(\diamond \mathbf{1 0})\left(\tilde{\varepsilon}, d^{\prime}, \nu^{\prime} k, \Omega k, \eta^{\prime}\right)$, then each tree of order k is contained in G.

Proof. We give a sketch of a proof, following along the lines of [PS12]. The main difference was indicated in section 6.1.6.

Suppose we have configuration $(\diamond \mathbf{1 0})\left(\tilde{\varepsilon}, d^{\prime}, \nu^{\prime} k, \Omega k, \eta^{\prime}\right)$ and are given a rooted tree (T, r) of order k with a (τk)-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ given by Lemma 3.5. By replacing \mathcal{L}^{*} by $\mathcal{L}^{*} \backslash \mathcal{V}(\mathcal{M}),{ }^{19}$ we can assume that \mathcal{L}^{*} and $\mathcal{V}(\mathcal{M})$ are disjoint.

For each shrub $F \in \mathcal{S}_{A} \cup \mathcal{S}_{B}$, let $x_{F} \in V(F)$ be its root, i.e., its minimal element in the topological order. If F is internal, then we also define y_{F} as its (unique) maximal element that neighbors W_{A}. We can partition the regularized matching \mathcal{M} and the set \mathcal{L}^{*} into two parts, $\mathcal{M}_{A} \cup \mathcal{L}_{A}^{*}$ and $\mathcal{M}_{B} \cup \mathcal{L}_{B}^{*}$, so that the partition satisfies

$$
\begin{align*}
\operatorname{deg}_{\tilde{G}}\left(v, V\left(\mathcal{M}_{A}\right) \cup \bigcup \mathcal{L}_{A}^{*}\right) & \geqslant v\left(\mathcal{S}_{A}\right)+\frac{\eta^{\prime} k}{4} \tag{6.88}\\
\operatorname{deg}_{\tilde{G}}\left(w, V\left(\mathcal{M}_{B}\right) \cup \bigcup \mathcal{L}_{B}^{*}\right) & \geqslant v\left(\mathcal{S}_{B}\right)+\frac{\eta^{\prime} k}{4} \tag{6.89}
\end{align*}
$$

for all but at most $2 \tilde{\varepsilon}|A|$ vertices $v \in A$ and for all but at most $2 \tilde{\varepsilon}|B|$ vertices $w \in B$. To see this, observe that the nature of the regularized graph allows us to treat ${ }^{20}$ conditions (6.88), (6.89), and that of Definition 5.21 (b) in terms of average degrees of vertices in A and B, rather than in terms of individual degrees. ${ }^{21}$ If A and B were connected to each cluster $X \in \mathcal{L}^{*} \cup \mathcal{V}(\mathcal{M})$ by regular pairs of the same density, say d_{X}, it would suffice to split \mathcal{L}^{*} and \mathcal{M} in the ratio $v\left(\mathcal{S}_{A}\right): v\left(\mathcal{S}_{B}\right)$. In the general setting, this can also be achieved, as was done in [PS12, Lemma 9]. Let $h_{A, \mathcal{L}^{*}}, h_{B, \mathcal{L}^{*}}$, $h_{A, \mathcal{M}}$, and $h_{B, \mathcal{M}}$ be the average degrees of vertices of A and B into $\mathcal{L}_{A}^{*}, \mathcal{L}_{B}^{*}, \mathcal{M}_{A}$, and \mathcal{M}_{B}.

We will now use the regularity to embed the shrubs and the seeds in \tilde{G}. We start with mapping r to A or B (depending on whether $r \in W_{A}$ or $r \in W_{B}$) and proceed along a topological order on T. We denote the partial embedding of T at any particular stage as ϕ. The vertices of W_{A} are mapped to A, and the vertices of W_{B} are mapped to B. As for embedding the shrubs, initially we start with embedding the shrubs of \mathcal{S}_{A} to \mathcal{M}_{A} (we say that A is in the \mathcal{M}-mode) and embedding the shrubs of \mathcal{S}_{B} to M_{B} (B is in the \mathcal{M}-mode). By filling up the \mathcal{M}-edges with the shrubs as balanced as possible, we can guarantee that we do not run out of space in \mathcal{M}_{A} before embedding \mathcal{S}_{A}-shrubs of total order at least $h_{A, \mathcal{M}}-\eta^{\prime} k / 100$. An analogous property holds for embedding \mathcal{S}_{B}-shrubs. We omit details and instead refer the reader to a very similar procedure in Lemma 6.26. ${ }^{22}$

At some moment we may run out of space in \mathcal{M}_{A} or in \mathcal{M}_{B}. Say that this happens first with the matching \mathcal{M}_{A}. Let $\mathcal{S}_{A}^{*} \subseteq \mathcal{S}_{A}$ be the set of shrubs not embedded so far. We now describe how to proceed when A is in the \mathcal{L}^{*}-mode. In this mode, we will not embed an upcoming shrub $F \in \mathcal{S}_{A}^{*}$, but only reserve a set U_{F}, with $\left|U_{F}\right| \leqslant v(F)$ which serves as a reminder that we want to accommodate F later on. Suppose that the parent $\operatorname{Par}(F) \in W_{A}$ of F has been mapped to a typical ${ }^{23}$ vertex $z \in A$ already.

[^15]We have

$$
\operatorname{deg}_{\tilde{G}}\left(z, \bigcup \mathcal{L}_{A}^{*}\right) \geqslant v\left(\mathcal{S}_{A}^{*}\right)+\frac{\eta^{\prime} k}{100} \geqslant \sum_{F^{\prime}}\left|U_{F}^{\prime}\right|+\frac{\eta^{\prime} k}{100},
$$

where the sum ranges over the already processed \mathcal{S}_{A}^{*}-shrubs F^{\prime}. Consequently, there is a cluster $X \in \mathcal{V}$ such that

$$
\begin{equation*}
\operatorname{deg}_{\tilde{G}}\left(z, X \backslash \bigcup_{F^{\prime}} U_{F^{\prime}}\right)>\frac{\eta^{\prime}|X|}{100 \Omega} . \tag{6.90}
\end{equation*}
$$

Let us view F as a bipartite graph, and let a_{F} be the size of its color class that contains x_{F}. Let U_{F} be an arbitrary set of $\left(\mathrm{N}_{\tilde{G}}(z) \cap X\right) \backslash \bigcup_{F^{\prime}} U_{F^{\prime}}$ of size a_{F}, and also let us fix an image $\phi\left(x_{F}\right) \in U_{F}$ arbitrarily. If F is an internal shrub, we further define $\phi\left(y_{F}\right) \in U_{F} \backslash\left\{\phi\left(x_{B}\right)\right\}$ arbitrarily. At this stage we consider F as processed.

Later, of course, B can switch to the \mathcal{L}^{*}-mode as well. At that moment, we define \mathcal{S}_{B}^{*} and start to only make reservations U_{K} in clusters of \mathcal{L}_{B}^{*} instead of embedding shrubs $K \in \mathcal{S}_{B}^{*}$.

After all shrubs of $\mathcal{S}_{A}^{*} \cup \mathcal{S}_{B}^{*}$ have been processed, we finalize the embedding. Consider a shrub $F \in \mathcal{S}_{A}^{*} \cup \mathcal{S}_{B}^{*}$. Suppose that $U_{F} \subseteq X$ for some $X \in \mathcal{V}$. We use Definition 5.21(c) to find a cluster Y such that

$$
\mathrm{d}(X, Y) \geqslant \frac{\left|Y \cap\left(\mathrm{im}(\phi) \cup \bigcup_{F^{\prime} \text { yet unembedded }} U_{F^{\prime}}\right)\right|}{|Y|}+\frac{\eta^{\prime}}{100 \Omega} .
$$

As $\phi\left(x_{F}\right)$ and $\phi\left(y_{F}\right)$ are typical, ${ }^{24}$ we can additionally require that

$$
\operatorname{deg}_{\tilde{G}}\left(\phi\left(x_{F}\right), Y\right), \operatorname{deg}_{\tilde{G}}\left(\phi\left(y_{F}\right), Y\right) \geqslant(\mathrm{d}(X, Y)-\sqrt{\tilde{\varepsilon}})|Y| .
$$

Therefore, the regularity method allows us to embed F in the pair (X, Y), avoiding the already defined image of ϕ, and the sets $U_{F^{\prime}}$ corresponding to yet unembedded shrubs F^{\prime}. The fact that the threshold in (6.90) was taken quite high (compared to the size of the shrubs; see (6.87)) allows us to avoid atypical vertices. We also need this embedding to be compatible with the existing placements $\phi\left(x_{F}\right)$ and $\phi\left(y_{F}\right)$. In particular, we need to find a path of length $\operatorname{dist}_{F}\left(x_{F}, y_{F}\right)$ from $\phi\left(x_{F}\right)$ to $\phi\left(y_{F}\right)$. Here, it is crucial that dist ${ }_{F}\left(x_{F}, y_{F}\right) \geqslant 4$ (cf. Definition 3.3(i)). ${ }^{25}$ We remark that in general we cannot guarantee that $X \cap \phi(F)=U_{F}$. So the set U_{F} should be regarded merely as a measure of future occupation of X, rather than an indication of exact future placement.
7. Proof of Theorem 1.2. The proof builds on the main results from $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, $\left.\mathrm{HKP}^{+} \mathrm{b}, \mathrm{HKP}^{+} \mathrm{c}\right]$. We extend our subscript notation to allow referencing to parameters from $\left[\mathrm{HKP}^{+} \mathrm{a}, \mathrm{HKP}^{+} \mathrm{b}, \mathrm{HKP}^{+} \mathrm{c}\right]$. For example, $\eta_{\text {I.L3. } 14}$ refers to the parameter η from Lemma 3.14 from part I of the series, that is, from $\left[\mathrm{HKP}^{+} \mathrm{a}\right]$.

Let $\alpha>0$ be given. We set

$$
\eta:=\min \left\{\frac{1}{30}, \frac{\alpha}{2}\right\} .
$$

[^16]We wish to fix further constants satisfying (5.1). A problem is that we do not know the right choice of Ω^{*} and $\Omega^{* *}$ yet. Therefore we take $g:=\left\lfloor\frac{100}{\eta^{2}}\right\rfloor+1$ and fix suitable constants
$\eta \gg \frac{1}{\Omega_{1}} \gg \frac{1}{\Omega_{2}} \gg \cdots \gg \frac{1}{\Omega_{g+1}} \ggg \gamma \gg d \geqslant \frac{1}{\Lambda} \geqslant \varepsilon \geqslant \pi \geqslant \widehat{\alpha} \geqslant \varepsilon^{\prime} \geqslant \nu \gg \tau \gg \frac{1}{k_{0}}>0$,
where the precise relations between the parameters are as follows:

$$
\begin{aligned}
& \frac{1}{\Omega_{1}} \leqslant \frac{\eta^{13}}{10^{33}}, \\
& \frac{1}{\Omega_{j+1}} \leqslant \frac{\eta^{27}}{10^{67} \Omega_{j}^{36}} \quad \text { for each } j=1, \ldots, g, \\
& \rho \leqslant \frac{\eta^{13}}{10^{33} \Omega_{g+1}^{5}}, \\
& \gamma \leqslant \frac{\eta^{18} \rho^{24}}{10^{90} \Omega_{g+1}^{28}}, \\
& d \leqslant \min \left\{\frac{\gamma^{2} \eta^{2}}{10^{8} \Omega_{g+1}^{2}}, \beta_{\mathrm{II.L5.4}}\left(\eta_{\mathrm{II} . \mathrm{L} 5.4}:=\eta, \Omega_{\mathrm{II} . \mathrm{L} 5.4}:=\Omega_{g+1}, \gamma_{\mathrm{II} . \mathrm{L} 5.4}:=\gamma\right)\right\}, \\
& \frac{1}{\Lambda} \leqslant \min \left\{d, \frac{\eta^{24} \gamma^{24} \rho}{10^{96} \Omega_{g+1}^{36}}\right\}, \\
& \varepsilon \leqslant \min \left\{\frac{1}{\Lambda}, \frac{\gamma^{2} \eta^{3} d \rho}{10^{13} \Omega_{g+1}^{4}}, \tilde{\varepsilon}_{\mathrm{L} 6.27}\left(\eta_{\mathrm{L} 6.27}^{\prime}:=\eta / 40, d_{\mathrm{L} 6.27}^{\prime}:=\gamma^{2} d / 2, \Omega_{\mathrm{L} 6.27}:=\frac{\left(\Omega_{g+1}\right)^{2}}{\gamma^{2}}\right)\right\}, \\
& \pi \leqslant \min \left\{\varepsilon, \pi_{\text {II.L5.4 }}\left(\eta_{\text {II.L5.4 }}:=\eta, \Omega_{\text {II.L5.4 }}:=\Omega_{g+1}, \gamma_{\text {II.L5.4 }}:=\gamma, \varepsilon_{\text {II.L5.4 }}:=\varepsilon\right)\right\}, \\
& \widehat{\alpha} \leqslant \min \left\{\pi, \alpha_{\text {II.L4.4 }}\left(\Omega_{\text {II.L4.4 }}:=\Omega_{g+1}, \rho_{\text {II.L4.4 }}:=\frac{\gamma^{2}}{4}, \varepsilon_{\text {II.L4.4 }}:=\pi, \tau_{\text {II.L4.4 }}:=2 \rho\right)\right\}, \\
& \varepsilon^{\prime} \leqslant \min \left\{\frac{\widehat{\alpha}^{2} \gamma^{6} \rho^{2}}{10^{3} \Omega_{g+1}^{4}}, \varepsilon_{\mathrm{II} . \mathrm{L} 5.4}^{\prime}\left(\eta_{\mathrm{II} . \mathrm{L} 5.4}:=\eta, \Omega_{\mathrm{II.L5.4}}:=\Omega_{g+1}, \gamma_{\mathrm{II} . \mathrm{L} 5.4}:=\gamma, \varepsilon_{\mathrm{II} . \mathrm{L} 5.4}:=\varepsilon\right)\right\}, \\
& \nu \leqslant \min \left\{\frac{\widehat{\alpha} \rho}{\Omega_{g+1}}, \varepsilon^{\prime}, \nu_{\text {I.L3.14 }}\left(\eta_{\text {I.L3.14 }}:=\alpha, \Lambda_{\text {I.L3.14 }}:=\Lambda, \gamma_{\text {I.L3.14 }}:=\gamma, \varepsilon_{\text {I.L3.14 }}:=\varepsilon^{\prime},\right.\right. \\
& \left.\left.\rho_{\text {I.L3.14 }}:=\rho\right)\right\}, \\
& \tau \leqslant 2 \varepsilon \pi \nu, \\
& \frac{1}{k_{0}} \leqslant \min \left\{\frac{\gamma^{3} \rho \eta^{8} \tau \nu}{10^{3} \Omega_{g+1}^{3}}, \frac{1}{k_{0}^{*}}\right\},
\end{aligned}
$$

with k_{0}^{*} set as the maximum of the numbers

$$
\begin{aligned}
k_{0, \mathrm{II.L3.14}}\left(\eta_{\mathrm{I} . \mathrm{L} 3.14}\right. & \left.:=\alpha, \Lambda_{\mathrm{I} . \mathrm{L} 3.14}:=\Lambda, \gamma_{\mathrm{I} . \mathrm{L} 3.14}:=\gamma, \varepsilon_{\mathrm{I} . \mathrm{L} 3.14}:=\varepsilon^{\prime}, \rho_{\mathrm{I} . \mathrm{L} 3.14}:=\rho\right) \\
k_{0, \mathrm{II.L4.4}}\left(\Omega_{\mathrm{II.L4.4}}\right. & :=\Omega_{g+1}, \rho_{\mathrm{II.L4} .4}:=\frac{\gamma^{2}}{4}, \varepsilon_{\mathrm{II.L4.4}}:=\pi, \tau_{\mathrm{II} . \mathrm{L} 4.4}:=2 \rho \\
\alpha_{\mathrm{II.L4.4}} & \left.:=\widehat{\alpha}, \nu_{\mathrm{II.L4.4}}:=\frac{2 \rho}{\Omega_{g+1}}\right)
\end{aligned}
$$

$k_{0, \text { II.L5.4 }}\left(\eta_{\mathrm{II} . \mathrm{L} 5.4}:=\eta, \Omega_{\mathrm{II} . \mathrm{L} 5.4}:=\Omega_{g+1}, \gamma_{\mathrm{III} . \mathrm{L} 5.4}:=\gamma, \varepsilon_{\mathrm{II} . \mathrm{L} 5.4}:=\varepsilon, \nu_{\mathrm{II} . \mathrm{L} 5.4}:=\nu\right)$,
$k_{0, \mathrm{~L} 5.2}\left(p_{\mathrm{L} 5.2}:=10, \alpha_{\mathrm{L} 5.2}:=\eta / 100\right)$,
$k_{0, \mathrm{~L} 6.27}\left(\eta_{\mathrm{L} 6.27}^{\prime}:=\eta / 40, d_{\mathrm{L} 6.27}^{\prime}:=\gamma^{2} d / 2, \tilde{\varepsilon}_{\mathrm{L} 6.27}:=\varepsilon, \Omega_{\mathrm{L} 6.27}:=\frac{\left(\Omega_{g+1}\right)^{2}}{\gamma^{2}}, \nu_{\mathrm{L} 6.27}^{\prime}:=\pi \nu \sqrt{\varepsilon^{\prime}}\right)$.
In particular, this gives a relation between α and k_{0}.
Suppose now that $k>k_{0}, G \in \mathbf{L K S}(n, k, \alpha)$ is a graph, and $T \in \operatorname{trees}(k)$ is a tree of order k. Our goal is to show that $T \subseteq G$.

Let us now turn to the proof. First, we preprocess the tree T by considering any (τk)-fine partition $\left(W_{A}, W_{B}, \mathcal{S}_{A}, \mathcal{S}_{B}\right)$ of T rooted at an arbitrary root r. Such a partition exists by Lemma 3.5. Let m_{1} and m_{2} be the total order of the internal shrubs and the end shrubs, respectively. Set

$$
\mathfrak{p}_{0}:=\frac{\eta}{100} \quad \text { and } \quad \mathfrak{p}_{i}:=\frac{\eta}{100}+\frac{m_{i}}{\left(1+\frac{\eta}{30}\right) k} \quad \text { for } i=1,2 .
$$

In particular, we have $\mathfrak{p}_{i} \in\left[\frac{\eta}{100}, 1\right]$ for $i=0,1,2$.
To find a suitable structure in the graph G we proceed as follows. We apply $\left[\operatorname{HKP}^{+} \mathrm{a}\right.$, Lemma 3.14$]$ with the input graph $G_{\mathrm{I} . \mathrm{L} 3.14}:=G$ and parameters $\eta_{\text {I.L3.14 }}:=\alpha, \Lambda_{\text {I.L3.14 }}:=\Lambda, \gamma_{\text {I.L3.14 }}:=\gamma, \varepsilon_{\text {I.L3.14 }}:=\varepsilon^{\prime}, \rho_{\text {I.L3.14 }}:=\rho$, the sequence $\left(\Omega_{j}\right)_{j=1}^{g+1}, k_{\mathrm{I} . \mathrm{L} 3.14}:=k$, and $b_{\mathrm{I} . \mathrm{L} 3.14}:=\frac{\rho k}{100 \Omega^{*}}$. The lemma gives a graph $G_{\text {I.L3.14 }}^{\prime} \in \mathbf{L K S s m a l l}(n, k, \eta)$ and an index $i \in[g]$. Slightly abusing notation, we still call this graph G. Set $\Omega^{*}:=\Omega_{i}$ and $\Omega^{* *}:=\Omega_{i+1}$. Now, [HKP ${ }^{+}$a, Lemma 3.14(c)] yields a $\left(k, \Omega^{* *}, \Omega^{*}, \Lambda, \gamma, \varepsilon^{\prime}, \nu, \rho\right)$-sparse decomposition $\nabla=\left(\mathbb{H}, \mathbf{V}, \mathcal{D}, G_{\text {reg }}, G_{\exp }, \mathbb{E}\right)$. Let \mathfrak{c} be the size of any cluster in \mathbf{V}.

We now apply $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Lemma 5.4$]$ with parameters $\eta_{\text {II.L5.4 }}:=\eta, \Omega_{\text {II.L5.4 }}:=$ $\Omega_{g+1}, \gamma_{\mathrm{II} . \mathrm{L} 5.4}:=\gamma, \varepsilon_{\mathrm{II} . \mathrm{L} 5.4}:=\varepsilon, k_{\mathrm{II} . \mathrm{L} 5.4}:=k$, and $\Omega_{\mathrm{IIIL5.4}}^{*}:=\Omega^{*}$. Given the graph G with its sparse decomposition ∇, the lemma gives three ($\varepsilon, d, \pi \mathfrak{c}$)-regularized matchings $\mathcal{M}_{A}, \mathcal{M}_{B}$, and $\mathcal{M}_{\text {good }} \subseteq \mathcal{M}_{A}$ which fulfill the assertion of either case (K1) or case (K2). The matchings \mathcal{M}_{A} and \mathcal{M}_{B} also define the sets $\mathbb{X} \mathbb{A}$ and $\mathbb{X} \mathbb{B}$.

The additional features provided by $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, Lemma 3.14] and $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Lemma 5.4] guarantee that we are in the situation described in Setting 5.1. We apply Lemma 5.2 as described in Definition 5.3; the numbers $\mathfrak{p}_{0}, \mathfrak{p}_{1}, \mathfrak{p}_{2}$ are as defined above. This puts us in the setting described in Setting 5.4. We now use [HKP ${ }^{+}$c, Lemma 4.17] to obtain one of the following configurations:

- $(\diamond \mathbf{1})$,
- $(\diamond \mathbf{2})\left(\frac{\eta^{39} \Omega^{* *}}{4 \cdot 10^{90}\left(\Omega^{*}\right)^{11}}, \frac{\sqrt[4]{\Omega^{* *}}}{2}, \frac{\eta^{13} \rho^{2}}{128 \cdot 10^{30} \cdot\left(\Omega^{*}\right)^{5}}\right)$,
- $(\diamond \mathbf{3})\left(\frac{\eta^{39} \Omega^{* *}}{4 \cdot 10^{90}\left(\Omega^{*}\right)^{11}}, \frac{\sqrt[4]{\Omega^{* *}}}{2}, \frac{\gamma}{2}, \frac{\eta^{13} \gamma^{2}}{128 \cdot 10^{30} \cdot\left(\Omega^{*}\right)^{5}}\right)$,
- $(\diamond 4)\left(\frac{\eta^{39} \Omega^{* *}}{4 \cdot 10^{90}\left(\Omega^{*}\right)^{11}}, \frac{\sqrt[4]{\Omega^{* *}}}{2}, \frac{\gamma}{2}, \frac{\eta^{13} \gamma^{3}}{384 \cdot 10^{30}\left(\Omega^{*}\right)^{6}}\right)$,
- $(\diamond \mathbf{5})\left(\frac{\eta^{39} \Omega^{* *}}{4 \cdot 10^{90}\left(\Omega^{*}\right)^{11}}, \frac{\sqrt[4]{\Omega^{* *}}}{2}, \frac{\eta^{13}}{128 \cdot 10^{30} \cdot\left(\Omega^{*}\right)^{3}}, \frac{\eta}{2}, \frac{\eta^{13}}{128 \cdot 10^{30} \cdot\left(\Omega^{*}\right)^{4}}\right)$,
- $(\diamond \boldsymbol{6})\left(\frac{\eta^{3} \rho^{4}}{10^{14}\left(\Omega^{*}\right)^{4}}, 4 \pi, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}, \frac{3 \eta^{3}}{2000}, \mathfrak{p}_{2}\left(1+\frac{\eta}{20}\right) k\right)$,
- $(\diamond \boldsymbol{7})\left(\frac{\eta^{3} \gamma^{3} \rho}{10^{12}\left(\Omega^{*}\right)^{4}}, \frac{\eta \gamma}{400}, 4 \pi, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}, \frac{3 \eta^{3}}{2 \cdot 10^{3}}, \mathfrak{p}_{2}\left(1+\frac{\eta}{20}\right) k\right)$,
- $(\diamond \mathbf{8})\left(\frac{\eta^{4} \gamma^{4} \rho}{10^{15}\left(\Omega^{*}\right)^{5}}, \frac{\eta \gamma}{400}, \frac{400 \varepsilon}{\eta}, 4 \pi, \frac{d}{2}, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\eta \pi \mathfrak{c}}{200 k}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}, \mathfrak{p}_{1}\left(1+\frac{\eta}{20}\right) k, \mathfrak{p}_{2}\left(1+\frac{\eta}{20}\right) k\right)$,
- $(\diamond \mathbf{9})\left(\frac{\rho \eta^{8}}{10^{27}\left(\Omega^{*}\right)^{3}}, \frac{2 \eta^{3}}{10^{3}}, \mathfrak{p}_{1}\left(1+\frac{\eta}{40}\right) k, \mathfrak{p}_{2}\left(1+\frac{\eta}{20}\right) k, \frac{400 \varepsilon}{\eta}, \frac{d}{2}, \frac{\eta \pi \mathfrak{c}}{200 k}, 4 \pi, \frac{\gamma^{3} \rho}{32 \Omega^{*}}, \frac{\eta^{2} \nu}{2 \cdot 10^{4}}\right)$,
- $(\diamond \mathbf{1 0})\left(\varepsilon, \frac{\gamma^{2} d}{2}, \pi \sqrt{\varepsilon^{\prime}} \nu k, \frac{\left(\Omega^{*}\right)^{2} k}{\gamma^{2}}, \frac{\eta}{40}\right)$.

Depending on the actual configuration, Lemma 6.17, Lemma 6.20, Lemma 6.25, Lemma 6.26 , or Lemma 6.27 guarantees that $T \subseteq G$. This finishes the proof of the theorem.
8. Theorem 1.2 algorithmically. We now discuss the algorithmic aspects of our proof of Theorem 1.2. This discussion also covers the parts developed in the preceding papers of the series $\left[\mathrm{HKP}^{+} \mathrm{a}, \mathrm{HKP}^{+} \mathrm{b}, \mathrm{HKP}^{+} \mathrm{c}\right.$] (although at one point we do refer the reader to a discussion from $\left[\mathrm{HKP}^{+} \mathrm{a}\right]$).

The interesting question is whether we can provide a fast algorithm which finds a copy of a given tree $T \in \operatorname{trees}(k)$ in any given graph $G \in \mathbf{L K S}(n, k, \alpha)$. We will sketch below that our proof gives such an algorithm, with running time $O\left(n^{6}\right)$; here the hidden constant in the $O(\cdot)$-notation depends on α but not on k. A picture accompanying the discussion is given in Figure 12.

It can be verified that each of the steps of our proof-except the extraction of dense spots in $\left[\mathrm{HKP}^{+}\right.$a] - can be turned into a polynomial time algorithm. We return to the extraction of dense spots later, after discussing the other parts of the proof.

- In $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, section 3.9] we discussed the algorithmic aspects of obtaining a sparse decomposition of G, which is the main result (Lemma 3.14) of $\left[\mathrm{HKP}^{+} \mathrm{a}\right]$. That discussion includes the bottleneck step of the extraction of dense spots (in [HKP ${ }^{+}$a, Lemma 3.13]).
- In $\left[\mathrm{HKP}^{+} \mathrm{b}\right]$ we find a "rough structure" in G. Here, we need to find a matching in $\mathbf{G}_{\text {reg }}$ that is maximal in a certain way, and we also need to "augment a regularized matching." The former step can be done using Edmonds' blossom algorithm, and the latter by applying the algorithmic version of the regularity lemma $\left[\mathrm{ADL}^{+} 94\right]$. (We used $\left[\mathrm{ADL}^{+} 94\right]$ already in obtaining a sparse decomposition in $\left[\mathrm{HKP}^{+} \mathrm{a}\right]$.)
- In $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$ we apply "cleaning lemmas" to refine the rough structure. The cleaning lemmas proceed by sequentially removing "bad" vertices, and the respective badness conditions can be efficiently tested. The cleaning procedure is then put together in $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, Lemmas 6.1-6.3]. These lemmas are easily turned into algorithms.
- In the present paper we embed T in G using one of the configurations obtained in $\left[\mathrm{HKP}^{+} \mathrm{c}\right]$. The basic ingredients of the embedding are the following:
- Embedding into huge-degree vertices (in $(\diamond \mathbf{2})-(\diamond \mathbf{5})$). The two main technical lemmas used are Lemmas 6.18 and 6.19. In these lemmas, in each step of the embedding we find a vertex having a substantial degree into one of the specified sets. So, the nontrivial assertions of these lemmas are that these good vertices exist. On the other hand, testing whether a given vertex is good can be done algorithmically (in time $O\left(n^{2}\right)$).
- Embedding into regular pairs. The exact setting is described in Lemmas $6.7-6.9$, but the way we proceed with the embedding of small trees is standard. That is, when we extend an embedding of a small tree or forest in a regular pair (X, Y), we find a vertex of one cluster that has a substantial degree into the unused part of the partner cluster (the existence of which is guaranteed by the regularity). This can be implemented in time $O(|X||Y|)$.
- Embedding into $G_{\text {exp }}$. The embedding procedure for embedding into $G_{\text {exp }}$ was informally described in $\left[\mathrm{HKP}^{+}\right.$a, section 3.6], and the actual setting we use is given in Lemma 6.5. The procedure is algorithmic. Indeed, in the proof of Lemma 6.5, when we extend a partial embedding of a forest, it is enough to avoid the set called shadow $H_{\mathrm{L} 6.5}\left(U_{\mathrm{L} 6.5}, \zeta_{\mathrm{L} 6.5} k / 2\right)$. This set can be easily determined algorithmically.
- Embedding using \mathbb{E}. Let us recall the elementary embedding procedure for \mathbb{E} as described in Lemma 6.4. We have a small rooted tree (T, r)

Fig. 12. A version of $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, Figure 3] showing the iterative algorithm for finding a copy of T in G.
(or several small rooted trees), a forbidden set U, and a set $U^{*} \subseteq \mathbb{E}$. It is our task to embed T, avoiding the set U, so that r is placed in U^{*}. For the proof of Lemma 6.4 we only use the "avoiding" feature of the avoiding set given by Definition 4.5. That is, for each $y \in U^{*}$ we test whether there is a dense spot $D \in \mathcal{D}$ with $|U \cap V(D)| \leqslant \gamma^{2} k$ such that y sends a substantial degree into D, or whether y belongs to the bad set $Y_{\text {ProofL6.4. }}$ This test can be made algorithmic by simply ranging over the at most $O(n / k)$ dense spots in \mathcal{D}.
The two randomized steps-random splitting in $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, section 3.2] and the use of the stochastic process Duplicate in section 6-can be also efficiently derandomized using a standard technique for derandomizing the Chernoff bound. ${ }^{26}$
Let us now sketch how to deal with extracting dense spots. The idea is as follows. Initially, we pretend that $G_{\exp }$ consists of the entire bounded-degree part $G-\mathbb{H}$ (cleaned for minimum-degree ρk as in $\left[\mathrm{HKP}^{+}\right.$a, eq. (3.13)]). With such a supposed sparse decomposition ∇_{1}, we go through $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Lemma 5.4] and $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, Lemma 4.17] to obtain a configuration. We now start embedding T as in section 6 . (Note that at this moment $G_{\text {reg }}$ and \mathbb{E} are absent, and so the only embedding techniques are those involving \mathbb{H} and $G_{\text {exp }}$.) Now, either we embed T or we fail. The only possible reason for failure is that we were unable to perform the one-step look-ahead strategy described in $\left[\mathrm{HKP}^{+}\right.$a, section 3.6], because $G_{\text {exp }}$ was not really nowheredense. (In order to understand fully that this is indeed the only possible reason, the reader is advised to read the explanatory, two-page section 3.6 of $\left[\mathrm{HKP}^{+} \mathrm{a}\right]$.) But then we actually localized a dense spot D_{1}. We get an updated supposed sparse decomposition ∇_{2} in which D_{1} is removed from $G_{\text {exp }}$ and added to \mathcal{D} (and $G_{\text {reg }}$ and/or \mathbb{E} is modified accordingly). We keep iterating. Since in each step we extract at least $O\left(k^{2}\right)$ edges, we iterate the above at most $e(G) / \Theta\left(k^{2}\right)=O\left(\frac{n}{k}\right)$ times. We certainly succeed eventually, since after $\Theta\left(\frac{n}{k}\right)$ iterations we get an honest sparse decomposition (i.e., a decomposition that would be a valid outcome of $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, Lemma 3.14], with $G_{\text {exp }}$ nowhere-dense).

It seems that this iterative method is generally applicable for problems which employ a sparse decomposition.

Acknowledgments. The work on this project took place from the beginning of 2008 until 2014, and the authors are very grateful to the following institutions and funding bodies for their support.

During the work on this paper Hladký was also affiliated with Zentrum Mathematik, TU Munich, and Department of Computer Science, University of Warwick. Hladký was funded by a BAYHOST fellowship, a DAAD fellowship, Charles University grant GAUK 202-10/258009, EPSRC award EP/D063191/1, and an EPSRC Postdoctoral Fellowship while working on the project.

Komlós and Szemerédi acknowledge the support of NSF grant DMS-0902241.
Piguet was also affiliated with the Institute of Theoretical Computer Science, Charles University in Prague; Zentrum Mathematik, TU Munich; the Department of Computer Science and DIMAP, University of Warwick; and the School of Mathematics, University of Birmingham. The work leading to this invention was supported by the European Regional Development Fund (ERDF), project "NTIS-New Technologies for the Information Society," European Centre of Excellence, CZ.1.05/1.1.00/02.0090.

[^17]Piguet acknowledges the support of the Marie Curie fellowship FIST, DFG grant TA 309/2-1, a DAAD fellowship, Czech Ministry of Education project 1M0545, EPSRC award EP/D063191/1, and the EPSRC Additional Sponsorship, with a grant reference of $\mathrm{EP} / \mathrm{J} 501414 / 1$, which allowed her to travel with her young child and thus continue to collaborate closely with her coauthors on this project. This grant was also used to host Stein in Birmingham.

Stein was affiliated with the Institute of Mathematics and Statistics, University of São Paulo, and the Centre for Mathematical Modeling, University of Chile. She was supported by an FAPESP fellowship, by FAPESP travel grant PQ-EX 2008/50338-0, and also by CMM-Basal and FONDECYT grants 11090141 and 1140766. She also received funding from EPSRC Additional Sponsorship EP/J501414/1.

The authors enjoyed the hospitality of the School of Mathematics of the University of Birmingham; the Center for Mathematical Modeling, University of Chile; the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences; and Charles University in Prague during their long-term visits.

The yet unpublished work of Ajtai, Komlós, Simonovits, and Szemerédi on the Erdős-Sós conjecture was the starting point for the authors' project, and their solution crucially relies on the methods developed for the Erdős-Sós conjecture. Hladký, Piguet, and Stein are very grateful to the former group for explaining those techniques.

A doctoral thesis titled Structural Graph Theory submitted by Hladký in 2012 under the supervision of Daniel Král at Charles University in Prague is based on the series of papers $\left[\mathrm{HKP}^{+} \mathrm{a}, \mathrm{HKP}^{+} \mathrm{b}, \mathrm{HKP}^{+} \mathrm{c}, \mathrm{HKP}^{+} \mathrm{d}\right]$. The texts of the two works overlap greatly. The authors are grateful to Ph.D. committee members Peter Keevash and Michael Krivelevich. Their valuable comments are reflected in the series.

The authors thank the referees for their very helpful remarks.
The contents of this publication reflects only the authors' views and not necessarily the views of the European Commission of the European Union.

Symbol index
[n], 1073
$\nabla, 1082$
〔, 1075
(\&), 1085
$(\diamond \mathbf{1}), 1085$
(®1), 1087
($\diamond \mathbf{1 0}), 1089$
$(\diamond \mathbf{2}), 1085$
(®2), 1087
$(\diamond \mathbf{3}), 1086$
$(\diamond 4), 1086$
$(\diamond 5), 1086$
$(\diamond \mathbf{6}), 1088$
$(\diamond 7), 1088$
$(\diamond 8), 1088$
$(\diamond \mathbf{9}), 1088$
$\left(X_{1} \hookrightarrow V_{1}, \ldots, X_{\ell} \hookrightarrow V_{\ell}\right)$-embedding, 1100
(exp), 1087
(reg), 1087
$\mathbb{A}_{i}, 1084$
c, 1082
\mathcal{M}-cover, 1087
$\mathrm{Ch}(U), 1075$
$\mathrm{Ch}(v), 1075$
$\mathrm{d}(G), 1074$
$\mathrm{d}(U, W), 1074$
deg, 1073
$\operatorname{dist}\left(v_{1}, v_{2}\right), 1075$
Duplicate (ℓ), 1099
$E(G), 1073$
$e(G), 1073$
$e(X), 1073$
$e(X, Y), 1073$
$\mathcal{F}, 1083$
F, 1084
$G_{\nabla}, 1081,1082$
$G_{\mathcal{D}}, 1080$
$\operatorname{ghost}(U), 1109$
$\mathbf{G}_{\text {reg }}, 1080,1082$
J, 1083
$\mathbb{J}_{1}, 1083$
$\mathbb{J}_{2}, 1083$
$\mathbb{J}_{3}, 1083$
$\mathbb{J}_{\mathbb{E}}, 1083$
$L_{\#}, 1083$
$\mathbb{L}_{\eta, k}(G), 1074$
LKS $(n, k, \eta), 1074$
$\operatorname{LKSmin}(n, k, \eta), 1074$
LKSsmall $(n, k, \eta), 1074$
maxdeg, 1073
mindeg, 1073
$\mathcal{N}^{\upharpoonright i}, 1085$
$\mathrm{N}(v), 1073$
$\mathcal{N}_{\mathbb{E}}, 1083$
$\mathfrak{p}_{i}, 1084$
$\operatorname{Par}(U), 1075$
$\operatorname{Par}(v), 1075$
$\mathbb{S}_{\eta, k}(G), 1074$
shadow $(U, \ell), 1081$
Seed, 1075
$T(r, \uparrow x), 1075$
trees $(m), 1074$
$U^{\upharpoonright i}, 1085$
$\overline{\mathbf{V}}, 1084$
$\overline{\mathcal{V}}, 1084$
$\overline{\mathcal{V}}^{*}, 1085$
$\bar{V}, 1084$
$\mathbf{V}_{\rightsquigarrow \mathbb{E}}, 1082$
$V_{\rightsquigarrow \mathbb{E}}, 1082$
$V_{\rightsquigarrow, \mathbb{H}}, 1083$
$V(G), 1073$
$v(G), 1073$
$V_{+}, 1083$
$V_{\text {even }}(T, r), 1075$
$V_{\text {good }}, 1083$
$V_{\text {odd }}(T, r), 1075$
$\mathbb{Y} \mathbb{A}, 1083$
$\mathbb{Y} \mathbb{B}, 1083$

General index

absorb, 1081
avoiding (set), 1080
avoiding threshold, 1080
balanced set, 1105
balanced way of embedding, 1105
bipartite density, 1074
bounded decomposition, 1080
captured edges, 1081
child, 1075
cluster, 1080
cluster graph, 1080
consistent matching, 1089
cover, 1087
dense cover, 1079
dense spot, 1079
density, 1074
discrepancy, 1105
end subtree, 1075
exponent of shadow, 1081
fine partition, 1076
fruit, 1075
ghost, 1109
hub, 1079
induced tree, 1075
internal subtree, 1075
irregular, 1074
matching involution, 1109
nowhere-dense, 1079
ordered skeleton, 1079
parent, 1075
peripheral subshrub, 1079
principal subshrub, 1079
proportional splitting, 1084
regular pair, 1074
regularized graph, 1089
regularized matching, 1081
rooted tree, 1075
seed, 1075
shadow, 1081
shrub, 1079
sparse decomposition, 1080
subshrub, 1079
superregular pair, 1074
unbalanced way of embedding, 1105

REFERENCES

[ADL $\left.{ }^{+} 94\right]$ N. Alon, R. Duke, H. Lefmann, V. Rödl, and R. Yuster, The algorithmic aspects of the regularity lemma, J. Algorithms, 16 (1994), pp. 80-109.
[AKS95] M. Ajtai, J. Komlós, and E. Szemerédi, On a conjecture of Loebl, in Graph Theory, Combinatorics, and Algorithms, Vols. 1, 2 (Kalamazoo, MI, 1992), Wiley-Intersci. Publ., Wiley, New York, 1995, pp. 1135-1146.
[EFLS95] P. Erdős, Z. Füredi, M. Loebl, and V. T. Sós, Discrepancy of trees, Studia Sci. Math. Hungar., 30 (1995), pp. 47-57.
$\left[\mathrm{HKP}^{+} \mathrm{a}\right]$ J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl-Komlós-Sós Conjecture I: The sparse decomposition, SIAM J. Discrete Math., 31 (2017), pp. 945-982, https://doi.org/10.1137/140982842, https://arxiv.org/abs/1408.3858.
$\left[\mathrm{HKP}^{+} \mathrm{b}\right]$ J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl-Komlós-Sós Conjecture II: The rough structure of LKS graphs, SIAM J. Discrete Math., 31 (2017), pp. 983-1016, https://doi.org/10.1137/ 140982854, https://arxiv.org/abs/1408.3871.
$\left[\mathrm{HKP}^{+} \mathrm{c}\right]$ J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl-Komlós-Sós Conjecture III: The finer structure of LKS graphs, SIAM J. Discrete Math., 31 (2017), pp. 1017-1071, https://doi.org/10. 1137/140982866, https://arxiv.org/abs/1408.3866.
$\left[\mathrm{HKP}^{+} \mathrm{d}\right]$ J. Hladký, J. Komlós, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl-Komlós-Sós Conjecture IV: Embedding techniques and the proof of the main result, SIAM J. Discrete Math., 31 (2017), pp. 1072-1148, https://doi.org/10.1137/140982878, https://arxiv.org/abs/1408.3870.
[HP16] J. Hladký and D. Piguet, Loebl-Komlós-Sós Conjecture: Dense case, J. Combin. Theory Ser. B, 116 (2016), pp. 123-190.
[HPS $\left.{ }^{+} 15\right]$ J. Hladký, D. Piguet, M. Simonovits, M. Stein, and E. Szemerédi, The approximate Loebl-Komlós-Sós conjecture and embedding trees in sparse graphs, Electron. Res. Announc. Math. Sci., 22 (2015), pp. 1-11.
[PS12] D. Piguet and M. J. Stein, An approximate version of the Loebl-Komlós-Sós conjecture, J. Combin. Theory Ser. B, 102 (2012), pp. 102-125.
[Zha11] Y. Zhao, Proof of the $(n / 2-n / 2-n / 2)$ Conjecture for large n, Electron. J. Combin., 18 (2011), 27.

[^0]: *Received by the editors August 18, 2014; accepted for publication (in revised form) November 17, 2016; published electronically May 25, 2017. A condensed description of this work appeared in $\left[\mathrm{HPS}^{+} 15\right]$.
 http://www.siam.org/journals/sidma/31-2/98287.html
 Funding: The first author's research leading to these results received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement 628974. Much of the work was done while the first author was supported by an EPSRC postdoctoral fellowship EP/I026630/1 while affiliated with DIMAP and the Mathematics Institute, University of Warwick. The Institute of Mathematics of the Czech Academy of Sciences is supported by RVO:67985840. The third author was supported by the Marie Curie fellowship FIST, DFG grant TA 309/2-1, Czech Ministry of Education project 1M0545, EPSRC award EP/D063191/1, and EPSRC Additional Sponsorship EP/J501414/1. The research leading to these results received funding from the European Union Seventh Framework Programme (FP7/20072013) under grant agreement PIEF-GA-2009-253925. The work leading to this invention was supported by the European Regional Development Fund (ERDF), project "NTIS - New Technologies for the Information Society," European Centre of Excellence, CZ.1.05/1.1.00/02.0090. The Institute of Computer Science of the Czech Academy of Sciences is supported by RVO:67985807. The fourth author was supported by OTKA 78439, OTKA 101536, OTKA 116769, and ERC-AdG. 321104. The fifth author was supported by Fondecyt Iniciacion grant 11090141, Fondecyt Regular grant 1140766, CMM Basal, and Nucleo Milenio Información y Coordinación en Redes ICM/FIC P10-024F. The sixth author was supported by OTKA 104483, OTKA 101536, and ERC-AdG. 321104.
 ${ }^{\dagger}$ Corresponding author. Institute of Mathematics, Czech Academy of Sciences, 11000 Prague, Czech Republic (honzahladky@gmail.com).
 ${ }^{\ddagger}$ Department of Mathematics, Rutgers University, Piscataway, NJ 08854-8019 (komlos@math. rutgers.edu).
 ${ }^{\S}$ Institute of Computer Science, Czech Academy of Sciences, 18207 Prague, Czech Republic (diana.piguet@gmail.com).
 ${ }^{\text {『 }}$ Alfréd Rényi Institute of Mathematics, Hungarian Academy of Sciences, 1053 Budapest, Hungary (miki@renyi.hu, szemered@cs.rutgers.edu).
 "Department of Mathematical Engineering, University of Chile, 2120 Santiago, Chile (mstein@ dim.uchile.cl).

[^1]: ${ }^{1}$ The number \mathfrak{c} is not defined when $\mathbf{V}=\emptyset$. However, in that case \mathfrak{c} is never actually used.

[^2]: ${ }^{2}$ Configuration $(\diamond \mathbf{1})$ is trivial (see section 6.5.1) and needs no overview.

[^3]: ${ }^{3}$ This expansion is given by the presence of $G_{\exp }$ in configuration ($\diamond \boldsymbol{6}$) (cf. (5.39)-(5.40)) and by the presence of the avoiding set \mathbb{E} in configuration $(\diamond \boldsymbol{7})\left(V_{2} \subseteq \mathbb{E}^{\upharpoonright 1} \backslash \bar{V}\right)$.

[^4]: ${ }^{4}$ Configuration $(\diamond \boldsymbol{8})$ has this property only in part. We would succeed even embedding a tree with principal subshrubs of total order say $100 k$, provided that the total order of peripheral subshrubs is somewhat smaller than h_{1}.

[^5]: ${ }^{5}$ Actually, a slightly weaker condition would be sufficient here. Configuration ($\Delta 8$), however, is more complex, justifying the necessity of the stronger condition given in property (i) of Definition 3.3.
 ${ }^{6}$ The only hub without a predecessor contains the root R, and we have explained how to embed it.
 ${ }^{7}$ The two properties are explained in $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, section 3.5] and in $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, section 3.6].

[^6]: ${ }^{8}$ In $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, section 5.1] we described in quite some detail how our main "rough structural result" $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Lemma 5.4] relates to and differs from the Piguet-Stein structure. The description in this section, however, goes in a different direction since configuration ($\diamond \mathbf{1 0})$ is much narrower than the general structure asserted in $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Lemma 5.4].
 ${ }^{9}$ Here, the "cluster graph" is meant in the sense of the classic regularity lemma.

[^7]: ${ }^{10}$ Observe that some parts of $\mathbf{G}_{\text {reg }}$ are irrelevant in the embedding process of [PS12]. The objects $\mathbf{G}_{\mathrm{reg}}, \mathbf{L}$, and M in the structural result of [PS12] correspond to $(\tilde{G}, \mathcal{V}), \mathcal{L}^{*}$, and \mathcal{M} in configuration ($\diamond \mathbf{1 0}$).
 ${ }^{11}$ See $\left[\mathrm{HKP}^{+} \mathrm{a}\right.$, section 3.6] for details.

[^8]: ${ }^{12} \mathrm{An}$ example where this issue arises was given in $\left[\mathrm{HKP}^{+} \mathrm{b}\right.$, Figure 2].

[^9]: ${ }^{13}$ The issue of atypicality itself could be avoided by preprocessing each pair (S, T) of $\mathcal{M}_{A} \cup \mathcal{M}_{B}$ and making it superregular. However, this is not possible for atypicality with respect to a given (but unknown in advance) subpair $\left(S^{\prime}, T^{\prime}\right)$.

[^10]: ${ }^{14}$ This is in the sense that individual shrubs \mathcal{S}_{B} may be embedded only in part.

[^11]: ${ }^{15}$ Note that $V\left(M_{i}\right) \cap \operatorname{Ch}\left(W_{C}\right)$ contains a single vertex, the root of M_{i}.

[^12]: ${ }^{16}$ Recall that the total order of $\mathcal{P}_{i, j}$ is at most τk.

[^13]: ${ }^{17}$ That is, $\left\{x_{j}\right\}_{j=1}^{\ell} \cup\left\{y_{j}\right\}_{j=1}^{\ell^{\prime}}=\ell+\ell^{\prime}$.

[^14]: ${ }^{18}$ Lemma 6.7 deals with embedding a single tree in a regular pair, whereas $K-r_{K}$ has several components. We therefore apply the lemma repeatedly for each component.

[^15]: ${ }^{19}$ This does not change the validity of the conditions in Definition 5.21.
 ${ }^{20}$ After we allow a small error.
 ${ }^{21}$ This is also a key property in the classical dense setting of the regularity lemma.
 ${ }^{22}$ In Lemma 6.26 it was shown how to utilize (5.52) for embedding shrubs of order up to $\approx h_{1}$ in regular pairs.
 ${ }^{23}$ This is meant in the sense of Definition 5.21(b).

[^16]: ${ }^{24}$ This is meant in the sense of Definition 5.21(c).
 ${ }^{25}$ Indeed, it could be that $\mathrm{N}\left(\phi\left(x_{F}\right)\right) \cap \mathrm{N}\left(\phi\left(y_{F}\right)\right)=\emptyset$, which would make it impossible to find a path of length 2 from $\phi\left(x_{F}\right)$ to $\phi\left(y_{F}\right)$. If, on the other hand, $\operatorname{dist}_{F}\left(x_{F}, y_{F}\right) \geqslant 4$, then we can always find such a path using a look-ahead embedding in the regular pair (X, Y).

[^17]: ${ }^{26}$ It further seems that the use of randomization in $\left[\mathrm{HKP}^{+} \mathrm{c}\right.$, section 3.2] can be eliminated entirely. To this end we would have to employ different arguments to obtain the fine structure. We have not worked out the details.

