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Abstract. Discord Discovery is a recent approach for anomaly detec-
tion in time series that has attracted much research because of the wide
variety of real-world applications in monitoring systems. However, find-
ing anomalies by different levels of resolution has received little attention
in this research line. In this paper, we introduce a multi-resolution rep-
resentation based on local trends and mean values of the time series. We
require the level of resolution as parameter, but it can be automatically
computed if we consider the maximum resolution of the time series. In
order to provide a useful representation for discord discovery, we pro-
pose dissimilarity measures for achieving high effective results, and a
symbolic representation based on SAX technique for efficient searches
using a multi-resolution indexing scheme. We evaluate our method over
a diversity of data domains achieving a better performance compared
with some of the best-known classic techniques.

Keywords: Time series · Anomaly detection · Discord discovery ·
Indexing

1 Introduction

In light of recent advancements in streaming technologies, the anomaly detection
in time series has become an important task in different applications of monitor-
ing systems, such as: analysis of video surveillance, multiple sensors in car and
aircraft crashes, tracking of objects in riot detection, traffic alert on roads, seis-
mic signals, electrocardiograms (ECG), etc. To address the anomaly detection
in time series, we first need to define the type of anomaly that fits the applica-
tion purpose and the data domain. It is a complex issue, because the anomaly
can be associated with outlier points (irregularities, change point), outlier sub-
sequences (unusual patterns, novelty), or anomalous relation between variables.
The most common solutions for anomaly detection are built by machine learning
methods [2]. Usually, they are supervised learning techniques and need a time
series sample of “normal” behavior as training model, and in other cases a set
of unusual patterns is required. These sets are provided by a domain expert.
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However, in many real contexts, obtaining this prior knowledge is a difficult
task. This is where Unsupervised Learning Techniques are used to try to iden-
tify significant patterns, which adjust the knowledge model directly from the
input stream.

We focus this research on outlier subsequences, taking as baseline the Dis-
cord Discovery Process proposed by Keogh et al. [6]. They previously conducted
an important work to identify the most unusual subsequence of long time series
designing an unsupervised window-based method. The main characteristic of the
subsequences is their level of overlapping; consecutive subsequences are more
similar to each other. Accordingly, there is a necessity for optimal structures
that consider this property for efficient searching. A series of related works about
discord discovery were proposed in the past decade [1,7,8,12]. The main objec-
tive of these related works was the detection efficiency, because the brute force
algorithm has a quadratic order regarding the total number of subsequences.
However, multi-resolution discord discovery has received little attention in this
research line.

In this paper, we introduce (1) a new multi-resolution representation based on
local trends and mean values of the time series. It becomes a parameter-free tech-
nique when we use the maximum level of resolution which will be defined in this
work. We also propose (2) a symbolic representation derived from the numeric
representation by applying SAX quantization [9] on the trend and value com-
ponents. It also provides us a lower bounding function for indexing time series
collection. The main contribution is (3) a multi-resolution discord discovery tech-
nique based on this time series representation. The efficacy and efficiency of our
approach is experimentally evaluated over a diversity of data domains [5]. We
empirically demonstrate that our method outperforms conventional methods.

2 Background and Related Work

We associate an anomaly into a time series as a subsequence (unusual pat-
tern) which produces a qualitatively significant change in the behavior of data.
Unusual patterns are outstanding subsequences that arbitrarily occur and are
associated with residual variation of the time series. This is contrary to the fre-
quent patterns that regularly occur and are associated with cyclical or periodic
variation of time series, moreover, they are located into the normal observation
of the time series. Keogh et al. [6] introduced this new approach to avoid creating
a workable definition for “the most unusual subsequence”, and furthermore it is
an unsupervised method that does not require training data.

Definition 1 (Non-self match). Given a time series P , containing a subse-
quence Ci of length w and a matching subsequence Cj of the same length, we
say that Cj is a non-self match to Ci if |i − j| ≥ w, where p and q are their
respective starting positions in P .

Definition 2 (Time Series Discord). Given a time series P , the subsequence
Cj of length w is said to be the discord of P if Cj has the largest distance to its
nearest non-self match.
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This problem can be solved by a brute force search using a nested loop. The
outer loop takes each subsequence as a possible candidate, and the inner loop is
used to search the candidate’s nearest non-self match. The candidate that has
the greatest such value is the discord. The computational complexity is O(N2),
where N is the number of subsequences. To improve this complexity, Keogh
et al. [6] proposed a generic algorithm for efficient detection. This algorithm
requires two heuristics that generate two ordered lists of subsequences; one for
the outer loop and the other one for the inner loop. The heuristic Outer is
useful for quickly finding the best candidate, and the heuristic Inner is useful
for quickly finding the best nearest non-self match. We break out of the inner
loop if the distance is less than the best-so-far discord distance. Two main related
methods for discord discovery are HOT SAX [7] and HOT iSAX [1], which are
based on SAX representation [9]. SAX splits the time series into segments and
builds a new symbolic time series quantizing the mean values of each segment.
Both techniques build efficient structures to find the time series discord using
the discord discovery heuristics.

3 Multi-resolution Trend-Value Approximation

3.1 Why a Trend-Based Representation?

Esmael et al. claim that “using only the value approximation, causes a high
possibility to miss some important patterns in some time series data. SAX does
not pay enough attention to the shapes of the time subsequences and may pro-
duce similar strings for completely different time series” [4]. In this way, several
piecewise approximations based on trend and value features have been recently
proposed [3,4,11]. We focus on the technique 1d-SAX proposed by Malinowski
et al. [11]. This is a compact binary representation to improve the retrieval perfor-
mance using the same amount of information that SAX. Here, SAX is extended
by adding new symbols that represent the slope of each segment. The algorithm
uses linear regression to compute the slope. 1d-SAX works with alphabets of
different sizes:

1d-SAX(P,m,αv, αs) = {(v̂1, ŝ1), · · · , (v̂i, ŝi), · · · , (v̂m, ŝm)},

where v̂i is the average value symbol from an alphabet of size αv, and ŝi is the
slope symbol from an alphabet of size αs.

We also compare both methods, SAX and 1d-SAX, using an agglomerative
hierarchical clustering to group five time series in three different classes (Fig. 1).
The time series is split into four segments. SAX only takes the mean value while
that 1d-SAX also considers the slope obtaining a better match between time
series 2 and 3 which belong to same class.

In this work, we extend the ability of the local trends to various levels of res-
olution. While the granularity parameter (number of segments) of the piecewise
approximation like SAX and 1d-SAX produces a horizontal segmentation, we pro-
pose ahierarchical segmentation inducedby the resolution level.This segmentation
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XAS-d1XAS

Fig. 1. A comparison of the ability of two time series representations to cluster five
members of the CBF dataset using the Euclidean distance.

provides greater advantages in design and optimization that will be discussed. Our
time series representation is called Multi-resolution Trend-Value Approximation
(MTVA). The basic idea is to generate trend-value pairs on each level of resolu-
tion, and then compute the similarity between two MTVA representations using
a distance measure. In addition, we design a symbolic representation to build a
multi-resolution indexing structure for discord discovery.

3.2 Bottom-Up Construction Algorithm

Given the times series P = {p1, · · · , pn} and L as the level of resolution defined
by the user, the MTVA representation of P is built following the next steps:

1. We start in the last resolution level L dividing the time series into M = 2L−1

segments of size w = n/M .
2. Let Y = {y1, · · · , yw}, be a segment of P in the time segment X =

{x1, · · · , xw}, we compute the linear regression on each segment by the func-
tion lr(x) = ax + b, where:

– a =
∑w

i=1(xj−X̄)∗yj∑w
i=1(xj−X̄)2

– b = Ȳ − a ∗ X̄
– X̄ and Ȳ are the average value of X and Y , respectively.
– The trend-value pair (v, s) of the segment Y is defined by:

• v = a ∗ x1+xw

2 + b is the mean value.
• s = arctan(a) is the slope,

3. For the next resolution levels M = 2{L−2,L−3,··· ,0}, compute the trend-value
pair (v, s) for each segment as follows:

– v = vi+vi+1
2

– s = arctan
(

vi+1−vi

xi+1−xi

)
.

– vi and xi is the mean value and the average time associated to a segment
in the upper level (see Fig. 2).
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MTV A(P, 3) = {(v1, s1), ..., (v7, s7)}

Fig. 2. Construction of the Multi-resolution trend-value approximation.

4. The result is an array of all the trend-value pairs:

MTV A(P,L) = {(v1, s1), ..., (vm, sm)}.

Figure 2 shows the MTVA representation of the time series P up the third
level of resolution (L = 3). Parameter L can be automatically computed so
that the spatial complexity of the MTVA representation does not exceed the
space of the original time series, that is, adjusting the total number of segments
m ≤ n/2. On the other hand, m can be defined in terms of the level of resolution
m = 2L − 1. Then solving both equations, we obtain that the maximum level of
resolution for P is Lmax = �log2(n/2)� + 1.

3.3 MTVA Distance

We first need a cost function to measure the distance between trend-value pairs.
Given two pairs pi and qj , we define the cost function as follows:

cost(pi, qj) = |vp
i − vq

j |2 + |sp
i − sq

j |2,
where both value-domain and slope-domain should have similar range to avoid
that the distance is governed by only one of them. The slope ranges are between
−π

2 and +π
2 , we therefore normalize the time series by a standard normaliza-

tion procedure (e.g. Z-distribution). We then propose a multi-resolution distance
MDist to measure the dissimilarity between two MTVA representations execut-
ing the cost function on all levels of resolution:

MDist(P,Q) =
L∑

l=1

2l−1∑
i=2(l−1)

cost(pi, qi).
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The computational time of executing MDist is the sum of the time in each
level of resolution:

T (L) =
L∑

l=1

Ml =
L∑

l=1

2l−1 = 2L − 1.

If we compute the distance in the worst case where L is exactly log2(n/2) + 1,
the computational time is of order O(n), where n is the length of the original
time series. Therefore, MDist in the worst case is theoretically as fast as the
classic distances that work over the raw representation.

3.4 Symbolic Representation

Discretization techniques are used to transform the numeric representation into
a sequence of symbols. This symbolic representation provides us greater ease of
interpretation and simplicity to manage time series collections.

Definition 3. “Breakpoints are a sorted list of numbers β = {β1, . . . , βα−1},
such that the area under a N(0, 1) Gaussian curve from βi to βi+1 = 1/α (β0

and βα area defined as −∞ and +∞, respectively)” [9]. For example, if α = 4
then the breakpoints are {β1 = −0.67, β2 = 0, β3 = +0.67}.

Gaussian Assumption. To transform the numeric pair pi = (vi, si) to a sym-
bolic pair p̂i = (v̂i, ŝi), we quantize separately both values using breakpoints that
produce equal-size areas under the Gaussian curve N(μ, σ2) (similar to 1d-SAX).
Gaussian discretization is feasible for normalized time series, since statistically
the mean value and the slope have a Gaussian distribution [10,11]. As in 1d-
SAX, the breakpoints are determined by the curve N(0, 1) for the mean value
and N(0, σ2

L) for the slope. In this last case, we use the variance σ2
L in terms

of the level of resolution L because each level of resolution generates different
slope distributions (Fig. 3), unlike the 1d-SAX that uses a slope variance in
terms of the size of the segment. Additionally, to apply the linear regression
between X and Y , we recommend that both variables have similar range. If
the time series is normalized in N(0, 1), then the temporal component X must
fit in this interval size. In this work, we normalize the length of each segment
X = [1, w] → X = [−1, 1]. In this manner, the variance σ2

L is defined in terms
of the level of resolution independently of the size of the segment.

L = 2 L = 4 L = 6

−1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5 −1.5 −0.5 0.5 1.5

Fig. 3. Density of the slope varying the level of resolution in ECG time series.
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Alphabet Size. The alphabet size is delimited by the number of breakpoints
(Definition 3) and strongly influences over the compression ratio and the recon-
struction error. To quantize the trend-value pair, we need two alphabets with size
αv and αs for the mean value and the slope respectively. For conformity, we use
binary symbols where α is power of two [13]. Thus for example, to compress the
numeric MTVA up the level 3 using αv = 4 and αs = 4, we need (2+2)∗(23−1)
bits, it is less than 4 bytes by time series. This symbolic representation will serve
us to different applications like indexing and anomaly detection.

3.5 Indexing

To efficiently manage MTVA time series datasets, we use the symbolic represen-
tation to build a hash-based index, where each bucket P̂ envelops a set of similar
MTVA time series. To filter out distances in the similarity search, we design a
lower bounding function called MINDIST to measure the distance between the
query object Q and a bucket P̂ , so that it is less than the distance between Q
and any object P ∈ P̂ . Before defining MINDIST, we first need to define the
lower bounding function of the trend-value cost, which is denoted as follows:

LB cost(p̂i, qi) = (Δv)2 + (Δs)2 ≤ cost(pi, qi),where

Δv = Δs =⎧
⎨
⎩

|vq
i − βUi| vq

i > βUi

|βLi − vq
i | vq

i < βLi

0 else,

⎧
⎨
⎩

|sq
i − βUi| sq

i > βUi

|βLi − sq
i | sq

i < βLi

0 else,
——— ———

: βLi ≤ vp
i < βUi, : βLi ≤ sp

i < βUi.

Value Slope

LB cost(p̂i, qi) = (βLi − vq
i )

2 + (βLi − sqi )
2

Fig. 4. Lower bounding trend-value cost. The blue line represents a trend-value pair
stored in our database and the green line is the query (Color figure online).
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The symbol p̂i is derived from a trend-value pair pi that is located between
two breakpoints βUi < pi ≤ βLi, independently for each pair value (Fig. 4).
MINDIST is then calculated by following equation:

MINDIST (P̂ , Q, l, α) = α +
2l−1∑

i=2(l−1)

LB cost(p̂i, qi),

where l is the current resolution level and α is the accumulated distance of the
previous levels.

4 Multi-resolution Discord Discovery

The main challenge of the discord discovery approach is to face its quadratic
complexity. In this sense, our MTVA representation together with the discord
discovery heuristics can be used to solve the anomaly detection in time series.
We propose a multi-resolution method called HOT MTVA, which increases the
level resolution of the index when a hash-bucket is overflowed (Fig. 5). This
indexing structure allows the perfect fit to our MTVA representation. Moreover,
it is flexible to control the level of resolution of the detected anomaly.

Fig. 5. Multi-resolution index model for the MTVA representation.

4.1 Building Algorithm

Given the times series P of length n, we use an overlapping sliding window of size
w 
 n for extracting all the possible subsequences Ci, i ∈ {1, . . . , (n − w + 1)}
from P . The insertion procedure of a MTVA subsequence Ci into the indexing
structure R is described as follows. Unlike HOT iSAX, we apply hierarchical
quantization to access to hash tables (where each slot is a node) from the lowest
resolution to the maximum resolution. If a terminal node is full, we re-insert
all its associated objects into a hash table of higher level to provide additional
differentiation, so we create new nodes with the next resolution level of the
current node. We use a size threshold thmax to control the maximum number of
objects in a terminal node (the so-called bucket). As we can see, the indexing
level has dynamic behavior, its incremental value depends of the size of dataset
and the maximum level of resolution (Lmax).
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4.2 Discord Discovery Heuristics

The discordant subsequence is found applying the optimal discord discovery
procedure [7] using the following heuristics:

Outer Loop Heuristic: We first visit all subsequences belonging to the bucket
that contains the minimum number of subsequences starting from the lowest
resolution level. Afterwards, we visit the rest of buckets in random order. This
heuristic ensures that the subsequences that are most isolated, in each resolution
level, will be visited at the beginning of the search as potential candidates.

Inner Loop Heuristic: We then use an inner loop to search the best non-self
match of each selected candidate Cj . We first visit all subsequences contained

Algorithm 1. NNM-Search for the Multi-resolution MTVA Index
Require: (Index R, Query Cj , Window Size w, Threshold Distance thdist)
1: stack.push([R.getNodeRoot(), 0])
2: best dist = ∞
3: best post = −1
4: while stack �= ∅ do � inner loop
5: [node, min d] = stack.pop()
6: if min d > best dist then
7: Break � break out of inner loop
8: else if node is internal then
9: list = ∅

10: for child node ∈ node.children do
11: if child node was not visited then
12: d = MINDIST (child node.str, Cj , node.level, min d)
13: list.add([child node, d])
14: end if
15: end for
16: sorted list = argsort(list)
17: stack.push(sorted list)
18: else if node is terminal then
19: objects = readBucket(node.str)
20: for Ci ∈ objects do
21: if |i − j| ≥ w then � non-self match?
22: d = MDist(Ci, Cj) � Multi-resolution Distance
23: if d < best dist then
24: best dist = d
25: best post = j
26: end if
27: if d < thdist then
28: Break � break out of inner loop
29: end if
30: end if
31: end for
32: end if
33: end while
34: Return (best dist, best pos)
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in the bucket from which Cj is retrieved. Afterwards, we apply the nearest non-
self match search algorithm (NNM-Search, Algorithm1) to visit the rest of the
buckets. This heuristic allows to first visit all the subsequences most similar to
Cj increasing the probability of early termination of the loop.

The NNM-Search algorithm performs a hierarchical search across the inter-
nal nodes using a stack to maintain the nodes ordered in terms of MINDIST
(lines 10 – 17). MINDIST measures the minimum distance between the query
and the current node. The algorithm also applies two breaking statements to
break the inner loop as early as possible: one is associated to MINDIST (line 6)
and the other one is associated to the best-so-far discord distance (line 27).

5 Experimental Results

In this section, we evaluate the performance of our approach to address the anom-
aly detection problem. Effectiveness will be evaluated over a set of 20 real cases
of anomalous time series (with different sliding windows) collected by Keogh
et al. [5,6]. Efficiency will be evaluated using the same set of long time series
described by Sanchez et al. [12].

5.1 Effectiveness of Our MTVA Representation

We first evaluate the accuracy of our trend-value numeric representation over
all anomaly cases. The classic techniques use the Euclidean Distance as mea-
sure distance over the raw representation of the normalized subsequence. The
normalization process is used to homogenize all subsequences applying implic-
itly two transformations: translation and scaling. This has a problem, though:
the presence of local noise is amplified by the scaling transformation. This issue
is solved by using a context-dependent parameter ε > 0 for smoothing noisy
subsequences [9,12]. An important feature of our MTVA representation is that
the slope of the noisy segments trends to zero and thereby the unusualness of
noisy subsequences is reduced. Table 1 shows the results obtained by both tech-
niques for six values of ε. We evaluate the MTVA using three different resolution
levels. We note that the MTVA representation achieves a higher percentage of
true detections when increasing the resolution level to L = 4, this is the com-
mon maximum level for all the sliding windows. In this way, we assert that our
method is more robust to local noise than the classic ED. Furthermore, we can
improve this percentage up to 100% of true detections finding the best value for
ε in each of the time series. Additionally, we highlight the flexibility of MTVA
for dynamically working in different levels of resolution at runtime.

5.2 Efficiency of Our Multi-resolution Index

We accelerate the search using our multi-resolution method HOT MTVA and
compare it with two main state-of-the-art techniques: HOT SAX and HOT iSAX
(Sect. 2). We set the same quantitative information for each technique: αv = 4
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Table 1. Percentage of true detections using our MTVA representation.

ε ED MTVA Distance

L = 2 L = 3 L = 4

0.025 60% 60% 67% 70%

0.050 77% 70% 83% 87%

0.075 73% 70% 80% 83%

0.100 80% 73% 83% 87%

0.125 83% 77% 83% 87%

0.150 77% 73% 77% 80%

best 100% – 100% 100%

and αs = 4 for the MTVA index, and αv = 8 for the SAX-based indexes. We
set empirically the maximum number of elements in a bucket as thmax = 50
and the maximum resolution level is restricted to L = 4. Additionally, we add a
search optimization strategy to the HOT SAX algorithm and call it HOT SAX*,
which consists in applying a MINDIST function in the bucket before of visiting
their associated subsequences [9]. Figure 6 shows the efficiency of the algorithms
in terms of the number of computed distances. We observe that HOT MTVA is
much more efficient than the other techniques in terms of computed distances.
This efficiency advantage is due to multi-resolution properties of our method,
which allows to the outer loop heuristic to find quickly the potential candidates
through the resolution levels.
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Fig. 6. Efficiency of our multi-resolution method in anomaly detection.
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6 Conclusions and Future Work

We proposed a multi-resolution time series representation (MTVA) which is com-
posed of trend-value pairs obtained by applying linear regression linear in each
resolution segment. We also provided a distance measure and its lower bounding
function to perform efficient searches. We demonstrated the utility of our MTVA
representation in Anomaly Detection, where we have highlighted the slope fea-
ture for mitigating the false unusualness of noisy subsequences. Furthermore, the
efficiency of our multi-resolution discord discovery algorithm outperformed the
best existing methods in terms of computed distances. One additional advantage
of the MTVA representation is that the level of resolution was more intuitive
and easier to fine-tune than the number of segments in piecewise approxima-
tions. Nevertheless, one disadvantage of the trend-value approximation is that it
requires twice the space per segment. Adding a parameter to represent the trend
of the time series, it runs the risk of subtracting simplicity to our concise data
model if it is compared with the SAX technique. Our approach may be used as
baseline for finding anomalies in different levels of granularity. We plan to focus
our method on online anomaly detection for massive streaming data.
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