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Abstract. A numerical model of granular material at different packing fractions and under steady shear is

submitted to a sudden shear reversal. We monitor consequences of the strong density and shear rate spatio-

temporal heterogeneities, on the constitutive relations. We show that the dynamics can be decomposed into two

subsequent regimes spanning a time scale inversely proportional to the shear rate. In the first regime, a non-

local constitutive relation is satisfied, hence accounting for the spatial heterogeneity of the fluidity parameter.

However at later time, we find that the local μ(I) constitutive relation can be applied, in spite of the fact that the

fluidity parameter remains heterogeneous.

1 Introduction

The understanding of dense granular flows received an im-

portant impulse by the discovery of the local rheology

laws [1–3]. Dry granular media in avalanches or planar

Couette geometries are standard benchmarks where the

normal pressure P and shear stress τ can be measured and

analysed separately. It was found that in hard grain sys-

tems, the normalized shear stress μ = τ
P –which can be as-

sociated to an effective friction coefficient– depends only

on the dimensionless inertial number I = γ̇d√
P/ρp

, for a flow

of particles of diameter d and mass density ρp, and shear

rate γ̇. The relation μ(I), shown in Fig. 3(a), constitutes

a local rheology relation [1–3]. At steady state, it is as-

sociated with a second relation: φ(I) expressing the de-

crease of packing fraction with the inertial number. The

limit I → ±0 yields the maximum packing fraction value

φ∗ depending on the microscopic granular details, partic-

ularly on the friction coefficients. It is important to keep

in mind that the only true limit, where a solid phase would

emerge as a real rigidity transition, is obtained for zero

friction and is called the jamming point, sometimes called

the random close packing limit [4]. Therefore, as we will

see later, nothing prevents the observation, as a transient,

of local packing fractions larger than φ∗ as long as they

remain smaller than the random close packing limit.

The local rheology picture was extended to non-planar

geometries by assuming that stress and shear-rate tensors

remain parallel with a proportionally constant associated

to μ, with I computed from the invariants of the tensor [5].

Computer simulations of a rotating drum show that those

tensors are indeed not parallel but still their invariants are
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Figure 1. Set-up used in the simulations. The base width is L =
45d, the height is H = 18d, and the thickness of the confining

walls is W = 1.5d.

related via the μ(I) rheology [6]. Simulations of a flow

on an inclined plane have shown also a small but finite

angular deviation when an objective analysis of the tensors

is performed [7]. For non-homogeneous fields, non-local

effects were observed either close to jamming [1, 8, 9] or in

the vicinity of a shear band [10–12]. Different theoretical

visions were proposed to model or interpret these features

via fluidity parameters [9, 13–16].

In the application of the rheological laws to model flow

regimes and hydrodynamic fields it is assumed that they

would retain their form under time-dependent conditions

and, therefore, could be used as input in the momentum

conservation equations. In a recent paper, we analysed

the rheological response in time-dependent planar Cou-

ette flows using molecular dynamics simulations of a fric-

tional granular packing [17]. It was found that the system

evolves in two distinct phases. In the first one the non-

local rheology describes accurately the system evolution,

with similar values for the non-local correction as com-

pared to Refs. [16, 18]. In the second phase the tempo-
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Figure 2. (a) Temporal evolution after the instantaneous velocity reversion from an initial (negative) steady shear, for φG = 0.790 of the

following fields: from left to right and top to bottom, horizontal velocity u(x, t), volume fraction φ(y, t), shear rate γ̇(y, t), shear stress

τ(y, t), pressure p(y, t), and friction coefficient μ(y, t). Velocities are normalised to Uw and other field to the central value at the steady

state. Colors, giving the field value, are used to enhance readability. (b) Vertical profile I(y) for φG = 0.767, at different instants of time

(from top to bottom at tγ̇ss
c = 0+, 0.05, 0.25, 0.5, 1.0, 2.5, 5.0). Solid lines are fits in the central region, used to compute κ = d2∇2I/I.

ral evolution is characterised by the local rheology, even

though the fluidity parameter does not vanish. Here, we

present additional elements of this study.

2 Simulation method

The numerical set-up consists in a two dimensional dry

granular medium confined between two rough walls in ab-

sence of gravity (see Fig. 1). The medium is made of a

polydisperse mixture of circular grains with uniform mass

density and diameters that are uniformly distributed in the

range [0.5d, 1.5d], where d is the average diameter and mp

is the average grain mass. The walls are made of similar

particles, which will be forced to move at imposed veloci-

ties ±Uw to produce a planar Couette flow. The shear rate

is γ̇w = 2Uw/H, H being the height of the flowing region.

The system is periodic in the horizontal x direction, while

it is limited by the walls in the vertical one. The horizontal

size is L = 45d and the system height is H = 18d. Finally,

the wall thickness is W = 1.5d, such that all particles with

their center in this region move together with the wall.

The granular model is the one used in Refs. [19] and

[17]. The grains interact with visco-elastic forces in the

normal and tangential directions, added to a tangential

Coulomb friction, where the spring constant for the normal

force is much larger than the maximal pressure reached in

the simulations. Hence we remain in the hard particle limit

for which the μ(I) rheology was obtained. Therefore, the

microscopic dynamics is characterized by a unique time

scale given by the shear rate, used to fix time units.

The initial configurations are prepared as follow. N =
800 particles are placed in the system between the walls. A

fixed vertical pressure Pe is imposed on the walls to com-

press the system and a shearing motion is added until the

system relaxes to the steady state. Depending on the im-

posed pressure, different global volume fractions φG be-

tween the walls are obtained in the range 0.767 < φG <

0.805, which is the only control parameter in our simula-

tions. Having obtained the initial configurations, the wall

separation is fixed and the following simulations are done

at constant volume. Planar Couette flows are simulated

with an imposed wall velocity Uw, until a stationary state is

achieved. The stationary state is slightly inhomogeneous

in the vertical direction (see Fig. 2) as a result of boundary

effects, which have been shown to increase when decreas-

ing the inertial number [20, 21]. Hence, we measure in the

central region of the box (averaged over one third of the

system height) the steady state volume fraction φss
c , shear

rate γ̇ss
c , pressure pss

c , and shear stress τss
c . From these, the

friction coefficient μss
c and inertial number Iss

c in the centre

are obtained. The friction coefficient is fitted to the stan-

dard expression μss
c = μ1+

μ2−μ1

1+I0/Iss
c

[1], where the fit param-

eters are μ1 = 0.277, μ2 = 0.85 and I0 = 0.364, the same

as those obtained in Ref. [22]. Also, the volume fraction

and the inertial number in the central region are related in

the usual form φss
c = φ∗ − mIss

c , with φ∗ = 0.813, as the

extrapolated values for vanishing Iss
c , and m = 0.28.

Transient regimes are obtained by instantly reversing

the imposed velocities on the walls ±Uw, where the sign al-

ternates periodically. The alternation period is large allow-

ing the system to reach a steady state before it is perturbed

by the sudden change in shear direction. The process is

repeated and averaged considering 1000 cycles. Here, we

will analyse the relaxation process as a function of time,

measured from the shear rate reversion.

3 System evolution

The relaxation process is strongly inhomogeneous tempo-

rally and spatially. Figure 2 displays the temporal evo-

lution of all relevant fields, averaged over the horizon-

tal direction x and the cycles, with time measure from

the reversion instant: horizontal velocity u(x, t), volume

fraction φ(y, t), shear rate γ̇(y, t), shear stress τ(y, t), pres-
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sure p(y, t), friction coefficient μ(y, t), and inertial number

I(y, t). The shear rate and inertial number are obtained by

fitting locally the velocity profile to low degree polynomi-

als, to later derive them.

Throughout all the simulations we performed, we no-

ticed that the system evolution can be characterized by

two subsequent time phases, which can be simply visu-

alized by inspection of the relaxation profiles. First, just

after the shear reversion, large shear rates are produced

near the walls as u changes from a linear Couette profile

to the reverse one. These large shear rates heat up the

granular medium, increasing globally the pressure. As-

sociated to the large shear rates, there is an increase of

pressure near the walls that push the system towards the

centre, generating a transverse mass flux as shown by the

vertical velocity v. This flux increases the density at the

centre, which reaches a maximum at a characteristic time

τ1. Then, a second phase begins, where the density relaxes

down to its steady state value. In this phase, the pressure

field is spatially homogeneous and approaches its steady

state value. Thus, the density relaxation is not driven any

more by pressure gradients but qualitatively, by processes

more akin to a diffusional relaxation, associated to non-

affine motion. At all times, the corresponding shear rate

fields γ̇(y, t) are spatially heterogeneous. The characteris-

tic time of this phase is τ2. Finally, both τ1 and τ2 scale

with 1/γ̇ss
c , however, the second phase lasts about ten times

longer than the first phase. Also, no critical phenomena is

observed when approaching φ∗ [17].

4 Local and non-local rheology

Now we investigate the relations linking the dynamical

friction coefficient and the packing fraction, to the inertial

number. For this purpose we measure the volume fraction

φc(t), inertial number Ic(t), and friction coefficient μc(t) in

the central region of the simulation box (averaged over one

third of the system height). Figure 3 presents the system

evolution of those variables in the μ-I and the φ-I spaces,

for different global volume fractions φG. As a reference,

in black, we display the relations μ(I) [Fig. 3(a)] and φ(I)

[Fig. 3(b)] obtained in the central region for the station-

ary state. After the velocity reversal, the first phase corre-

sponds to a strong departure from the μ(I) relation. How-

ever in the second phase, the relaxation to steady-state is

taking place on the μ(I) curve. This final relaxation takes

place either by increase or decrease of Ic according to the

value of the global packing fraction φG.

For the packing fraction evolution [see on Fig. 3(b)], in

no instance of the relaxation process, the local φ(I) relation

is satisfied. Interestingly, the maximal φc value reached in

the centre is always higher than the steady state value φ∗
but still, Ic remains finite. In all cases, the volume fractions

are smaller than the random close packing limit.

Figure 4 presents the temporal evolution of the central

values of μ, φ, p and τ. It is remarkable the μ reaches

the local rheology much before the pressure and the stress

reach their steady values. That is, during the second phase

p and τ continue to evolve, but they are not independent as
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Figure 3. Temporal evolution (indicated by an arrow) of the sys-

tem in the (a) μ-I, (b) φ-I spaces for quantities measured in the

central region of the box. Different colours correspond to various

global volume fractions φG. The black solid lines show the steady

state relations μ(I) and φ(I) and the open circles show the final

steady state values. To highlight the evolution in the two phases,

for illustration purposes only, in the top figure we offset on both

axis the relaxation curve for φG = 0.776. First, during τ1 the sys-

tem does not follow the local rheology and the volume fraction

increases until a maximum value is reached. In the second phase,

of duration τ2, the local rheology μ(I) is fulfilled but the volume

fraction, which decreases monotonically while I increases, is not

given by the steady state relation φ(I).

they are linked by the relation τ = μ(I)p. Finally, the vol-

ume fraction reaches steady state in a much longer scale.

To test the non-local rheology in the spirit of Bouzid

et al. [16], we computed the parameter κ = d2∇2I/I as-

sociated with the local fluidity relative to the neighbor-

hood. We obtain the second derivative of I in the cen-

tre, by fitting I(y) by a fourth degree even polynomial (see

Fig. 2). Figure 5(a) displays for φG = 0.767 the time

evolution of κ and one sees that it reaches zero after a

time τ1 but thereafter displays a rebound before reach-

ing zero in the second part of the relaxation dynamics.

Note that despite the boundary effects, which produce non-

uniform shear rates [20, 21], the inertial number is almost

uniform at the center in the steady state. Remarkably,

when Δμ = μ(Ic(t))−μc(t)
μ(Ic(t)) is displayed as a function of κ [see

Fig. 5(b)], one obtains a good collapse for the different vol-

ume fractions on a single curve χ(κ), hence validating the

non-local relation as proposed by Bouzid et al. [16] of the

type μc = μ(Ic)
[
1 − χ(κ)

]
. However for t > τ1, the non-

local extension to the rheology is not valid. The departure

in κ from zero is small but, systematic.

5 Summary and discussion

The relaxation process of a granular system in a planar

Couette geometry at fixed volume is studied after the im-
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Figure 4. Temporal evolution of the central averaged value of

μ, φ, p and τ, for φG = 0.790. Different instants are represented

by vertical lines. ta: inertial number changes sign from negative

to positive; tb: maximum density is reached at the centre; tc: μc

reaches the local rheology value; and td: the shear stress reaches

the steady value. For tc ≤ t ≤ td, μc is not constant but evolves

following the local rheology relation μ(I).
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Figure 5. (a) Temporal evolution of the non-local parameter

κ = d2∇2I/I at φG = 0.767. Other volume fractions show similar

behaviour, with smaller rebounds in κ when approaching φ∗G. All

quantities are evaluated at the center of the box. Time is mea-

sured from the instant of shear rate reversion. (b) Δμ plotted as a

function of κ. Different colours correspond to the various simu-

lated volume fractions (labels shown in Fig. 3).

posed shear rate is instantly reversed. We found that the

system evolves in two phases. First, the steady local rela-

tion μ(I) is not satisfied but the measured value approaches

exponentially the steady relation. In this phase the non-

local rheology is satisfied with similar values for the non-

local correction χ(κ) as compared to Refs. [16, 18]. Be-

cause of the pressure increase at the boundary there is a

mass flux towards the centre of the cell such that density

increases but the local constitutive relation φ(I) is not satis-

fied. Thereafter, there is a second phase where the system

evolves following the local relation μ(I) found for steady

flows. Finally, the time scales for both phases depend on

the distance to the maximum packing fraction, but do not

show any critical behaviour.

A salient result of this study is that κ is a good predic-

tor for the non-local rheology observed in the first phase.

However, in the second phase, where we identified smaller

but systematic non-zero values for κ, the non-locality does

not manifest itself in the μ(I) rheology. This observation

points on the possibility of a relevant hidden variable ac-

counting for non-locality. This variable would be similar

to the fluidity parameter as defined by Bouzid et al. [16],

but would relax faster to reach zero in the second phase.
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