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Abstract: To avoid structural failures it is of critical importance to detect, locate and quantify impact
damage as soon as it occurs. This can be achieved by impact identification methodologies, which
continuously monitor the structure, detecting, locating, and quantifying impacts as they occur.
This article presents an improved impact identification algorithm that uses principal component
analysis (PCA) to extract features from the monitored signals and an algorithm based on linear
approximation with maximum entropy to estimate the impacts. The proposed methodology is
validated with two experimental applications, which include an aluminum plate and an aluminum
sandwich panel. The results are compared with those of other impact identification algorithms
available in literature, demonstrating that the proposed method outperforms these algorithms.

Keywords: impact identification; barely visible impact damage; principal component analysis; linear
approximation; maximum entropy; sandwich panel

1. Introduction

The high stiffness and strength at a minimum weight make sandwich structures attractive
for applications where weight-saving is critical. Consequently in recent years, the applications of
sandwich structures have been rapidly increasing and range from satellites, spacecraft, aircraft, ships,
automobiles, rail cars, wind energy systems and bridge construction, among others [1]. Nevertheless,
despite previous advantages, these structures can experience damage due to impact loads. To avoid
catastrophic failures, it is of critical importance to detect the presence of an impact damage as soon as
it occurs. However, this type of damage, known as barely visible impact damage (BVID), is usually
internal and there are no visible indications of its presence on the surface.

BVID can be detected by non-destructive testing (NDT) techniques such as X-ray, c-scan or visual
inspections. Nevertheless, these techniques are time-consuming, require access to the portion of
the structure being inspected and can only be performed when the system is out of service, which
can be impractical in some cases. Impact identification methodologies have been proposed as a
complement to NDT. These methodologies would continuously monitor the structure, detecting,
locating, and quantifying impacts as they occur. For impact damage, its extent is correlated with the
impact energy. Therefore, by locating and quantifying impacts over a structure it is feasible to predict
possible damage locations, which allows for scheduling of inspections only when they are necessary,
and to perform localized searches, saving inspection time.

Impact identification methodologies can be divided into two groups: model-based and
data-driven algorithms. Model-based impact identification involves the solution of a nonlinear
inverse problem that requires the evaluation of the numerical model several times [2,3], which can
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be exceedingly slow for real-time applications. In addition, model-based algorithms rely on the
precision of the numerical model, and any error in the numerical model will be interpreted as an
impact identification error. Within data-driven algorithms, methodologies based on classification,
pattern recognition and regression have been proposed, with artificial neural networks (ANNs) being
most frequently used. Worden and Staszewski [4] and Staszewski et al. [5] used two feed-forward
multi-layer perceptron (MLP) networks to identify impacts on a composite plate. The first network was
trained to detect the impact location, whereas the second network quantifies the impact magnitude.
Haywood et al. [6] investigated two approaches to locate impacts in a composite panel with
embedded piezoceramic sensors: MLP network and GA-based triangulation. They concluded that
both approaches provide a similar degree of accuracy. LeClerc et al. [7] applied a two-step impact
detection algorithm to an aircraft component. First, a classification network finds the region of the
impact and afterwards another network localizes its position. With this methodology the researchers
were able to obtain better results than those of a single neural network. Sharif-Khodaei et al. [8] trained
a neural network to detect impact location on a composite-stiffened panel. The network was trained
and tested with data obtained from a finite element model of the structure and the numerical model
was validated with experimental data.

Although ANNs can process data very quickly, the slow learning speed and the large number of
parameters that need to be tuned within the training stage are drawbacks in their application. In the
parametric study performed by Sharif-Khodaei et al. [8] it was demonstrated that the performance
of a neural network for impact localization strongly depends on the network architecture (number
of layers and number of hidden nodes) and network properties (transfer functions and training
algorithm). In addition, ANNs have the disadvantage of over-fitting and getting stuck in local minimum.
An alternative are support vector machines (SVMs), which exhibit the advantage of global optimization
and higher generalization capabilities than ANNs. Least squares support vector machines (LS-SVMs)
further simplify the regression to a problem that can be solved from a set of linear equations [9].
Xu [10] implemented an LS-SVM to locate and quantify impacts in an aluminum plate and the
results are compared with those of an ANN approach, demonstrating that LS-SVMs reach more
accurate results. Fu and Xu [11] proposed a two-layer SVM to predict the location of impacts on
an aluminum plate structure. Input data is obtained from a principal component analysis (PCA)
of the strain time signal of piezoelectric sensors located over the plate. The results are compared
with those of an ANN, concluding that SVM are capable of accomplishing better impact localization
accuracy than ANN. To overcome the slow learning speed of ANN, Huang et al. [12] proposed a
new learning algorithm called the extreme learning machine (ELM), which is suitable for single-layer
feed-forward networks. This algorithm provides good generalization at fast learning speeds, and the
only parameter that needs to be tuned is the number of hidden nodes. Xu [13] compared the
algorithm performance among a basic ELM, kernel-ELM and LS-SVMs to localize impacts in an
aluminum plate. Xu concluded that kernel-ELM is as precise as LS-SVMs, with lower training and
evaluation times. Fu et al. [14] implemented a kernel-ELM for impact localization using PCA to
extract features. Results in accuracy are similar to those of the SVM, but the kernel-ELM is faster,
making it suitable for real-time applications. The time-reversal approach as been presented as
a precise alternative for impact localization [15–18]. This a one-class nearest neighbor algorithm,
in which the correlation between different impacts is measured by the signals convolution.

Meruane and Ortiz-Bernardin [19] presented a supervised learning algorithm that uses a
linear approximation handled by a statistical inference model based on the maximum-entropy
principle, denoted linear approximation with maximum entropy (LME). The merits of this approach
are threefold: the selection of only one parameter is needed, the regression is determined
after solving a convex optimization problem that has a unique solution, and data is processed
in a period of time that is comparable to the one of other regression algorithms such as
ANNs and SVMs. In addition, LME does not require classical training in which the algorithm is
trained once and then the training data is discarded, but performs a linear approximation using
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the training data to estimate the impact. The main advantage is that new data can be easily
incorporated into the training database with no need for re-training the algorithm as in the case
of ANN and SVM. The LME algorithm was originally developed for damage assessment [19,20],
and Sanchez et al. [21] implemented it in impact identification demonstrating that, in this case,
LME provides a better performance than ANNs and SVMs.

The principle of an impact identification algorithm is to detect, locate and quantify an impact
force with the use of a passive system consisting of piezoelectric sensors distributed over the structure.
Nonetheless, the amount of strain–time data collected by the sensors is too large to be used directly in
a classification or regression algorithm. Therefore, preprocessing of the data is necessary to extract
relevant features. In the literature, different features extracted from the signals in the time domain have
been studied. Some example are the time of arrival, the time and amplitude of the first peak, and the
time and amplitude of the maximum of the signal, among others [21]. Fu et al. [11,14] showed that by
using PCA to extract features from the time signals the impact localization results are greatly improved.

The primary contribution of this research is the development of a novel impact identification
algorithm that uses LME in conjunction with PCA. The algorithm implemented by Sanchez et al. [21]
uses features extracted from the time signal such as the time of arrival, signal amplitude and
information related to the first peak. Therefore, the main differences between the proposed algorithm
and the one presented in [21] are with respect to the input features. In addition, our algorithm is
evaluated with a stiffened aluminum composite panel that represents a more challenging impact
identification problem than the aluminum plate used in references [11,14,21]. The results are compared
with those of other impact identification algorithms available in literature [10,11,13–15,21], demonstrating
that the proposed method outperforms these algorithms.

The remainder of this work is structured as follows: Section 2 presents the proposed impact
identification methodology. Section 3 describes the experimental applications and results. Section 4
compares the results that are delivered by our proposed method with those of other impact
identification algorithms available in literature. Finally, conclusions and forthcoming work are
presented in Section 5.

2. Impact Identification Methodology

2.1. Data Acquisition

Figure 1 illustrates a typical experimental setup for impact identification, where piezoelectric
sensors bonded to the structure detect surface stress waves generated by the impact. Figure 2 shows an
example of a strain-time signal obtained from an impact test and the signal envelope obtained through
the Hilbert transform [22].

Structure

Sensors

Impact hammer

Figure 1. Example of an experimental setup for impact identification.

The training data set consists on the time response envelope of the sensors at impacts in different
locations in the structure. Let us consider ns piezoelectric sensors distributed over the structure,
which measure the response at q training impacts. During an impact the time response of each sensor
is recorded in p data points and the envelope is computed through the Hilbert transform. The response
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data corresponds to the voltage provided by the sensors and all sensors are identical. Therefore,
the response data is in the same scale units for all the sensors. The information of the i-th sensor is
arranged in the matrix Zi ∈ Rp×q as follows,

Zi =


z1

i (1) z2
i (1) z3

i (1) . . . zq
i (1)

z1
i (2) z2

i (2) z3
i (2) zq

i (2)
z1

i (3) z2
i (3) z3

i (3) zq
i (3)

...
...

...
. . .

...
z1

i (p) z2
i (p) z3

i (p) zq
i (p)

 , (1)

where zj
i(k) is the k-th response envelope data point of the i-th sensor at the j-th impact. Since the

number of data points is too large to be used directly in a regression algorithm, preprocessing of the
data using principal component analysis (PCA) is performed.
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Figure 2. Example of a strain–time signal along with its envelope. (a) Strain–time signal; (b) Signal envelope.

2.2. Principal Component Analysis

The objective of PCA is to reduce the dimensionality of a data set, while retaining as much as
possible the variation present in the data set. This is achieved by transforming it to a new set of
uncorrelated variables known as the principal components (PCs).

PCA is defined as an orthogonal linear transformation that transforms the data to a new coordinate
system such that the greatest variance by any projection lies on the first PC, the second greatest variance
on the second PC, and so on.

Let Zi ∈ Rp×q be a data matrix with the strain–time response of the i-th sensor, as described in
Equation (1). In general, it is recommended to normalize the data before performing PCA. This is
because some of the variables might have a large variance while others a small one, and the variables
with a large variance will dominate the first PCs. Nevertheless, in this case the scale of the variables
matter because they are related to the location and magnitude of the impacts and it is important to
retain that information. Therefore, we have chosen not to normalize the data.

The goal of PCA is to find a matrix Pi ∈ Rni×p, such that a linear mapping from the original
dimension p to a lower dimension ni is provided. A new matrix Si ∈ Rni×q, called score matrix,
is obtained from:

Si = PiZi. (2)

The ni rows of Pi are the principal components of Zi. Pi can be calculated by extracting the main
ni eigenvectors of the covariance matrix of Zi, Ci, which is given by:

Ci =
1

n− 1
ZiZT

i . (3)

The score matrix, Si, contains the features associated with the i-th sensor. The feature matrix,
S ∈ Rn×q, is obtained by assembling the features from all the sensors as:
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S =


S1

S2
...

Sns

 =
[

X1 X2 X3 . . . Xq
]

(4)

where ns is the number of piezoelectric sensors and n is the total number of features. The j-th column
of S, Xj, corresponds to the PCs associated with the j-th impact.

2.3. Linear Approximation with Maximum Entropy

The observation vector, defined as: Yj =
{

Y j
1, Y j

2, Y j
3

}
∈ R3, contains information related to

the impact location and magnitude, where Y j
1, Y j

2 are the x and y coordinates of the force location

in mm and Y j
3 is the force magnitude in N. The feature vector Xj =

{
X j

1, X j
2, . . . , X j

n

}
∈ Rn, which

is obtained from the j-th column of S in Equation (4), represents the set of PCs associated to the
j-th observation vector Yj. Assuming that a database with a set of N impacts is constructed, each
impact is characterized by an observation vector and a feature vector. Therefore the database is
formed by N pairs of observation and feature vectors as: (X1, Y1), (X2, Y2) , . . . , (XN , YN). The central
problem in impact identification is: given a certain feature X, estimate the corresponding observation Y.
The nearest neighbor regression estimate of Y is given by:

Ŷ =
k

∑
j=1

wj(X)Yj, (5)

where Y1, Y2, . . . , Yk are the observation vectors associated with the k closest neighbors to the test vector
X, and w1(X), w2(X), . . . , wk(X) are weighting functions. The k nearest neighbor (k-NN) algorithm
weights each neighbor equally, thus wi(X) = 1/k, for i = 1 to k. A kernel nearest neighbor algorithm
bases weightings on the distance from the test vector X to each vector in the database [23].

On the other hand, linear approximation takes the N feature vectors in the database and uses a
linear combination of them to represent X as [24]:

X =
N

∑
j=1

wj(X)Xj,
N

∑
j=1

wj(X) = 1, (6)

where X1, X2, . . . , XN are the feature vectors in the database set. Once the weighting functions are
determined, then Y is estimated from Equation (5) with k = N. Typically, Equation (6) is undetermined
and its solution can be tackled via an unconstrained optimization technique of the family of least
squares. However, these methods produce some negative weights, which lack physical meaning.
An alternative that produces positive weights is obtained via the maximum-entropy (max-ent)
variational principle [25].

The notion of entropy in information theory was introduced by Shannon as a measure of
uncertainity [26]. Later on, Jaynes [25] postulated the maximum-entropy principle as a rationale means
for least-biased statistical inference when insufficient information is available. The maximum-entropy
principle is suitable to find the least biased probability distribution when there are fewer constraints
than unknowns and is posed as follows:

Consider a set of N discrete events {x1, . . . , xN}. The possibility of each event is pi = p(xi) ∈ [0, 1]
with uncertainty − ln pi. The Shannon entropy H(p) = −∑N

i=1 pi ln pi is the amount of uncertainty
represented by the distribution {p1, . . . , pN}. The least biased probability distribution and the one that
has the most likelihood to occur is obtained via the solution of the following optimization problem
(maximum-entropy principle):
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max
p∈RN

+

[
H(p) = −

N

∑
i=1

pi ln (pi)

]
, (7a)

subject to the constraints:

N

∑
i=1

pi = 1,
N

∑
i=1

pigr(xi) =< gr(x) >, (7b)

where RN
+ is the non-negative orthant and < gr(x) > is the known expected value of functions

gr(x) (r = 0, 1, . . . , m). Comparison between Equations (6) and (7b) clearly reveals the analogy
between linear approximation and the constraints to which the maximum entropy is subjected. Thus,
on replacing the possibility pi by the weighting function wi, the function gr(xi) by the feature vector
Xi, and the known expected value < gr(x) > by the test vector X, we have a method to compute the
weighting functions that are needed to completely determine the impact estimate Ŷ in Equation (5).

The optimization problem in Equation (7) assigns probabilities to every xi in the set. Now,
assume that the probability pi has an initial guess mi known as a prior, which reduces its uncertainty
to − ln pi + ln mi = − ln(pi/mi). An alternative problem can be formulated by using this prior in
Equation (7) [27]:

max
p∈Rn

+

[
H(p) = −

N

∑
i=1

pi ln
(

pi
mi

)]
, (8a)

subject to the constraints:

n

∑
i=1

pi = 1,
n

∑
i=1

pigr(xi) =< gr(x) > . (8b)

In Equation (8), the variational principle associated with ∑N
i=1 pi ln

(
pi
mi

)
is known as the principle

of minimum relative (cross) entropy [28,29]. Depending upon the prior employed, the optimization
problem in Equation (8) will favor some xi in the set by assigning more probability to them,
and eventually, assigning non-zero probability (pi > 0) to a selected number of xi (i < N) in the
set. It can be easily seen that if the prior is constant, the Shannon–Jaynes entropy functional in
Equation (7) is recovered as a particular case.

The database that is constructed for the impact identification method is usually formed by a
large quantity of data elements. Data elements that are far from the impact estimate are not relevant
and only introduce noise into the system. Therefore, we need a method to disregard this type of
data elements. To this end, the relative entropy approach is suitable and thus we adopt it for our
method. We use the prior function to cut off the data elements that are not relevant for the impact
estimate. We also replace the probability pi and the discrete event xi with the weighting function
wi and the feature vector Xi of the linear approximation problem posed in (8), respectively. Finally,
the optimization problem that builds our impact identification algorithm reads:

max
w∈RN

+

[
H(w) = −

N

∑
i=1

wi(X) ln
(

wi(X)
mi(X)

)]
, (9a)
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subject to the constraints:

N

∑
i=1

wi(X)X̃i = 0,
N

∑
i=1

wi(X) = 1, (9b)

where X̃i = Xi − X has been introduced as a shifted measure for stability purposes. Different prior
distributions can be used, typical ones are: Gaussian, cubic spline, quartic spline or constant [30]. Here
we tested the four distributions and the best performance was obtained with a smooth Gaussian,

mi(X) = exp(−βi‖X̃i‖2), (10)

where βi = γ/h2
i ; γ is a parameter that controls the support of the Gaussian prior at Xi, and therefore

its associated weight function; and hi is a characteristic n−dimensional Euclidean distance between
neighbors that can be distinct for each Xi. In view of the optimization problem posed in Equation (9)
for supervised learning, maximizing the entropy chooses the weight solution that commits the least to
any one in the database samples [31].

The solution of the max-ent optimization problem is handled by using the procedure of Lagrange
multipliers, which yields [27]:

wi(X) =
Zi(X; λ∗)

Z(X; λ∗)
, Zi(X; λ∗) = mi(X) exp(−λ∗ · X̃i), (11)

where Z(X; λ∗) = ∑j Zj(X; λ∗), X̃i = [X̃i
1 . . . X̃i

N ]
T, and λ∗ = [λ∗1 . . . λ∗N ]

T are the converged
lagrange multipliers.

In Equation (11), the Lagrange multiplier vector λ∗ is the minimizer of the dual optimization
problem posed in Equation (12) [27]:

λ∗ = arg min
λ∈RN

ln Z(X; λ), (12)

which gives rise to the following system of nonlinear equations:

f(λ) = ∇λ ln Z(λ) = −
N

∑
i

wi(X)X̃i = 0, (13)

where ∇λ stands for the gradient with respect to λ. Once the converged λ∗ is found, the weight
functions are computed from Equation (11) and the impact force is estimated from Equation (5)
with k = N.

2.4. Impact Identification

The impact identification methodology consists of three main parts: building of the databases,
selection of parameters and evaluation of the algorithm.

2.4.1. Building of the Databases

Three sets of impact data are acquired, one for training, one to set up the parameters of
the identification algorithm and one to evaluate the algorithm. In the three cases, each point is
impacted once using an instrumented impact hammer. The structure is linear, and as a consequence,
the response is proportional to the magnitude of the force. Therefore, the response to impacts of
different magnitudes can be determined by simply multiplying the measured response by scaling
factors. With this methodology the initial training set is expanded to a new set with impacts of
magnitudes between 5 N and 250 N.
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Figure 3 presents an scheme of the procedure followed to build the training, setting up and testing
databases. In the three cases the information related to the impacts location and magnitude is stored
in observation vectors and the time response of the piezoelectric sensors goes into the PCA process
described in Section 2.2. First, for the training data, the PCA is performed using ni = p and the
cumulative percentage variance as a function of the number of PCs is computed. The number of PCs is
selected to ensure a cumulative percentage variance of 99.99%. Once ni has been selected the matrix
Pi is constructed. Using Pi, the feature matrices for the training, setting up and testing databases are
computed according to Equation (4), from which the feature vectors are extracted (columns of the
feature matrices).

Cumulative
variance

Number of 
PCs, ni

Training 
data

PCA

Feature
vectors

Observation
vectors

Training 
database

Matrix Pi

(a)

Setting
up/testing

data

Feature
vectors

Observation
vectors

Setting up/ 
testing
database

Matrix Pi

(b)

Figure 3. Construction of the training, setting up and testing databases. (a) Training database;
(b) Setting up/testing database. PC: principal components; PCA: principal component analysis.

2.4.2. Selection of Parameters

The only parameter that needs to be selected is the number of neighbors that contribute to the
solution, k, which is selected to optimize the performance of the algorithm. To quantify the performance
the following error functions are defined:

Ex =
1
nt

nt

∑
j=1

∣∣∣Ŷj
1 − Yj

1

∣∣∣ , (14)

Ey =
1
nt

nt

∑
j=1

∣∣∣Ŷj
2 − Yj

2

∣∣∣ , (15)

EF =
1
nt

nt

∑
j=1

∣∣∣Ŷj
3 − Yj

3

∣∣∣
Yj

3

× 100, (16)

EA =
Ex × Ey

A
× 100 =

∑nt
j=1

∣∣∣Ŷj
1 − Yj

1

∣∣∣∑nt
j=1

∣∣∣Ŷj
2 − Yj

2

∣∣∣
n2

t A
× 100, (17)
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where nt is the number of elements in the database; A is the area of the plate; Ex and Ey are the
mean errors in the estimation of the force in the x and y coordinates; EF is the percentage error in the
estimation of the force magnitude, and EA is the percentage area localization error. The normalized
impact identification error is defined as,

EI =
EA

E0
A
× EF

E0
F

, (18)

where E0
A and E0

F are the area and force error for initial value of k.
Figure 4a illustrates the procedure to select the optimum value of k. The impact identification

algorithm is evaluated for different values of k = k1, k2, ..., knk . The parameter k∗ that provides the
lowest normalized impact identification error is selected.

2.4.3. Evaluation of the Algorithm

The last step is to evaluate the performance of the algorithm using the testing database. Figure 4b
presents the procedure followed to identify the impacts, which consists of the following steps:

1. Extract a feature vector from the testing database.
2. Select the parameter βi in the Equation (10), so that k∗ neighbors contribute to the solution.
3. Solve the system of nonlinear equations presented in Equation (13).
4. Compute the weight functions using Equation (11).
5. Read the observation vectors in the database and estimate the experimental impact using

Equation (5).
6. Compute the area and force errors using Equations (16) and (17).
7. Repeat steps 1 to 6 for all the feature vectors in the testing database.

Training 
database

Setting up 
database

k=ki

Impact
identification

Compute EI(i)

i=1

i=i+1 i=nk?
no

Find min EI(i)

k*

yes

(a)

Training 
database

Testing or
setting up 
database

Extract feature
vector X

Solve Equation
(13)

Compute 
weights using
Equation (11)

Estimate the
impact using
Equation (5)

Select i in 
Equation (10)

Compute the
area and force

errors

(b)

Figure 4. Schemes of the procedure to select the optimum value of k and to identity an impact.
(a) Selection of k∗; (b) Impact identification.
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3. Experimental Applications

3.1. Aluminum Plate

Figure 5 presents the experimental setup, which corresponds to an aluminum plate with
dimensions 490 mm × 390 mm × 2.5 mm that is simply supported by four screws. The plate is
excited by an instrumented impact hammer and the response is captured by four piezoelectric discs
bonded to the surface. Table 1 summarizes the specifications of the experimental equipment.

Data from the four sensors and impact hammer is recorded with a sampling rate of 24 kHz.
The hammer is used as trigger and 500 data points before the impact and 3000 data points after the
impact are recorded. The signal envelope is computed though the Hilbert transform and no further
post processing of the data is performed before PCA.

Figure 5. Experimental setup for the aluminum plate.

Table 1. Specifications of the experimental equipment.

Piezoelectric Discs

Model 7BB-20-6L0
Resonant frequency 6 kHz
Disc size 20 mm
Thickness 0.42 mm

Impact Hammer

Model LC-01A
Sensitivity 4 mV/N
Max. shock force 2 kN
Tip material Nylon
Force transducer CL-YD-303

Data Acquisition System

Model ECON MI-7016
Resolution 24 bit
Channels 16
Max. sampling rate 96 kHz

Two training sets consisting of a uniform grid of 117 and 61 points are evaluated, as shown
in Figure 6a,b, respectively. The setting up and testing sets consist of 20 and 35 random impacts
distributed over the plate, as shown in Figure 6c,d, respectively.

Figure 7a presents the cumulative percentage variance as a function of the number of PCs, ni,
for the training database 1. With ni = 110 all sensors have a cumulative percentage variance of
99.99%. Figure 7b shows the normalized impact identification error as a function of k when ni = 110.
The minimum error is obtained for k = 120. Figure 8 presents the impact identification results using
these parameters. The area error, EA, is 0.009% and the percentage force error, EF, is 5.84%.
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Figure 6. Location of the experimental impacts applied to the aluminum plate. (a) Training 1;
(b) Training 2; (c) Setting up; (d) Testing.
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Figure 7. Cumulative percentage variance as a function of ni and normalized impact identification error
as a function of k for the first training database. (a) Cumulative percentage variance; (b) Normalized
impact identification error.
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(d)

Figure 8. Testing results for the aluminum plate using the linear approximation with maximum entropy
LME+PCA algorithm and training database 1. (a) Force amplitude; (b) X coordinate; (c) Y coordinate;
(d) Localization.

The setting up results for the second training database are presented in Figure 9. The cumulative
percentage variance of 99.99% is obtained with ni = 61 and the minimum normalized impact
identification error is obtained with k = 80. Figure 10 presents the impact identification results
using these parameters. The area error, EA, is 0.028% and the percentage force error, EF, is 6.53%.
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Figure 9. Cumulative percentage variance as a function of ni and normalized impact identification
error as a function of k for the second training database. (a) Cumulative percentage variance;
(b) Normalized impact identification error.
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Figure 10. Cont.
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(d)

Figure 10. Testing results for the aluminum plate using the LME+PCA algorithm and training
database 2. (a) Force amplitude; (b) X coordinate; (c) Y coordinate; (d) Localization.

3.2. Aluminum Sandwich Panel

The structure consists of a sandwich panel of 700 mm × 400 mm × 24 mm made of an aluminum
core bonded to two aluminum skins. The core consists of stiffeners with triangular shapes that
go through the panel in the two principal directions. The thickness of the skins is 2 mm and the
thickness of the stiffeners is 1 mm. The skins are bonded to the stiffeners using an epoxy adhesive
cured using a vacuum bagging system. Figure 11a,b show the internal structure and the assembled
panel, respectively.

(a) (b)

Figure 11. Aluminum sandwich panel. (a) Internal structure; (b) Panel.

Figure 12 presents the experimental setup. The panel, which is clamped on two edges, is excited
by an instrumented impact hammer and the response is captured by six piezoelectric discs bonded to
the surface. The specifications of the experimental equipment are presented in Table 1.

Figure 12. Experimental setup for the aluminum sandwich panel.
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Data from the six sensors and impact hammer is recorded with a sampling rate of 24 kHz.
The hammer is used as trigger and 500 data points before the impact and 3000 data points after the
impact are recorded. The signal envelope is computed though the Hilbert transform and no further
post processing of the data is performed before PCA.

The training set consists of a uniform grid of 91 points, as shown in Figure 13a. The setting up and
testing sets consist of 20 and 40 random impacts distributed over the plate, as shown in Figure 13b,c,
respectively.

0 100 200 300 400 500 600 700
0

100

200

300

400

Coordinate X [mm]

C
oo

rd
in

at
e 

Y
 [m

m
]

 

 

Training impacts Sensors

(a)

0 100 200 300 400 500 600 700
0

100

200

300

400

Coordinate X [mm]

C
oo

rd
in

at
e 

Y
 [m

m
]

 

 

Setting up impacts Sensors

(b)

0 100 200 300 400 500 600 700
0

100

200

300

400

Coordinate X [mm]

C
oo

rd
in

at
e 

Y
 [m

m
]

 

 

Testing impacts Sensors

(c)

Figure 13. Location of the experimental impacts applied to the aluminum sandwich panel. (a) Training;
(b) Setting up; (c) Testing.

Figure 14a presents the cumulative percentage variance as a function of the number of PCs, ni.
With ni = 84 all sensor have a cumulative percentage variance of 99.99%. Figure 14b shows the
normalized impact identification error as a function of k when ni = 84. The minimum error is obtained
for k = 190. Figure 15 presents the impact identification results with this combination of parameters.
The area error, EA, is 0.031 % and the percentage force error, EF, is 12.39 %.
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Figure 14. Cumulative percentage variance as a function of ni and normalized impact identification
error as a function of k. (a) Cumulative percentage variance; (b) Normalized impact identification error.
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(d)

Figure 15. Testing results for the aluminum sandwich panel using the LME + PCA algorithm.
(a) Force amplitude; (b) X coordinate; (c) Y coordinate; (d) Localization.

The experimental data and impact identification algorithm for this application case are available
for download at [32].

4. Discussion

Table 2 compares the results obtained for the aluminum plate with those of other algorithms
available in the literature. These algorithms are evaluated using the same structure and boundary
conditions, i.e., an aluminum plate that is simply supported by four screws. The results demonstrate
that the proposed methodology has a much better precision than these algorithms.

Table 2. Comparison between impact identification algorithms available in the literature and current work.
SVM: support vector machine; LS-SVM: least squares SVM; ELM: extreme learning machine.

Reference Algorithm Plate
Size (mm2)

Number
of Sensors

Number of Training
Impact Points Area Error (%) Force

Error (%)

Xu [10] LS-SVM 490 × 390 4 63 1.06 51.2
Fu and Xu [11] PCA+SVM 490 × 390 4 63 0.13 -
Xu [13] Kernel-ELM 490 × 390 4 63 0.74 -
Fu et al. [14] PCA+Kernel-ELM 490 × 390 4 63 0.24 -
Current work LME+PCA 490 × 390 4 61 0.028 6.53

Furthermore, Table 3 summarizes the testing results for the two experimental cases. In the case of
the aluminum plate, the first training database is used. The results are compared with those of the
algorithm presented by Sanchez et al. [21]. This algorithm uses LME with features extracted from
the time signal such as the time of arrival, signal amplitud and information related to the first peak.
Therefore, the only difference are the features used in the LME algorithm. Both algorithms, LME and
LME + PCA, have been tested with the same experimental data. The results show that when PCA is
used, the precision of the impact identification method has a considerable improvement.

Table 3. Performance of the impact identification algorithm.

Experimental Case Identification Algorithm

LME LME + PCA

Aluminum plate Area Error (%) 0.12 0.009
Force Error (%) 7.18 5.84

Sandwich panel Area Error (%) 0.15 0.031
Force Error (%) 27.42 12.39

It can also be observed that the results with the aluminum plate are better than with the sandwich
panel. This is expected since the stiffeners in the sandwich panel act as obstacles in the propagation of
waves, generating reflections that difficult the impact identification procedure.
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5. Conclusions

This article presented a new impact identification algorithm that uses principal component
analysis (PCA) and linear approximation with maximum entropy (LME). The performance of the
proposed methodology was validated by considering two experimental cases, which include an
aluminum plate and an aluminum sandwich panel. Time varying strain data was measured using
piezoceramic sensors bonded to the structures.

To demonstrate the potential of the proposed approach over existing ones, the results were
compared with those of other impact identification algorithms available in literature. A much
better performance is achieved with our proposed algorithm. The comparison of results using LME
with classical time features versus features obtained with PCA shows that with PCA the results are
largely improved.

The second experimental case represents a composite panel with stiffeners that can be used
for example in aeronautical applications. Therefore, with a low number of sensors it is possible to
accurately locate and quantify impacts in realistic structures. Nevertheless, it is necessary to study the
performance in structures with more complex geometries.
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