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Abstract
Numerical simulations were used to study the dynamics of a passive conserved
scalar quantity entrained by a self-propelling viscous vortex ring. The trans-
port and mixing process of the passive scalar variable were studied con-
sidering two initial scalar distributions: (i) The scalar substance was introduced
into the ring during its formation, further focusing in the shedding into the
wake of the ring; (ii) A disk-like scalar layer was placed in the ring’s path
where the entrainment of the scalar substance into the ring bubble was studied
as a function of the ring strength. In both cases, the scalar concentration inside
the vortex bubble exhibits a steady decay with time. In the second case, it was
shown that the entrained scalar mass grows with both the Reynolds number of
the ring and the thickness of the scalar layer in the propagation direction. The
ring can be viewed as a mechanism for scalar transportation along important
distances.

Keywords: vortex rings, vorticity, passive scalar transport, numerical
simulations

(Some figures may appear in colour only in the online journal)

1. Introduction

The objective of this work is to determine the ability of stable and laminar vortex rings to
transport a scalar substance across a viscous fluid originally at rest. The substance behaves as
a scalar whose concentration is governed by both fluid advection and molecular diffusion
relative to the fluid, and it is conserved because it is neither produced nor destroyed in the
flow. Moreover, it is a passive scalar having no direct influence on the background flow. The
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choice of a vortex ring to promote scalar transport and mixing provides a well-documented
symmetric flow field in permanent motion which allows for a simple theoretical frame to
understand the scalar dynamics. The interest in the structures of vortex rings originated from
the pioneering works of Hicks and Kelvin in the 19th century (Kelvin 1867, 1881,
Hicks 1885). Laminar vortex rings have not only been considered a fundamental example of
canonical flows in vorticity and scalar dynamics (Southerland et al 1991) but are also viewed
as coherent structures in fluid mechanics (Roberts and Donelly 1970) described by compact
distributions of vorticity allocated into what we call the core of the ring (Lamb 1932,
Saffman 1970).

Interesting ring dynamics results from the self-propagating ability of such vortex struc-
tures, easy to create and highly reproducible in the laboratory, when working in the stable
regime at low Reynolds numbers Re 600< (where Re is based on ring velocity and ring
diameter) (Widnall and Sullivan 1973, Chatelain et al 2003). In nature we find examples of
vortex ring formation in phenomena ranging from volcanic fumes to the mechanisms of
propulsion of marine organisms (Linden and Turner 2001). At the laboratory scale (Max-
worthy 1972, 1977) rings are created by discharging fluid slug through either a circular orifice
or a nozzle (Gharib et al 1998, Glezer 1988, Glezer and Coles 1990).

There exist a large amount of bibliography records and research papers on vortex rings
(see for instance the review of (Shariff and Leonard 1992)), however the mechanisms
involved in the scalar entrainment of laminar rings appear to be much less documented. The
velocity field associated to a ring can produce an important entrainment of a given scalar
substance present in the fluid (Muller and Didden 1980). The determination of the entrain-
ment fraction is one of the goals of this kind of study, showing that entrainment fractions of
30–40% can be reached depending on the stroke ratio used to create rings (Dabiri and
Gharib 2004). Being particularly difficult to resolve the fluid entrainment during the vortex
ring formation in an experiment, some numerical studies have examined entrainment by
vortex rings in small (James and Madnia 1995) and high (Southerland et al 1991) stroke ratios
typically with uniform scalar distributions in the vortex ring generator. The relative success of
vortex rings to trap scalars motivated very interesting works on the interaction between rings
and particles. Small particle distributions located in the vortex ring path may be trapped by
the ring and then conveyed over long distances (Uchiyama and Yagami 2008, 2009).

In this study we adopt a slightly different approach to introducing both the scalar quantity
and create the vortex rings in order to evaluate the mixing and scalar transport. Self-propelling
vortex rings are created modelling, as close as possible, a real experiment using a circular
nozzle and a smooth and more realistic s-shaped piston displacement profile specified at the
generating chamber of the system. At some distance from the chamber exit, the rings will
cross a disk-like scalar layer placed in the ring’s path to determine the effect of the ring
properties on the entrainment process.

2. Formulation

How do we create a ring? Most numerical simulations on vortex rings dynamics usually start
either with the Dirichlet boundary condition at the nozzle section imposing an uniform
velocity profile (Sau and Mahesh 2007) or with an initial velocity field computed from the
Biot–Savart analogy for vortex filaments (Chatelain et al 2003, Uchiyama and Yagami 2009)
considering typically a Gaussian vorticity distribution at the vortex core.
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In this work we will adopt a more realistic vortex generation; we will obtain the velocity
and pressure conditions at the nozzle from the simulation of an upstream chamber where a flat
piston motion is modelled as shown in figure 1.

Figure 1. (a) Scheme of the tridimensional domain showing the piston and generation
chamber of diameter D1, the nozzle diameter D0 and free boundaries’s domain of
length L2 where the vortex ring develops and moves freely. The dimensions are
D 1001 = , D 802 = , D 150 = , L 201 = , L 1602 = and e = 1.5 (mm). (b) Schematics
of a middle plane symmetric vortex ring in free flight. We indicate the position of the
ring xpeak(t) referred to the nozzle in chamber (1) and the main length scales of the ring,
like overall diameter D, core diameter a and self-induced velocity U0.

Figure 2. S-shaped forcing signal dp(t) representing the normalised piston position in
time inside the chamber. We also display the resulting piston velocity Up(t) normalised
by its maximum value Um.

Fluid Dyn. Res. 49 (2017) 025514 R H Hernández and G Rodríguez

3



The fluid in the chamber, at rest and incompressible, is pushed rapidly by a flat piston
motion defined by a particular s-shaped piston displacement profile (see figure 2), giving life
to axisymmetric vorticity sheets created at the chamber walls and borders, that roll up at the
exit hole of the nozzle, producing a self-propelling vortex ring. Typical dimensions of a ring
are shown in figure 1, where we also display the diametral plane of a ring indicating sche-
matically the ring diameter D, vortex core size a and self-induced velocity U0. In order to
validate the numerical simulation we have tried to reproduce laboratory conditions, adopting
here a geometry similar to experimental devices used in previous studies (Arévalo et al 2007,
Astudillo 2008). The geometry and dimensions of the computational domain are shown in
figure 1. There is a cylindrical chamber (1) of diameter D1 and length L1 forced by a flat
piston at the left of the figure which has a circular nozzle of diameter D0 at the right end
which discharges a fluid mass into the open cylindrical domain (2) of diameter D2 and length
L2. There is considerable information about the right choice of the ratio D L0 2 in the
literature. According to previous studies (James and Madnia 1995, Sau and Mahesh 2007),
the discharge domain (2) should have a diameter between six and eight times the diameter of
the nozzle while a length L D102 0~ allows for enough space to track the three fundamental
stages in the development of the ring (Southerland et al 1991).

The numerical simulation solves the mass conservation equation, incompressible Navier–
Stokes and scalar concentration equations in primitive variables
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( ) is the vector velocity, p is the pressure, ν the kinematic viscosity, ρ is the
density, C x t,

( ) is the scalar concentration and cG is the scalar diffusivity.
Boundary conditions for the simulation are Neumann conditions for the velocity and

atmospheric pressure conditions at the discharge domain (2) in figure 1. On lateral walls we
imposed no-slip condition for all velocity components. The initial concentration of the scalar
can be set to any value between C0 1  in any place of the physical domain. In this work
we will consider two initial conditions for the scalar concentration in relation to the ring
motion. In the first case the scalar concentration is set to C C0= distributed in the border of
the nozzle to try to inject scalar into a forming ring to account for the scalar fraction trapped
inside the ring.

The second case is a disk-like scalar layer of thickness  and diameter D D0 > , where
the scalar concentration is set to a given value C C0= as the initial condition. The idea is to
place a scalar layer in the ring path and force the interaction when the ring crosses it, finally
accounting for the scalar mass fraction trapped by the ring. In both situations, the rest of the
domain is set to C=0.
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The boundary conditions in the chamber are
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Detailed boundary conditions for the each scalar case will be discussed in section 3.2.
Based on previous works (James and Madnia 1995, Mohseni et al 2001, Hernández

et al 2006) the piston motion defined by dp(t) can be modelled as a hyperbolic function given
in equation (6),
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Here t0 represents a time lag for piston motion, τ is the characteristic time of the function and
d0 is the maximum piston displacement or piston stroke. The piston velocity is found as the
time derivative of the piston position, U t d tp p=( ) ˙ ( ) which has the shape shown in figure 2.
The characteristic time τ of the piston motion is imposed in the forcing function dp(t) given by
equation (6), in the same way as it was obtained from the experimental settings of a piston-
based vortex generator in Arévalo et al (2007). Given that the hyperbolic tangent function
never reaches zero values, the time origin t=0 for the piston’s displacement in the
simulation was defined as the instant when the piston velocity is maximum (t t0= ). This time
reference provides an alternative option to compute the self-induced velocity of the ring based
on its position in the x-axis and flight time by means of a continuous tracking of peak velocity
along the ring’s path.

2.1. Numerical method

The equations were solved with the software Fluent version 6.3 (FLUENT INC., 2005) using
the built-in control volume formulation under the SIMPLEC algorithm (Patankar 1980).

Simulations were performed on a 8 CPU Dell Precision T5500 workstation cluster
running Open Suse Linux and based on MPI libraries. The CPU run time for one ring to
propagate across the entire domain was about 20 hours. According to Jang et al (1986) the
algorithm exhibits a better behaviour than other methods when convergence in small time
steps is required. The geometry of the vortex generator required a fine spatial discretisation,
particularly in zones of high velocity gradients such as the nozzle walls. Similarly, as a result
of the rapid ring formation and subsequent motion, the temporal discretisation required time
steps under 5 (ms), thus we choose a time step size t 1D = ms for all the simulations.

A set of grid tests were performed to look for grid independent results. We performed
grid tests with radially varying mesh grids using approximation functions to be able to vary
the grid size in regions where the shear stresses during ring formation can be high, like at the
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vicinity of the exit nozzle of the vortex generator (see table 1). The element size inside the
nozzle (width e) is l0 and constitutes the basic scale to build up the rest of the longitudinal
elements of both the left chamber making the piston stroke and the right-side domain,
respectively. These preliminary tests with different grids allowed for an appropriate choice of
the mesh size without compromising accuracy and CPU time (cf figure 3). However we also
required the resulting velocity profiles and ring properties to match as closely as possible to
the experimental results from the work of Arévalo et al (2007).

The spatial discretisation of the geometry can be observed in figure 4 where we show the
longitudinal mesh based on rectangular elements. In order to maintain the grid size within
reasonable limits, the longitudinal mesh in both chambers or domains involves an approx-
imation function where the longitudinal element size li is computed with the following
geometric law, l l r i ni

i
j0

1= " <-( ) , where r is the geometric growth rate. After nj the

Figure 3. Midplane and cross section slices of the mesh grid used. Grid size decreases
in regions like the chamber walls close to the nozzle and along the central region of the
downstream section where the ring moves.

Figure 4. Longitudinal mesh grid schematics (a) close to the nozzle. (b) Zoom of the
grid size progression in the axial direction.
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Table 1. Grid sizes. The element size inside the nozzle is l0.

Grid No of elements Domain length (L Do2 ) Element size (e lo)

Coarse-1 2×105 6 4.2
Coarse-2 7×105 6 4.2
Coarse-3 8.5×105 10 15
Fine-1 1.4×106 6 4.2
Fine-2 1.6×106 10 15

Figure 5. (a) Fine-2 grid in the y-z plane. (b) Zoom of the center of the Fine-2 grid with
triangular elements.

Figure 6. Comparison of (a) axial velocity profiles and (b) transverse velocity profiles
at X D2peak 0= for different grids: Coarse-1 grid (×) , Coarse-2 grid ( ), Coarse-3 grid
( ), Fine-1 grid (à), Fine-2 grid ( ).
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elements maintain a constant size lgo in the vortex generator and leo in the developing zone of
the ring.

Figure 5 shows the coarse grid in the x-y plane combined with a centre grid refinement
based upon triangular elements which provided reasonable agreement with the experimental
results and at the same time give us grid independent results as shown in figure 6.

Results from the grid tests are shown in figure 6 where the rings share the same initial and
boundary conditions. The axial position of the velocity maximum indicates how rapid the
vortex ring is for a given time. Looking at the maximum of the velocity versus the x plot, we
see that the coarse grid had a strong effect producing slow rings when compared with finer
grids. In this work we have chosen the fine-2 grid because the characteristic properties of the
rings are close to both the numerical results of (Astudillo 2008) and to the recent experimental
results of (Hernández and Monsalve 2015).

In figure 6 the comparison of the numerical and experimental data shows a better
agreement in the case of fine grids both in the case of axial velocity and transverse velocity
profiles.

Properties of the fluid used in this study are given in table 2 (CRC 2009). Carbon
monoxide was chosen as a passive scalar with its density and viscosity relatively similar to
those of air under similar atmospheric conditions. Our interest was to study the ability of
vortex rings to transport such a toxic gas from one production site to a different site electing
rings as candidates to clean up a determined atmosphere contaminated with CO.

According to the given properties, the Schmidt number of the mixture is defined as
S 0.54c cn= G = which corresponds to an important diffusive effect. If the diffusivity of the
solute in the solvent is low and the kinematic viscosity (ν) is high, then the Schmidt number is
high and the solute dynamics makes mixing very difficult under laminar flow conditions.
Therefore, when the Schmidt number is small, Sc 1< , both substances will tend to mix easily
due to a dominant diffusive effect. Under this condition the numerical simulations will test the
interesting transport properties of vortex rings, since a priori there will be a high tendency to
mix between the two substances. The case of higher Schmidt numbers has been well-

Figure 7. (a) Instantaneous streamlines in the laboratory frame of reference. (b)
Instantaneous streamlines in the reference frame moving with the vortex ring where we
clearly observe the vortex ring bubble. The position has been normalised with the
nozzle diameter D0.
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documented in the literature to understand the mixing properties associated with vortex rings
(Southerland et al 1991, Sau and Mahesh 2007).

2.2. Vortex ring properties

An interesting parameter of the ring is the bubble or Kelvin oval (Southerland et al 1991)
associated with the ring. This oval is like an envelope acting like a boundary between the flow
and the ring during its motion. This oval is defined between the streamlines passing through
the front and the rearward stagnation points of the ring (figure 1(b)). As the velocity field of a
ring is the combination (non-linear) between its own velocity field created by the vortex ring
core and the additional advection flow field observed when it moves across the fluid with a
self-induced velocity U0, we have to compute at each time step the geometry and position of
the bubble but in the frame of reference moving with the ring.

Figure 7(a) shows the instantaneous streamlines of a typical ring which were computed
directly from the absolute velocity field (V u v w, ,=


( )) seen in an inertial frame of reference.

Now, if we change into a reference frame moving with the ring at U0, the velocity field is
given by (V u U v w, ,0¢ = -


( )) and we observe in figure 7(b) the streamlines defining the

Kelvin oval or bubble between the rear and front stagnation points. After that we are able to
account for the scalar mass trapped inside the bubble at any time after pinch-off.

The ring bubble in figure 7(b) resembles an ellipse (ellipsoid in the 3D) and according to
(Dabiri and Gharib 2004) the bubble accepts an ellipsoidal adjustment, where the ellipsoidal
focus in a given plane (e.g. x-y) lies in the rotation points of the ring core, and the distance to
the minor semi-axis is the distance between the center of the ring and the stagnations point in
the frame of reference of the ring. The volume of the ring bubble is then computed using an
ellipsoidal fit of the fluid velocity at different locations with respect to the front and rear
stagnation points as well as the radial size of the ring (Dabiri and Gharib 2004, Sau and
Mahesh 2007).

Now we can calculate the scalar mass trapped inside the ring using the scalar density sr
and the volumetric scalar concentration C x t,

( ). The bubble scalar mass can be written as

m t C x t x y z, d d db s
bubbleò r= ( ) ( )



3. Results

3.1. Vortex ring properties

We performed different numerical runs to measure typical properties of vortex rings in free
flight. Results were validated by comparison with experimental data obtained in our
laboratory (Arévalo et al 2007, 2010) for different values of the Reynolds number, defined as
Re U D0 0 n= . The position of the ring is selected as the position of the maximum velocity,

Table 2. Fluid properties.

Fluid ρ (kg/m3) ν (m2/s) cG (m2/s)

Air 1.225 1.7894 10 5´ -

Carbon monoxide 1.1233 1.7500 10 5´ - 2.88 10 5´ -
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Upeak, on the central axis shown in figure 1. Ring velocity U0 is calculated as the derivative of
the position with respect to time.

Figure 8 shows a comparison of the time evolution of ring position, X tpeak ( ), with similar
experimental data, while figure 9 shows the comparison of the maximum axial velocity, Upeak,
and self-induced velocity, U0, with THE experimental data of Arévalo et al (2007).

Figure 9 shows a comparison of both peak axial velocity Upeak(t) and self-induced
velocity U t0 ( ) with experimental values from Arévalo et al (2007) during the post-formation
stage of the ring. Good agreement was found with differences below 3% on both curves. The
ring velocity is computed with U t dX dt0 peak=( ) where dt is the time interval between two

Figure 8. Ring position as a function of time. Comparison of our results ( ) with
experimental ( ) results from Arévalo et al (2007) are shown for Re 700~ . The piston
stroke is d0 = 0.48 mm and the rise time 18.1 mst = .

Figure 9. (a) Peak velocity Upeak and (b) self-induced velocity U0 as a function of time.
Comparison of our results ( ) with experimental ( ) results from Arévalo et al (2007)
are shown for Re 700~ . The piston stroke is d0 = 0.48 mm and the rise
time 18.1 mst = .
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consecutive Xpeak values. The related uncertainties in the estimation of the ring velocity come
from the accuracy on the determination of the position of peak velocity.

The comparison test was performed between the experimental and simulated rings using
a similar ring production mechanism with a rising time of 18.1t = ms and same nozzle
diameter, which corresponds to a Reynolds number of Re 700~ . In similar works (James and
Madnia 1995, Astudillo 2008) the validation of a simulation was based on the comparison of
particular velocity profiles in the physical domain.

In figure 10, a comparison between the magnitude of velocity profiles obtained at two
downstream axial positions of the ring; X D2peak 0= and X D4peak 0= . The numerical and
experimental velocity profiles in figures 10 show a very good agreement in the velocity
profile across the transverse coordinate y. There is a 5% relative difference across the high
velocity central region.

The velocity profiles in one point of the ring are not enough to claim complete agreement
between the experiments and numerical simulations. We need to plot the spatial extension of
the velocity field to evaluate the overall differences. In figure 11 we show a qualitative
comparison between the spatial velocity fields for the experimental (top) and simulated ring
(bottom) using the colour maps of velocity. These results show the small spatial differences
associated with the natural fluctuations in the experimental velocity field due to the way the
velocity measures were done over each spatial point (Arévalo et al 2007). Nevertheless, both
the range and spatial similarity are close to within 5% of the main velocity properties of the
vortex ring.

A series of numerical runs were performed with rings created with different generation
parameters (piston stroke and velocity), in order to understand the effect of the self-induced
velocity of the ring on the scalar transport properties.

Vortex rings are created by the action of the piston velocity Up(t). The higher Up(t) the
higher the ring self-induced velocityU t0 ( ). As we can see, the S-shaped forcing signal driving
the piston displacement dp(t) inside the chamber (equation (6)) can be varied either by
changing the piston stroke d0 or the characteristic time τ as shown in the next section.

The vortex ring axial position versus time, produced by different generation parameters is
shown in figure 12. After some time the curves evolve with time according to the self-induced

Figure 10. Midplane velocity profile at (a) X D2peak 0= and (b) X D4peak 0= for
numerical ( ) and the experimental ( ) results of Arévalo et al (2007) at Re 700~ .
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velocity U0 of each ring. We observe that the smaller the rise time the higher the slope of the
Xpeak(t) curve and therefore the ring moves faster. The slope of the curve give us the averaged
self-induced velocity of the ring which can be computed by fitting a straight line fit and
finding the fit’s slope, or, alternatively, we can explicitly compute it as U dX t dt0 peak= ( ) .

The evolution of the axial ring position with time in the case of constant stroke
(figure 12(b)) can be collapsed into one single curve when we use the dimensionless time
scale t t* t= . However, in the case of varying stroke (figure 12(a)) the time scale nor-
malisation is not enough to produce the collapse as we need to take into account the effect of
the stroke in the ring’s bubble size (Gharib et al 1998).

The self-induced velocity of the ring is directly determined by the piston stroke d0 or the
time scale τ of the forcing signal (figures 12(c), (d)). Once the ring is created, U0 which is
related to vortex core size and ring strength, is observed to decrease as a result of an increase
in the ring’s diameter and a decrease in strength due to the vorticity shed into the wake of the

Figure 11. Velocity contours (in m s−1) at positions X D2peak 0= and X D4peak 0= for
experimental (a), (b) and simulated (c), (d) rings at Reynolds number Re = 700.
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ring (Hernández et al 2006). Even though it is interesting to see that a fairly good curve
collapse can be obtained with the right choice of dimensionless variables, the dimensionless
time scale is t t* t= and the dimensionless axial position X tpeak *( ) is defined as

X t
X t

D

d

e
7peak

peak

0
*

*
=

a
⎜ ⎟⎛
⎝

⎞
⎠( )

( )
( )

In figure 13 we observe a good data collapse with an exponent 1.5a = - for those rings
created with different piston stroke, while the characteristic time scale τ makes its own with
those rings created with a different rising time. The dimensionless self-induced velocityU0 is
written accordingly as

Figure 12. Ring properties. (a), (b) Axial ring position and (c), (d) ring self-induced
velocity. The values were taken for different piston stroke with constant rise time

18.1t = ms : d0 = 0.8 mm ( ), d0 = 0.6 mm ( ), d0 = 0.48 mm, ( ), d0 = 0.4 mm
( ) and different rise time with constant stroke d0 = 0.48 mm: 13.0t = ms (å),

18.1t = ms ( ) and 22.0t = ms ( ). The corresponding maximum velocity Umax is
found at minimum stroke in (c) and maximum rise time in (d).
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In figure 13(b) we plot the normalised values of the ring position and self-induced velocity
where we get a consistent data collapse. As the ring moves forward we observe a slow
increase in its radius R(t) along the x-axis shown in figure 13(c). Because of data size issues,
we only recorded some flow time steps to compute the ring radius. The piecewise evolution
appears as a result of padding with the last vortex ring diameter until a new measurement is
performed even though it seems that the positive slope of the curves does not depend on the
method we adopted to create the ring (piston stroke or rising time). Nevertheless, the limited
increase in diameter represents an important increase in the volume of the Kelvin oval as
shown in figure 13(c).

The evolution of the ring’s bubble volume Vb as fraction of the piston stroke volume (Vp)
is naturally expected for rings moving at different Reynolds numbers. A linear increase of the
bubble volume with the volume of the piston stroke is observed and the ratioV V 1b p = when
the ring is about two nozzle diameters downstream.

Figure 13. Temporal evolution of (a) dimensionless ring position X tpeak *( ), (b)
dimensionless self-induced velocity, (c) ring radii and (d) ring bubble volume for the
following the combination of piston stroke and rise time : ( ) d0 = 0.8 mm −

18.1t = , ( ) d 0.60 = mm − 18.1t = , ( ) d0 = 0.48 mm − 18.1t = , ( ) d0 = 0.4
mm − 18.1t = ms, (å) d0 = 0.48 mm − 13t = and ( ) d0 = 0.48 mm − 22t = ms.
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3.2. Two scalar distributions

In order to understand the ability of one single ring to transport a particular distribution of a
scalar substance, we have considered two different initial scalar distributions in relation to the
ring formation process. The first case (A) shown in figure 14(a) corresponds to an initial

Figure 14. (a) Case A: the passive scalar is uniformly distributed in a ring at the nozzle
border. (b) Case B: the scalar variable is uniformly distributed in a disk of diameter Dc

and thickness e at x D3 0= from the chamber exit.
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Figure 15. Case A: snapshots time sequence ( t 0.005 sD = between images) of a
passive scalar isosurface ( ) evolving inside the vortex ring at Re = 700, which is
shown in the form of an isosurface of vorticity 200w = s−1 ( ). The passive scalar
initial distribution corresponds to a uniform scalar, C=1 in the borders of the nozzle
wall. The isosurface shown ( ) corresponds to a scalar value of C = 0.05 in order to
display an outmost boundary of the scalar region inside the ring.
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scalar distributed in the borders of the nozzle according to the following (arbitrary) dimen-
sions: R e41 = , R e62 = and a e21 = where e 1.5 mm= corresponds to the thickness of the
nozzle. Rings were simulated with different Reynolds numbers, varying the piston stroke, to
determine how much scalar mass can be picked up by the rings. The second case (B) shown in
figure 14(b) corresponds to an initial disk-like scalar distribution of thickness  and diameter
D D 2.40 = . Different cases varying  were studied keeping the disk diameter D constant
and always smaller than the domain limits and was placed at 3D0 from the nozzle exit.

C x y z D x D y z D, , , 0 1 if 3 3 4
0 otherwise

90 0
2 2 2 = < < +  +⎧⎨⎩( ) ( ) ( ) ( )

3.2.1. Passive scalar in Case A. In this case the scalar is trapped by the ring during the
formation process mediated by the rolling up of the vorticity sheets at the nozzle exit.
Figure 15 displays this formation process and the entrainment mechanism when the initial
scalar distribution is placed at the nozzle wall (figure 14(a)). The green sheet corresponds to
an isosurface of vorticity and the red isosurface is the scalar. While this case is difficult to
perform in a real experiment, it is very informative of this particular process. A complete
entrainment of the scalar mass into the ring occurs shortly before the ring pinch-off, then the
scalar isosurface changes in size with the axial distance indicating that some scalar mass is
being lost from the bubble.

Once the ring moves away from the nozzle exit, the initial scalar mass is almost entirely
swept away by the ring. It seems reasonable that the net scalar mass swept from the nozzle
and then transported with the ring will benefit from higher piston strokes, because of the
natural increase in the local shear at the nozzle but also in the bubble size.

The idea that increasing the piston stroke d0 could increase the scalar mass trapped in the
ring has been studied here varying the piston stroke. However, we must remember that the

Figure 16. Case A: relative scalar mass m mb t in the bubble as a function of the ring
axial position for different piston strokes. Re 500~ (,), Re 950~ , ( ),
Re 1400~ ( ).
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higher the piston stroke the bigger the volume of the fluid discharge across the nozzle and the
leading ring formed can be followed by a trailing jet (Gharib et al 1998) and therefore the
possibility of an unwanted shedding of the scalar into the wake will potentially occur. In such
cases, molecular diffusion will tend to spread the scalar into the ring wake while moving
forward.

In contrast, short stroke ratios produce a very clean process as the molecular diffusion of
the scalar from the inside of the ring bubble occurs over a time scale much larger than the time
scale of the ring, therefore we see a relatively constant scalar loss rate in the linear decay of
mb shown in figure 16, normalised by the total scalar mass at t=0 in the numerical domain,
mt. The linear fit of figure 16 corresponds to scalar mass values at spatial locations X Dpeak 0

where the ring bubble is well defined, i.e. after pinch-off. As the bubble definition relies on
the finding of the zero velocity stagnation point in both the leading and trailing edge of the
ring, if we perform this operation before pinch-off, this may lead to an unrealistic bubble size
estimation. In the same figure we also note that the relative scalar mass inside the ring bubble
increases with the ring’s Reynolds number which is determined by the piston stroke. An
increase in the piston stroke directly produces an increase of the mean velocity at the nozzle

Figure 17. Case B: midplane sequence of the scalar entrainment by a ring crossing the
scalar disk-like layer of C=1 and thickness D 30 = , as a function of time or
equivalent axial position. (a) X D 2.6peak 0 = . (b) X D 3.0peak 0 = , (c)X D 4.0peak 0 =
and (d) X D 4.7peak 0 = . The white lines correspond to the vortex ring bubble and the
white circles the approximate region encircling the vortex core. The contour scale
displayed has been limited to observe the scalar mass inside the ring.
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exit. This implies stronger transverse spatial gradients and therefore the high shear stress at
the nozzle wall, precisely on the zone the scalar has been initially deposited.

3.2.2. Passive scalar in Case B. In this case the initial scalar is distributed in a disk placed at
3D0 downstream the nozzle exit. The use of this kind of barrier placed in the ring path has
been reported in the literature using particle distributions instead of scalars (Uchiyama and
Yagami 2008). In figure 17 we display a time sequence of the ring moving across the disk-
like scalar layer of thickness D 30 = . At first the ring pushes the scalar layer forward
creating an opening between the upstream and downstream regions. The forward effect is the
result of the local advection of the layer by the upstream ring flow. However, the ring
circulation will trap a thin scalar sheet which is ultimately entrained into the ring bubble. The
faster the ring motion the higher the scalar mass incorporated into the ring bubble. This
pushing-effect has been reported during the initial steps in the interaction between the rings
and the distributions of small particles (Uchiyama and Yagami 2008).

The amount of trapped scalar is obtained by computing the scalar mass inside the bubble
and the mass fraction that fills the ring core. We have performed different runs changing first
the thickness of the disk-like scalar distribution, D 0.13, 1 3, 2 30 = and then we have
changed the piston stroke ratio d D0 0 for d0= 0.4, 0.6 and 0.8 mm providing runs at different
Reynolds numbers.

In the 3D plot shown in figure 18 we observe the interaction of the ring with a disk-like
scalar distribution of thickness D 1 3 ~ . Here we can identify two different stages; at first
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Figure 18. Case B: sequence of snapshots ( t 0.005 sD = between images) showing the
time evolution of one isosurface of vorticity of the vortex ring 200w = s−1 ( )
interacting with a passive scalar isosurface disk-like distribution of initial thickness

D 30 = (C = 0.05, ).
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the scalar thickness show a little bit of spreading due to diffusion at the time the ring comes
into contact with the disk. After that, the mechanism is governed by advection as the
characteristic diffusive time scale ( c

2 G ) is greater than the convective time scale ( U0 ).
After the first contact between the ring and the scalar disk, the ring starts to push the scalar
radially and forward creating a scalar envelope which is then rolled up by the ring getting into
the ring bubble and ring core.

The efficiency of a single ring to capture and convey a given scalar mass is presented on
figure 19. We display the scalar mass fraction inside the ring bubble for both different
Reynolds numbers Re and different thickness  of the initial scalar distribution as a function
of the axial position of the ring. In figure 19(a), when we keep the Reynolds number constant,
the relative trapped scalar mass m x mb t0( ) is relatively high and independent of the barrier
thickness  . There are however some differences on the first rising part of the curves and on
the height of the overshoot. After that, it is observed an almost linear decay starting
at X D 4peak 0 = .

The reference scalar mass used here, mt0, is the mass contained in a disk-like volume of
diameter D D0 < and thickness  which correspond to the scalar barrier volume seen by the
ring upon contact. This scalar mass is computed just before the ring makes contact with the
barrier to take into account molecular diffusion during the ring’s flight. As this reference
value is smaller than the total initial scalar mass mt in the disk-like barrier, the relative mass
m x mb t0( ) may be greater than unity.

The ring efficiency conveying the scalar out from the barrier may be higher if we increase
the Reynolds number.

In figure 19(b) we display the influence of the Reynolds number of the ring on the scalar
mass trapped inside the ring bubble. The shape of the curve is similar to the previous case but
the time instants the ring make contact with the scalar distribution are different because of the
Reynolds number. However if we consider the axial position of the ring, Xpeak, we can align
the curves with a common rising point followed by a different overshoot. The process also
displays slightly different overshoot positions when the ring moves across the scalar barrier.
The ring pushes the scalar barrier increasing the local concentration close to the front
stagnation point which explain the overshoot. Faster rings push the barrier further

Figure 19. Case B. Scalar mass inside the ring bubble. (a) Different thickness ò at
Re = 700 : D 2 30 = ( ), D 1 30 = ( ) and D 0.130 = ( ). (b) Constant
thickness D 1 30 = and rise time 18.1t = ms with different piston stroke: d0 = 0.8
mm − Re = 1430 ( ), d0 = 0.6 mm − Re = 950 ( ), d0 = 0.4 mm − Re = 530 ().
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downstream increasing the amount of trapped scalar mass inside the bubble and producing
therefore higher overshoots. This effect is illustrated in figure 17(b). The local increase of
scalar concentration observed at the front of the ring is considered to belong to the ring bubble
which explains the overshoot effect. After the ring breaks the barrier we observe a pinch-off
process on the scalar as the ring moves downstream. As the convective time scale dominates
the process across the barrier, the scalar loss rate (the slope just after overshoot on figure 19)
may be explained mainly by the scalar shedding into the ring wake resulting from the pinch-
off process.

If we focus on the scalar mass values computed at X D5peak 0> (figure 17(d)), i.e. the
bubble being a couple of diameters apart from the scalar barrier, we observe that the curve
slopes on figure 19(b) become very similar. At this point the process displays a self-similar
sustained scalar mass loss which may be explained by the combined action of molecular
diffusion and scalar shedding, as it may occur with the vorticity of the ring
(Maxworthy 1972).

4. Conclusions

We have studied the dynamics of a passive conserved scalar quantity entrained and then
trapped by a self-propelling laminar and viscous vortex ring. With the aid of numerical
simulations, vortex rings were studied during their most fundamental stages: the formation
stage, the pinch-off and the asymptotic laminar state. The numerical simulation included the
modelling of the vortex generator; piston, nozzle and chamber, in order to mimic as close as
possible a real experiment. The simulation allowed us to control accurately the stroke ratio as
well as the speed of the piston. Part of the numerical results were compared and validated
with recent experimental records. The transport and mixing process of the passive scalar
variable was studied numerically considering two initial scalar distributions: (i) the scalar
substance was introduced into the ring during its formation, further focusing in the shedding
into the wake of the ring; (ii) a disk-like scalar layer is placed in the ring’s path in order to
study the entrainment of the scalar substance into the ring as a function of both ring velocity
and scalar thickness. In both cases, the scalar mass trapped inside the vortex bubble displays a
pinch-off effect, followed by a sustained scalar loss attributed to the action of molecular
diffusion. In case (ii) it was shown that the entrained scalar mass increases with both the
Reynolds number and the thickness of the scalar layer in the propagation direction. However,
proper normalisation of the scalar mass and time axis indicate a similarity only in the case of
different scalar thickness. The ring can be viewed as a mechanism for scalar transportation
along important distances showing however a constant scalar loss associated to the una-
voidable action of both molecular diffusion and shedding into the ring’s wake.
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