
Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 169 (2017) 218–233

www.elsevier.com/locate/jet

Incentive compatible and stable trade mechanisms 

on networks ✩

Olivier Bochet a,∗, Rahmi İlkılıç b
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Abstract

We study a network of buyers and sellers where each seller owns an indivisible object and has no in-
centive to keep it, while each buyer has a downward sloping demand curve which is private information. 
Only the connected buyer-seller pairs can engage in trade. We search for trade mechanisms that are ef-
ficient, strategy-proof, bilateral trade stable and individually rational. In general, there does not exist a 
trade mechanism simultaneously satisfying these properties. The tension between strategy-proofness and 
bilateral trade stability is generated by the intersection between sets of competitors of a buyer at different 
sellers. Such intersections often allow the buyer to manipulate (via demand reductions) the prices paid in 
the network. The observed tension can be resolved if and only if the underlying network is cycle-free. In 
such a case, there is a unique trade mechanism which satisfies our four properties, a generalized Vickrey 
auction.
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1. Introduction

We study a network of buyers and sellers in which buyers have downward sloping demand 
curves and sellers each have one unit of a homogeneous good to sell (henceforth, an object). 
While buyers’ demand curves are private information, there are known gains from trade as each 
seller attaches zero value to the unit he owns. In our setting, decentralization may lead to inef-
ficiencies due to coordination failures on mutually beneficial trades (Abreu and Manea, 2012;
Elliott and Nava, 2015). Following Kranton and Minehart (2001), we take a mechanism design 
approach and introduce the notion of a trade mechanism. Given a network configuration, a trade 
mechanism simultaneously determines prices and allocations as a function of the buyers’ re-
ported valuations. We are interested in a set of properties that a trade mechanism should satisfy. 
Naturally, we want trades to be both efficient and individually rational. Since demand curves 
are private information, we also need to give the correct incentives for buyers to reveal their 
valuations. We impose a robust notion of incentive compatibility: a trade mechanism must be 
strategy-proof, i.e. truthfully reporting one’s set of valuations is a (weakly) dominant strategy.

Sellers’ incentives also need to be addressed in our context. Given a price-allocation pair, 
nothing prevents a seller from canceling his current trade and selling to another buyer who would 
then either buy an extra unit or cancel one of his trades as well. Such situations imply a failure 
of the prevailing trade mechanism and would cast doubt on its practical usefulness. Our prop-
erty, bilateral trade stability, implies that no buyer-seller pair can profitably break away from 
the mechanism at the proposed price-allocation pair.1 In the special case of our model where de-
mands are single units, Kranton and Minehart (2001) show that there exists a unique mechanism 
which simultaneously satisfy those four properties, a generalized Vickrey auction. Because of the 
network constraints, several prices need to co-exist at equilibrium for the market to clear.

We first characterize (Proposition 1) the prices paid by buyers in any trade mechanism satis-
fying our four properties simultaneously. A buyer i pays each seller who sells him an object the 
highest of the (unsatisfied) valuations of his competitors for this object. This is in the spirit of a 
Vickrey auction. Yet in a network of buyers and sellers, for each object, the set of competitors 
faced by buyer i is not fixed but determined both by the allocation and the network structure.

Next, Theorem 1 fully characterizes the network structures for which such a trade mechanism 
exists or fails to exist. Our paper is the first to relate the possibility of strategy-proof exchange 
with the structure of the network on which exchange takes place.2 When the network is cycle-
free, at any possible allocation x, buyer i faces different competitors at each seller to whom he 
is connected. We say that the competition faced by buyer i for the different objects he gets at 
x is independent, i.e. the sets of competitors that buyer i faces for different objects never inter-
sect. A trade mechanism satisfying our four properties resembles multiple isolated second price 

1 Bilateral trade stability is already introduced in Kranton and Minehart (2001) as Pairwise-Stability.
2 In a recent paper, Pycia (2016) also studies strategy-proof exchange on networks but in a model without monetary 

transfers.
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auctions, simultaneously computed for each object. This mechanism is unique because there is a 
unique generalized Vickrey auction that is compatible with bilateral trade stability.3

When the network exhibits cycles the combination of downward sloping demands with com-
petition amongst buyers in the network creates a tension between strategy-proofness and bilateral 
trade stability. Contrary to the cycle-free case, at a given allocation x, the competition faced by 
buyer i for the different objects he buys is typically not independent, i.e. some of buyer i’s 
competitors are simultaneously bidding for several objects that i receives. To see how this is 
problematic, suppose there is a buyer j who (a) is a competitor of buyer i at two objects α and 
β that i buys, and (b) has the highest willingness to pay among all of buyer i’s competitors for α
and β . It is as if j is the second highest bidder for both α and β and, as we show in Proposition 1, 
buyer j ’s valuation determines the prices buyer i pays for α and β . If buyer j were to obtain one 
object, say β , then by the downward sloping demand assumption, j ’s willingness to pay for an 
extra object would decrease. This softens the competition faced by buyer i for object α. Buyer 
i then faces a trade-off between the number of objects that he gets and the prices he pays for 
them. Buyer i might gain by giving up one object. We call this type of manipulation a demand 
reduction.4

At a given allocation x, the intersection between the sets of competitors faced by buyer i at 
different sellers is key. Without cycles, buyer i’s sets of competitors never intersect and a demand 
reduction can thus never change the price of an object that i receives. Demand reductions are also 
the only possibly profitable manipulations. Since a trade mechanism satisfying our four proper-
ties resembles a Vickrey auction, buyer i cannot change the prices he pays unless he changes 
the prevailing allocation. For this reason, in the unit demand case studied by Kranton and Mine-
hart (2001), the presence of cycles is irrelevant since demand reduction cannot be profitable (by 
individual rationality).

The paper proceeds as follows. In Section 2 we introduce the model. In Section 3 we present 
our results.

2. The model

There are N sellers and M buyers. We denote representative buyers with the Latin letters 
{i, j, k} and representative sellers with the Greek letters {α, β, γ }. We use subscript t or z when 
we refer to a buyer it or a seller αz in a sequence of buyers and sellers. Let S be the set of sellers 
and B be the set of buyers.

Sellers each sell a unit of a homogeneous and indivisible good—henceforth, object. Each 
buyer i receives privately a signal vi ∈ R

N++ interpreted as his vector of valuations for the N
objects available. A typical valuation for buyer i is vi = (v1i , ..., vNi) where vri is the value 
that buyer i attaches to the r th unit of the object he consumes. A typical valuation profile is 
v = (v1, ..., vM) ∈ R

NM++ . In addition, we assume throughout that buyers have downward sloping 
demands: vri ≥ vsi for each buyer i and each r < s, 1 ≤ r, s ≤ N . It is understood that we 
consider the set of all possible valuation profiles that satisfy the previous restrictions.

3 Recall that in a multi-unit setting such as ours, the set of generalized Vickrey auctions is infinite. Indeed, a Vickrey–
Clarke–Groves mechanism only determines the sum of total payments made. There is an infinite number of ways to 
divide these payments across sellers—since sellers do not value objects.

4 The downward sloping demand assumption is essential here. If buyers’ marginal utility is constant (“horizontal” 
demand curves), a demand reduction can never be profitable. In such a case, the presence of cycles is irrelevant.
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A non-directed bipartite graph G =< B ∪ S, L > consists of a set of buyers B , a set of sellers 
S, and a set of links L, each link connecting a buyer and a seller. A buyer can obtain an object 
from a seller if and only if the two are linked. Let giα = 1 indicate that buyer i and seller α are 
linked, i.e. that iα ∈ L, and giα = 0 indicate that iα /∈ L. For each buyer i, let li(G) be the set 
of sellers linked to buyer i in G. Given a subset B̃ ⊆ B of buyers, let l

B̃
(G) be the set of sellers 

linked to buyers in B̃. Likewise, we define lα(G) for a seller α and l
S̃
(G) for a set of sellers 

S̃ ⊆ S. Whenever this causes no confusion we simply write li , lB̃ , lα and l
S̃

.
A buyer-path π ⊆ L in G connecting two buyers i and j is a subset of links formed by t

distinct sellers α1 to αt , and t + 1 (some possibly repeated) buyers i1 to it+1 such that

(i1, α1), (α1, i2), ..., (αt , it+1) ∈ L, i1 = i, it+1 = j

A graph G is connected if for any two buyers i and j there exists a path connecting them. 
We only consider connected graphs.5 A buyer-path π is a cycle if it+1 = i1. We say that G is 
cycle-free if it does not contain a buyer-path π that is a cycle.

An allocation x ∈ {0, 1, ..., M}N describes the destination of trade, i.e. to whom sellers are 
selling their units. A typical allocation is x = (x1, ..., xN), where xα = i indicates that buyer i
receives an object from seller α, and xα = 0 indicates that seller α keeps the object.

An allocation x is feasible if for each i, j ∈ B and α ∈ S such that xα = i, α ∈ li (G) and 
xα �= j for j �= i.6 Given graph G, let X(G) be the set of feasible allocations. When this causes 
no confusion, we simply write X.

Given x ∈ X and i ∈ B , let di(x) be the number of objects that buyer i receives at allocation x. 
Given i ∈ B and vi ∈ R

N++, let vi(x) to be the total value obtained by buyer i at x, i.e.

vi(x) =
{∑di (x)

r=1 vri if di(x) > 0

0 otherwise

We refer to vdi(x)i as the lowest satisfied valuation and v(di(x)+1)i as the highest unsatisfied 
valuation of buyer i at allocation x.

Let p ∈ R
N+ be a vector of prices. A typical price vector is p = (p1, ..., pN), where pα is the 

price of the object held by seller α. Given (p, x) ∈R
N+ × X, and vi ∈ R

N++, the utility that buyer 
i gets is

ui(p, x;vi) = vi(x) −
∑

α:xα=i

pα

Notice that we implicitly assume that (i) a buyer pays only if he receives objects, and (ii) a 
buyer pays only for the objects he gets.

The utility that seller α gets is simply

uα(p, x) =
{

pα if xα �= 0

0 otherwise

Given a graph G, a trade mechanism is summarized as (M, h)(G), where (i) M = ×i∈BMi , 
and with Mi = R

N++ is buyer i’s set of messages while M is the set of message profiles, and (ii) 
h : RNM++ → R

N+ × X is a function which determines a price vector and a feasible allocation for 

5 Each disconnected component of a graph can be treated separately.
6 Notice that the definition of feasibility implies that a seller has only one unit to sell.
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any profile of valuations v. In the sequel, we simply refer to a trade mechanism as h. This should 
cause no confusion. Given a trade mechanism h and v ∈ R

NM++ , the utility that buyer i and seller 
α get at h(v) are, respectively, ui(h(v); vi) and uα(h(v))—where utilities are defined as before, 
given h(v) = (p, x).

Given a graph G, we are interested in trade mechanisms which satisfy the following four 
properties.

Efficiency: A trade mechanism is efficient if for each v ∈ R
NM++ , given h(v) = (p, x), there does 

not exist x̃ ∈ X such that 
∑
i∈B

vi(x̃) >
∑
i∈B

vi(x).

Strategy-proofness: A trade mechanism is strategy-proof if for each i ∈ B , each vi ∈ R
N++, and 

each v−i ∈R
N(M−1)
++ ,

ui(h(v);vi) ≥ ui(h(v′
i , v−i );vi) for any v′

i ∈ R
N++

Strategy-proofness states that truthtelling is a (weakly) dominant strategy for each buyer.

Bilateral trade stability: A trade mechanism is bilateral trade stable if for each pair (i, α) ∈
M × N with xα �= i and α ∈ li (G), each v ∈ R

NM++ , and given h(v) = (p, x),

pα ≥ max{p̄i(p, x), v(di (x)+1)i}
where p̄i(p, x) = max

α:xα=i
pα .

Bilateral trade stability states that a (non-trading) buyer-seller (i, α) pair cannot improve by 
making a deal on the side, where either (i) i cancels one of his trades and buys from α, who would 
also be canceling his trade, or (ii) i buys one additional unit from α who would be canceling his 
trade. In the former case with a price less than p̄i(p, x), in the latter with a price lower than 
v(di (x)+1)i . If bilateral trade stability does not hold a mutually beneficial exchange between i and 
α can occur at a price greater than pα .

Finally we introduce one last requirement which fits the spirit of a trade mechanism, i.e. 
participation must be voluntary.

Individual rationality: Given v ∈ R
NM++ , a price-allocation pair (p, x) ∈R

N+ ×X is individually 
rational if ui(p, x; vi) ≥ 0 for each i ∈ B . A trade mechanism is individually rational if for each 
v ∈ R

NM++ , ui(h(v); vi) ≥ 0 for each i ∈ B .

Notice that our definition of individual rationality is one-sided as it does not include sellers. It 
is clear that in any trade mechanism, sellers are guaranteed at least their reservation value. A more 
stringent notion that plays an important role in our proofs (see Corollary 1) is object-by-object 
individual rationality.

Object-by-object individual rationality: Given v ∈ R
NM++ , a price-allocation pair (p, x) ∈

R
N+ × X is object-by-object individually rational if for each i ∈ B , vdi(x)i ≥ pα for each 

α ∈ S such that xα = i. A trade mechanism is object-by-object individually rational if for each 
v ∈ R

NM++ , h(v) is object-by-object individually rational.
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Object-by-object individual rationality is a strengthening of individual rationality. Given 
(p, x), buyer i will never pay more than his lowest satisfied valuation vdi(x)i for any of the 
objects he buys. We will show (Corollary 1 of Proposition 1) that an efficient, strategy-proof, 
bilateral trade stable and individually rational trade mechanism must be object-by-object indi-
vidually rational.

We now define the class of generalized Vickrey auctions, � on a network G. Given 
j ∈ M , let G \ j be the graph obtained from G when j is removed along with all his links. 
Given v ∈ R

NM++ , let vmax(G) ≡ max
x∈X(G)

{∑
i∈B

vi(x)}. Likewise, given G \ j , let vmax(G \ j) ≡
max

x∈X(G\j)
{ ∑
i∈B\{j}

vi(x)}. Given a graph G, a Vickrey auction ψ ∈ � is a trade mechanism such 

that for each v ∈ R
NM++ , ψ(v) ≡ (p∗, x∗), x∗ is an allocation that maximizes the total sum of 

valuations, and p∗ is such that for each i,∑
α:xα=i

p∗
α = (vi(x

∗) − (vmax(G) − vmax(G \ i)))

For each v ∈ R
NM++ and i ∈ B , let ti (v) ≡ ∑

α:xα=i

p∗
α be the social opportunity cost of giving 

di(x) objects to buyer i, or simply the total transfer that buyer i should make to get di(x) objects 
in any Vickrey auction ψ . Let t (v) be the vector of transfers.7

3. Results

We are interested in trade mechanisms which simultaneously satisfy efficiency, strategy-
proofness, bilateral trade stability and individual rationality. Our first result provides a character-
ization of prices in such trade mechanisms.

Before we proceed, let us introduce a definition. For a buyer i and an allocation x ∈ X such 
that xα = i we define the following set,

A(i,α, x) ≡ {j ∈ B \ {i} : ∃x′ ∈ X such that x′
α �= i, dk(x

′) = dk(x) for all k �= i, j,

di(x
′) = di(x) − 1 and dj (x

′) = dj (x) + 1}
The set A(i, α, x) is the set of (direct and indirect) competitors of buyer i for seller α’s unit at 
allocation x. It includes all buyers j such that i’s object coming from seller α could be transferred 
in such a way that j receives one more object without changing the bundles of buyers other than 
i and j , i.e. à la Pigou–Dalton. Note that it is possible that A(i, α, x) = ∅, in which case lα = {i}. 
Note also that j ∈ A(i, α, x) does not necessarily imply that j ∈ lα(G). To see this, pick an 
allocation x, a seller α1, i ∈ lα1(G), j ∈ A(i, α1, x) with j /∈ lα1(G). By definition of A(i, α1, x), 
there exists x′ such that x′

α1
�= i, dj (x

′) = dj (x) + 1 and dk(x
′) = dk(x) for each k �= i, j . Then 

there exists k1 �= i, j , k1 ∈ lα1(G) such that x′
α1

= k1. Note that if dk1(x) = 0, then k1 = j , 
a contradiction. Hence dk1(x) > 0. By definition dk1(x) = dk1(x

′). There exists α2 ∈ lk1(G), 
k2 �= i, k1, k2 ∈ lα2(G) such that xα2 = k1, x′

α2
= k2. Note that if dk2 = 0 then k2 = j and we are 

done: there is a path (i, α1), (α1, k1), (k1, α2), (α2, k2). If dk2 > 0 but k2 �= j , we continue this 
iterating process. Since the network is finite, there exists a number m > 2, km �= i, k1, ..., km−1, 

7 Note that in our model for any graph G there exists a continuum of generalized Vickrey auctions. They all have the 
same vector of transfer t (v) for each v ∈ R

NM++ but differ only in the prices paid to the sellers—i.e. in the way the transfer 
of buyer i is divided across those who sell him an object.
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αm �= α1, ..., αm−1 such that xαm = km−1 and x′
αm

= km. Since this is the end of the iteration, 
dkm(x′) = dkm(x) + 1. By definition of A(i, α1, x) and x′, km = j and we are done: there is a 
path (i, α1), (α1, k1), ..., (αm, km), a path that goes from i to j and goes through α1.8

If there are no cycles in the graph then between any two nodes there is a unique path, meaning 
that for sellers α and β such that xα = i = xβ , we always have A(i, α, x) ∩ A(i, β, x) = ∅. To 
see this, consider a cycle-free network G and j ∈ A(i, α, x) ∩A(i, β, x). Then there exists a path 
from i to j passing through α and another path from i to j passing through β . The union of these 
paths forms a cycle, a contradiction with the fact that G is cycle-free. Without cycles, the sets 
of competitors of a buyer for two different objects never intersect, while they typically do in a 
network with cycles.

In Proposition 1, we provide a characterization of prices in trade mechanisms that satisfy our 
four properties. Let us first prove an instructive Lemma which will be used repeatedly for our 
results. It shows that the number of objects a buyer i gets at an efficient allocation does not 
decrease as long as his lowest satisfied valuation is higher than the highest unsatisfied valuation 
of his competitors.

Lemma 1. Fix a network G. Pick v ∈ R
NM++ , x ∈ X that is efficient at v and i ∈ B such that 

vdi(x)i > max
xα=i

[ max
j∈A(i,α,x)

v(dj (x)+1)j ]. Then for any v′
i ∈ R

N++ such that max
xα=i

[ max
j∈A(i,α,x)

v(dj (x)+1)j ] <
v′
di (x)i < vdi(x)i , there does not exist an allocation x̃ that is efficient at (v′

i , v−i ) and such that 
di(x̃) < di(x).

Proof. Before proving the claim, we start with an observation. Pick v ∈ R
NM++ and x ∈ X. If x is 

efficient at v, then for each i ∈ B such that di(x) �= 0, vdi(x)i ≥ max
xα=i

[ max
j∈A(i,α,x)

v(dj (x)+1)j ]. Sup-

pose the inequality is not true. That is, there exists i ∈ B such that vdi(x)i < max
j∈A(i,α,x)

v(dj (x)+1)j

for some α ∈ S with xα = i. Let {j} = argmax
j∈A(i,α,x)

{v(dj (x)+1)j }. Since j ∈ A(i, α, x) there exists 

an allocation x̂ �= x such that x̂α �= i, di(x̂) = di(x) − 1, dj (x̂) = dj (x) + 1 while dk(x̂) = dk(x)

for each k �= i, j . Observe that 
∑
k∈B

vk(x̂) − ∑
k∈B

vk(x) = v(dj (x)+1)j − v(di (x))i > 0, a contradiction 

with our assumption that x is an efficient allocation at v.

Now let us prove the Lemma. Pick v ∈ R
NM++ , x ∈ X that is efficient at v, and i ∈ B such that 

vdi(x)i > max
xα=i

[ max
j∈A(i,α,x)

v(dj (x)+1)j ]. Pick v′
i ∈ R

N++ such that (i) max
xα=i

[ max
j∈A(i,α,x)

v(dj (x)+1)j ] <
v′
di (x)i

< vdi(x)i and (ii) the rest of the valuation vector is unchanged from vi to v′
i . Suppose 

contrary to the statement of the Lemma that there exists an allocation x̃ that is efficient at (v′
i , v−i )

and such that di(x̃) < di(x). Hence there exists α ∈ S, k1 ∈ lα such that xα = i while x′
α = k1. 

Suppose first that dk1(x̃) > dk1(x). Since k1 ∈ A(i, α, x), we have that vdk1 (x̃)k1 ≤ v(dk1 (x)+1)k1 <

v′
di (x)i . This is a contradiction with the assumption that x̃ is efficient at (v′

i , v−i ). Hence, suppose 
next that dk1(x̃) ≤ dk1(x). This implies that there exists k2 �= k1 such that xβ = k1 while x̃β = k2. 
Observe that k2 ∈ A(i, α, x). If dk2(x̃) > dk2(x), then vdk2 (x̃)k2 ≤ v(dk2 (x)+1)k2 < v′

di (x)i . This is 
a contradiction with the assumption that x̃ is efficient at (v′

i , v−i ). Hence, for all such buyers 

8 Consider buyers i, j, k, sellers α, β , xα = i, xβ = j , and lα(G) = {i, j} and lβ (G) = {j, k}. We obtain A(i, α, x) =
{j, k}. Buyer j can get an additional unit while k still gets none, or k can get a unit from β instead of j , while j takes the 
unit from α. Buyer j is a direct competitor to buyer i, while buyer k is an indirect competitor to buyer i at allocation x.
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k2, it must be the case that dk2(x̃) ≤ dk2(x) and each has at least one seller γ such that xγ = k2
and x̃γ �= k2. Since the network is finite, a finite iteration of this argument leads to a buyer km for 
whom dkm(x̃) > dkm(x), contradicting the assumption that x̃ is efficient at (v′

i , v−i ). We conclude 
that di(x̃) ≥ di(x).9 �
Proposition 1. Fix a network G. Let h be a trade mechanism satisfying efficiency, strategy-
proofness, bilateral trade stability and individual rationality. Pick v ∈ R

NM++ , with h(v) = (p, x). 
For each i ∈ B and α ∈ S with xα = i, then either (i) A(i, α, x) �= ∅ and pα = max

j∈A(i,α,x)
v(dj (x)+1)j

or (ii) A(i, α, x) = ∅ and pα = 0.

Proof. Pick a trade mechanism h that satisfies our four properties. Pick v ∈ R
NM++ with h(v) =

(p, x), and choose i ∈ B with di(x) ≥ 1. The result can be proven by an induction on the number 
� of objects di(x) that buyer i receives at x.

Step 1: di(x) = 1
Let α ∈ S with xα = i and let pα ≥ 0 be the price charged by seller α.

If A(i, α, x) = ∅, then by individual rationality, pα ≤ v1i , and by strategy-proofness, pα = 0. 
To see that the latter is true, consider v′

i such that v′
ri = ε for all r , for arbitrarily small ε > 0. 

Since lα = {i}, by efficiency, xα = i. By individual rationality, p′
α ≤ ε. Hence the only price at 

which there is no possible manipulation is pα = 0.
So suppose A(i, α, x) �= ∅ and let j ≡ argmax

k∈A(i,α,x)

{v(dk(x)+1)k}. Hence, there is a path π between 

buyers i and j ,

(i1, β1), (β1, i2), ..., (βt , it+1) ∈ G, i1 = i, β1 = α, it+1 = j

such that

xβ1 = i, xβ2 = i2, xβ3 = i3, ..., xβt = it

Suppose pα < v(dj (x)+1)j . When buyer i is charged pα , by bilateral trade stability, all buyers 
which are connected to seller α must be paying at most pα for the objects they buy. In particular, 
this implies that buyer i2 on the path π must be paying at most pα for each object he buys. 
Iteratively, this means that all buyers on the path π must also be paying at most pα for each 
object they buy. This is in contradiction with bilateral trade stability because xβt = it , pβt ≤
pβt−1 ≤ ... ≤ pα < v(dj (x)+1)j and βt is connected to buyer j .

Suppose now that v1i = v(dj (x)+1)j . By individual rationality, buyer i cannot be charged an 
amount pα > v(dj (x)+1)j = v1i . So suppose v1i > v(dj (x)+1)j . If buyer i with valuation vi is 
charged an amount pα > v(dj (x)+1)j , he then has an incentive to misreport v′

i such that (i) 
v(dj (x)+1)j < v′

1i < pα , and (ii) v′
(di (x)+1)i < vdk(x)k for each k ∈ B such that i, k ∈ lβ(G) for 

some β ∈ S with xβ = k. By Lemma 1, buyer i would still obtain one object (and by (ii), one 
object only) and by individual rationality, he would pay a price lower than pα. This is a contra-
diction with strategy-proofness. Hence in such a case pα = max

j∈A(i,α,x)
v(dj (x)+1)j .

Step 2: di(x) = �

9 If in addition, v′
i

is such that v′
(di (x)+1)i

< vdj (x)j for each j ∈ B such that i, j ∈ lβ for some β ∈ S with xβ = j , 
then di (x̃) = di (x).
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Suppose now it is true that if buyer i receives � objects at x, then for any seller α such that xα = i

either (i) A(i, α, x) �= ∅ and pα = max
j∈A(i,α,x)

v(dj (x)+1)j , or (ii) A(i, α, x) = ∅ and pα = 0. We will 

show that this continues to hold when buyer i receives � + 1 objects.

Step 3: di(x) = � + 1
Let buyer i receive � + 1 objects at allocation x. Using the observation on efficiency made in 
Lemma 1, note that for all sellers β such that xβ = i and A(i, β, x) �= ∅ it holds that v(�+1)i ≥

max
j∈A(i,β,x)

v(dj (x)+1)j . Note that for each α such that xα = i, either A(i, α, x) �= ∅ or A(i, α, x) = ∅.

Suppose first that A(i, α, x) �= ∅. The proof that pα ≥ max
j∈A(i,α,x)

v(dj (x)+1)j is the same as the 

case when buyer i receives a single object. Let T ≡ max
xα=i

[ max
j∈A(i,α,x)

v(dj (x)+1)j ] and fix a seller 

γ such that pγ ≥ T . Suppose buyer i is charged an amount pα > max
j∈A(i,α,x)

v(dj (x)+1)j by some 

seller α. We have two different possibilities to consider. First, if T < pα , then buyer i with valu-
ation vi has an incentive to misreport v′

i such that (i) v′
(�+1)i < min

j �=i
{vNj } and (ii) v′

�i > max
j �=i

{v1j }. 
By the observation in Lemma 1 on efficient allocations and restrictions (i) and (ii) above, at 
any x′ ∈ X that is efficient at (v′

i , v−i ), di(x
′) = �. By the induction axiom the prices buyer i

pays for those � objects will not increase, his payment would decrease at least by pα and for 
v(�+1)i < pα he would obtain a higher utility. This is a contradiction with strategy-proofness.10

In turn, this implies that if di(x) = � +1, then buyer i can never be charged a price above v(�+1)i . 
Suppose instead that T ≥ pα > max

j∈A(i,α,x)
v(dj (x)+1)j . Hence α �= γ and buyer i is paying at least 

T + pα − max
j∈A(i,α,x)

v(dj (x)+1)j for an extra object. Indeed he pays at least T to γ and with val-

uation v′
i , he would be paying only p′

α = max
j∈A(i,α,x)

v(dj (x)+1)j , by the induction axiom. Then for 

v(�+1)i < T + pα − max
j∈A(i,α,x)

v(dj (x)+1)j , buyer i would gain by misreporting v′
i and receiving �

objects, a contradiction with strategy-proofness. Since the choice of α was arbitrary, we conclude 
that pα = max

j∈A(i,α,x)
v(dj (x)+1)j for each α such that A(i, α, x) �= ∅.

Suppose next that A(i, α, x) = ∅. If for all β �= α such that xβ = i, A(i, β, x) = ∅ then by 
efficiency, strategy-proofness and individual rationality, buyer i would pay 0 for all the objects 
he buys. The argument is similar to the one in Step 1. So we assume that there is a seller β �= α

such that xβ = i and A(i, β, x) �= ∅. For a contradiction, suppose that pα > v(�+1)i , then buyer 
i with valuation vi has an incentive to misreport v′

i such that (i) v′
(�+1)i < minj �=i vNj , and (ii) 

v′
�i > maxj �=i v1j . By the same argument given above for the case A(i, α, x) �= ∅, i receives 

now � objects following the report v′
i and no longer receives an object from some buyer β with 

xβ = i, A(i, β, x) �= ∅. The prices do not increase for the objects that i continues to receive and, 
by the induction axiom, i now pays pα = 0. His utility after the misreport is ui(p

′, x′; vi) ≥
C +v�i > C +v�i −pβ +v(�+1)i −pα = ui(p, x; vi), where C =

(�−1)∑
a=1

vai − ∑
λ�=α,β, xλ=i

pλ. This 

is a profitable deviation since v(�+1)i −pβ −pα < 0. Therefore we must have pα ≤ v(�+1)i . Since 

10 The result that pα ≥ max
j∈A(i,α,x)

v(dj (x)+1)j is necessary to reach this conclusion. If buyer i receives � objects instead 

of � + 1, the price of any object β he continues to get at x′ is exactly equal to max
j∈A(i,β,x′)

v(dj (x′)+1)j and giving up one 

object will not increase the competition for the objects he continues to receive.



O. Bochet, R. İlkılıç / Journal of Economic Theory 169 (2017) 218–233 227
Fig. 1. (a) A cycle-free graph. (b) A graph with one cycle.

buyer i can claim to have v(�+1)i arbitrarily small, the only price at which there is no profitable 
manipulation is pα = 0. �
Corollary 1. Let h be a trade mechanism satisfying efficiency, strategy-proofness, bilateral trade 
stability and individual rationality. Then h is object-by-object individually rational.

Proof. We have established that, for each object that a buyer gets, he pays the highest unsatisfied 
valuation of the buyers in the set of competitors for that object. By efficiency, this is less than 
buyer i’s lowest satisfied valuation. Hence, given allocation x, for each buyer i and seller α with 
xα = i, vdi(x)i ≥ pα . That is, object-by-object individual rationality holds. �

The prices that should be charged in such trade mechanisms retain the spirit of a Vickrey 
auction: buyers have to pay for the value of the competition they face for each object. We refer 
to this as the lower bound on prices imposed by competition amongst buyers. Also if a buyer i
misreports his valuation vector, the prices he pays stay the same (unless the efficient allocation 
changes after the misreport). But in the network setting the “second price” does not depend 
only on buyers’ valuations but also on the allocation and the network structure. The competition 
faced by a buyer i at seller α changes with the allocation, as captured by the set A(i, α, x). An 
interesting feature is that buyers never pay more than their lowest satisfied valuation for each of 
the objects they get.11

The question that remains is the existence of trade mechanisms characterized in Proposition 1. 
The answer to this question crucially depends on the network structure, as shown in the next two 
examples and subsequently in Theorem 1.

Example 1. A trade mechanism and the unique set of bilateral trade stable prices. The situation 
is depicted in Fig. 1(a) which shows a four buyers-four sellers network without cycles. Let v
be such that vi1 = (3, ε, ε, ε), vi2 = (10, 9, 8, ε), vi3 = (7, 6, ε, ε), and vi4 = (5, ε, ε, ε), for ε
arbitrarily small.

The mechanism picks the unique efficient allocation x = (i2, i2, i2, i3). Since lα2 = {i2}, by 
Proposition 1, p2 = 0. We construct the appropriate sets A(i, α, x). For i2 and α1, A(i2, α1, x) =

11 An efficient, strategy-proof and individually rational trade mechanism does not necessarily satisfy object-by-object 
individual rationality. To see this, consider a network given as li1 = {α1}, li2 = {α1, α2}, li3 = {α2}. The trade mechanism 
is given by a Vickrey auction but payments are such that whenever i2 buys two objects, seller α2 receive the entire 
payment coming from i2 (and in all other cases, a seller just receive the payment made by the buyer who gets the 
object from him). Suppose the valuation profile is v = ((5, ε), (7, 6), (2, ε)). Then x = (i2, i2) and p = (0, 7). Hence 
object-by-object individual rationality is violated since pα2 > v2i2 . Obviously, this mechanism violates bilateral trade 
stability.
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{i1}. By Proposition 1, pα1 = max
j∈A(i2,α1,x)

v(dj (x)+1)j = 3, the highest valuation of i1. Next, we 

have A(i2, α3, x) = {i3, i4}. Although i4 is not connected to α3, he is a (indirect) competitor 
because both i3, i4 ∈ lα4 and xα4 = i3: we can give α3 to i3 instead of i2 and α4 to i4 instead of 
i3. Note that since there are no cycles, A(i2, α1, x) ∩ A(i2, α3, x) = ∅. By Proposition 1 again, 
we obtain that pα3 = 6. Finally, A(i3, α4, x) = {i4} giving pα4 = 5. We obtain p = (3, 0, 6, 5).

Another way to mimic this construction is to think of each seller running a separate second 
price auction. Since a buyer’s sets of competitors at x never intersect, it is as if the buyers are 
participating in independent auctions. Given the efficient allocation x, let each buyer i bid vdi(x)i

for each α such that xα = i, and v(di(x)+1)i for each α such that xα �= i. Since these second price 
auctions are independent, a buyer i has no incentive to change neither his bids of vdi(x)i nor his 
bids of v(di (x)+1)i . By the downward sloping demand assumption, the other valuations of buyer i
play no decisive role.

A third way to construct the price vector p is the following. The total payment t (v) made 
in any generalized Vickrey auction is such that t (v) = (0, 9, 5, 0) at x. Bilateral trade stabil-
ity on its own and the definition of a trade mechanism require pα1 ≥ 3, pα2 ≥ 0, pα3 ≥ 6 and 
pα4 ≥ 5. There is a unique way to divide t (v) which is consistent with bilateral trade stabil-
ity, and this occurs at the lower bound of admissible prices for each seller. We thus obtain that 
p = (3, 0, 6, 5). �

Example 2. Impossibility result: a network with cycle. The situation is depicted in Fig. 1(b) 
which shows a four buyers-four sellers network with one cycle. Let v be such that vi1 =
(10, 9, ε, ε), vi2 = (6, 1, ε, ε), vi3 = (7, 1, ε, ε), and vi4 = (8, ε, ε, ε), for ε arbitrarily small.

The mechanism picks the unique efficient allocation x = (i1, i1, i3, i4). We first have that 
A(i1, α1, x) = {i2, i3, i4}. By Proposition 1, pα1 = 6 = v1i2 . Next, A(i1, α2, x) = {i2, i3, i4} so 
that pα2 = 6. In the same fashion, one can check that pα3 = pα4 = 6. Note that (i) p is solely 
determined by the presence of i2 who gets no object at x, and (ii) A(i1, α1, x) ∩A(i1, α2, x) �= ∅. 
Consider the manipulation v′

1 = (10, ε, ε, ε), i.e. buyer i1 decreases his demand. The alloca-
tion following the manipulation is x′ = (i1, i2, i3, i4). As a result, i2’s first valuation no longer 
determines prices. By the downward sloping demand assumption, this softens the competition 
amongst buyers. There is a series of price changes which propagates through the network fol-
lowing i1’s manipulation. Note that A(i1, α1, x′) = A(i1, α1, x) = {i2, i3, i4}, hence p′

α1
= 1 and 

buyer i1’s manipulation is profitable.12 �

Another way to see the tension between strategy-proofness and bilateral trade stability is to 
compare, for a given buyer i, the social opportunity cost of i obtaining the goods against the lower 
bound on prices imposed by competition amongst buyers, vi(x) − (vmax(G) − vmax(G \ i)) ≤∑
α: xα=i

max
j∈A(i,α,x)

v(dj (x)+1)j . Suppose as in Example 2 that a buyer i receives only two objects 

at an allocation x from sellers α1, α2 such that A(i, α1, x) = A(i, α2, x). Suppose there exists a 
unique buyer j who is driving the prices paid by buyer i at x, i.e. {j } = argmax

k∈A(i,αt ,x)

{v(dk(x)+1)k}
for both α1 and α2. Moreover suppose j is also a “third highest” bidder for both objects at x, i.e. 
v(dj (x)+2)j ≥ max

k∈A(i,αt ,x)\{j}
v(dk(x)+1)k , for t = 1, 2. Now the above comparison between social 

12 Note that buyer i1’s manipulation also benefits the other buyers: A(i2, α2, x′) = {i1, i3, i4} and thus p′
α2

= 1; 
A(i3, α3, x′) = {i1, i2, i4} and so p′

α = 1; and A(i4, α4, x′) = {i1, i2, i3} with p′
α = 1.
3 4
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opportunity cost of giving both objects to buyer i and the minimum prices to satisfy bilateral 
trade stability is v(dj (x)+1)j + v(dj (x)+2)j ≤ 2v(dj (x)+1)j . A necessary condition for a profitable 
demand reduction is that this inequality is strict. This is indeed the case in Example 2 where 
the social opportunity cost is 7 while competition imposes a sum of payments equal to 12 for 
buyer i1.13

Before we go to the main theorem, let us introduce one last definition. For a buyer i, a seller 
α ∈ li and an allocation x ∈ X such that xα �= i we define the following set,

Z(i,α, x) ≡ {j ∈ B \ {i} | ∃x′ ∈ X such that x′
α = i, dk(x

′) = dk(x) for all k �= i, j,

di(x
′) = di(x) + 1, dj (x

′) = dj (x) − 1}
The sets A(i, α, x), defined for xα = i, and Z(i, α, x), defined for xα �= i, are the two sides of 

the same coin. The latter is the set of all buyers j from whom we can take one object and give α’s 
object to buyer i via a Pigou–Dalton transfer. The essential change from the initial allocation x is 
that buyer i receives one more object while buyer j receives one less. We can interpret Z(i, α, x)

as the set of buyers against whom buyer i is bidding for the object of seller α and fails to obtain 
it. It is possible that j ∈ Z(i, α, x) while j /∈ lα . We interpret Z(i, α, x) as the set of (direct and 
indirect) competitors of buyer i for seller α’s unit, against whom buyer i lost.

Theorem 1. Fix a network G. There exists an efficient, strategy-proof, bilateral trade stable and 
individually rational trade mechanism h if and only if G is cycle-free.

Proof. If part: Let h be a trade mechanism such that for each v ∈ R
NM++ , h(v) = (p, x) ∈ R

N+ ×
X and x is an efficient allocation. Given v ∈ R

NM++ , if there are several efficient allocations, 
let h choose the one which maximizes the number of objects obtained by the buyers who are 
labeled with a smaller index.14 Let us now describe prices. Given v ∈ R

NM++ , for any α ∈ S

such that xα = i, if A(i, α, x) = ∅, let pα = 0, otherwise let pα = max
j∈A(i,α,x)

v(dj (x)+1)j . Since 

G is cycle-free, at any allocation x ∈ X for α, β ∈ �i(G) such that α �= β , if xα = xβ = i then 
A(i, α, x) ∩ A(i, β, x) = ∅ and if xα �= i, xβ �= i then Z(i, α, x) ∩ Z(i, β, x) = ∅.

This mechanism is efficient by definition. Since, when A(i, α, x) = ∅, pα = 0, otherwise pα =
max

j∈A(i,α,x)
v(dj (x)+1)j , the mechanism is object-by-object individually rational, hence individually 

rational and also bilateral trade stable. Next, we show that h is strategy-proof.
Consider buyer i with valuation vi . Since the outcome of h(v) = (p, x) is efficient then

min
α∈�i (G)|xα �=i

[
min

j∈Z(i,α,x)
vdj (x)j

]
≥ v(di (x)+1)i and vdi(x)i ≥ max

xα=i

[
max

j∈A(i,α,x)
v(dj (x)+1)j

]

Here the right hand side is the maximum of maximal unsatisfied valuations among all the buyers 
against whom buyer i wins an object and the left hand side is the minimum of minimal satisfied 
valuations among all the buyers against whom buyer i loses. By efficiency, the minimal satisfied 
valuation of buyer i must be greater than the unsatisfied valuations of those against whom he 

13 This necessary condition is not sufficient. For instance if we replace in Example 2 the valuations of buyer i2 by 
vi2 = (4.5, 1, ε, ε), the social opportunity cost of obtaining objects for buyer i1 lies below the lower bound imposed by 
competition, yet buyer i1 cannot profitably manipulate by demand reduction.
14 Since mechanism h is a generalized Vickrey auction, the buyers would obtain the same utility regardless of the 
efficient allocation chosen.



230 O. Bochet, R. İlkılıç / Journal of Economic Theory 169 (2017) 218–233
wins and the maximal unsatisfied valuation of buyer i must be smaller than the minimal satisfied 
valuations of those against whom he loses.

Suppose i reports v′
i �= vi . If we have,

min
α∈�i (G)|xα �=i

[
min

j∈Z(i,α,x)
vdj (x)j

]
> v′

(di (x)+1)i and v′
di (x)i > max

xα=i

[
max

j∈A(i,α,x)
v(dj (x)+1)j

]

then by Lemma 1, at any efficient allocation x′, the two above inequalities imply that i receive 
di(x

′) = di(x). Hence, x remains an efficient allocation at (v′
i, v−i ) and the mechanism will 

choose x to maximize the number of objects obtained by the buyers who are labeled with a 
smaller index. By strategy-proofness, i pays the same total amount at h(v′

i , v−i ). Therefore i’s 
utility is unchanged when going from (vi, v−i ) to (v′

i , v−i ). We consider now two cases.

Case 1: v′
(di (x)+1)i > min

α∈�i (G)|xα �=i

[
min

j∈Z(i,α,x)
vdj (x)j

]
≡ T .

At any efficient allocation i receives at least one additional object at (v′
i, v−i ). If i receives 

exactly one more object, he will pay an extra T for any v′
(di (x)+1)i > T . Suppose not. If i gets one 

more object and pays an extra T ′ > T . Then for any T < v′
(di (x)+1)i < T ′ it would be profitable 

for i to declare vi when his real valuation is v′
i , a contradiction with strategy-proofness. If i pays 

an extra T ′ < T , then for a valuation v̂i such that T > v̂(di(x)+1)i > T ′ and v̂ti = vti for t �=
di(x) + 1, it would be profitable for i to declare v′

i when his real valuation is v̂i , a contradiction 
with strategy-proofness.

If he receives only one more object and v(di(x)+1)i = T then i obtains the same utility. Other-
wise, he is worse off because he is paying more than his real valuation for an extra object.

Case 2: v′
di (x)i < max

xα=i

[
max

j∈A(i,α,x)
v(dj (x)+1)j

]
≡ τ .

At any efficient allocation i receives at least one object less at (v′
i , v−i ) and pays τ less than 

before.15 If he receives only one less object and vdi(x)i = τ then i obtains the same utility. Oth-
erwise, he is worse off because he is losing an object for which his marginal payment was less 
than its value.

Only if part: Let G be a network with cycles. We will construct a profile of valuations at which 
no mechanism can satisfy strategy-proofness, efficiency, bilateral trade stability and individual 
rationality simultaneously. The valuation profile will give an efficient allocation x such that (a) 
there is a buyer i who gets two objects α and β with A(i, α, x) ∩ A(i, β, x) �= ∅ and (b) there is a 
buyer j ∈ A(i, α, x) ∩ A(i, β, x) who determines the prices for both α and β . The conditions (a) 
and (b) are necessary for a profitable manipulation by i via demand reduction.

For a contradiction assume there is such a mechanism h such that h(v) = (p, x).

Case 1 Suppose that there exists a cycle with two sellers α1, α2 and two buyers i1, i2.
Let n1 be the number of sellers connected to i1 and n2 be the number of sellers connected 

to i2. Let all the valuations of all buyers except i1, i2 be smaller than 1, that is v1j < 1 for all j

15 The proof that i’s payment decreases exactly by τ follows an argument similar to the one in Case 1.
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except i1 and i2. Let the valuation vector for i1 be such that the first n1 − 2 values are greater 
than the highest valuations of all other buyers, that is v(n1−2)i1 > v1j for any buyer j .

Let n3 ≥ 2 be the number of sellers which are connected both to i1 and i2. Let the valuation 
vector for i2 be such that the first n2 − n3 values are strictly greater than 4. As for the rest of the 
valuations of i1 and i2, let v(n1−1)i1 = 6, vn1i1 = 5, v(n2−n3+1)i2 = 4, v(n2−n3+2)i2 = 1.

By efficiency, buyer i1 receives the objects from all n1 sellers he is connected to. By bilateral 
trade stability, i1 must pay at least 4 to both sellers α1 and α2—because this is the highest 
unsatisfied valuation of buyer i2. Hence, buyer i1 pays at least 8 for the two units he gets from 
α1 and α2. Notice that he receives value 11 from the two units. Instead, if buyer i1 declares 
vn1i1 < 1, then he would receive only one object from α1 or α2; he would also pay 1 and receive 
value 6 from the object.16 This manipulation is beneficial to buyer i1 and strategy-proofness is 
violated.

Case 2 Suppose there exists no cycle with two sellers α1, α2 and two buyers i1, i2.
There exists a cycle π in G formed by t distinct buyers and t distinct sellers, for t > 2. Any 

two buyers in π share at most one seller.17

For any buyer j outside the cycle π let v1j < vri for all r > 1 and for all buyers i in cycle π . 
This means that at any efficient allocation all the sellers connected to a buyer in π will give their 
objects to buyers in π . By this construction, the valuations of the buyers outside π will not affect 
the efficient allocation of objects inside π .

Fix any buyer in π and label it as buyer i1, and label one of its links in π as seller α1. Label 
the other connection of seller α1 in π as buyer i2 and label the other connection of buyer i2 in π
as seller α2. Iteratively, label the rest of the buyers and sellers in π accordingly. Hence buyer i1
is connected to sellers α1 and αt in π . From now on the subscripts will refer to this ordering of 
the buyers inside the cycle.

For a buyer i in π , let fi be the number of sellers outside π which are connected to i. Let 
vfit it

> v1iz for t < z.
We still did not construct the valuations which will determine the allocation of objects inside 

the cycle π . For buyer i1, let v(fi1+2)i1 > v(fi+1)i for all buyers i in π other than buyer i1. Hence 
in any efficient allocation x buyer i1 will get both of the objects from the sellers α1 and αt . At 
such an allocation x, three conditions should be met for a demand reduction to be profitable: (a) 
buyer i1’s set of competitors for α1 and αt should intersect, i.e. A(i1, α1, x) ∩A(i1, αt , x) �= ∅, (b) 
there should be a unique buyer i who determines the prices of both α1 and αt at allocation x (and 
note that i is not necessarily i1), i.e. there exists i ∈ A(i1, α1, x) ∩ A(i1, αt , x) such that {i} =
argmax

j∈A(i1,α1,x)

{v(dj (x)+1)j } = argmax
j∈A(i1,αt ,x)

{v(dj (x)+1)j }, and (c) giving up one object to such a buyer 

i softens the competition sufficiently for the other object i1 gets, i.e. 2v(di(x)+1)i > v(fi1+2)i1 +
v(di (x)+2)i .18 Next, we continue constructing the valuation profile so that these three conditions 
are met.

16 Buyer i1 pays at least 1 by bilateral trade stability, and at most 1 by strategy-proofness.
17 If two buyers shared more than one seller, then two such sellers and the two buyers would form a cycle, contradicting 
that there are no cycles with two sellers α1, α2 and two buyers i1, i2.
18 If | argmax

j∈A(i1,α1,x)

{v(dj (x)+1)j } ∪ argmax
j∈A(i1,αt ,x)

{v(dj (x)+1)j }| �= 1 then pα1 + pαt equals the social opportunity cost of 

giving these objects to i1. If i1 gives up one of the objects via demand reduction, the price of the other object would not 
change. Hence there would be no profitable manipulation.
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For buyer i2, let v(fi2+1)i2 > v(fi+1)i for all buyers i different from buyers i1 and i2. Hence in 
any efficient allocation buyer i2 will get the object from seller α2. We will define the rest of the 
valuations v(fi+1)i such that in any efficient allocation buyer ir will get the object from seller αr , 
except buyer it . Buyer it will not get any objects from the sellers in π at any efficient allocation.

Also, for all buyers iz in π other than i1 and for all buyers ir in π such that z < r , we let 
v(fiz+2)iz < v(fir +1)ir . Given these valuations, in cycle π , at any efficient allocation the highest 
unsatisfied valuation is of buyer it and is equal to v(fit +1)it . Moreover let v(fit +2)it > v(fi+2)i for 
any buyer i different than i1.

By bilateral trade stability, seller αt should receive at least v(fit +1)it for his object, because this 
is the highest unsatisfied valuation of buyer it who is also connected to αt . Similarly, seller αt−1
should also be paid at least v(fit +1)it . Now, since buyer it−1 is connected both to sellers αt−1 and 
αt−2, buys from αt−1 and pays v(fit +1)it , seller αt−2, who sells the object to it−2 should also be 
paid at least v(fit +1)it , due to bilateral trade stability. Otherwise, seller αt−2 could sell the object 
to buyer i(t−1) at a price closer to v(fit +1)it . Following this argument iteratively we can conclude 
all sellers in π should also be paid at least v(fit +1)it .

By strategy-proofness, each buyer i in π pays at most v(fit +1)it for the objects from the sellers 
in π . This is because if such a buyer i pays p > v(fit +1)it , he can claim to have p > v(fi+1)i >

v(fit +1)it and adjust the rest of his valuation vector as in Lemma 1 to guarantee that he still 
gets exactly the same object(s), and pays at most v(fi+1)i for each object by object-by-object 
individual rationality.

Hence, buyer i1 pays a total of 2v(fit +1)it for the two objects he receives from the sellers 
in π . Suppose that buyer i1 reports v′

i1
with v(fi1+2)i1 < v(fit +1)it . Now, by efficiency, each buyer 

in π gets a single object from a seller in π . By Proposition 1, buyer i1 pays v(fit +2)it for the 
object he gets (as this is the highest unsatisfied valuation in the cycle). Following the misreport, 
the utility of buyer i1 changes by 2v(fit +1)it − v(fi1+2)i1 − v(fit +2)it , which is positive when 
2v(fit +1)it > v(fi1+2)i1 + v(fit +2)it . This contradicts with strategy-proofness. �
Remark 1. For any network with cycles, there always exist valuation profiles for which a prof-
itable demand reduction exists. A key condition is the intersection between sets of competitors 
of a buyer at a given allocation. However, as highlighted in the proof of Theorem 1, additional 
conditions on such a valuation profile need to be met for a demand reduction to be profitable. In 
the online appendix we show that the valuation profiles which allow a profitable manipulation 
have a positive measure in the space of admissible valuation profiles.19

Remark 2. For a cycle-free network, the ascending price algorithm originally defined by Kranton 
and Minehart (2001) for single unit demands can be extended to our multi-units case. In the 
online appendix of this paper we show how to extend their ascending algorithm to our set-up 
without modifying the structure of the network.

Remark 3. If we simply wanted to sell multiple units in a single auction, Ausubel (2004) pro-
vides an efficient and strategy-proof mechanism. Yet when the sellers are acting individually, 
bilateral trade stability is necessary to guarantee that all sellers participate in the mechanism. 
Part 2 of Theorem 1 shows that this is not possible when the network is not cycle-free. It also 
shows that Ausubel’s mechanism is not bilateral trade stable.

19 The online appendix is available at https://sites.google.com/site/rahmiecon/apa.
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