
Transforming Multi-role Activities in Software
Processes into Business Processes

Juan Pulgar and Maŕıa Cecilia Bastarrica(B)

CS Department, Universidad de Chile, Santiago, Chile
jpulgar1978@gmail.com, cecilia@dcc.uchile.cl

Abstract. Software processes usually include activities involving several
people playing different roles. SPEM provides primitives for defining all
the roles involved in each activity. Software process specification nota-
tions are not executable and thus supporting tools cannot provide this
functionality. Therefore, even having a formal software process specifica-
tion we cannot achieve all the potential benefits: people have difficulties
in following their responsibilities, resulting in a low productivity. The
business process domain provides notations that can be executed on a
BPMS. There have been attempts to transform SPEM specifications into
BPMN. However, there is no natural way to model multi-role tasks in
BPMN, and therefore none of these proposals has solved this issue. In
this paper we discuss two promising alternatives for modeling multi-
role software activities in BPMN: defining compound roles and modeling
multi-role tasks as independent processes. We provide an XSLT trans-
formation for automatically generating each of these solutions from a
software process specification. We use a real world running example to
illustrate the approach.

Keywords: Software process · Multi-role tasks · Model transformation

1 Introduction

Software processes are business processes in the software development domain, so
most characteristics of the latter also hold for the former. They allow companies
to better organize software development, and more specifically support manage-
ment of project schedule, scope, resources, risks and expected software quality
increasing the probability of success. Process definition is also a requirement if
the company intends to achieve an ISO certification or a CMMI evaluation.

Software development is mainly an intellectual activity, so the most relevant
resources to be managed in these processes are human resources. Tasks are the
simplest work units in a software process, and they may be performed by one or
more roles within a process.

From an enterprise point of view, a business process is a collection of activities
that, given one or a set of inputs, creates a valuable output for the customer [15].
An executable process is one that may be run in a business process management
system (BPMS). Specifying processes in an executable notation enables several
other benefits as well:
c© Springer International Publishing AG 2017
M. Dumas and M. Fantinato (Eds.): BPM 2016 Workshops, LNBIP 281, pp. 372–383, 2017.
DOI: 10.1007/978-3-319-58457-7 27



Multi-role Activities in Software and Business Processes 373

– continuous process improvement based on empirical data
– reduced time invested in changes derived from business logic, and therefore

more agility and flexibility
– reduced risks due to the possibility of simulating processes before executing

them

Software Process Engineering Metamodel (SPEM) [9] and Business Process
Model and Notation (BPMN) [14] are the standard notations proposed by the
OMG for specifying software processes and business processes, respectively. On
the one hand, SPEM provides rich primitives for specifying elements that are
relevant for software processes, e.g. input and output work products associated
with tasks, or roles assigned to each task. SPEM organizes these elements in two
parts: the method content where each process element is defined, and the process
where defined process elements are combined in order to configure a process. In
particular, SPEM allows the definition of tasks with several roles assigned, but
SPEM is not executable. On the other hand, BPMN 2.0 is potentially executable,
but it does not have inherently a clear way for specifying tasks where several
roles participate, and this is a serious limitation when using BPMN for software
processes [16].

Once the company has invested in specifying its software process, it is appeal-
ing to transform it into BPMN so that it can be executed. There are sev-
eral proposals for automatically transforming software processes into executable
notations but, to the best of our knowledge, none of them addresses the specifi-
cation of multi-role tasks.

In this paper we analyze two ways of specifying multi-role tasks in BPMN:
assigning the task to a compound role formed by the set of roles involved, and
specifying the multi-role task as a meeting that is fully specified separately. We
provide two XSLT transformations that take the software process specification
and automatically generate each of the analyzed alternatives. We illustrate the
whole procedure with a real world bookstore software process and we discuss the
pros and cons of each approach. Even though the resulting business processes
are not directly executable as they are, it is a significant step towards this goal.

The rest of the paper is structured as follows. Section 2 presents some related
work concerning software and business process notations, and discusses former
attempts to transform SPEM processes into executable business process nota-
tions. Section 3 presents existing approaches for modeling multi-role activities.
Section 4 presents the proposed approach using the running example for illus-
trating each alternative. Section 5 concludes.

2 Related Work

In this section we discuss approaches for modeling software and business
processes, as well as attempts to transform from the former to the latter.



374 J. Pulgar and M.C. Bastarrica

2.1 Software Process Specification

The OMG1 has recommended SPEM [9] as the standard for software process
specification. SPEM has been designed for describing processes and their compo-
nents, following an object oriented modeling approach based on UML by extend-
ing its mechanisms for software process modeling.

Formally specifying a software process is a complex activity, but it allows
for using a supporting tool that eases analysis and evolution. There are several
tools available for this purpose. Some of them are: Eclipse Process Framework
Composer (EPFC), Objecteering Modeler, MagicDraw UML (SPEM plug-in),
Rational Method Composer and Enterprise Architect. Among these we can high-
light EPFC [8] provided that it is free and therefore it is an appealing option.
It internally implements UMA (Unified Method Architecture), an extension of
SPEM that includes an UML profile for specifying process behavior, a feature
not covered by SPEM [2].

2.2 Business Process Specification

There are several notations for specifying business processes such as: Petri Nets,
UML activity diagrams, business process modeling notation (BPMN) [14], XML
process definition language (XPDL) [5], integration definition (IDEF) [11], busi-
ness process execution language (BPEL) [13], and event-driven process chain
(EPC) [12]. BPMN 2.0 is widely used in industry mainly because [17]:

– is the OMG standard and thus there are several supporting tools
– provides a graphical notation easy to understand by stakeholders
– reduces the gap between the process design and its implementation
– it is potentially executable

A business process management system (BPMS) is a platform that allows
companies to coordinate the realization of business processes based on process
representations as models.

2.3 Transforming Software Processes into Business Process

There are several proposals that take SPEM 2.0 software process specifications
and automatically generate executable processes in notations such as XPDL or
BPEL. In [6] they propose a transformation from SPEM to BPMN using RSL
as a transformation language, while [18] uses QVT. None of these proposals
addresses multi-role tasks. MOSKitt4ME [4] takes processes specified in EPFC
as we do, and transforms them into BPMN 2.0, but it can only transform a
few kinds of process elements. In [1,10] they present a formal transformation
from UML AD to BPMN 1.0 using MOLA and QVT, respectively, but these
transformations do not address role assignment. In [7] we have proposed an
XSLT transformation from software processes specified in EPFC into BPMN.

1 Object Management Group - http://www.omg.org/.

http://www.omg.org/


Multi-role Activities in Software and Business Processes 375

However, that work did not address multi-role tasks either. In this work we
address this issue and also upgrade the transformations into BPMN 2.0 so that
they will eventually be executed in a BPMS; for this purpose we use Bonita2.

3 Multi-role Tasks in Software Process Specifications

3.1 Running Example

We have defined the software process followed in a medium size bookstore in
Chile. Figure 1 depicts the incidences process for this company specified using
EPFC. In order not to overload the figure, EPFC includes neither roles nor
work products in the activity diagram, but internally these relationships can be
specified and checked. For example, the Developer is responsible for Incidence
Analysis, Solution Design and Solution Programming, while Incidence Reproduc-
tion and Testing are the responsibility of Developer together with the Business
Analyst, as shown in Table 1

Fig. 1. Incidence process for the bookstore.

Table 1. Roles assigned to each task.

Task Developer Business analyst

Incidence reproduction X X

Incidence analysis X

Solution design X

Solution programming X

Testing X X

2 http://www.bonitasoft.com/products.

http://www.bonitasoft.com/products


376 J. Pulgar and M.C. Bastarrica

3.2 Modeling Multi-role Tasks in BPMN

A pool is a modeling element in BPMN that sets the boundaries of a business
process. It may be divided into lanes for organizing activities. It is a common
practice to use lanes for assigning activities to roles, but there is no natural way
to represent collaborative activities performed by different roles. Shapiro [16] has
addressed this issue with different techniques; we describe them in what follows.

Tasks Duplicated in Each Lane. A first option is to duplicate the task in
the lane of each role involved as shown in Fig. 2. A clear problem with this
solution is that tasks specified in this way are not multiple copies of the same
task, but different tasks with different identificators, although sharing the same
label. Therefore, the diagram shows multiple tasks performing in parallel. There
may also be coherence problems when properties among replicated tasks do not
match, or due to coevolution inconsistencies. This solution presents problems
from a graphical point of view as well. When the task is performed by two roles
appearing in consecutive lanes, the meaning may be clear, but when the diagram
involves a lot of lanes, the diagram becomes messy and difficult to understand.
A parallel gateway should also be added for coordination.

Different Tasks Assigned to Roles. In order to address some of the prob-
lems of the previous solution, we can divide the multi-role task into smaller
coordinated tasks, assigning each of them to the participating roles as shown in
Fig. 3. Modeling this solution may be quite complex because it may be required

Fig. 2. Replicated multi-role task.

Fig. 3. Disaggregate multi-role task.



Multi-role Activities in Software and Business Processes 377

to invent several tasks that do not actually reflect the intended action, e.g., all
actors that attend a meeting should perform a similar but different task instead
of having just one unique activity representing the meeting in itself. Moreover,
collaborative activities are not apparent just looking at the diagram.

Separate Lanes Representing Roles as Groups. Yet another proposal is
to create a new lane withing the pool that represents the set of roles involved
in the collaborative task. This avoids task repetition and reduces the number of
activities. In this case, the resulting model is more complex since it has more
lanes and this situation is even worse when there are several multi-role activities
with different sets of roles involved.

Shared Activities Modeled in Separate Processes. This approach uses
call activities calling a different process where the multi-role activity is modeled
in a pool with a single lane. The activity is assigned to the lane of the role
responsible for leading the meeting, and then the meeting is detailed in separate
processes, one for each participating role. The main drawback of this approach
is that each multi-role activity will have a separate process.

4 Transforming UMA Specifications into BPMN

In this paper we consider the last two options from the previous section because
Shapiro [16] recommends them as the most promising ones, and we show how
they can be automatically generated from the EPFC specification.

Fig. 4. Solution general structure



378 J. Pulgar and M.C. Bastarrica

Fig. 5. Translation of UMA elements into BPMN elements.

Figure 4 describes the structure of the proposed solution. The software
process specified in EPFC includes both, the method content and the process
diagram. Both are combined into a single root.xmi model that is taken as input
for each XSLT transformation. The table in Fig. 5 indicates the way process
elements are converted between notations in the transformations. In Sect. 4.1
we show the transformation of the software process into BPMN where multi-role
tasks are assigned to compound roles specified as separated lanes. In Sect. 4.2 we
show the transformation to automatically generate multi-role tasks represented
as BPMN meetings that are then specified as independent processes.

4.1 Separate Lanes for Compound Roles

The idea is that each role has its own lane containing all the activities where he is
the only responsible and, for those activities that have more than one responsible
role, a separate lane will be created whose responsible is the compound role.
Algorithm 1 shows the pseudocode for the XSLT transformation that takes the
root.xmi model as input and generates this BPMN diagram.



Multi-role Activities in Software and Business Processes 379

Algorithm 1. XSLT transformation for compound roles
Require: XML file containing 〈diagram〉 and 〈model〉 nodes (root.xml)
Ensure: XML file containing 〈definitions〉 node for BONITA BPM, modeling collaborative activ-

ities in separated lanes for compound roles
1: Create a 〈definitions〉 node
2: for all spemActivity ← 〈uml : Activity〉 node in 〈diagram〉 do
3: Create a 〈process〉 node in 〈definitions〉
4: Set the 〈process〉 attributes (id, name) from the values of the spemActivity in 〈model〉
5: Create a 〈laneSet〉 node in 〈process〉
6: for all spemTask ← 〈node[@xmi : type =′ uml : ActivityParameterNode′]〉 node in

spemActivity do
7: spemRole ← spemTask′s role(s) defined in 〈model〉
8: if spemRole is empty then
9: Create a 〈lane〉 node in 〈laneSet〉, setting the name attribute as Undefined
10: else
11: Create a 〈lane〉 node in 〈laneSet〉, setting the name attribute as spemRole′s name
12: end if
13: Create a 〈flowNodeRef〉 node in 〈lane〉, setting its value as spemTask′s id
14: end for
15: Group all 〈flowNodeRef〉 by 〈lane〉 node
16: Create elements (as specified in the Node Transformation Table) appending them to the

〈process〉 node
17: end for
18: return 〈definitions〉 node

The XSLT transformation takes each activity in the EPFC diagram.xmi and
generates a node in the BPMN definitions assigning the activity’s attributes, as
stated in lines 3–4 in Algorithm1. Then, it creates a laneSet (line 5) and, for
each task in model.xmi, creates a lane (lines 6–14). Finally, lanes assigned to the
same role are combined by role in line 16. In this way, when creating lanes for
multi-role activities, an independent lane will be created, and it is not grouped
afterwards with any of its participating roles.

Fig. 6. Multi-role tasks assigned to compound roles

Figure 6 shows the visualization in Bonita BPMN of the result of apply-
ing this algorithm to the process in Fig. 1. We can see that Incidence Analysis,
Solution Design and Solution Programming are assigned to the Developer’s lane,
while Incidence Reproduction and Testing are assigned to the lane of the com-
pound role Developer+Business Analyst. By default, the Start and End activities



380 J. Pulgar and M.C. Bastarrica

are assigned to the lane of the role that performs the first and last activities,
respectively; in this case this lane is that of the compound role.

This solution is quite clear in the sense that there is no redundancy, each
activity appears only once in the BPMN diagram, and the flow of control is
apparent. However, for a particular role, it is not obvious that he may be involved
in other activities out of those that appear in his lane. In the example, the Devel-
oper does not only take part in his lane’s activities, but also in Incidence Repro-
duction and Testing that appear in another lane. This situation may be even
worse since the same role may collaborate with several other roles in different
activities and thus his responsibilities may be split across the whole diagram.

4.2 Independent Processes

The second solution consists of a direct translation of each activity defined in the
process in EPFC into a BPMN node assigned to the lane of the first role defined
in the model.xmi, as shown in lines 3–7 in Algorithm 2. Then, for each node
where there are more than one role assigned, the node is marked as a meeting
and a new lane is created for each role involved and a process describing the
activities that role must perform is defined with its own Start and End nodes.

Figure 7 shows the result of applying the algorithm to the process in Fig. 1.
We can see that IncidenceReproduction and Testing are assigned to the Devel-
oper and marked as meetings. Then, in Fig. 8, the lanes corresponding to the
specification of each of these activities is shown in a lane assigned to both roles
Developer+Business Analyst.

Even though this solution seems to be clean and clear due to non duplicated
activities, it may be somewhat inconvenient when multi-role tasks are defined in
EPFC with its roles in different order. For example, if in the Incidence Repro-
duction tasks roles are define as Developer and Business Analyst, this activity
will appear as a meeting in the Developer’s lane. But, if on the contrary, if the
roles are assigned as Business Analyst and Developer, then it will appear in the
Business Analyst’s lane.

4.3 Discussion

Although we do not think that any of the solutions is better than the other, we
envision situations that favor one or the other. For example, if the same group
of roles are usually assigned together to different tasks as in [3], then the first
solution is clearer. On the other hand, if the EPFC software process specification
is organized so that some of the roles are defined first in all the tasks they are
assigned, then the second solution would be better.

Our initial goal was to transform SPEM processes into BPMN in order to
make them executable in a BPMS. However, in order to make this possible there
are certain other steps that should be performed before executablility may be
fully reached. First, an application for managing the process should be built



Multi-role Activities in Software and Business Processes 381

Algorithm 2. XSLT transformation for separate process
Require: XML file containing 〈diagram〉 and 〈model〉 nodes (root.xml)
Ensure: XML file containing 〈definitions〉 node for BONITA BPM, modeling collaborative activ-

ities in separated processes
1: Create a 〈definitions〉 node
2: for all spemActivity ← 〈uml : Activity〉 node in 〈diagram〉 do
3: Create a 〈process〉 node in 〈definitions〉
4: Set the 〈process〉 attributes (id, name) from the values of the spemActivity in 〈model〉
5: Create a 〈laneSet〉 node in 〈process〉
6: for all spemTask ← 〈node[@xmi : type =′ uml : ActivityParameterNode′]〉 node in

spemActivity do
7: spemRole ← spemTask′s first role defined in 〈model〉
8: if spemRole is empty then
9: Create a 〈lane〉 node in 〈laneSet〉, setting the name attribute as Undefined
10: else
11: Create a 〈lane〉 node in 〈laneSet〉, setting the name attribute as spemRole′s name
12: end if
13: Create a 〈flowNodeRef〉 node in 〈lane〉, setting its value as spemTask′s id
14: end for
15: Group all 〈flowNodeRef〉 by 〈lane〉 node
16: Create elements (as specified in the Node Transformation Table) appending them to the

〈process〉 node
17: end for
18: for all spemTask ← 〈node[@xmi : type =′ uml : ActivityParameterNode′]〉 node in

〈diagram〉 do
19: spemRole ← spemTask′s roles(s) defined in 〈model〉
20: if spemRole has more than one element then
21: Create a 〈process〉 node in 〈definitions〉
22: Set the 〈process〉 attributes (new id; name as the concatenation of ’Meeting’ and

spemTask′s names)
23: Create a 〈laneSet〉 node in 〈process〉
24: Create a 〈lane〉 node in 〈laneSet〉, setting the name attribute as spemRole′s names
25: Create a task, a start node and an end node
26: Create three 〈flowNodeRef〉 nodes in 〈lane〉, setting the value as the new task, start

node and end node id’s
27: end if
28: end for
29: return 〈definitions〉 node

Fig. 7. Multi-role tasks assigned to the first role and marked as a meeting

together with designing the business data. Then, the process itself is built. In
this stage, the first step is to create the BPMN process, and this is the step
we have automated with our proposal. Then, still other information should be
provided such as the business variables, contracts, and actors that will carry out
the process steps.



382 J. Pulgar and M.C. Bastarrica

Fig. 8. Meeting tasks assigned to each role taking part

5 Conclusion

In this paper we proposed a strategy for transforming software processes spec-
ified in EPFC -conforming to the UMA metamodel- into BPMN processes. We
were able to automatically generate the two most promising solutions for multi-
role activity specification suggested by Shapiro et al. [16]. We provided two
XSLT transformations, one for obtaining each solution, where multi-role tasks
are modeled as activities in lanes assigned to compound roles or meetings that
are specified in detail as independent processes. Being able to clearly identify
responsibilities allows people involved in software project execution to optimize
their time, and therefore the whole project productivity. Moreover, being able
to automatically transform the software process already specified into a business
process, reduces the effort by reusing the specification already available. Even
though the resulting diagrams are not directly executable, they constitute an
important step towards executing a software process that is consistent with that
specified in EPFC.

We were able to transform the software process of the running example.
However, and even though it is a real world software process, it is still necessary
to apply the approach to larger processes in order to identify some limitations
that may be hidden because of the small size of the example. So far, we were
also able to transform a more complex process of a much larger organization,
that also includes process patterns and iterations. These results are encouraging.
However, we will be able to obtain the most out of our transformations when
we build a tool that helps choosing the most appropriate approach in each case.
It is also necessary to count on objective measurements of each solution quality
such as understandability, complexity and completeness, among others.

Acknowledgments. This work is partly funded by Project Fondef IT13I20010,
Conicyt, Chile.



Multi-role Activities in Software and Business Processes 383

References

1. Argaaraz, M., Funes, A.M., Aŕıstides, J.: An MDA approach to business process
model transformations. Electron. J. SADIO (EJS) 9, 24–48 (2010)

2. Bendraou, R., Combemale, B., Crégut, X., Gervais, M.: Definition of an executable
SPEM 2.0. In: 14th Asia-Pacific Software Engineering Conference (APSEC 2007),
5–7, Nagoya, Japan, pp. 390–397. IEEE Computer Society, December 2007

3. Cabanillas, C., Resinas, M., Mendling, J., Cortés, A.R.: Automated team selec-
tion and compliance checking in business processes. In: Proceedings of the 2015
International Conference on Software and System Process, ICSSP 2015, Tallinn,
Estonia, August 24–26, 2015, pp. 42–51. ACM (2015)

4. Cervera, M., Albert, M., Torres, V., Pelechano, V.: The MOSKitt4ME approach:
providing process support in a method engineering context. In: Atzeni, P., Cheung,
D., Ram, S. (eds.) ER 2012. LNCS, vol. 7532, pp. 228–241. Springer, Heidelberg
(2012). doi:10.1007/978-3-642-34002-4 18

5. W. M. Coalition. XML Process Definition Language (XPDL) (2012). http://www.
xpdl.org/

6. Cota, M.P., Riesco, D., Lee, I., Debnath, N.C., Montejano, G.: Transformations
from SPEM work sequences to BPMN sequence flows for the automation of soft-
ware development process. J. Comput. Meth. Sci. Eng. 10(3–6), 61–72 (2010)

7. Cruz, D.E., Bastarrica, M.C., Duarte-Amaya, H.: De procesos SPEM a procesos
BPMN. Un enfoque basado en MDE. In: CIbSE, pp. 41–52 (2014)

8. E. Foundation. Eclipse Process Framework Project (EPF) (2015)
9. O. M. Group. Software & Systems Process Engineering Meta-Model Specification

(2008). http://www.omg.org/spec/SPEM/2.0/
10. Kalnins, A., Vitolins, V.: Use of UML and model transformations for workflow

process definitions. CoRR, abs/cs/0607044 (2006)
11. I. K. Knowledge Based Systems. IDEF. Integrated DEFinition Methods (2016).

http://www.idef.com/
12. Korherr, B.: Business Process Modelling - Languages, Goals, and Variabilities.

Ph.D. thesis, Vienna University of Technology, January 2008
13. OASIS. Web Services Business Process Execution Language Version 2.0 (2007).

http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
14. OMG. Business Process Model and Notation, Version 2.0 (2011). http://www.omg.

org/spec/BPMN/2.0/
15. Sánchez-González, L., Garćıa, F., Ruiz, F., Velthuis, M.P.: Measurement in busi-

ness processes: a systematic review. Bus. Process Manage. J. 16(1), 114–134 (2010)
16. Shapiro, R., White, S.A., Bock, C., Palmer, N., zur Muehlen, M., Brambilla, M.,

Gagné, D. (eds.): BPMN 2.0 Handbook. Workflow Management Coalition, Light-
house Point (2012)

17. Wohed, P., Aalst, W.M.P., Dumas, M., Hofstede, A.H.M., Russell, N.: On the
suitability of BPMN for business process modelling. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 161–176. Springer, Heidelberg
(2006). doi:10.1007/11841760 12

18. Zorzan, F.A., Riesco, D.: Transformation in QVT of software development process
based on SPEM to workflows. IEEE Latin Am. Trans. 6(7), 655–660 (2008)

http://dx.doi.org/10.1007/978-3-642-34002-4_18
http://www.xpdl.org/
http://www.xpdl.org/
http://www.omg.org/spec/SPEM/2.0/
http://www.idef.com/
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html
http://www.omg.org/spec/BPMN/2.0/
http://www.omg.org/spec/BPMN/2.0/
http://dx.doi.org/10.1007/11841760_12

	Transforming Multi-role Activities in Software Processes into Business Processes
	1 Introduction
	2 Related Work
	2.1 Software Process Specification
	2.2 Business Process Specification
	2.3 Transforming Software Processes into Business Process

	3 Multi-role Tasks in Software Process Specifications
	3.1 Running Example
	3.2 Modeling Multi-role Tasks in BPMN

	4 Transforming UMA Specifications into BPMN
	4.1 Separate Lanes for Compound Roles
	4.2 Independent Processes
	4.3 Discussion

	5 Conclusion
	References


