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significant accuracy loss.

A numerical method based on artificial neural networks is used to solve the inverse Schrodinger equation
for a multi-parameter class of potentials. First, the finite element method was used to solve repeatedly the
direct problem for different parametrizations of the chosen potential function. Then, using the attainable
eigenvalues as a training set of the direct radial basis neural network a map of new eigenvalues was
obtained. This relationship was later inverted and refined by training an inverse radial basis neural
network, allowing the calculation of the unknown parameters and therefore estimating the potential
function. Three numerical examples are presented in order to prove the effectiveness of the method. The
results show that the method proposed has the advantage to use less computational resources without a

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

As known the Schrodinger equation is a partial differential
equation developed during the first quarter of the 20th century and
its a fundamental part of the quantum mechanics theory. Roughly
speaking this equation describes the behavior of a system under
the influence of different potentials, and one of the main goals
is to find the dynamics of the system determined uniquely by
the eigenvalues and eigenvectors. In the following we will review
briefly the usage of numerical methods to solve the Schrodinger
equation and in particular the use of neural networks.

In general, only in limited cases exact analytic solutions can be
obtained, for example the free particle, linear harmonic oscillator
or the hydrogen atom. On the other hand, there exist a number
of useful approximation methods for more general hamiltonians,
such as perturbation methods or the Wentzel-Kramers-Brillouin
(WKB) method. Another well established methods for solving nu-
merically the Schrédinger equation, are the ones based in varia-
tions of the Numerov’s method, as shown in (Pillai et al. [ 1]) where
the wave function is discretized over a lattice. However, to our best
knowledge, when applied to practical physical problems, these
methods have turn out to be less successful.
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In (Braun et al.) [2], the Lanczos method is applied, on a grid, for
obtaining eigensolutions of quantum systems. This methodology
is used to solve one-, two-, and three-dimensional quantum prob-
lems. In (Ishikawa [3]) a numerical method is proposed in order to
solve accurately the eigenvalue problem in quantum mechanics.
In this case the efficiency is proved through the applications to the
harmonic oscillator, in which they achieved 15-digit accuracy with
double precision operations. In (Kannan and Masud [4]) two meth-
ods are presented in order to stabilize the Schrédinger wave equa-
tions, the first one consisting in a Garlekin/least-squares method,
whose consistency and convergence was analyzed through po-
tentials which have known analytic solutions. In (Watanabe and
Tsukada [5]) the wave function evolution in a magnetic field is
analyzed using a numerical method based on the finite elements,
improving the accuracy without increasing the computational
cost. Among other schemes proposed for solving numerically the
Schrédinger equation it can be mentioned the study done by
(Simos and Williams [6]) where they use a method based on phase-
lag minimization in order to compute the eigenvalues, the method
was tested in two types of potentials, an even function with respect
of a one dimensional domain, and a general case of the Morse
potential.

Other applications of ANN in partial differential equations can
be found in (Ossandén and Reyes [7]) and (Ossandén et al. [8]),
where the inverse eigenvalue problems for the linear elasticity
operator and for the anisotropic Laplace operator are solved re-
spectively. In (Poggio et al. [9]) it is shown that the ill-posed
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problem of function approximation through sparse data can be
regularized using an appropriate class of approximation functions.

However, the ANNs have been less explored in quantum me-
chanics. Some works in this direction are given in (Lagaris et
al. [10]), where a feedforward Artificial Neural Network (ANN) is
used to find the eigenvalues of integro-differential operators, using
the analytic solutions to test the accuracy of the solutions. In this
case the neural network proved to be highly accurate, robust and
efficient. Another use for the feedforward neural network can be
seen in (Shirvany et al. [11]), where an energy term is derived
from the boundary conditions which allows to use an unsupervised
neural network to solve the equations, also the results given by the
neural network were compared with the analytic solutions.

In the present work, our goal is to study the recovering of
coefficients associated to the potential function through a finite
set of eigenvalues in the quantum system. We assume that the
function between the eigenvalues and the potential coefficients
is smooth in the sense that two similar inputs correspond to two
similar outputs. We emphasize that the error of any designed
ANNSs cannot have a better performance than the technique used
to create the training data. As a consequence, the performance of
any ANN is directly related to the training data. In general, all the
computation process used by the neural networks, including the
training, validation and simulation process, has lower computa-
tional time than the finite element method.

Hence, the main issue of this proposed study is to solve the
inverse problem associated to the Schrédinger equation, that is to
say, calculate a set of coefficients associated to a potential func-
tion, through eigenvalues of the Schrédinger operator using ANNs.
The ANN proposed is a multilayered Radial-Basis Function (RBF)
network (see Ossandén and Reyes [7] and Ossandén et al. [8]). As
discussed in (Schilling et al. [12]), a RBF ANN can approximate a
function f using nonlinear functions which provides the best fit to
the training data. An evaluation of the performance (computational
time and accuracy) of the ANN methodology proposed will be done,
comparing the results to a classical numerical method based on
FEM.

The article is organized as follows. In Section 2, we give an
introduction to the eigenvalue problem in quantum mechanics.
In Section 3, we present the solution to the direct and inverse
problem associated to the calculation of the eigenvalues of the
time-independent Schrodinger equation. Numerical results and
discussion are given in Section 4. Finally, in Section 5, the conclu-
sions of this work are presented.

2. Eigenvalue problem in quantum mechanics

Let 2 C R¥(k > 1) be a nonempty, open, connected and
bounded domain, with a Lipschitz-continuous boundary I" := 9£2.
The unit normal vector pointing to the exterior of £2 is denoted by
n=(nyny,....m) eRfandx = (x1, %, ...,x%) €RE

Let A be an observable associated to a physical quantity A.
Let us say that v, is an eigenfunction of this operator, and A, its
associated eigenvalue, if v/, # 0 and

{Z'wy =M ¥y
¥, =0 on I'.

in 2, (1)

It is worth noting that the eigenvalues of a hermitian operator
lie in the real line. Indeed, if we multiply Eq. (1) by v, and integrate
in £2, we obtain

o [ V@AY, (*)ldx
! [ 19, () 2dx

which is real.

(2)

In the case that the observable A is the hamiltonian opera-
tor H = —%AW(X) + V(x,6), wellave the well known time-
independent Schrédinger equation Hvr,, (¥) = E, v, (x). In this
equation h is the Planck’s constant, m is the mass associated to
the quantum system, and V(x, @) is the potential function, coming
from the potential energy and, in our case, depending on a set of
coefficients grouped in the vector @ € R', I > 1. Thus the energy E,
is an eigenvalue, and v, (%) its related eigenfunction, associated to
the hamiltonian operator H.

3. The direct and inverse problems
3.1. The direct problem

From now on let us consider only two and three dimensional
bounded domains, i.e. k = 2 or 3.In addition let us suppose
that V(-, 0) € L(£2), V(x,0) > Vy > Ofora.e.x € 2 and V0 € R..
Our main goal is to solve the following eigenvalue problem:

Find E € R and functions v(x) # 0 which are solution of

hZ

—— Ay + V(X0 =E¢ in £,

2m

Y =0

As known (see [13]) the only non-null solutions of Egs. (3) are a
pair sequence {(Ej, ¥;)};>1 of eigenvalues and eigenfunctions.

We define the following function Sg y associated to Eq. (3):

(3)
on I'.

I N F T
S§,N R — R7, E = (E],Ez,...,EN) =S§,N(0)' (4)
Given the values of the coefficients § € R/, the potential V(x, #)
is completely well determined and consequently Sg y (N € N), for
each domain §2 with regular boundary I", solves the direct problem
associated to boundary-value problem (3), calculating the first N
eigenvalues of the Schrédinger operator.
Let us define the functional space
V=Hy2)={veH(R), v=0 on I}, (5)
equipped with the usual norm ||[v |7 o = [, [Vv[*dx + [, [v|*dx.
Thus the eigenvalue problem for Schrodinger equation with
homogeneous boundary conditions can be formulated as (weak
formulation):
Find (E, ¥) € (R, V) such that

ag(u, v) = E(u, v)o.o Yv ey (6)

where

hZ
ag(u, v) :=—/ Vu-Vudx—i—/ V(x, )uvdx and
2m Jgo Q 7)

(u, v)o.2 :/ uvdx.
2

It is worth noting that the wellposedness of the discrete form
of (6) can be guaranteed by the fact that the corresponding ap-
proximation space satisfies the Babuska-Brezzi condition (see
[13-17] and [18]). Let {71}~ be a regular family of triangulations
of £2, made up of triangles T of diameter hr, such that h :=
sup{hr [T € Tp} and 2 = |J{T: T € 73} . In association with
the mesh 7y, let us select the finite element space V, C V of the
continuous functions in §2 which are piecewise polynomials IP; of
degree j, withj > 1, in each triangle T € 7.

Let (Ep, up) € (R, Vy) be the eigenpair solution to the discrete
form of (6). It is well known that the Rayleigh quotient for each
eigenvalue E, is given by:

a
E, — o(Un, Up) ' (8)
(Un, U)o



S. Ossandon et al. / Computer Physics Communications 214 (2017) 31-38 33

3.2. The inverse problem

The inverse problem associated with (3) is the following:

Find @ € R' such that the following boundary-value problem
hZ

—ﬂA'(/fn + V(x, 0)1pn = En '(//n in Q, (9)

Wn =0

on I’

N
is solved for the given sequence {E,, ¥, ,With N < +o00.In

=1
simple words, our inverse problem consistsin finding the poten[tvial
coefficients 0 € R' provided that we known the first N { En, Va }

eigenvalues and eigenfunctions of problem (3).
Thus, it is now possible to define the function ‘%lw' which is the

inverse function of Sg y, in order to solve the inverse problem (9):

n=1

solRN SR, 0=s2' (E). (10)
2.N 2N

In order to numerically solve the above inverse problem, first
let us consider a direct feed-forward RBF ANN. A typical flow
diagram for a feed-forward neural network is shown in Fig. 1. Let
2+ R' — RN be an approximation of the function Sg
(see [12] and [7]), with one hidden layer containing s; neurons
and one output layer containing N neurons. Let us notice that the
activation function associated to each neuron is characterized by
y = exp{—x*}.

The function 3%1 N has the following form:

—~

= _ o _ pl 1
E =32 (0) =Ll - exp(—y:(6) - +y1(6)) + b}, (11)
where E) = (E,fz, .. ,EN)T is the output vector and y,(0) =

(Z), - (0)7) - xb]. Furthermore w; is a vector containing all the
weights associated to the neural network which must be deter-
mined in the training of the network. In other words w; contains
all coefficients associated with the design parameters £}, (N x s1),
I}, (s1 x 1), b} (sy x 1) and b} (N x 1).It is important to remark
that “.” is the classic matrix-vector product, whereas “-x” is the
element-by-element vector-vector product.

In order to get the trained ANN with Ntm input-output vectors
(1

o= N — . 0 .
@), (E D , where (E ) = S5 ,(6"), let us define the
i ,
following optir’nization problem:

-~

w1 = inf] o) (@1)
@1 t

N 5
— i:}f{ % 3 ((?)m - Eg{N((;@)) } (12)
TN S

The problem (12) can be iteratively solved using the backprop-
agation algorithm.

Once determined the optimal value for w1, i.e. @7, it is possible
to consider an inverse RBF ANN 3%2 : RN — R/ trained with
simulated data obtained from the direct network, to calculate the
inverse of Eq. (11) in order to obtain an approximation for SgN as
follows: ’

o~

-~ _~ —
=32 (E)= L}, - exp(—ys
=S, = 5

Y2(E)=(z} - E)-=b],

= = )
E)-xy,(E))+ b3,

(13)

where w; is a parameter vector containing everything that is going
to be determined from the network training and associated with
the design parameters L3 (Ixs2), Th, (s2 x N), b3 (s2 x 1) and b3
(I x 1). Let us notice that s, is the number of neurons in the hidden
layer.

Output
Layer

Input |
Layer

i
|
Hidden I
Layer I

Fig. 1. Feed-forward neural network.

The optimization problem arising in the training of this inverse
network can be also solved using the backpropa%ation algorithm
or the Levenberg-Marquardt algorithm with Ntz) input-output
vectors.

As aforementioned, the purpose of this work is to solve the
inverse problem described above. However, in order to solve the
inverse problem it is necessary to solve many direct problems.
Since the FEM is computationally expensive, it is essentially used to
solve only a few direct problems, allowing us to have sufficient data
(N[m) in order to train the direct RBF ANN. Once trained the direct
network, it is used to solve many more direct problems (Nt(z), with
Nt(z) > Nﬁ”), in a reasonable computational time. This is mainly
due to the optimized calculation speed of the designed direct RBF
ANN. In this way, we can increase the database if needed, in order
to train the inverse RBF ANN, consuming a reasonable calculation
time and using reasonable computational resources.

Finally, it is worth noting that the direct problem analyzed in
this work is well posed. This means that solutions coming from
a potential function given by V(x) = ax?, for (a > 0), will have
only positive eigenvalues, and therefore the training set for the
direct RBF ANN will only consider positive values for a and positive
eigenvalues. This in turn implies that the training set for the inverse
RBF ANN will also consist only of positive eigenvalues and positive
values of a, because we use the inverse functional relationship in
order to train the inverse network (the neural network cannot
extrapolate to negative eigenvalues). Thus the solutions of the
inverse problems obtained with the inverse RBF ANN will never can
consider negative values of a considering, as input data, positive
eigenvalues.

4. Numerical results and discussion

In this section, numerical examples are presented in order to
show the effectiveness and relevance of the proposed numerical
method.

First, let us give a brief description of the numerical procedure
used in our examples:

(I) : Generation of the training data set for the direct RBF ANN:

N
{0(”] " coefficients (Nt1 sparse initial data).
i=1
(m : Select the value of N (number of eigenvalues to be used).
(I) :Foreach1 < i < N.gl- calculate the N first eigenvalues
(energy values): 0 < Eg' < Eg') << El(\ll) using FEM.
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(IV) : Design and train a direct RBF ANN, resulting in the eigen-
values mapping, obtained in (III), as a function of 9,1 <i <
N/.
2

N,
(V) :New Data Generation: Generate a refined sample {0(')} ‘

i=1
of size N >> N/. The generated coefficients will be used as
a training data set for the inverse RBF ANN.
(VI) : Calculate, for each 1 < i < N2, the N first eigenvalues
(energy values): 0 < EV < E) < ... < E{ using the direct
RBF ANN designed and trained in IV)
(VII) :Designand trainaninverse RBF ANN, using the set of coeffi-
cients generated in V) as a function of the set of eigenvalues
obtained in VI)
: Anew set of data is generated usinhg a more refined sample

of the last set of coefficients: % , with Ny > N2

(IX) : Foreach1 < i < Ns, calculate t}le N ﬁrst eigenvalues
(energy values): 0 < E < E E usmg the direct
RBF ANN designed and tralned in (IV) from coefficients
generated in (VIII)

(VIII)

(X) : Calculate the estimated coefficients 0 from eigen-

values obtained in (IX) using the inverse RBF ANN designed
and trained in (VII)

1 Ns
(XI) : Compare real [0(')} coefficients vs estimated coeffi-
i=1

~ 7 Ns
cients {5‘”} obtained through the RBF ANN in (X)

(XI) :Compare tl’l?potential coefficients as a function of the first
N eigenvalues: (1) calculated using inverse RBF ANN, (2) cal-
culated with FEM using the inverse functional relationship.

In the next two subsections, we are going to validate our
methodology through well known benchmark examples.

4.1. Henon-Heiles potential model

Our first numerical example corresponds to the well stud-
ied model of Henon-Heiles potential (H-H potential) (see Lagaris
et al. [10]). In this case the eigenvalue problem is:

Find E € R and functions v(x) # 0 which are solution of
- %A¢+V(x)1/f:E1/r in R?, (14)

where V(x) = 1(x* + y*) + 7( xy? — 3x3).

In order to solve the Henon-Heiles elgenproblem (H-H eigen-
problem), using the FEM, we have considered the bounded domain

= (]—6.0,6.0[x]—6.0, 6.0[) C R? and imposed homogeneous
Dirichlet boundary conditions (¥ = 0 on the boundary of the
domain).

Figs. 2 and 3 qualitatively depict the numerical results associ-
ated to the first four states (wave functions and energy levels) for
the H-H potential. These results have been widely obtained in the
literature using different numerical methods (see [10]).

Let us now consider a generalization of the H-H potential:
V(x,0)=V(x, a,B,y) = a(x?* + y*) + Bxy?> — yx>. The potential
coefficients «, B, and y used for training the direct RBF ANN ’3“”
are: o) = 0.3 + 80 x t(i), B = 0.08 + 10 x t(i), and y(‘) e
0.0+10xt(i)where t(i) = 0.04-0.0001x(i—1)with1 <i < N
61. We employ FEM with P, elements on a grid of 20 x 20 in .(2 in
order to compute the first four eigenvalues and its corresponding
eigenfunctions associated with the previously defined coefficients.

We use this direct network to simulate a more larger amount of
data Nt( ), obtaining the following set of training data for the inverse
network $22 : o) = 0.3+ 80 x (i), B = 0.08 + 10 x (i), and

v =0.0 + 10 x t(i), where t(i) = 0.0 + 0.00001 x (i — 1) with

Eigen Vector 0 valeur =0.99864

IsoValue

m0.295782

m0.54931

(a) First eigenfunction (E; = 0.99864).

Eigen Vector 1 valeur =1.99016

IsoValue

m0.00727778
m0.0553682
m0.103459
m0.151549
m0.199639
m0.24773
m0.29582
m0.34391
m0.392001
m0.440091

(b) Second eigenfunction (E; = 1.99016).

Fig. 2. Plots of isovalues of the 2 first eigenfunctions associated to the H-H
eigenproblem.

1<i< Nﬁz) = 601. The algorithm used to train both networks is
the backpropagation algorithm.

Table 1 shows the application of the dlrect trained network
using the potential coefficients @ = 2, B = 4f ~ 0.11180, and

= 57 2 ~ 0.0372678 to approximately compute the first four

eigenva ues

Table 2 shows the application of the inverse trained network
using the four first eigenvalues documented in Lagaris et al. [ 10] in
order to approximately compute the potential coefficients.

The results observed in Table 1 are in excellent agreement with
the results presented in the literature, showing the approximation
capability of the direct RBF ANN. On the other hand, it is evident
from Table 2 the generalization capability of the inverse RBF ANN
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Table 1
Application of the direct RBF ANN in £2 = (] — 6.0, 6.0[x] — 6.0, 6.0[) C R?> with N = 4.
Direct RBF ANN [4 Calculated eigenvaluesf,- Relative error 'E“T’I‘E"
_ 1
=3 0.9995 0.000841
21 f= 1.9921 0.001001
2N 45 1.9923 0.001102
1 2.9602 0.0011006
"T 1
Table 2
Application of the inverse RBF ANN in £2 = (] — 6.0, 6.0[x] — 6.0, 6.0[) C R?> with N = 4.
Inverse RBF ANN Lagaris et al. [ 10] eigenvalues E; 0] Relative error %
Joames @~ 04991 0.0018
Cat : B ~0.1127 0.0080
N 1990107 7 ~ 0.0369 0.0099
2.957225 y=e :
Table 3

Application of the direct RBF ANN in 2 =] — 4.0, 4.0[ x] — 4.0, 4.0[C R> with N = 8.

Direct RBF ANN [4

Calculated eigenvalues E,

. E_T
Relative error %
i

1.9915
43029

«=05 46897

2o B=20  6.8962
o y=05  7.8299
§=10  7.9591

9.9989

10.5855

0.000369
0.000520
0.002048
0.000112
0.001017
0.000025
0.001760
0.000065

when the network is applied to data outside the training set (note
that the considered eigenvalues used to calculate @ are the same as
those reported by Lagaris et al. [10]).

4.2. 2D and 3D coupled anharmonic oscillators

Our second numerical example corresponds to the well studied
models of coupled anharmonic oscillators (see Braun et al. [2]).

4.2.1. Case 2D: two coupled anharmonic oscillators

In this case the eigenvalue problem is:

Find E € R and functions v(x) # 0 which are solution of
—%A¢+V(x)¢=5w in R? (15)

where V(x) = 2(x* +y?) 4+ 2(x* + y*) + 2(x° +y°) + xy.

In order to solve the Two Coupled Anharmonic Oscillators
(2CAO) eigenproblem, using the FEM approach, we have consid-
ered a 32 x32 grid in the square domain £2 =] — 4.0,4.0[x] —
4.0,4.0[C R? and imposed a homogeneous Dirichlet condition,
¥ = 0 on the boundary of the domain.

Let us consider a generalization of the 2CAO potential: V(x, 6) =
Vx,a,B,v,8) =ax®+y*)+ B +yH)+ ¥ (x5 4+y°) +8xy. In this
case the potential coefficients «, §, y, and § used for training the
direct RBFANN ’SgN are chosen as follows: t(i) is chosen uniformly

in [0, 1], @ = t(i), P = 1.5 + (i), y¥ = 0.2 + t(i), and
8 =0.5+t(i),where1 <i < Ntm = 81.The eight first eigenvalues
0 < EY < EY) < ... < E{” associated to the generated coefficients
are calculated using FEM with P, elements in £2.

We use the designed direct network in order to simulate a
larger amount of data Nr(z), obtaining the set of training data for the
inverse network g%zN. In this case t(i) is also chosen uniformly in
[0,1], @) = £(i), B = 1.54t(i), y) = 0.24¢(i),and 8 = 0.5+¢(i),
where 1 < i < Nt( = 801. The algorithm used to train both
networks is the backpropagation algorithm.

Table 3 shows the results when we apply the direct neural
network (trained) to calculate the eigenvalues provided the po-
tential coefficients, whereas Table 4 shows the results of applying

the inverse neural network (trained) to calculate the potential
coefficients provided the eight first eigenvalues documented in [2].
It can be observed that our direct and inverse calculations are in
accordance with results reported in [2].

In addition, it is worth noting that the neural networks designed
cannot have a better convergence order than FEM with P, ele-
ments, since this is the methodology used to train the direct RBF
ANN. However, the error can be improved by using, for training
the direct network, methods with better convergence order.

4.2.2. Case 3D: three coupled anharmonic oscillators

Let us now consider V(x) = J(x* +y* +22) + 2(x* + y* + z%) +
2(X° +y5 +2%) + xy + yz + 2.

We solve the Three Coupled Anharmonic Oscillators (3CAO)
eigenproblem in the bounded domain £2 =] — 4.0,4.0[x] —
4.0,4.0[x] — 4.0,4.0[Cc R3, where we have imposed again a
homogeneous Dirichlet boundary condition. We have considered
a28 x28 x28 grid in £2.

A generalization of the 3CAO potential is considered: V(x, ) =
Vx o, B,y.8) =ax®* +y* +22)+ Bx* +y* +2) + y(x®* +y° +
25) 4+ 8(xy + yz + zx).

For training the direct and inverse networks, we use the same
procedure employed for the 2CAO case. However, we employ FEM
with P, tetrahedral elements in £2 in this case.

The application of the direct trained network in order to com-
pute the two first eigenvalues, provided the potential coefficients,
as well as, the application of the inverse trained network in order to
compute the potential coefficient, provided the two first eigenval-
ues documented in Braun et al. (see [2]), are presented in Tables 5
and 6, respectively.

It can be observed from Tables 5 and 6 that the performance
achieved by the direct and inverse RBF ANN is good. However, the
accuracy of the calculation made by both networks undergoes a
small decrease, in relation to the 2D case, which we attribute to the
3D geometry of this example. Consequently, the numerical results
presented above show the validity of our approach, and also shows
its limitations when considering 3D geometries.

It is well known that the FEM is a numerical technique that
requires a bounded domain in order to calculate the approximate
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Eigen Vector 2 valeur =1.99035

IsoValue

m0.0068162

M0.39144
m0.439518

(a) Third eigenfunction (E3 = 1.99035).

Eigen Vector 3 valeur =2.95677

IsoValue

m0.137772
m0.180657
m0.223542
W0.266427
m0.309312
m0.352197
m0.395082
W0.437967
m0.480852
m0.523737

(b) Fourth eigenfunction (E4 = 2.95677).

Fig. 3. Plots of isovalues of the third and fourth eigenfunctions associated to the
H-H eigenproblem.

solution. Thus it is necessary to truncate the domain when working
with unbounded domains. In the first and second examples, we
have truncated the domains in accordance with the literature
(see Lagaris et al. [10] and Braun et al. [2]). However, in practice
the domains can be truncated using analytical techniques, mainly
based on Fourier Analysis, especially customized to each problem.
In addition, in some cases, the boundary could vary depending on
the values of the potential coefficients.

4.3. Assessing the performance of our methodology

Once validated our methodology through benchmark examples,
we must evaluate its performance. Let us define for this 2 =

10.0, 1.0[x]0.0, 1.0[C RR? and consider the following potential
function:

B exp(—ax?)
|(x + 0.0000001)[|(x — 1.0000001)]
(20 — B)exp(—ay?)
|(y + 0.0000001)||(y — 1.0000001))|

where § = (o, B)'.

For simplicity let us put % =1

The potential coefficients used for training the direct RBF ANN
are: o) = t(i)and B = 20/(1+t(i)) where t(i) = 1.0+0.1x(i—1)
with1 <i <NV =51,

Once trained the network 3%‘ " using the FEM technique with
PP, elements on a grid of 20 x20in £2 (see Section 3), and calculated
the associated vector @3, we use this direct network to simulate
a larger amount of data N2, obtaining a set of training data for
the inverse network ’S%zN(O). Inthiscase1 < i < Nt(z) = 501,
a = ¢(i), B = 20/(1 + t(i)) and (i) = 1.0 + 0.01 x (i — 1). This
last training data gives us the value of @,. We have used in this case
the Levenberg-Marquardt algorithm to train both networks.

Fig. 4 shows a comparison of the coefficients evolution as a
function of the first N = 3 eigenvalues of the Schrédinger operator,
when the value of the simulated data is N, = 5001, o) = ¢(i),
BY = 20/(1 + t(i)) and t(i) = 1.0 + 0.001 x (i — 1). It can be
observed in this figure that the coefficients calculated from the
neural network method approach quite well to those calculated
using the inverse functional relationship obtained with FEM. Fig. 5
depicts the relative errors of the calculated coefficients associated
to the comparison shown in Fig. 4.

Finally, Table 7 summarizes the computational performance
using the mean squared error (MSE), the computational time, in
seconds, using RBF ANN (CT ANN) directly applied to the set of
eigenvalues, and also the computational time, in seconds, using the
inverse functional relationship between the coefficients associated
to a potential function and eigenvalues obtained with the FEM
technique (CT FEM), required for simulations. The computer used
to obtain the above results has a 2.4 GHz Intel Core 2 Duo processor
with 3GB 800 MHz DDR2 SDRAM.

The CT ANN is obtained taking into account the computational
time required to calculate the training data, through FEM, needed
by the first network in each example. We observe from Table 7
the excellent computational time obtained by using the RBF ANN
compared with the computational time obtained by using the FEM
procedure, as well as, the good computational performance which
is measured using the MSE.

Finally, the main advantage that we want to emphasize about
our approach is the computational time (CT) required for the cal-
culations. The MSE is shown (see Table 7) in order to quantitatively
demonstrate that the accuracy is not lost using the ANN method.
In addition, it is worth noting that the CT ANN considers the total
time, including the time employed for training the direct network
using FEM, allowing a comparison of the techniques used.

V(x, 0) =

5. Conclusion

In this article, we have proposed a numerical method based on
an artificial neural network which allows to compute the coeffi-
cients of an unknown potential function in quantum mechanics,
using a finite set of eigenvalues of the Schrédinger operator. Once
trained a direct RBF ANN, using FEM in 2, an inverse RBF ANN has
been trained, using as a training set the data calculated by com-
putational simulation of the direct network and considering the
inverse functional relationship between the calculated eigenvalues
and the potential coefficients.
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Fig. 4. Coefficients of the potential as a function of the first N = 3 eigenvalues: (1) calculated using inverse RBF ANN (in dashed line), (2) calculated with FEM using the

inverse functional relationship (in solid line).
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Fig. 5. Relative error of the calculated coefficients.
Table 4
Application of the inverse RBF ANN in £2 =] — 4.0, 4.0[x] — 4.0, 4.0[C R? with N = 8.
Inverse RBF ANN Braun et al. [2] eigenvalues E; 0 Relative error %
1.99223576
4.30513845
4.69932314 Q ~ 0.5017 0.0034
) 6.89542638 B ~ 1.9824 0.0088
QN 7.83787029 Z ~ 0.5004 0.0008
7.95930124 § ~ 1.0115 0.0115

10.01652920
10.58618828

We have tested our method with three examples, showing well
known results for the direct problem in the first two models, hence

validating our method, and then evaluating the performance for
the inverse problem in the third model. The numerical results
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Table 5

Application of the direct RBF ANN in £2 =]—4.0, 4.0[ x]—4.0, 4.0[ x]—4.0, 4.0[C R?

with N = 2.

Direct RBF ANN [

Calculated eigenvalues E

|Ei—Eil

Relative error By
i

a=0.5
391 B =20 29921
2N y =05 5.3018
§=1.0

0.004633
0.001097

Table 6
Application of the inverse RBF ANN in 2 =] — 4.0, 4.0[ x] — 4.0, 4.0[x] — 4.0, 4.0[C R® with N = 2.
Inverse RBF ANN Braun et al. [2] eigenvalues E; () Relative error ‘9"‘6’{?'
;.Z ~ 0.4895 0.0210
39 2.97830266 B ~ 1.9656 0.0172
2N 5.29599234 Y ~0.5143 0.0286
3~ 1.009 0.0090

Table 7
Summary of computational performance and time for the numerical example using
N; = 5001 simulation data.

Ng MSE o MSE B CT ANN CT FEM

5001 0.0026 4.2947e—05 14.15 423.94

show that the calculation of these unknown potential coefficients,
through the eigenvalues, using our neural network approach is
very efficient. In other words the relative error is acceptable, and
the computation time is significantly smaller compared to the
finite element technique (see Table 7). However as the geom-
etry of the domain £2 (see Second example, 3D case) becomes
more complex more training data will be needed for the direct
RBF ANN, and therefore more computational time will be used
in our approach, in order to keep the accuracy of the calcula-
tion acceptable. Finally, our neural network based method has
shown that it can be successfully implemented, as an approximate
method for obtaining: 1.- The energy levels for a given particle;
2.- The unknown potential coefficients associated to a quantum
system.

In summary the main advantage of our methodology is that
all the computation process using neural networks, including the
training process, the validation process and the simulation process,
requires a notably lower computational time than the FEM tech-
nique, with a good calculation error performance.
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