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A B S T R A C T

This paper offers an original methodology to set multi-dimensional maintenance policies for machines whose
aging processes require using multiple time scales. It can be considered a generalization of the traditional
approach, that usually employs a unique time scale and sets a single age limit to carry out preventive
maintenance actions. The methodology also considers situations in which a set of machines are operated using
multiple usage profiles. We define usage profile as the relationship between the use of a machine in terms of one
main time scale and another scale. In our case study the age of a mining haul-truck component can be best
modeled as a combination of operating hours and load cycles since the last overhaul. We compare the results
obtained with respect to using a single time scale policy. The comparison shows the importance of the bias in
decision making that may arise due to incomplete modelling of the components' aging process.

1. Introduction

Failures in productive systems usually imply high costs for compa-
nies. These costs result from maintenance materials, labor and
associated downtime (Pascual et al., 2008). As a way to reduce the
number of failures and their economic consequences, maintenance
actions can be set at planned epochs (Al-Najjar and Alsyouf, 2003). The
most common criteria to set maintenance policies are reliability and
expected cost per time unit (Barlow and Proschan, 1962; Frickenstein
and Whitaker, 2003; Kordonsky and Gertsbakh, 1994). However, it is
recognized that maintenance decision making often requires a com-
bined use of several other criteria, such as availability, quality and/or
safety. Triantaphyllou et al. (1997). The relative importance of those
criteria is often difficult to assess by companies. For example, surface
mining haul-trucks play an important role for transporting fragmented
rocks from several mining sectors to processing plants or dumps. The
age of each component (and the corresponding age limit for overhaul)
can be estimated in different time (usage) scales. Operating hours are
used for alternators and wheel motors, load cycles are used for
hoppers, cumulated fuel consumption is used for diesel engines.
However, for some components a single scale may not be sufficient
for a complete description of the aging processes (Kordonsky and
Gertsbakh, 1995; Ciampoli and Ellingwood, 2002; Fin, 1991; Vardar
and Ekerim, 2007). The situation calls for setting age limits in several

time scales. If any limit is attained, a preventive maintenance action is
triggered. Fig. 1 illustrates the situation.

Machines are often employed by different users under different
operating conditions (Kordonsky and Gertsbakh, 1995).

Haul trucks are used on different haul routes and under different
load profiles (Chapman, 2012; Darling, 2011). In these situations, the
notion of system age becomes difficult to handle. To deal with the
system reliability assessment it is necessary to refer to usage profiles
(Kordonsky and Gertsbakh, 1995). Particularly, we define usage profile
as the relation between the use of a machine in terms of one main time
scale and another scale. For instance, Fig. 1 shows haul-truck 1 with
usage profile 1 crossing first the usage limit in fuel consumption at the
point A. This implies that this haul-truck is mostly used in terms of
usage scale 3. On the other hand, haul-truck 2 with usage profile 2 is
crossing first the usage limit in operating hours at the point B and,
therefore, this second haul-truck is mostly used in usage scale 1.

Optimal maintenance policies using multiple time scales are often
used by equipment manufacturers. These policies allow them to offer
proper guidelines to customers on when and how to maintain equip-
ment (Caterpillar, 2012). As an example, Table 1 shows a snapshot of
the inspection and maintenance manual for a mining wheel loader. The
equipment has to be checked according to operating hours or monthly,
whichever occurs first. On the other hand, the manufacturer based on
an appropriate maintenance strategy may also minimize expected costs
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of warranty service and maximize post-sale service profits (Manna
et al., 2007).

The maintenance performance is perceived according to the
perspective of the decision maker (Pintelon and Van Puyvelde, 1997).
Fig. 2 illustrates the previous notion by means of the maintenance

value tree in a company. For example, a contract manager of mining
haul-trucks is usually interested in performance indicators such as
production and financial budget performance (long term objectives).
On the other hand, maintainers are more interested in increasing
uptime and decreasing labor and material costs as well as decreasing
operational risks (operational objectives). From this, it can be noticed
the common lack of alignment in terms of maintenance objectives
between operational levels and strategic decision making levels within
an organization.

To our knowledge there are no multiple-time scale models that set
maintenance policies in a multiple criteria decision context. We are
also unaware of any methodology to support maintenance decision
making when the different actors involved do not have necessarily the
same decision drivers in this context. The current paper intends to
overcome such shortcoming. We propose a novel methodology to set
maintenance policies suited to machines with multiple aging processes
and multiple usage profiles. The rest of this article is organized as
follows: first we investigate into the state of the art on multiple time-
scale reliability modelling and maintenance planning. We then offer a
for-purpose methodology to solve the problem under analysis. This is
illustrated by means of a case study involving a fleet of haul-trucks of
the mining industry. Finally, some conclusions are provided.

2. Literature review

We find in the literature two main approaches to handle reliability
problems using multiple time scales: multivariate distribution models
(Downton, 1970; Newby and Barker, 2006; Pievatolo and Ruggeri) and
composite scale models (Barlow and Proschan, 1962; Frickenstein and
Whitaker, 2003; Kordonsky and Gertsbakh, 1994). There are several
reasons to prefer the second approach over the first. Firstly, a
component failure usually depends on or can be influenced by multiple
covariates or measures of time (Ciampoli and Ellingwood, 2002; Fin,
1991; Vardar and Ekerim, 2007). Secondly, such models usually offer
better failure prediction capability. This is because the information
capacity carried by the composite variable is larger than that carried by
any individual variable or measure. Thus, the failure prediction based
on the composite scale model is, in general, more accurate than that
based on the single variable model. Furthermore, composite scale
models are mathematically more tractable with respect to multivariate
distribution models since the first ones are univariate models (Jiang
and Jardine, 2006). However, Frickenstein and Whitaker (2003) also
argue that composite scale models do not completely address the
problems of maintenance in the original multiple scales. Particularly, it

Fig. 1. Age evolution of a set of mining haul-trucks in three usage scales.

Table 1
Snapshot of an inspection and maintenance manual for a mining wheel loader, adapted
from Caterpillar (2012).

Interval Subsystem/Component Action

Every 250 operating
hours or monthly

Battery Clean
Engine Crankcase Breather
Belt Inspect/Adjust/

Replace

Brake Accumulator Check
Differential and Final Drive
Oil Level
Braking System Test

Cooling System Coolant Sample
(Level 1)

Obtain

Engine Oil Sample

Drive Shaft Spline (Center) Lubricate
Quick Coupler

Fig. 2. Maintenance value tree adapted from Ahlmann (1984).
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might be required to translate policies developed in composite scales to
policies in the original scales. Taking into consideration the above, this
work focuses on composite scale models. Kordonsky and Gertsbakh
(1995) recognise that systems reliability depends strongly on the
conditions of their use that include environmental factors, loading
conditions and maintenance conditions. In particular, they deal with
the problem of choosing the best time scale for calculating system age
when machines operate under different conditions. Consider Ω a set of
all possible operating conditions which is in fact a multidimensional
random parameter. When a particular machine starts operating, it
chooses an operating condition θj with probability pj, θ Ω∈j . Consider
also t1 and t2 two distinct observable and measurable lifetime scales for
each operating machine. Both scales are related to a linear damage
accumulation process t. Suppose a linear usage profile θ with both time
scales t1 and t2 (this assumption is widely used in the literature and
makes sense in case of cyclic usage in fatigue life experiments (Miner,
1945)). Then, it is possible to define “the equivalent age” as:

t t αt= +1 2 (1)

where

t θt=2 1 (2)

and the weighting constant α ( α0 ≤ < ∞) is set in some optimal way.
The time scale U is called the ideal monitoring scale if for all θ Ω∈j and
all u u> 0, > 00 , the probability Pr U u u U u θ{ > + | > ; }j0 0 is indepen-
dent on θj. This means

U u u U u θ U u u U uPr{ > + | > ; } = Pr{ > + | > }j0 0 0 0 (3)

However, an ideal monitoring scale exists only when the operating
conditions θj in Ω vary in a relatively small range. In this context, the
authors propose the best monitoring scale as a time scale K in the
family t αt{ + }1 2 which in some sense would be the most closely related
to the ideal scale U under the principle of minimal coefficient of
variation. Specifically, Kordonsky and Gertsbakh consider K as family
of time scales of type:

K a t at= (1 − ) +1 2 (4)

for a ∈ [0, 1] denoting α a a= (1 − )/ . We remark that this convex
combination of both scales t1 and t2 leads to the addition of terms
which are not expressed in an equivalent time unit but merely weighs
them.

Duchesne and Lawless (2002) derive a rank-based estimator more
efficient and robust than the traditional minimum coefficient of
variation estimator (Kordonsky and Gertsbakh, 1995). Let t1 represent
a fixed value of chronological time and let t t( )2 1 represent the value of
usage or exposure at time t1. Define θ t u u t= { ( ), 0 ≤ ≤ }2 1 as usage
profile. The ideal time scale is a function Φ [•,•] of t1 and θ t( )1 such that
the conditional survivor function of the chronological time at failure,
T1, given the whole usage history, θ θ t= lim ( )t →∞ 11 , can be written as

T t θ G Φ t θ tPr[ > ] = ( [ , ( )])1 1 1 1 (5)

where G (•) is positive, 1-1 decreasing function. Both Φ [•,•] and G (•)
can be fully specified given a vector of parameters, or one of Φ [•,•] or
G (•) can be left arbitrary. A semiparametric inference is developed for
the parameters of a time scale Φ [•,•] when G (•) is left unspecified.

Jiang and Jardine (2006) refer to the relative importance of scales
in multiple time scales models. Consider a linear model described by:

∑t α t=
i

n

i i
=1 (6)

where

∑ α = 1
i

n

i
=1 (7)

and α0 ≤ ≤ 1i . Using the constraint condition μ μ=t 0 to replace the
constraint condition (7), where μt is the mean of t and μ0 is a constant,

the parameters αi can be estimated by minimizing the sample variance.
Evaluating the value of t at t μ{ = }i i as follows

∑μ μ α μ= =t
i

n

i i
=1

0
(8)

the scale ti has a relative contribution value ν α μ μ= /i i i 0. The larger the
νi , the more important the scale ti. Consequently, it is possible to rank
all the time scales of the linear model based on the values of νi .

Regarding maintenance problems using a single time scale, Barlow
and Proschan (1962) set an age replacement policy that balances the
failure costs of a component during operation against the costs of
planned replacements. Consider R t F t( ) = 1 − ( ) the survivor function,
and F(t) the failure function. Let Cc be the cost corresponding for each
failed component that is replaced. This includes all costs resulting from
the failure and its replacement. Assume that failures are instantly
detected and replaced. Let C C( < )p c be the cost related to each
nonfailed item that is replaced. Define the mean time between
interventions MTBI, either preventive or corrective, such that if the
replacement interval is set at t t= p

∫MTBI t R t dt( ) = ( )p
t

0

p

(9)

Then, the expected maintenance cost per unit of time in the long run is

c t
C R t C F t

MTBI t
t( ) =

( ) + ( )
( )

> 0p p
p

c
p

p
p

(10)

where c t( )p admits a unique and finite minimum t *p if the failure rate is
continuous and strictly increasing to infinity.

Kordonsky and Gertsbakh (1994), following the model by Barlow
and Proschan (1962), address maintenance problems using multiple
time scales. According to the equation (4), define the long-run average
cost for a fixed a as

c t
C C C F t

MTBI t
t( ) =

+ ( − ) ( )
( )

> 0a
p p c p a

p

a
p

p
(11)

The dimension of c t( )a
p is maintenance cost per time unit in the scale

ta. As commented by Frickenstein and Whitaker (2003), this kind of
model does not completely address the problem of maintenance in the
original multiple scales. The authors deal with this by converting c t( )a

p

into a cost function with dimension cost per main time unit (e.g.,
calendar time) of the form:

c t c t MTBI t
MTBI t

t( ) = ( ) ( )
( )

> 0p a
p

a
p

p
p

1
1

where MTBI t( )p
1 is the mean time between interventions in time unit 1.

Then, the optimal policy minimizes over both a and tp. Note also that
an optimal policy as function of C C C/( − )p c p , can lead to nonnested
policies when varying the previous ratio (Frickenstein and Whitaker,
2003).

Kordonsky and Gertsbakh (1994) do not consider the different
usage profiles possible for a set of machines aging in multiple time
scales. In this regard, Frickenstein and Whitaker (2003) propose
maintenance policies in two time scales along several linear profiles.
When machines age along m linear usage profiles, let

t θ t t t= {( , ): 0 < < ^}j j1 1 1 (for j=1,…,m) be a composite policy given a

maintenance time vector t t t t^ = (^, ^ ,…, ^ )p
m1 2 . Maintenance actions are

performed on machines of usage profile j upon failure or when their
usages reach t̂j , whichever occurs first. The policy M is such that if it
prescribes maintenance action for a machine of a particular age, it also
prescribes maintenance action of any older machine; if it does not
prescribe maintenance action of the machine, it does not prescribe
maintenance action of any younger machine either. The above men-
tioned implies that θ t θ t^ ≥ ^

j j i i and t t^ ≤ ^
j i for i j< in m{1,…, }. The cost of

policy M with corresponding maintenance time vector tp by taking the
weighted average of costs of the profile-specific policies t̂j is as follows
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∑c t c t p t j m(^ ) = (^) ^ > 0; = 1,…, .p

j

m

j j j
=1 (12)

Frickenstein and Whitaker (2003) set as many ages limits as usage
profiles are considered. Consequently, the proposed model does not
lead to set centralized maintenance decision making for fleets being
used in multiple usage profiles.

Finally, Zhang (1994) develops a novel variant of the previous
models by a bivariate replacement policy t N( , )p under which the
system is maintained at age tp or at the time of Nth failure, whichever
occurs first. The problem is to choose an optimal maintenance policy
t N( , )*p such that the long-run average cost per time unit is minimized.
Because the total lifetime of the repairable system is limited, the
minimum of the long-run average cost per time unit exists. The author
also proves that under some mild conditions an optimal policy t N( , )p is
better than the optimal policy N* or the optimal policy t *p .

3. Proposed methodology

Let t be equivalent age of a machine according to Equation (1). For
reasons of simplicity, consider the aging process as a linear combination
of two scales t1 and t2. Also from Equation (1) let α be a fixed parameter
that transforms time unit 2 (tu2) into equivalent time unit (etu). Assume
that the machine has linear usage profile θj with probability pj. Define a
rectangular region t t t t t t= {( , ): 0 ≤ ≤ , 0 ≤ ≤ }p p

1 2 1 1 2 2 in which the
values t t{ , }p p

1 2 are the usage limits of the machine that define an optimal
maintenance policy. Maintenance actions are performed if the usage
profile of the machine crosses the region or upon failure, whichever
occurs first.

Let tj be the limit equivalent age when the machine with usage
profile θj crosses the boundary of region such that:

t min t θ t t θ t^ = { ( , ); ( , )}j j j
p

j j
p

1 2 (13)

t θ t t αθ( , ) = (1 + )j j
p p

j1 1 (14)

⎛
⎝⎜

⎞
⎠⎟t θ t t

θ
α( , ) = 1 +j j

p p

j
2 2

(15)

From Eqs. (13)–(15) one can see that tj triggers preventive main-
tenance actions if the usage profile θj crosses the usages limits t p

1 or t p
2 ,

whichever occurs first. In this regard, Fig. 3 shows the linear usage
profile θ1 of a machine crossing the points A and B. Both points define
the machine's invariant equivalent ages t θ t( , )A

p
1 1 and t θ t( , )B

p
1 2 , respec-

tively. As t t<A B, then t t θ t= ( , )A
p

1 1 1 . This implies that the usage profile
θ1 first crosses the region through the usage limit t p

1 . Similarly, Fig. 4
shows the linear usage profile θ2 of machine (θ θ>2 1) to illustrate the
case t t θ t= ( , )C

p
2 2 2 , when the usage profile θ2 first crosses the region

through the usage limit t p
2 .

Let c be the expected maintenance cost per equivalent age unit,

⎛
⎝⎜

⎞
⎠⎟∑c t t

R t C t F t C t
MTBI t

p( , ) =
( ) ( ) + ( ) ( )

( )
p p

j

J
j j p j j j c j

j
j1 2

=1 (16)

Particularly, two types of optimal policies can be defined. Policy I
minimizes the expected maintenance cost per time unit 1:

⎛
⎝⎜

⎞
⎠⎟∑c t t

R t C t F t C t
MTBI t

p( , ) =
( ) ( ) + ( ) ( )

( )
p I p I

j

J
j j p j j j c j

j
j1 1

( )
2

( )

=1 1 (17)

and policy II minimizes the expected maintenance cost per time unit 2:

⎛
⎝⎜

⎞
⎠⎟∑c t t

R t C t F t C t
MTBI t

p( , ) =
( ) ( ) + ( ) ( )

( )
p II p II

j

J
j j p j j j c j

j
j2 1

( )
2

( )

=1 2 (18)

where MTBI1 and MTBI2 are the mean times between interventions in
time unit 1 and 2, respectively, of the following forms:

MTBI t
MTBI t

αθ
( ) =

( )
(1 + )j

j

j
1

(19)

⎛
⎝⎜

⎞
⎠⎟

MTBI t
MTBI t

α
( ) =

( )

+
j

j

θ

2
1
j (20)

Note that as the number of machines increases, one can expect a
larger number of usage profiles. In such cases using stochastic usage
profiles can be recommended to set better policies. For this purpose, let
the machine's usage profile θ have a continuous density function f θ( ).
Then, rewrite Equations (16)–(18), respectively as follows:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫c t t

R t θ C F t θ C

MTBI t θ
f θ dθ( , ) =

(^ ( )) + (^ ( ))

(^ ( ))
( )p p p c

1 2
(21)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫c t t

R t θ C F t θ C

MTBI t θ
f θ dθ( , ) =

(^ ( )) + (^ ( ))

(^ ( ))
( )p I p I p c

1 1
( )

2
( )

1 (22)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫c t t

R t θ C F t θ C

MTBI t θ
f θ dθ( , ) =

(^ ( )) + (^ ( ))

(^ ( ))
( )p II p II p c

2 1
( )

2
( )

2 (23)

Note also that other optimization criteria can be easily considered
in our proposed methodology by replacing Cp and Cc for those relevant
weighting factors for a particular optimization case. For example,
consider the minimization of expected system unavailability. In this
case, the relevant weighting factors are the times to repair in preventive
and corrective actions, respectively, Tp and Tc. Then, the policy I that
minimizes the expected system unavailability per time unit 1 is:

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫D t t

R t θ T F t θ T

MTBI t θ
f θ dθ( , ) =

(^ ( )) + (^ ( ))

(^ ( ))
( )p I p I p c

1 1
( )

2
( )

1 (24)

and the policy II that minimizes the expected system unavailability per
time unit 2 is:Fig. 3. Limit equivalent age when t p

1 sets the usage limit of machine.

Fig. 4. Limit equivalent age when t p
2 sets the usage limit of machine.
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⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∫D t t

R t θ T F t θ T

MTBI t θ
f θ dθ( , ) =

(^ ( )) + (^ ( ))

(^ ( ))
( )p II p II p c

2 1
( )

2
( )

2 (25)

with MTBI1 and MTBI2 given by Eqs. (19) and (20), respectively.

4. Case study

Consider an original equipment manufacturer of mining haul-
trucks that provides maintenance service in five open-pit sites of a
single mining company. There are nj mining haul-trucks with usage
profile j in site j for j = 1,…,5. Table 2 shows the parameters for this
case study. Let

p
n

n
=

∑j
j

j
J

j=1

be the probability that a haul-truck is being used with usage profile θj
expressed in terms of average number of load cycles per hour. A major
component is usually overhauled regarding the use of haul-truck in
thousands of operating hours since the last overhaul. In this traditional
approach, the optimization is done by minimizing the expected
maintenance cost per operating hour. This is an operational level
decision made with the purpose of reducing the operating budget of the
company. The aging process of a major component is associated to
thousands of accumulated operating hours (t1) and also depends on
thousands of load cycles (t2). In this context, the above approach does
not consider the existence of a second usage scale of the haul-truck, and
therefore, the existence of different usage profiles. Then, the mining
company agrees on a novel two-dimensional maintenance policy for the
component under analysis. This considers both deterministic and
stochastic usage profiles. The company also recognizes that minimiza-
tion of maintenance costs per Ton (or load cycle) is an interesting goal.

The company pays the equipment manufacturer C = 1p and C = 4c

for preventive and corrective actions, respectively. Table 3 shows the
failure data where i represents the ith failure of the set of components.
Fig. 5 illustrates the failure data according to the usage profiles.

4.1. Component reliability model

To determine the optimal parameter α that relates both scales t1
and t2, several statistical techniques can be used on the reliability data
(Kordonsky and Gertsbakh, 1995). We choose the method of maximum
coefficient of determination . In this method, we obtain all parameters
by maximizing the coefficient of determination. For that, a sensitivity
analysis with respect to α is performed (Fig. 6) using the failure data
shown in Table 3. We obtain a Weibull reliability model in multiple
time scales, R(t) with parameters β = 4.81 , η = 35 etu1 and
α tu= 0.80 etu/ 2; with t as set in Eq. (1). Fig. 7 illustrates the difference
between the Weibull fit in the case that we use single time scale (in
operating hours). The results are: β = 7.90 , η tu= 16.90 1. The use of
combined time scales has allowed an improvement of the coefficient of
determination from 95.2% for α=0 to 99.3% for α=0.80.

4.2. Optimal policies using deterministic usage profiles

Fig. 8 shows the result of applying the proposed methodology under
Policy I of minimum cost per hour by solving Eq. (17) and under Policy
II of minimum cost per load cycles based on Eq. (18). Particularly,
under both policies I and II the lives of components with usage profiles
j=1,2 are limited by their usage in thousands of operating hours (tu1).
Components with usage profiles j = 3, 4, 5 are limited by their usage in
thousands of load cycles (tu2). Note that the usage profile θ of a
component crosses the maintenance region through the usage limit
in operating hours or load cycles depending on its slope and the
optimal usages limits set in both scales.

The difference of applying to the case study the traditional policy by
resolving Eq. (10), instead of the proposed policies I and II by resolving
Eqs. (17) and (18), respectively, is illustrated in Fig. 9 and Table 4.
Note that under traditional policy, the optimal usage limit of the set of
components which is supposed to minimize the expected maintenance
cost per hour is at t tu= 11.5p

1
(0)

1. However, under Policy I that also
minimizes the usage profile-weighted maintenance cost-per-hour, it is
set maintenance actions at equivalent age of tu21.3 1. On the other hand,
to compare the results of both maintenance strategies, the traditional

Table 2
Case study parameters.

j θ nj

1 0.5 11
2 0.9 24
3 1.3 37
4 1.7 51
5 2.1 32

Table 3
Failure data adapted from Paredes (2012).

i t1 t2

1 13.5 17.0
2 20.0 10.2
3 16.3 8.4
4 15.9 21.0
5 16.8 15.3
6 18.1 30,0
7 15.1 26.0
8 19.1 25.5
9 17.6 22.6
10 12.1 24.9
11 13.3 23.1
12 13.9 13.2
13 16.0 34.3
14 16.8 27.4
15 13.3 6.9

Fig. 5. Failure data according to the usage profiles of components.

Fig. 6. Optimal parameter α by the maximization of coefficient R2.
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policy has to be corrected since it considers neither the degradation of
components due to load cycles, nor the different usage profiles. This
means to consider β1, η1, t t= p

1 1
(0) and t θ t= j

p
2 1

(0) for all j in Eq. (17) to
compare with Policy I, or in Equation (18) to compare with Policy II.
Then, the proposed policies I and II result in cost savings respect to the
corrected traditional policy of 11% and 9%, respectively.

4.3. Optimal policies using stochastic usage profiles

Consider that the most significant component of the haul-trucks has

usage profile θ with density function f θ( ) for θ ∈ [0.5, 2.1]. Consider
also that f θ( ) follows a Weibull distribution with parameters β = 2.6a
and η = 1.5a , see Fig. 10. Fig. 11 and Table 5 show the optimal usages
limits of the component after applying the proposed methodology. This
is Policy I of minimum cost per hour obtained from Eq. (22) and Policy
II of minimum cost per load cycles based on Eq. (23). Then, policies I
and II result in cost savings respect to the corrected traditional policy of
6% and 5%, respectively. Consider the corrected traditional policy by
replacing β1, η1, t t= p

1 1
(0) and t θt= p

2 1
(0) for all valid θ in Eq. (22) to

compare with Policy I, or in Eq. (23) to compare with Policy II.

4.4. Optimal policies using system unavailability as criterion

Finally, we consider optimal maintenance policies in the case that
the equipment manufacturer and the client agree on a maintenance
service which minimizes the expected system unavailability. For this
purpose, consider the times to repair T = 12p and T = 36c . Once again
we consider that the major component has usage profile θ with the
density function f θ( ) that follows a Weibull distribution with para-
meters β = 2.6a and η = 1.5a , see Fig. 10. Fig. 12 and Table 5 show the
optimal usages limits of the component after applying the proposed
methodology. This is Policy I of minimum expected unavailability per
hour by solving Eq. (24), and Policy II of minimum expected system
unavailability per load cycles based on Eq. (25). Both policies I and II
result in unavailability savings of 4% with respect to the corrected
traditional policy. Once again consider the corrected traditional policy
by replacing β1, η1, t t= p

1 1
(0) and t θt= p

2 1
(0) for all valid θ in Eq. (24) to

compare with Policy I, or in Eq. (25) to compare with Policy II.

Fig. 7. Weibull diagram for α=0 and α=0.8.

Fig. 8. Optimal policies of minimum cost using discrete usage profiles.

Fig. 9. Comparison between the traditional and proposed policies.

Table 4
Resulting maintenance policies under a traditional approach and proposed policy I.

Case t p I
1

( ) t p I
2

( ) t p II
1

( ) t p II
2

( )

Base case 11.5 – – –

Case study 12.9 15 13.2 14.8

Fig. 10. Probability density function of usage profile θ.

Fig. 11. Optimal policies of minimum cost using continuous usage profiles.

Table 5
Resulting maintenance policies for case studies 4.3 and 4.4.

Decision criterion t p I
1

( ) t p I
2

( ) t p II
1

( ) t p II
2

( )

Maintenance Cost 12.2 14.6 12.6 14.4
System Unavailability 13.2 16.1 13.8 15.6
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From Table 5, it can be seen that the proposed methodology
provides adecision support system for setting maintenance policies.
Operational and strategic decision-making levels may study and decide
different maintenance policies.

5. Closure

This paper proposes a novel decision-making aid framework to set
up optimal maintenance policies for machines whose aging processes
can be modeled using multiple usage scales as well as setting
centralized decision making for fleets with multiple usage profiles.
Furthermore, the proposed methodology encompasses adecision sup-
port system that provides integrated maintenance decision making
using a set of criteria reflecting different organizational levels objectives
for a given company. This set of maintenance criteria can be easily
customized in order to attend specific needs of companies operating in
different contexts, thus increasing the likelihood of obtaining better
long term results (e.g., increase in production, decrease in operating
costs) in asset-intensive sectors such as mining, power generation and
distribution, and military defense. The methodology is applied to a case
study involving an original equipment manufacturer of mining haul-
trucks that provides maintenance service in several open-pit sites of a
single mining company. The results show that the proposed methodol-
ogy provides maintenance policies leading to significant cost savings
with respect to the traditional approach that only considers one time
scale. On the other hand, in this paper we have considered a fixed,
known distribution f θ( ) whereas future research should consider it in a
class, e.g. Beta distribution in an interval, and use data to estimate its
parameters (and, possibly, experts' opinion if a Bayesian approach is
chosen).
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