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Abstract
The goal of this work is to describe a framework to propagate uncertainties in piezoelectric
energy harvesters (PEHs). These uncertainties are related to the incomplete knowledge of the
model parameters. The framework presented could be employed to conduct prior robust
stochastic predictions. The prior analysis assumes a known probability density function for the
uncertain variables and propagates the uncertainties to the output voltage. The framework is
particularized to evaluate the behavior of the frequency response functions (FRFs) in PEHs,
while its implementation is illustrated by the use of different unimorph and bimorph PEHs
subjected to different scenarios: free of uncertainties, common uncertainties, and uncertainties as
a product of imperfect clamping. The common variability associated with the PEH parameters
are tabulated and reported. A global sensitivity analysis is conducted to identify the Sobol
indices. Results indicate that the elastic modulus, density, and thickness of the piezoelectric layer
are the most relevant parameters of the output variability. The importance of including the model
parameter uncertainties in the estimation of the FRFs is revealed. In this sense, the present
framework constitutes a powerful tool in the robust design and prediction of PEH performance.

Keywords: piezoelectric energy harvester, uncertainty propagation, Sobol indices

(Some figures may appear in colour only in the online journal)

1. Introduction

The dynamic description of piezoelectric energy harvesters
(PEHs) has received significant attention in the last decade.
The working principle of PEHs is based on their capability to
convert dynamic deformations into electrical power when
subjected to vibrations. The most common configuration
consists of a cantilevered beam, which is composed of at least
two layers of different materials; one that serves as structural
support (typically a metal sheet), and the other that facilitates
energy conversion (piezoelectric material). Figure 1 shows a
schematic of these devices. Harvesters are classified accord-
ing to the number of piezoelectric layers, i.e., unimorph and
bimorph for configurations with one and two piezoelectric

layers, respectively. These devices are characterized by large
dimensions where the cantilevered beam length is in the order
of 10−2 m [1]. However, smaller scale devices with piezo-
electric layer thicknesses typically up to 10−4 m, generally
microelectromechanical system (MEMS) harvesters, are also
feasible owing to the adoption of specific deposition techni-
ques [2].

For large scale PEHs (which are the focus of this work),
different deterministic modeling techniques have been adop-
ted to describe their electromechanical coupling effect. There
are a wide range of different approaches, from simple models
based on single degree of freedom dynamics [3–5], to more
complex models base on Rayleigh–Ritz discrete formulations
[6], finite element procedures [7], and adoption of modal
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expansion techniques [8]. The latter is perhaps the most
popular model since it takes into account a proper electro-
mechanical effect and different beam vibration modes, and
has a low computational cost since analytical solutions are
presented [9]. In general, researchers have focused not only
on the proposal of new and more sophisticated predictive
models, but also on: (i) generation of configurations to collect
energy from different environments, i.e., from aero-elastic
structures [10, 11], fluid vortex and instabilities [12, 13],
broad-band vibration sources [9, 14]; and (ii) design of effi-
cient circuitry to rectify the output voltage to the required
level [15]. Despite the great variety of research topics and
contributions related to PEHs, there is a lack of studies
regarding the adequate identification of the PEH dynamic;
therefore, this topic is essential.

Deterministic models are widely-adopted to predict the
input–output behavior of PEHs. However, perfect predictions
are not expected since these devices contain uncertainties.
The accuracy of the output estimation is mainly affected by
the: (a) mathematical model used, (b) uncertainties in the
mathematical model parameters, and (c) uncertainties related
to the excitation. These uncertainties should be taken into
account to generate robust and more plausible predictions.
Nevertheless, limited attention has been paid to the uncer-
tainty quantification and propagation related to the modeling
of PEHs. Some efforts have been made in defining the exci-
tation as a random variable [16] or prescribing probabilistic
density functions to define the parametric dynamic char-
acteristics of the harvester [17]. However, the analysis pre-
sented in [17] deals only with longitudinal excited harvesters
and not with the conventional unimorph and
bimorph harvesters subjected to transversal excitations.
Additionally, the authors employed a simplified mechanical
model, assuming a single degree of freedom, to propagate the

uncertainties. In this sense, a more robust model is required,
as well as general procedures that aid understanding the
dynamic behavior of PEHs. The focus of this work is to
describe a framework that not only allows the use of any well-
known dynamic estimators in PEHs (traditional deterministic
performance estimators), but takes into account the uncer-
tainties in the model parameters. Specifically, the goal is to
study the behavior of the frequency response functions of
transversally-excited energy harvesters by the direct incor-
poration of uncertainties into the geometry and the electro-
mechanical properties of the materials.

The framework consists of adopting a prior probability
density function (PDF) for the uncertain variables. Then, the
output estimation is established by the implementation of
stochastic simulation techniques based on Monte Carlo
methods. The PDF is chosen based on information available
in the literature, which is also presented and organized here.
Although these uncertainties quantification procedures are
known, the main contribution of this research deals with: (1)
adaption to the performance prediction of PEHs, (2) collec-
tion and presentation of the information available in the lit-
erature related to the variability of the model parameters, and
(3) conduction of a variance-based sensitivity analysis to
identify the most relevant model parameters. In this sense, the
present framework constitutes a powerful tool in the robust
design and prediction of PEH performance.

2. Piezoelectric energy harvester modeling

There are two procedures that have been used frequently by
researchers: the analytical distributed parameter solution
introduced by Erturk and Inman [5, 18] and the finite element
plate model introduced by De Marqui Junior et al [7]. Since

Figure 1. Geometric characteristics of unimorph (upper) and a bimorph (bottom) piezoelectric energy harvesters. (The tip mass and the
external electric resistance are not showed.)
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the first procedure is well known by the scientific community,
it is used in this research, in particular to study the effect of
incomplete information related to the model parameters, e.g.,
uncertainties related to the piezoelectric constitutive equation,
and incomplete geometry description. To clarify the notation
used in this work, a summary of the analytical distributed
parameters is presented next.

2.1. Analytical distributed parameter solution

This procedure allows estimation of the dynamic behavior of
cantilevered PEHs under conventional configurations,
including unimorph and bimorph, with and without tip mas-
ses. The cantilevered piezoelectric beam is modeled using the
methodology introduced by Erturk and Inman [5, 18], which
is based on a standard modal expansion method assuming an
Euler–Bernoulli beam model. In particular, this methodology
adopts some important assumptions such as: (i) the mechan-
ical effect of the electrode layer is negligible since its thick-
ness is significantly smaller than the substructure and the
piezoelectric layers, (ii) the bonding between layers is perfect
and does not influence the equivalent stiffness of the beam,
and (iii) the thicknesses of the layers are invariant along the
cantilever beam. These assumptions had been validated by
Erturk and Inman through several experiments conducted
using both unimorph and bimorph harvesters [1]. In this
formulation, the relative displacement of any point of the
beam with respect to its base is defined by
d f f h h=  [ ][ ]M M

T
1 1 =fη, where hi and fi denote

the ith modal coordinate and the mass normalized eigen-
function (vibration mode), respectively. Furthermore, this
procedure considers the electromechanical coupled effect,
leading to a coupled system of differential equations of the
following form:

å

h z w h w h c

j h

+ + + =

+ =
=
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where the first equation corresponds to the mechanical
equation of motion with electrical coupling (cantilever beam
with piezoelectric layers excited with an acceleration ̈ug at its
base), whereas the second equation corresponds to the elec-
trical circuit equation with mechanical coupling. Note that in
this particular case, the modal expansion is established by
using M eigenfunctions. The damping ratio and the natural
frequency of the ‘ith’ mode are defined by zi and w ,i
respectively. The term ci takes into account the electric
coupling for each vibrational mode, whereas the mechanical
forcing function due to the inertial effect is defined as ri.
Additionally, v is defined as the output voltage; ji corre-
sponds to the mechanical coupling term; and kpzt is the
parameter that contains the electrical characteristics of the
harvester, i.e., the capacitance of the piezoelectric layer and
the external electric resistance. For convenience, equation (1)

is manipulated to express the problem in matrix form:

h h h c
j h
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Here, ÎI MxM is the identity matrix; ÎC MxM
eq is a

diagonal damping matrix containing the terms z w2 ;i i

ÎK MxM
eq is a diagonal matrix containing the squared

natural frequencies w ;i
2 and c h j Îr, , , Mx1 are column

vectors defined by c h jr, , , ,i i i i respectively. Then,
equation (2) can be used to obtain the respective transfer
functions. In particular, the frequency response for the dis-
placement of the beam and the output voltage are obtained
assuming a base acceleration of = Ẅ ̈u U eg g

tj (leading to a
displacement d = WD e tj and an output voltage = Wv V e tj ).
Then, the following expressions are obtained:
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To simplify the notation, we denote the mentioned transfer
functions as = ̈H D UD g and = ̈H V U .V g Ultimately, HD and
HV can be related directly to the geometric, mechanical, and
electrical characteristics of the PEH. These relationships are
explicitly identified for unimorph and bimorph harvesters in
[5, 18], respectively.

2.2. Uncertainties in the electromechanical and geometric
characteristics of PEH

In general, the precision in the estimation of the frequency
response functions HD and HV depends on the information
available (usually incomplete) related to the geometry and the
electromechanical properties of the harvester. However, the
issue is not related to the lack of information itself, rather its
impact on the predicted response. Specifically, the goal is to
identify the dominant parameter or a group of parameters in
terms of precision in the predictive model. The lack of
information can be assumed as an uncertainty that can be
modeled by a probabilistic distribution associated with the
geometry and electromechanical parameters of the harvester.
Then, it is possible to implement a procedure to propagate this
uncertainty and identify the parameters that have a significant
impact on the response. However, the uncertainties associated
with PEH parameters should be discussed first. In this section,
an overview of the most relevant uncertainties in PEH is
presented.

For convenience, the characteristics of the harvester are
divided into three groups: geometric specifications, mechan-
ical properties of the substructure layer, and electrical/
mechanical properties of the piezoelectric layer. The geo-
metric specifications of the harvester contain the information
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related to the beam length L and width b, together with the
thickness of the piezoelectric and the substructure layers, hp
and hs, respectively (figure 1). Manufacturing tolerances are
not typically associated with these values. However, some
manufacturers report variations up to 25% in the beam
thickness and up to 7% for the beam length and width. For
instance, table 1 presents manufacturing tolerances associated
with the geometrical characteristics of the harvester. Note that
the variation expected for the thickness is considerably greater
than the expected values for the remaining geometrical
parameters. In fact, the smaller the dimension, the more dif-
ficult it is to maintain precision in the fabrication process.

It is important to mention that the incorporation of the tip
mass in the cantilever beam and the system used to attach the
beam to its base introduce additional uncertainties. Note that
the common approach to introduce the tip mass in the analysis
is to assume a point mass [18, 22], which is valid for masses
with small dimensions where the rotational inertia can be
neglected. This assumption corresponds to the case in which
the whole mass is located at the free end of the beam
(figure 2(a)). However, in practical applications, the tip mass
may be mounted at the free end of the beam (figure 2(b)) or
simply attached to the end (figure 2(c)). In both cases, the
effective length L of the beam is affected, obtaining a worst-
case scenario variation of L equal to half of the tip mass
length. On the other hand, the clamping quality also affects
the effective length L, since an inadequate clamping system

(non-zero curvature at x=0) can be interpreted as an incre-
ment in the beam length.

The second group of variables with uncertainties contains
the information related to the mechanical properties asso-
ciated with the substructure layer, i.e., Young’s modulus Ys
and the density r .s It is important to note that there is not a
common adoption of the material used in the substructure
layer; nevertheless typical applications use iron–nickel alloys,
bronze, and copper [19], as well as brass [5, 7, 19], aluminum
[22], and silicon (usually employed in MEMS harvesters)
[23], among others. In general, the Young’s modulus values
for these metals are of the order of 1010–1011 Pa. However,
the specific value for each material depends on its composi-
tion and its mechanical and thermal history [24]. Furthermore,
Young’s modulus is typically used as a deterministic value
(commonly found in general material property tables), when
in reality it represents only the expected value for a specific
material. In particular, for the materials mentioned above, the
variations in the Young’s modulus are ±10% of their nominal
values [25, 26]. Similar variations are also reported for the
nominal density values [26].

The third group of uncertain variables is primarily related
to the electrical/mechanical characteristics of the piezo-
electric layer, more specifically, to the elastic modulus of the
piezoelectric layer Yp and its density r ,p the permittivity at
constant strain e ,s

33 and the piezoelectric coupling coefficient
e31. The PEH employed in this work corresponds to a con-
ventional poled harvester (d31 mode); thus, a fully covered
electrode is used. However, the methodology to propagate the
uncertainties could be extended easily to MEMS harvesters
(where, typically, the electrode is interdigitated) by using an
adequate model predictor. Here, additional comments
regarding the constitutive relation of the piezoelectric material
are required. The constitutive relation for a cantilevered
piezoelectric beam is usually expressed as the following:

e
= -
= + ( )

T Y S e E

D e S E

,

, 5s
1 p 1 31 3

3 31 1 33 3

where T1, S1, E3, and D3 correspond to the normal stress,
normal strain, electric field, and electric displacement,
respectively. Here, subscripts 1 and 3 denote the principal
directions in x and z, respectively. Based on the plane stress
assumption for an isotropic thin beam, some important rela-
tions are identified. In particular, the elastic modulus Yp, the
piezoelectric coupling coefficient e31, and the permittivity at
constant strain e ,s

33 can be expressed as functions of the elastic
compliance at constant electric field s ,E

11 piezoelectric strain
constant d31, and permittivity at constant stress e .T

33 These
relations are given by the following:

e e= = = - ( )Y
s

e
d

s

d

s

1
; ; . 6

E E
s T

Ep
11

31
31

11
33 33

31
2

11

The latter equation is particularly useful since s ,E
11 d31, and eT

33
are widely used to define the constitutive equation for
piezoelectric materials, e.g., the piezoelectric material prop-
erties presented in [1, 20, 27, 28]. Although the electro-
mechanical characteristics of piezoelectric materials are

Figure 2. Different mounting strategies for the tip mass in
cantilevered PEH: (a) point mass model, (b) tip mass mounted on the
beam, and (c) tip mass attached to the end of the beam.
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commonly reported by manufacturers, typically limited
information regarding their tolerances is reported. For
example, a tolerance of ±20% is reported for all electro-
mechanical characteristics in [20, 29]. To the best of our
knowledge, no further specific information is available in the
literature. Therefore, we decided to use the mentioned toler-
ance value (±20% for all electro–mechanical properties) in all
the analyses conducted in this work. The final characteristic of
the harvester that should be mentioned is the external electric
resistance R. This resistance represents the electronic power
load that the harvester is required to move. This load and the
corresponding precision in its estimation may change
depending on the application.

Finally, the characteristics of the harvesters are grouped
as follows:

q

q

q

r

r e

=

=

=

⎡⎣ ⎤⎦
⎡⎣ ⎤⎦
⎡⎣ ⎤⎦ ( )

L b h h

Y M

Y d R

,

,

, 7

t

T

g s p

s s s

p p p 31 33

where q ,g q ,s and qp correspond to vectors with geometrical
characteristics, mechanical properties of the substructure
layer, and electromechanical properties of the piezoelectric
layer, respectively. For the sake of simplicity, these char-
acteristics are grouped such that q q q q= ⎡⎣ ⎤⎦,g s p where q is
defined as the model parameter vector. Since the parameters
of the harvester present a level of variation, it is assumed that
the model parameter vector lies in space (defined by the
individual variability) instead of adopting a deterministic
value. Based on this, section 3 presents a procedure to
propagate these uncertainties and quantify their impacts on
the dynamic response of the harvester.

3. Robust stochastic prediction

Some concepts related to stochastic prediction in dynamical
systems are revisited in this section. First, a general approach
is presented and then the procedure is particularized to
propagate uncertainties in PEHs.

3.1. Predictive analysis

Suppose that the deterministic model defines the relationship
q( )H , where q Î Np corresponds to the model parameters

vector. An additive prediction error e is usually included here
such that the real system output Îh No is defined by

q= +( )h H e. A common practice is to assume a Gaussian
error with zero mean (imposing an unbiased prediction) and
covariance matrix S; this condition forces h to follow a
Gaussian distribution with mean q( )H and covariance matrix
S (further details provided in [30]):

q q

q
pS

S

= - -

´ --

⎡
⎣⎢( ∣ )

∣ ∣ ( )
( ( ))

( ( ))] ( )

p h h H

h H

1

2
exp

1

2

. 8

No
T

2

1

Here, q( ∣ )p h represents the PDF of the real output h given
the model parameter q. Since the prediction error assumed
here is an additive error which follows a Gaussian distribution
with zero mean, the expected value of h and H are equal, see
equation (9).

= + = + =[ ] [ ] [ ] [ ] [ ] ( )E E E E Eh H e H e H . 9

Note that if the model parameter θ is known, the expected
value of the real system is simply the value H at the interest
point θ, holding the following relation:

òq q q q= = =[ ∣ ] ( ∣ ) [ ∣ ] ( ) ( )E p Eh h h h H Hd . 10

Now, it is possible to propagate uncertainties related to the
model parameters. To achieve this, the model parameters
should be described by a PDF, which in this case is denoted
as q( )p . Then, equation (10) is extended to include q( )p as
follows:

ò ò q q q=[ ] ( ∣ ) ( ) ( )E p ph h h hd d . 11

This equation defines the expected value of the real output
[ ]E h , however, this concept could be extended to define the

expected value of any other performance function f(h) such
that

ò ò q q q=[ ( )] ( ) ( ∣ ) ( ) ( )E p pf h f h h hd d . 12

Furthermore, if the goal is to work with the expected value of
the real output, then it is possible to simplify equation (11)
using the results determined from equation (10), leading to

ò q q q=[ ] ( ) ( ) ( )E ph H d . 13

Note that the dimension of the integral presented in
equation (13) corresponds to the dimension of θ. Analytical
calculation of these integrals is impractical (apart from special
and simple cases) and calculation through numerical inte-
gration is inefficient for dimensions �3 (note that for N
evaluations, the approximation error for standard numerical

Table 1. Tolerances for different geometries of PEH.

Nominal values Tolerances Nominal values Tolerances

b<10 mm ±7.0% [19] hp, hs close to 0.2 mm ±25% [20]
L, b>10 mm ±3.0% [20] hp, hs close to 0.2 mm ±12% [21]
b>10 mm ±3.0% [19] hp, hs<0.3 mm ±10% [19]
L, b>13 mm ±2.0% [21] hp, hs close to 0.5 mm ±4% [22]
L<50 mm ±2.5% [19] hp, hs close to 1 mm ±5% [20]
L>50 mm ±1.0% [19] hp, hs>5 mm ±1% [21]
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integration is O(N−1/ n), where n is the integral dimension).
As a consequence, the probabilistic integral is commonly
solved via stochastic-simulations, corresponding to a broad
class of computational methods that are sampling-based, e.g.,
Monte Carlo family methods [31]. Next, an overview of the
direct Monte Carlo method is presented.

3.2. Direct Monte Carlo simulation

This method numerically approximates an integral of the form
presented in equation (13). The first step of this method
corresponds to the generation of samples that follow q( )p .
Let us assume that it is easy to generate these samples, i.e.,
q( )p corresponding to a well-known distribution: normal,

Gaussian, weibull etc. The first step consists of generating K
samples of q, forming a set of data denoted q ={ }j K, 1,..., ,j

such that the total set follows the distribution q( )p . The
second step consists of estimating the output of the system
using each q j obtained previously, generating a set of data
denoted q ={ ( ) }H j K, 1,..., .j Finally, based on the central
limit theorem, the Monte Carlo method estimates the prob-
abilistic integral (equation (13)) as:

å q=
=

ˆ ( ) ( )
K

h H
1

. 14
j

K
j

1

Here, ĥ is the approximation of E[h] made using the Monte
Carlo method, and it simply corresponds to the mean value of
the output dataset. Based on this, the concern that arises is the
number of samples that should be computed, in other words,
the determination of K. To address this, let us assume that
the complete process (sampling, output identification, and
averaging) is repeated multiple times. For instance, if the
dataset q ={ }j K, 1,...,j is generated m times, then it is
expected to have m values of ĥ. All of these m values of ĥ will
closely approximate E[h] (which is the theoretical mean), and
thus, the variance could be used as a precision indicator. The
smaller the variance, the better the approximation. For-
tunately, it is possible to estimate this variance using only
one set of data rather than m sets. A more convenient
expression to define the precision is through the coefficient of
variation (c.o.v). Note that H is not necessary a scalar; it
contains as many entries as the system output, such that

=  [ ]H H HH .i No1 Finally, the c.o.v of the estimator
for the ith output has the following expression:

å å

å

q q
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2
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2

1

i

Here, it is observed that dMC approaches zero if K approaches
infinity, indicating that the direct Monte Carlo method is an
unbiased and convergent estimator. Additionally, note that,
through equation (15), it possible to estimate the number of
samples required to guarantee a specific precision.

3.3. Sensitivity analysis

In probabilistic studies, there is another important analysis
that can be performed, namely the variance decomposition or
analysis of variance. This analysis relies on the decomposition
of the output variance into individual contributions attributed
to each model parameter and their interactions. Here, the goal
is to identify the impact of the model parameters on the output
variance. In the case of the energy harvester, the analysis of
variance allows classification of the parameters or groups
associated with the geometric characteristics, mechanical, or
electrical properties that strongly dominate the output voltage
and the beam tip displacement, and which have limited or no
impact. A common procedure to quantify the sensibility of the
model parameters is the estimation of the Sobol indices
[32, 33]. Some important definitions regarding this analysis
are presented next.

Let q( )Hi denote the ith output of the system, which
depends on the model parameter vector θ. Sobol indices are
usually expressed for model parameters θ that are indepen-
dent and uniformly distributed from zero to one [32, 33].
However, it is possible to extend the Sobol indices concept
for other types of distribution [34], such that the model
parameter vector q Î Q could be defined by an arbitrary PDF
q( )p . Here,Q corresponds to the space of possible values for

θ. Adopting a random PDF for θ, the mean and the variance
of the ith output are given, respectively, by

ò q q qm =
Q

( ) ( ) ( )H p d , 16i i

ò q q q m= -
Q

( ) ( ) ( )V H p d . 17i i i
2 2

Now, let q Î Qn n be the nth independent model parameter
and q Î Q~ ~n n the remaining model parameter vector (con-
taining all parameters in θ except θn). This notation is
extended to describe high-order interactions. Then, multiple
subscripts are used to group independent variables, for
example, q Î Qnm nm is a vector composed of qn and q ,m

whereas q Î Q~ ~nm nm is a vector composed of θ, excluding
qn and q .m It is important to note that either qn and qm could be
defined not only by one parameter, but by a group of them;
the only restriction is that the grouped parameters in qn should
be independent of q~n and the group of qnm should be inde-
pendent of q~ .nm Additionally, let us define Vn and Vnm as the
variance contribution of qn and qnm over the total output
variance, respectively. This variance decomposition leads to:

å åå= + +
= =

-

=

 ( )V V V . 18i
n

N

n
n

N

m

N

nm
1 1

1

1

Here, N denotes the total number of independent model
parameters, where the first and second order variances Vn and
Vnm can be obtained by solving the following integrals:

ò ò q q q q q=
Q Q

~ ~
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Finally, the Sobol indices are defined through equation (21),
where Sn corresponds to the first-order index for qn and Snm

corresponds to the second-order index for interactions
between qn and q .m For more detailed information, please
refer to [35].
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V
S
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i
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To identify the Sobol indices, the multidimensional prob-
abilistic integrals presented in equations (19) and (20) must be
solved. The common approach to solve these integrals is
through the implementation of Monte Carlo simulations, as
described in [33]. This procedure entails significant compu-
tational cost, i.e., for K samples, the identification of each Sn

requires NK evaluations of the system, whereas the estima-
tion of each Snm requires -( )N N 1 2 additional evaluations.
However, we decided to employ a Monte Carlo simulation
since the output of the energy harvester, obtained via analy-
tical solution, does not represent a significant computational
burden. For the sake of brevity, the numerical scheme to solve
equations (19) and (20) is not presented here; nevertheless full
details of this procedure can be found in [33].

4. Uncertainty propagation in PEHs

The schemes described previously to perform a robust pre-
diction and to conduct a sensitivity analysis are applied to
different configurations of PEH, in particular, to
unimorph and bimorph harvesters.

4.1. Properties of PEH

Two unimorph and one bimorph harvesters with different
geometries (all of them rectangular following the geometry
presented in figure 1) are considered. Specifically, two dif-
ferent length-to-width ratios are examined for the same
piezoelectric material (PZT-5A), and their respective

characteristics are presented in tables 2 and 3. Specifically, the
geometric data (table 2) is obtained from [5, 18, 36] for
configurations A, B, and C, respectively. Note that the geo-
metric parameters presented in table 2 are also defined
explicitly in figure 1. Additionally, the electromechanical
properties (table 3) are obtained from [27]. Configurations A,
B, and C were carefully chosen to exemplify the procedure to
propagate the uncertainties over different and well-known
harvesters, i.e., harvesters that have been widely studied in the
literature, experimentally tested, and modeled using the pro-
cedure presented in section 2.1. Each harvester is studied
based on different scenarios, a brief description of which is
presented in table 4. The first scenario corresponds to the
traditional approach in which all the model parameters are
treated as free of uncertainties (nominal values). The second
scenario assumes typical uncertainties in model parameters
(as described in previous sections). The last scenario increases
the uncertainty of the length with the aim to simulate an
imperfect clamping. In particular, for the latter scenario, the
uncertainty of the length is increased by changing only the
higher limit of the PDF associated with the length. Note that
imperfect clamping only increases the length, rather than
decreasing its value. These scenarios can be established for
harvesters with and without tip masses (22.74, 20, and 12 g
for configurations A, B, and C, respectively). Note that each
configuration has a specific identifier, as listed in table 4.

To propagate the uncertainties, it is assumed that each
single variable is defined by an uncorrelated and uniform
PDF. This PDF is bounded by the values presented in tables 5
and 6.

With all of the uncertain variables defined, it is possible
to estimate the output variability, e.g., to identify the expected

Table 2. Nominal characteristic of the harvesters studied; three
different geometries are presented, where configurations A and B are
unimorphs and configuration C is a bimorph.

Configuration A Configuration B Configuration C

L 97.66 mm 100 mm 50.8 mm
b 73.41 mm 20 mm 31.8 mm
hp 0.26 mm 0.4 mm 0.26 mm
hs 0.28 mm 0.5 mm 0.14 mm
ρs 8140 kg m−3 7165 kg m−3 9000 kg m−3

Ys 100 GPa 100 GPa 105 GPa
ζ 0.01 (for all

modes)
0.01 (for all
modes)

0.01 (for all
modes)

Table 3. Nominal characteristic for piezoelectric material (PZT-5A)
and its electro-mechanical properties.

All configurations

ρp 7800 kg m−3

s E
11 16.4×10−12 m2 N−1

d31 −171×10–12 C N−1

eT
33 1700×( 8.854×10−12) F m−1

Table 4. Identification of the three different scenarios evaluated in
the numerical analysis.

Identifier Uncertainties
Tip
mass

Imperfect
clamping

Scenario 1 Nom No No No
Nom-M No Yes No

Scenario 2 Unc Yes No No
Unc-M Yes Yes No

Scenario 3 Unc-I Yes No Yes
Unc-M-I Yes Yes Yes
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value of the frequency response function or the confidence
interval in which the actual response is expected.

4.2. Robust estimation for the frequency response function

Through the evaluation of equation (14), it is possible to
obtain the expected value for the transfer function associated
with the displacement, voltage, or any other important output
parameter of the harvester. In particular, this work focuses on
the FRF associated with the output voltage HV. However, the
results are extendable to the output current and power since
these both depend on the voltage directly. A total of 10 000
samples is used with this purpose, obtaining approximation
errors (equation (15)) close to 4%. Under this approach, the
nominal FRF (no uncertainties taken into account) of a spe-
cific configuration (A, B, or C) could be compared with the
expected value based on any of the scenarios described in
table 5 (Unc, Unc-I, Unc-M, or Unc-M-I). Then, it is expected
to have 10 000 different FRFs for each scenario and for each
configuration, allowing the estimation of the expectation and
the voltage threshold for a specific probability of exceedance.

The expected natural frequencies for each configuration
under different scenarios are expressed in terms of nominal
values and presented in table 7. The results suggest that the
expected natural frequency is independent of the configura-
tion (type of harvester), relying primarily on the nominal

value and the scenario assumed. In particular, it is observed
that the expected natural frequency obtained assuming a
perfect clamping (Unc and Unc-M) corresponds to the pre-
diction given by the nominal model. On the other hand, when
an imperfect clamping is assumed (Unc-I and Unc-M-I), the
nominal model overestimates the value of the natural fre-
quency. This behavior is expected since an imperfect
clamping is understood as an increment of the harvester
length, where the immediate effect is a reduction in its natural
frequency.

The dispersion in the natural frequency estimation is also
studied. To quantify the dispersion, we identify the threshold
that defines a confidence interval of 80%. Here, the thresholds
for all configurations and scenarios are reported in table 8 as a
percentage of their respective expected values. For example,
for Configuration A under the scenario Unc, there is an 80%
chance that the natural frequency lies in a band defined by
±9% of its expected value. In other words, the values reported
in table 8 show a direct parameter to which to compare the
spread of the natural frequency distribution. Here, it is
important to remember that the scenario identified as Unc has
the lowest number of associated uncertainties (table 5). The
remaining three scenarios are considered with greater uncer-
tainties associated with the harvester length in order to impose
different conditions (inclusion of the tip mass and an imperfect
clamping). Then, it is anticipated that for any configuration (A,
B, or C), scenario Unc gives the lowest dispersion of the
natural frequency, whereas scenario Unc-M-I gives the largest.
It is interesting to note that the difference in the dispersion
between scenarios Unc and Unc-M-I is not dramatic; it
increases from ±9% to ±11% for Configuration A; from ±7%
to ±11% for Configuration B; and from ±12% to ±15% for
Configuration C. These results reveal that the uncertainties
associated with scenario Unc are far more important that those
associated with the location of the tip mass and the plausibility
of having an imperfect clamping.

The uncertainties also have an impact on the maximum
value of the FRF. To understand the importance of this
impact, first it is necessary to discuss two different approa-
ches, assuming that: (i) the excitation frequency could have

Table 5. Bounds for the uniform PDF associated with the geometric parameters; bounds are expressed in terms of the nominal values.

ID Configuration hp hs Mt L b

Unc A ±10% ±10% — ±1% ±2%
B ±5% ±4% — ±1% ±2%
C ±10% ±20% — ±1% ±2%

Unc-M A ±10% ±10% ±5% ±6% ±2%
B ±5% ±4% ±5% ±6% ±2%
C ±10% ±20% ±5% ±6% ±2%

Unc-I A ±10% ±10% — −1% to 4% ±2%
B ±5% ±4% — −1% to 4% ±2%
C ±10% ±20% — −1% to 4% ±2%

Unc-M-I A ±10% ±10% ±5% −6% to 9% ±2%
B ±5% ±4% ±5% −6% to 9% ±2%
C ±10% ±20% ±5% −6% to 9% ±2%

Table 6. Bounds for the uniform PDF associated with the
electromechanical parameters; bounds are expressed in terms of the
nominal values, which are used for all configurations and scenarios.

Parameter Bounds

ζ ±10%
ρp ±20%
ρs ±10%
Ys ±10%
s E
11 ±20%
d31 ±20%
eT

33 ±20%
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any desirable value, or (ii) the excitation frequency is given.
To illustrate these approaches, 20 of the 10 000 FRFs asso-
ciated with Harvester A under the Unc configuration are
chosen randomly and presented in gray in figure 3. The first
approach here corresponds to the performance of the average
of the FRF peaks (horizontal black dotted line in figure 3),
which is close to the peak value of the nominal FRF (shown
with a black solid line). However, this procedures relies on
the assumption that the harvesters should be working in a
resonance condition. This condition is unrealistic since in real
implementation the excitation frequency is not controllable,
i.e., it is not feasible to impose a desired excitation frequency.

Then, the concern here is the estimation of the amplitude of
FRF for a given excitation frequency. In other words, the
important quantity is the average of the FRFs evaluated at the
same excitation frequency (second approach); this is repre-
sented by the black dotted curve in figure 3. Ultimately, this
curve corresponds to the expected FRF for Harvester A under
scenario Unc. The peak of the expected FRF differs sig-
nificantly to the nominal value; in fact the ratio of the former
to the latter is 0.32. This behavior is explained since har-
vesters with similar natural frequencies generate significantly
different responses when they are excited identically, espe-
cially when the excitation is close to the nominal natural
frequency.

Table 9 presents a comparison between the nominal and
the expected FRF peaks. In general, the expected FRF peak
decreases with increments of the uncertainties. The larger the
uncertainty in the model parameters, the greater the dispersion
of the natural frequencies, which finally induces the observed
decrement of the expected FRF peak in table 9. Note that this
behavior depends on the dispersion of the natural frequency,
rather than its expected value. Additionally, the maximum
dispersion of the FRF amplitude is presented in table 10.
Again, a confidence interval of 80% is used and the respective
bounds are expressed as a percentage of the expected FRF. In
comparison to the behavior of the natural frequency disper-
sion (table 8), the dispersion of the FRF amplitude is con-
siderably larger (table 10). However, as it occurs in the
natural frequencies, the dispersion of the FRF amplitude for
harvesters with tip mass and imperfect clamping, are not as
relevant as the dispersion associated with the harvester under
the standard scenario Unc.

To better represent the results obtained, let us introduce a
graphic representation of the FRF. For instance, the FRF of
Harvester A under different scenarios is presented in figure 4.
Here, the nominal FRF is represented by a black solid curve,
whereas the expected FRF is expressed as a black dotted
curve. Figures 4(a)–(d) corresponds to different scenarios:
Unc, Unc-I, Unc-M, and Unc-M-I, respectively. The lower
limit of the shaded area defines the threshold for a probability
of exceedance of 90% (i.e., there is a 90% probability that the
output voltage will be above this line), whereas the upper
limit defines the threshold for a probability of exceedance of
10% (i.e., there is a 10% probability that the output voltage
will be above this line). In other words, the shaded area

Table 7. Expected natural frequency of the harvester. Values refer to the nominal configuration.

Expected natural frequency

Scenario Configuration A Configuration B Configuration C

Unc wNom wNom wNom

Unc-I w0.97 Nom w0.97 Nom w0.97 Nom

Unc-M w ‐MNom w ‐MNom w ‐MNom

Unc-M-I w ‐0.97 MNom w ‐0.97 MNom w ‐0.96 MNom

Nominal values w = 28.5 HzNom w = 46.8 HzNom w = 114 HzNom

w =‐ 14.2 HzMNom w =‐ 17.5 HzMNom w =‐ 44 HzMNom

Table 8. Confidence interval of 80% for the natural frequency. The
confidence intervals are expressed as percentages of the respective
expected values.

Confidence interval

Scenario Configuration A Configuration B Configuration C

Unc ±9% ±7% ±12%
Unc-I ±10% ±8% ±13%
Unc-M ±10% ±10% ±14%
Unc-M-I ±11% ±11% ±15%

Figure 3. Typical FRF of a PEH; comparison between nominal
prediction, expected value, and different realizations, assuming
uncertainties in the model parameters.
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represents a confident interval of 80%. The first interesting
result is that, independent of the scenario, the probability of
obtaining the nominal peak amplitude is less than 10%. This
situation is revealed since the nominal peak is above the 10%
probability of exceedance curve. Additionally, it is observed
that the nominal FRF amplitude is greater than expected in a
narrow band around the resonance, specifically in the band-
width less than 2 Hz. On the contrary, outside this band, the
nominal FRF underestimates the expected amplitude of
the FRF. These results have an important implication for the
design process of PEHs; more specifically, when the vibration
source is a narrow band process, since there is a 90% prob-
ability that the actual output voltage is lower than the nominal
value. In addition, note that the dispersion represented in the
shaded area is not affected significantly by the installation of
the tip mass or the assumption of an imperfect clamping. For
the sake of brevity, it is decided not to present the results
corresponding to Harvester B and C since they follow the
same trend as the results presented in figure 4.

It is important to remember that the uncertainties used in
this work correspond to the typical uncertainties reported by
the harvester manufacturers (which are, in fact, large num-
bers); in other words, it is assumed that the user does not have
the feasibility to conduct experiments to refine the informa-
tion and, consequently, to improve the predictions. It is clear
that is essential to reduce the uncertainties given by the
manufacturers, but the question that arises is which model
parameter or group of contributes significantly to the disper-
sion of the FRF. This topic is covered in section 4.3.

4.3. Sensitivity analysis

With all the uncertain variables defined, it is convenient to
conduct a sensitivity analysis to identify the parameters with

greater influence on the FRF of the harvester. In section 3.3,
we discussed that the variability in the output estimation of a
system could be decomposed as first- and second-order con-
tributions. The configurations studied here contain 11 or 12
parameters, depending on whether the tip mass is considered.
As a result, the variability associated with the FRF is
decomposed in 11 indices of first order together with 55
indices of second order for configurations without tip mass
(66 different Sobol indices); and 12 indices of first order and
66 indices of second order for configurations with tip mass
(78 different Sobol indices). The Sobol index could be
understood as the perceptual contribution of a specific para-
meter or a combination of parameters in the variability of the
FRF. In other words, the sum of all Sobol indices should be
equal to 1 (or 100%). In this study, only the first and second
order indices are computed. Note that there are 66 or 78
different indices depending on whether the tip mass is
installed, meaning that on average, the value of each index
should be 0.0152 (1.52%) or 0.0128 (1.28%), respectively.
For the sake of simplicity, only indices with values greater
than three times the average are considered important, i.e.,
0.04 and 0.045 for configurations with and without tip mass,
respectively.

The Sobol indices are obtained by solving equation (21)
through Monte Carlo simulations, employing 30 000 samples,
and imposing a maximum c.o.v equal to 5%. The first- and
second-order indices are identified for different excitation
frequencies bounded between ±10% of the fundamental
frequency of the harvester.

The most relevant indices for configurations A, B, and C
are presented in figures 5–7, respectively. In particular,
figure 5 shows the Sobol indices for Harvester A under the
scenarios Unc and Unc-M-I. For the scenario Unc, it is
observed that the variance of the output voltage is driven
primarily by four parameters: s11, hs, hp, and ρp. These
parameters are responsible for up to 40% of the FRF variance
for frequencies close to the resonance. Additionally, it is
observed that the impact of these parameters in the FRF
variance decreases significantly at resonance, indicating that
the rest of the parameters involved in the dynamic of the
harvester acquire more importance. Nevertheless, the four
parameters mentioned, or a combination of them, still impact
the total variance of the FRF at a minimum of 20%. On the
other hand, the scenario Unc-M-I is driven predominantly by
L and s11, which is expected since the major difference

Table 9. Expected maximum response of the harvester. Values refer to the nominal configuration.

Expected natural frequency

Scenario Configuration A Configuration B Configuration C

Unc ∣ ∣H0.32 max V Nom ∣ ∣H0.38 max V Nom ∣ ∣H0.26 max V Nom

Unc-I ∣ ∣H0.32 max V Nom ∣ ∣H0.35 max V Nom ∣ ∣H0.25 max V Nom

Unc-M ∣ ∣ ‐H0.29 max V MNom ∣ ∣ ‐H0.30 max V MNom ∣ ∣H0.23 max V Nom

Unc-M-I ∣ ∣ ‐H0.26 max V MNom ∣ ∣ ‐H0.28 max V MNom ∣ ∣H0.22 max V Nom

Nominal values = -∣ ∣Hmax 0.08 V s mV Nom
2 1 = -∣ ∣Hmax 0.02 V s mV Nom

2 1 = -∣ ∣Hmax 0.02 V s mV Nom
2 1

= -∣ ∣ ‐Hmax 0.13 V s mV MNom
2 1 = -∣ ∣Hmax 0.05 V s mV Nom

2 1 = -∣ ∣Hmax 0.04 V s mV Nom
2 1

Table 10. Confidence interval of 80% for the maximum response.
The confidence intervals are expressed as percentages of the
respective expected values.

Confidence interval

Scenario Configuration A Configuration B Configuration C

Unc −72% to 136% −69% to 117% −74% to 150%
Unc-I −72% to 138% −70% to 130% −75% to 152%
Unc-M −72% to 144% −71% to 140% −76% to 156%
Unc-M-I −72% to 149% −73% to 149% −76% to 157%
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Figure 4. Frequency response function associated with the output voltage of a PEH (Configuration A) excited with different acceleration
frequencies close to the first resonance. The first natural frequency is 28.5 Hz for Unc and Unc-I, and 14.2 Hz for Unc-M and Unc-M-I.

Figure 5. Sobol indices associated with the output voltage of a PEH (Configuration A) excited with different acceleration frequencies close to
the first resonance. The first natural frequency is 28.5 Hz Unc and 14.2 Hz for Unc-M-I.
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between the scenarios is the uncertainty assigned to L (as was
discussed previously). For this case, the contribution of L and
s11 is close to the 35% of the total variance of the FRF for any
frequency studied.

In configuration B (figure 6), the parameters s11 and ρp
contribute to 20% of the FRF variance for the Unc scenario;
while the parameters L and s11 contribute to 35% of the FRF
variance for scenario Unc-M-I. For configuration C (figure 7),
the greatest contribution to the FRF variance (20%) for the
Unc scenario is attributed to three parameters: s11, hp, and ρp.
On the other hand, the variance in scenario Unc-M-I is driven
by L, s11, and hp. Ultimately, regardless the configuration of
the harvester, we can conclude that the most important
parameters for the estimation of the FRF are: s11, hp, and ρp
for the scenarios Unc and L, s11, and hp for the scenario Unc-

M-I. In other words, if the uncertainty associated with s11, hp,
ρp, and L is removed, then the FRF variance is decreased by at
least 20%, independent of the harvester configuration and the
scenario established.

To show the impact of s11, hp, ρp, and L in the FRF
variance, we compared the expected FRF and the confidence
interval of 80% with and without assumed uncertainties in s11,
hp, ρp, and L. In particular, figure 8 shows the referred
comparison for Configuration A under the Unc scenario. The
left figure shows the nominal FRF with its corresponding
expected value. Red is assigned to the configuration where
s11, hp, ρp, and L are free of uncertainties, whereas gray
corresponds to the case presented in figure 4. Here, the
advantage of controlling the uncertainties in the referred
parameters is evident since the expected curve closely

Figure 6. Sobol indices associated with the output voltage of a PEH (Configuration B) excited with different acceleration frequencies close to
the first resonance. The first natural frequency is 46.8 Hz for Unc and 17.5 Hz for Unc-M-I.

Figure 7. Sobol indices associated with the output voltage of a PEH (Configuration C) excited with different acceleration frequencies close to
the first resonance. The first natural frequency is 114 Hz for Unc and 44 Hz for Unc-M-I.
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approximates the nominal one. The figure on the right pre-
sents a visualization of the FRF variance reduction.

5. Conclusions

A robust framework to propagate uncertainties in PEHs is pre-
sented. The framework presents a series of significant advan-
tages: (1) it is compatible with any well-known energy harvester
performance predictor (deterministic models), (2) it is indepen-
dent of the number of piezoelectric and substructure layers, and
(3) it allows us to define expected values and confidence intervals
for the FRF associated with the output voltage.

An extensive literature review was conducted to identify
the common uncertainties related to the geometric and elec-
tromechanical properties of PEHs. For the most common
commercial piezoelectric harvesters, the properties of the
piezoelectric material exhibit the greatest variances compared
to that of the remaining parameters (close to 20% of their
nominal values).

For the configuration studied, the fundamental frequency of
the harvester can vary by approximately ±10% of the nominal
value. Important differences between the expected and nominal
peak of the FRF were identified, revealing that the probability of
obtaining the nominal peak amplitude is less than 10%. In
addition, a global variance-based sensitivity analysis was
implemented. The highest sensitivities on the FRF were identi-
fied as the piezoelectric layer thickness, its elastic modulus, and
its density. The contribution of these three parameters to the
output voltage variability lies between 20% and 40%. Although
the reliability of the framework was demonstrated by the proper
use of the model predictor and the Monte Carlo method, it is
also important to conduct an extensive experimental test (which
is proposed as a future work) to propose a general method to
update the uncertainties and compare them with the predictions.

In general, the results obtained endorse the need to quantify
and propagate the uncertainties in PEHs. In this sense, the fra-
mework presented constitutes a powerful tool in the robust
design and prediction of PEH performance.
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