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Abstract—Multimedia searches often return items that can be
categorized into several “topics”, allowing users to disambiguate
and explore answers more efficiently. In this paper we investigate
methods for clustering tags associated with multimedia search
results, where each resulting cluster represents a topic computed
online for that particular search. We specifically investigate the
applicability of community detection algorithms to the tag graph
induced from the search results. This type of approach allows us
to exploit tag similarity and create ad-hoc topics for each search,
without specify the number and sizes of clusters a priori.

In this work we experiment with well-known algorithms in this
field and propose two new methods based on adaptive island cuts.
Using the Social20 dataset (a collection gathered from Flickr) we
evaluate several community detection methods, with quantitative
analysis of each algorithm in terms of the relative number of
communities (which we interpret as topics) that they produce and
their sizes, as well as qualitative analysis of topics per human
judgement. Our evaluation shows that it is possible to extract
ad-hoc topics for search results using community detection,
but that different community detection methods produce very
different results. In particular, our proposed methods produce
more compact and less noisy clusters as well as less relative recall
when compared to methods that produce much larger clusters.

Index Terms—tag clustering; multimedia retrieval; community
detection; topic detection

I. INTRODUCTION

A main concern in information retrieval on the Web, and in
particular for multimedia search engines, is how to improve
user interaction with search results. A common mechanism
used in commercial image search engines (and other types
of multimedia searches) to help users quickly make sense of
results is to apply clustering in order to organize similar results
into groups [1], [2]. For example, results can be shown in
groups with similar content (e.g., images with similar color
schemes) or with a similar topic. In this paper we focus on
topic-based clustering, which can help users understand search
results by displaying multiple interpretations of ambiguous
textual queries (e.g., the query “boxers” may refer to dogs,
fighters, or underwear), or different aspects of the same
interpretation (e.g., for “boxer dogs”: puppies, faces, etc.).

As opposed to clustering by content, which relies on audio-
visual features (e.g., [3], [4], [5]), topic similarity clustering
traditionally relies on textual features, such as the text that
surrounds an image in a Web page, or human annotations
(tags) associated to multimedia objects. Many of the methods
that exploit surrounding text extend LDA [6] (more recent
works are described in [7], [8]). However, it is common to

find multimedia repositories, such as Flickr1 and Last.fm2, for
which only user-generated tags are usually available.

We focus on topic clustering using tags. Specifically, we
address the problem of obtaining topics using only the tag
information in the multimedia search results for a given query.
We aim for a methodology that allows us to provide ad-
hoc topics for any query in an online fashion without prior
knowledge of the multimedia domain or access to the complete
multimedia collection. This has the advantage of allowing
lightweight distributed computation of topics (i.e., client-side)
while at the same time addressing long-tail queries that cannot
be precomputed on the server-side. Our methodology might be
used to aggregate results from multiple search engines, with
different types of multimedia, as long as results are tagged.

For this topical clustering, we research the application
of well-known community detection algorithms on a tag-
graph representation of the search results, with the hypothesis
that densely connected communities of tags in the tag co-
occurrence graph (a graph where tags are nodes and edges
indicate two tags co-occurring on an item) correspond to
topical clusters [9]. We thus propose a general framework for
discovering topics on multimedia search results. Our frame-
work leverages existing approaches for community detection.
To address limitations discovered from the initial evaluation,
we also propose two novel methods for community extraction.
These methods require no prior knowledge other than tagged
search results; likewise they do not try to “interpret” tags and
hence our methods are language-agnostic. Taking the Social20
dataset, we compare the community detection techniques
quantitatively in terms of the number and sizes of clusters
produced, and qualitatively in terms of how related the terms
are in each cluster according to human judgement.

II. BACKGROUND

We provide a summary of the background literature on
multimedia search results clustering, tag-based clustering and
community detection algorithms.
Multimedia search results clustering: The deluge of mul-
timedia data on the Web has raised the need for multimedia
search engines to provide mechanisms to enhance user interac-
tion with search results. Several studies have shown that topi-
cal clustering of documents help users to quickly make sense

1http://flickr.com
2http://last.fm



of the search results. Some approaches use text from Web
pages [2], comments from multimedia sharing platforms [10],
and metadata associated to multimedia objects [11].

Given that there is a large amount of unannotated mul-
timedia objects on the Web, many works focus on how to
automatically assign tags to unannotated multimedia [27] as
well as how to refine tags [28] by aggregating user-generated
content. Li et al. [29] survey related work on this topic.

Besides text-based multimedia search clustering, hybrid
techniques fuse multimedia content and context data for build-
ing clusters. For example, adding audio-visual features (e.g.,
color distribution, texture) can boost Web content and structure
(e.g., image surrounding text, image URL, hyperlinks) [1],
or user-generated metadata (e.g., title, tags, description) as-
sociated to multimedia content [12]. Nevertheless, these ap-
proaches are not always scalable due to the high computation
cost at the audio-visual feature extraction stage. Applications
based on purely text-based analysis are hence considered
relevant for modern applications. Moreno and Dias [13] study
the application of text-based multimedia search clustering on
the context of Web search via mobile devices.

Tag-based multimedia clustering: Multimedia resources of-
ten lack descriptive text; instead, tags have emerged as a
convenient way to describe and (partially) organize multimedia
objects. Although tag-based clustering could be considered as
text-based clustering, when considering tags, we do not have
the notion of word position or proximity (tags do not follow
a relevance order), nor do we have word frequencies within
a document (tags are assigned at most once). Thus, instead
of applying text-based topic extraction techniques, the typical
approach is to apply graph-based techniques.

Most of the literature on applying graph-based approaches
to extract structure from tag co-occurrences focuses on build-
ing taxonomies. Such taxonomies allow users to browse tags
and tagged resources in an intuitive manner. Strohmaier et
al. [14] survey the most common taxonomy-induction ap-
proaches. Such hierarchical approaches are not always suitable
for representing relationships between tags because tagging is
inherently flat, with no explicit information on how broad or
narrow tags are. Some proposals address this issue by using
external hierarchical sources of knowledge, such as Word-
Net [15], or shallow taxonomies arising from user-specified
collections [16], or domain ontologies [17]. However, domain-
independent datasets often only cover general tags but not
proper nouns or acronyms, while domain-dependent datasets
are often not available.

In this work, we consider the induction of a topical taxon-
omy as orthogonal to the goal of clustering, wherein we wish
to group related tags and tagged resources without worrying
which are broader than which. We view the problem of clus-
tering as finding closely-knit neighborhoods or communities
in the flat tag co-occurrence graph.

Community Detection: A community is a densely connected
sub-graph within a graph. Community detection is a graph
partitioning problem whose goal is to identify the “densest”

possible set of communities that form a partition. A naive
approach would be to apply a standard minimum-cut method
that partitions a graph while minimizing the cost of the
cut (e.g., the number of edges cut). However, minimum-cut
methods generally force a fixed number of cuts or partitions
rather than identifying “natural” dense subgraphs. Instead, one
of the main goals of community detection is to identify the best
communities, irrespective of their number; this is very useful
for our scenario since it avoids having to provide, a priori, a
desired number of clusters. Fortunato [18] and Papadopoulos
et al. [9] describe a variety of metrics and algorithms that
address the community detection problem.

Many community detection methods focus on optimizing a
general metric. Modularity, the most common metric, is the
ratio of all edges in the graph that fall within the communities,
minus what would be expected in a graph with the same
number of vertexes and edges but where edges are assigned
randomly. Unfortunately, finding the optimal community con-
figuration is intractable; hence algorithms employ approx-
imations such as local modularity measures [19], spectral
analysis [20], etc. Another issue is the resolution limit of
modularity. In large graphs, even a single edge between two
communities is seen as an “unlikely event”, causing small
communities to be merged into a few very large communities.

Besides optimizing modularity, authors have explored other
options for community detection, e.g., applying a top-down
clustering approach [21], or analyzing the structure of the
graph [22], or how information flows within it [23], [24].
Novelty: We apply a clustering of nodes in the tag co-
occurrence graph without inducing a taxonomy and without
needing external knowledge. Given the extensive body of work
in community detection, and the lack of need to specify a
number of clusters or cuts, we see it as natural to research
applying such techniques to our clustering problem. We thus
evaluate, both quantitatively and qualitatively, the clusters
produced by various community detection techniques in terms
of corresponding to topics recognizable to users. Based on
initial results, we found that existing community detection
techniques tend to return too few large clusters, or too many
small clusters, etc.; hence we propose two novel methods
based on island cuts [25], [26].

III. FRAMEWORK FOR TOPIC DETECTION

We introduce a framework to detect semantically relevant
groups of tags (“topics”) associated to queries encoding user-
information needs. We are motivated by the use-case of
performing an online clustering of heterogeneous multimedia
search results using only the tags in the results.

Figure 1 shows the proposed framework, which consists of
the following four main stages:
1) Retrieval of multimedia resources based on a specific

query: Search results are the starting point for our frame-
work. In the interest of generality, we assume as input, a
collection of items associated with a set of tags, over which
we perform clustering using tag co-occurrence information.
Since we reduce the representation of multimedia content
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Fig. 1. Framework for topic detection.

Fig. 2. Partial Tag Graph extracted from search results for query “tiger”.

to tags, in theory, our framework is able to combine
different types of multimedia resources.

2) Construction of the Tag Co-Occurrence Graph (Tag
Graph): The tag graph is the key structure over which
our framework works. Given a finite bag3 of resources R,
where each resource is represented as a set of tags, we
define the tag co-occurrence graph as Gλ = (V,E, λ),
where V = ∪r∈Rr are the vertexes, E = {(v, v′) | ∃r ∈
R such that v ∈ r, v′ ∈ r and v 6= v′} are the edges, and
where λ : E → R is a weighting function that labels each
edge in E with a real value.
The simplest weighting scheme for λ counts the number of
co-occurrences for a pair. Nevertheless, cardinality-based
weights might be sensitive to the number of resources
considered; thus we propose to use a more robust weighting
scheme such as structural similarity [22]:

sim(v, v′) =
#(nv(v) ∩ nv(v′))√
#nv(v)×#nv(v′)

where v and v′ are nodes, n(v) = {v′′ | (v, v′′) ∈ E}
are the neighbors of v in the undirected graph, nv(v) =
n(v) ∪ {v} includes v and #S denotes the cardinality of
the set S.

3) Tag Clustering based on Community Detection Algorithms:
We employ community detection algorithms to avoid hav-
ing to specify the number of clusters a priori. Under this
approach, no additional knowledge about the multimedia
resources is necessary to detect relevant groups of tags
(other than tag co-occurrence). Initial empirical experiences
revealed that using existing community detection algo-
rithms [9] to cluster search results from the Flickr image

3A bag is a set that allows duplicates. We need to consider a bag for the
weighted version since, e.g., two images may have the exact same set of tags.

search engine often led to unintuitive topics (e.g., we found
clusters that were too large and grouped unrelated terms).
We hence also propose two new community detection
algorithms based on island cuts [25].

4) Topic representation using tags: Ideally, it would not be
necessary to apply any additional process to the output of
the community detection algorithms. However, for those
algorithms that return large communities, we would need to
apply some ranking technique in order to get a manageable
subset of tags. The simplest approach to rank tags inside a
community would be sorting them by frequency or degree.

The main characteristics of our framework are:
– Multimedia-type independence: We do not employ content-

based features in the tag graph construction process. Our
model could potentially discover topics across different
types of multimedia resources in a transparent fashion.

– Tag and topic independence: Our framework does not re-
quire any training data, it is not fixed to domain or language,
nor to a limited or fixed number of topics.

– Query specific: Tag graphs are built with respect to a specific
query, which helps disambiguate (non-query) polysemous
tags; e.g., the tag jaguar appearing on results for a query
“zoo” will (likely) only refer to the cat, not the car4.

– Detection of concepts online: Given adequate physical in-
frastructure and optimized community detection algorithms,
it is possible to perform multimedia topic detection in an
online fashion (e.g., on the client side).

IV. GRAPH CLUSTERING METHODS

Our novel graph clustering methods are based on the notion
of islands first introduced by Zaveršnik & Batagelj [26].

Islands: An island is a subgraph that is maximal in its
neighborhood for a given property of the graph [25], [26].
Zaveršnik & Batagelj consider two types of islands: vertex
islands and edge islands. An island is defined relative to some
vertex (or edge) property p, where no external neighbor of the
island has a higher value for p than any vertex (or edge) in
the island. Also, if no such neighbor has an equal p value to
a vertex (or edge) within the island, that island is regular.

Islands are built following a “greedy” algorithm that initial-
izes islands with the vertexes (or edges) that have the highest
values for the given property, and then enlarge and/or combine
those islands by traversing the graph from these starting points
to include their neighbors. This process is similar to building

4Of course, if the query is “jaguar”, then the purpose of our methods is to
identify the different senses, such as cat and car.
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a spanning tree, except that it records the order in which the
vertexes (or edges) are added to the solution.

Identifying islands: We follow the high-level algorithm(s) for
extracting islands proposed by Zaveršnik & Batagelj [25], [26].

Island hierarchy based on vertexes: We first initialize a hierar-
chy H = (VH , EH). Given G, we iterate over its vertexes V in
descending order of their value for the given vertex property
p, where for each v ∈ V , we first add it to VH . Next, we
connect v to all ports v′ (the last vertex added to an island) of
existing islands in H that are neighbors of v in G: we add the
edge (vi, v

′
i) to EH , where v now replaces each such v′ as a

port for a new larger island. For a vertex-island to be regular,
it cannot have an edge in EH that directly connect two nodes
having the same value for p.

Example 1. Assume we take PageRank [30] as the vertex
property p. If we compute the PageRank of every vertex in the
tag graph in Figure 2 and sort them (descending) we obtain:

V = (baseball, detroit, orange, cat, . . . , color)

We start with H = (VH , EH) blank. Iterating over V, we
first add baseball to VH . Next, we add detroit, which is a
neighbor of baseball in G. Since baseball is a port in H ,
we add the directed edge (baseball,detroit) to EH . Next,
we add orange but do not connect it to anything since it has
no neighbor already in H . Fig. 3 shows the final hierarchy.

Island hierarchy based on edges: We start with H =
(VH , EH) where VH contains sets of vertexes representing
islands, and EH ⊆ VH × VH . We initialize VH with all
singleton vertexes and EH as empty. Given G, we iterate
over its edges E in descending order with respect to a given
property p. For each edge, we retrieve the largest islands in VH
containing both nodes. If they are not the same, we create a
new island which is a union of the two and add a directed edge
from the new island to the two old subislands. Once all edges
are analyzed, H is a tree where all nodes in VH are edge-
islands and a subset of non-redundant edges in EH represent
a subisland relationship. For an edge-island to be regular, it
cannot have an incoming edge in H that was derived from an
edge with the same weight.

Example 2. Let’s assume we sort the edges E in the tag graph
of Fig. 2 in descending order with respect to the structural
similarity value, giving us the list E:
E = {(worldseries, mlb), (city, series), (petal, lily),
. . . , (color, usa)}
This time, H = (VH , EH) where VH contains sets of vertexes
representing islands, and EH ⊆ VH × VH . We take the first
edge (worldseries, mlb) and retrieve the largest islands in
VH containing both nodes. Since they belong to different
islands, we create a new island that contains the two old
subislands. We repeat the process until all edges have been
processed. We show the final hierarchy in Fig. 4.

Adaptive Island Cuts (AIC): To avoid single-vertex islands,
and single-island hierarchies, Zaveršnik & Batagelj [25], [26]
select valid islands based on lower and upper bounds [k,K].
We aim to be more flexible with the size of islands, so we
set a threshold on the graph density for what we consider to
be valid islands. We state that the closer to a clique an island
is, and the larger the island is, the better the island is. We
capture the trade-off between the density of the island and its
size using a density threshold:

δ(x) =
x(x− 1)

2
·max

(
log2

(
x+ k

x

)
, t

)
where x is the number of vertexes in the island, k is the
minimum number of vertexes allowed for an island (k = 3),
and t is a fixed lower bound. The left term of the product is
the number of edges in a clique with x vertexes (excluding
loops). Assuming t = 0, the rightmost term is a logarithmically
decaying ratio on the number of vertexes in the range (0, 1].
However, after our initial tests returned large islands with low
density, we added t as a practical compromise: it offers a
parameterizable fixed lower bound on the ratio to ensure a
minimal density for larger islands. Also, in order to avoid
outliers [22], we additionally require that all vertexes in the
island G′ = (V ′, E′) have at least log2(#V

′) edges for it to
be considered a community.

To sum up, we consider an island G′ = (V ′, E′) to be a
community iff: (1) the island is regular, (2) #V ′ > k (where
k = 3), (3) #E′ ≥ δ(#V ′), AND (4) there does not exist
a v′ ∈ V ′ such that #n(v′) < log2(#V

′). Note that (1)
and (2) correspond to the criteria proposed by Zaveršnik &
Batagelj [25], [26], whereas we add (3) and (4) to avoid
the need for a fixed upper bound K and to correspond
with our intuition of a community. We start the selection of
communities from the most general island (with all vertexes)
and visit subislands, checking that the criteria are met.

Example 3. We return to the hierarchy in Fig. 4, where the
final communities are highlighted with shaded boxes. In terms
of how these communities were computed, we analyze every
island in the hierarchy starting at the top (which corresponds
to the bottom of the figure). We first evaluate the island that
corresponds to the full graph. We assess the graph using
all conditions previously defined, where Th. indicates the
threshold value, Ob. the observed value and Pass? whether
or not the condition is satisfied.
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Fig. 4. Hierarchy for edge islands with final communities shaded (‘∗’
indicates an edge affecting regularity)

Since the full graph does not satisfy all conditions (it fails
criteria (3) and (4)), we proceed to analyze its subislands in-
dependently. We first analyze the left subisland with vertexes:
V ′ = {w.series, mlb, baseball, detroit, series, city, usa}

Th. Ob. Pass?

REGULAR? 3 3 3
MIN VERTEXES (k) 3.0 7 3
MIN EDGES (δ(#V ′)) 10.8 15 3
MIN CONNECTIVITY (log2(#V

′)) 2.8 3 3

This subisland satisfies all conditions and is accepted as a
community. Fig. 4 highlights the final set of communities.

V. EVALUATION

The goal of this evaluation is to find out if community
detection algorithms produce cohesive semantic topics and to
measure, as well, the quality of the topics produced by each
algorithm. Cohesiveness in this case is complex to measure,
as it must evaluate whether the tags in a particular cluster are
semantically related. This is a subjective task and thus we seek
human judgement. In addition, the complete evaluation dataset
is huge, including thousands of topics (clusters). Thus, we ad-
dress this issue by sampling the resulting topics and only eval-
uating the resulting samples. The evaluation data is available
for download at http://dcc.uchile.cl/∼tbracamo/communities/.

Evaluation dataset: We use Social20 [27], which is a public
dataset containing metadata for 20,000 images from Flickr that
match a set of 20 keyword queries (1,000 results per query).
Each image has a unique ID, an owner ID, and a list of tags.
All tags have been lemmatized. In addition, we remove tags
that have been used by only one owner.

Algorithm settings: Given that our evaluation relies on human
judgement, we limit our evaluation to two settings, which were
chosen based on preliminary experiments.

AIC-EDGE: With structural similarity as edge property; and
k = 3, t = 0.33 for the density function.
AIC-VERTEX: With PageRank as vertex property5; and k =
3, t = 0.33 for the density function.

5We use structural similarity as transitional weights.

Algorithms for comparison: We compare against the follow-
ing community detection algorithms [9] using the same input
graph as that of the AIC-* configurations.

EIGENVECTOR [20] (abbr. “EIGENVEC”) aims to maximize
modularity.
INFOMAP [24] uses random walks to emulate information
flow in a network.
LABEL PROPAGATION [23] (abbr. “LBLPROP”) uses a recur-
sive voting scheme until it reaches a fixpoint.
MULTILEVEL [19] (abbr. “MULTILVL) is similar to a hier-
archical agglomerative clustering technique.
SCAN [22] (abbr. “MSCAN”) is a variation of the clustering
algorithm DBSCAN [31] for graphs.

Community sizes: In Table I, we present statistics for the
communities identified for the tag graphs by each algorithm.
After applying the community detection algorithms in our
dataset, we see a split of the algorithms into two groups based
on an order of magnitude difference in the average community
size computed: LBLPROP, EIGENVEC and MULTILVL pro-
duce much larger/fewer communities than AIC-*, INFOMAP
or MSCAN. In fact, the former algorithms tended to produce
one “super-community” with the vast majority of tags, and a
few other small communities.

TABLE I
STATISTICS ABOUT COMMUNITIES COMPUTED BY DIFFERENT METHODS

ACROSS ALL 20 QUERIES

Method Total Community Size
Max Min Avg S.Dev

AIC-EDGE 649 216 3 7.33 17.94
AIC-VERTEX 533 142 3 6.47 15.27

EIGENVEC 157 542 4 81.91 107.43
INFOMAP 906 79 4 6.54 17.93
LBLPROP 123 1446 4 104.58 4.87
MULTILVL 189 393 4 68.17 82.80
MSCAN 1,269 166 4 7.31 8.24

User Study Design: We design a user evaluation to measure
how well community detection algorithms identify topics from
the tag graphs in query results. Each user is presented with
a set of tags from a cluster that has been created using one
of the community detection algorithms. Users are given the
option to remove terms that they do not understand. The user
is then asked to choose the largest subset of tags that they
(subjectively) consider semantically related. In addition, the
user can state that they do not find any of the terms to be
related. We randomize the order in which tags are shown to
remove any bias due to position. Fig. 5 shows an example.

As we mentioned earlier, some clusters contain over a
hundred tags, and the complete set of clusters produced by
all algorithms is too large for human evaluation. To mitigate
this problem, we designed the following sampling method that
we applied to the results of all algorithms: (1) For each query
we identify the subset of tags assigned to a cluster for each of
the algorithms (not all the tags are assigned to clusters). We
refer to these tags as the seed set for the query. In addition, we



Fig. 5. Human Intelligent Task (HIT) design.

remove tags that have one character and those that have non-
ASCII encoded characters (e.g., xab, xd4). (2) We randomly
select 10 terms from the seed set and retrieve the community
that they belong to according to each algorithm. (3) For each
community we show at most 10 tags for user evaluation. If
the community contains more than 10 elements, we first add
those tags that appear in the seed set and then randomly select
from the remaining tags until we reach a total of 10. With this
sampling approach, we ensure that we are evaluating similar
topics for each algorithm.

In Table II, we show some of the characteristics of the
sampled dataset that is evaluated by users. In total, we are
left with 660 communities (17.3% of all communities), of
which 633 correspond to unique sets of tags (27 identical
communities were identified by more than one algorithm).

TABLE II
STATISTICS ABOUT COMMUNITIES SAMPLED FOR THE USER STUDY

ACROSS ALL 20 QUERIES

Method Count Community Size
Max Min Avg S.Dev

AIC-EDGE 89 10 3 6.06 2.93
AIC-VERTEX 81 10 3 5.64 3.00

EIGENVEC 66 10 4 9.67 1.27
INFOMAP 167 10 4 6.05 2.20
LBLPROP 39 10 4 9.33 1.69
MULTILVL 86 10 5 9.80 0.87
MSCAN 132 10 4 7.24 2.34

Evaluators: We recruited 40 students from two engineering
schools in Santiago, Chile. Most of the tags in our evaluation
were in English, therefore, participants were asked to have at
least an intermediate level of English (i.e., to normally read
and understand news and non-technical books in English).
Evaluations were split into 3 sessions. We collected 3,165
evaluations, averaging 79.1 (±40.4) assessments per user,
and 23.8 (±22.2) seconds per question. We found that 50%
of users knew the meaning of at least 90% of the tags in
the communities they evaluated, whereas all users knew the
meaning of more than 67% of the tags.

Inter-assessor agreement: Each community in our evaluation
dataset is reviewed by 5 users in order to allow computing of

Eigenvec Infomap LblProp mSCAN MultiLvl AIC-edge AIC-vertex
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Fig. 6. Comparison of majority-based precision for the methods considering
only sampled communities for which an agreement of α > 0.4 was found
and assessors found a concept.

agreement measures. We use Krippendorff’s alpha (α) [32]
to measure agreement because it can be used in cases when
some responses are left blank (i.e., cases in which users did not
understand a tag). Using this metric, we find that the median
value of α for most communities falls into the range 0.2 <
α ≤ 0.4 (fair agreement), except for those with the minimum
3 tags, where lower agreement was observed: we believe it
was more difficult for users to identify a “topic” with such
few terms.

Precision based on majority voting: In order to compute the
precision of a community of tags T , we count each tag as:
relevant (TR or 1: if selected by the user as related to other
tags in the cluster), unknown (TU or 0: if the user marked the
tag as unknown to them) or irrelevant (TI or −1: if the user
did not select the tag or if it was part of a community, which
the user considered as only unrelated tags). We then consider
TR as true positives, TI as false positives, and discard TU ;
thus, we compute the precision as P (T ) = #TR

#T−#TU
. We

only mark a tag as TR, TU or TI for the cases when there is
a majority consensus.

Precision measures are obtained considering sets of tags
for which there was moderate or high agreement (α > 0.4),
leaving 263 (39.8%) of the 660 sampled communities. Figure 6
analyzes the resulting precision6. The methods we propose
based on islands (AIC-*) have higher mean and median
precision (> 0.6) than the other community detection methods;
though there was no significant difference between the median
precisions of AIC-EDGE and AIC-VERTEX (p-value ≈ .287),
there was a significant difference from both AIC-* methods to
all other methods included in the evaluation (p-value < .05).7

Relative recall: An algorithm that creates smaller commu-
nities tends to have higher precision, but also tends to split
related terms into different communities. Hence, we must
also measure the recall of each method. Since there is no

6The box-plots of this paper are Tukey box-plots where the solid line
denotes median, the dashed line denotes mean, box-edges denote quartiles,
whiskers denote the lowest/highest observation with 1.5 IQR of the box-edges,
and other points denote outliers.

7p-values were computed using the Mann-Whitney U test.



groundtruth that tells us which tags are truly related for a
given query, we create a data-driven groundtruth, and use it
to measure relative recall. The idea behind this measure is
that for each query, we compute the pairs of tags that users
agreed by majority to be related across all algorithms. We call
this number total positives. Then, for each algorithm we check
how many of those pairs appear in the same community. We
call this number true positives. Relative recall is then defined
as the ratio of true positives over total positives. To identify
pairs of related tags, given a user assessment for a set of tags
T = {t1, . . . , tn}, we use the function:

rel(ti, tj) =

 1 ti = 1 ∧ tj = 1
0 ti = 0 ∨ tj = 0 ∨ (ti = −1 ∧ tj = −1)
−1 otherwise

where 1 indicates relatedness, 0 indicates neutral, and −1
indicates not related. We then take the sum of this function
for all pairs across all user assessments for a specific query
and algorithm. To compute the relative recall of a particular
algorithm and query, we take the sum of all such pairs for all
other algorithms and select those with a positive score (> 0) as
related pairs by consensus8. We compute the relative recall for
that algorithm and query as the ratio of related pairs appearing
in the same community vs. all such pairs.

One concern using related terms selected by consensus is
again that users may have different topics in mind for why
terms are related. To help mitigate this issue, we compute
relative recall on a per-query basis. We also compute a
weighted version of relative recall where we take the sum
of the rel(·, ·) function for all positive pairs appearing in the
same community divided by the sum for all such pairs, thus
giving more weight in the recall measure to pairs that were
repeatedly considered related by different users for that query.
In the end, both the weighted and non-weighted results were
very similar, hence we show only the weighted results.

We present weighted relative recall for each algorithm
across all queries as a box-plot in Figure 7. We see that
algorithms producing much larger average community sizes
have much higher relative recall: LBLPROP (avg. community
size 104.58), EIGENVEC (81.91) and MULTILVL (68.17), have
larger communities and thus higher relative recall than AIC-
EDGE (7.33), AIC-VERTEX (6.47), MSCAN (7.31), and IN-
FOMAP (6.54). On the other hand, amongst the four algorithms
producing smaller communities, we see that AIC-* methods
have significantly higher recall (and precision) than MSCAN
or INFOMAP (p-value < .01).

VI. CONCLUSIONS AND FUTURE WORK

The work presented in this paper is motivated by the goal of
producing a topical clustering of multimedia resources based
on tags. We focus on community detection techniques since
there is a variety of established methods proposed in the liter-
ature and they have the significant benefit of not requiring a

8Unlike typical relative recall measures in IR, we do not include the pairs
of the algorithm under testing since different algorithms may have different
numbers of related pairs associated with them and each algorithm has a recall
of 1 for its own pairs.
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Fig. 7. Comparison of relative recall for the methods.

fixed number of clusters to be provided beforehand. However,
without this fixed criterion, different algorithms can produce
very different results. We found two well-distinguished types
of algorithm: three algorithms that produced large communi-
ties (avg. size > 68), and four algorithms that produced small
communities (avg. size < 8) including the two we propose.

One major obstacle faced in this work was deciding on
appropriate methods for evaluation. Our user evaluation was a
costly process in terms of manual effort expended by human
assessors, where this methodology puts a practical limit on the
variety of algorithms, configurations, datasets, etc., that can
be considered. On the other hand, it is not clear how one can
create, a priori, a gold standard for tag clusters, particularly
when, as we have seen from the results herein, users may often
disagree on the relatedness of sets of terms. From our user
study, we found that assessors had mixed agreement on which
tags were related in the set presented. Looking at assessments
with agreement (α > 0.4), the two methods we propose had
the highest mean and median precision. Considering relative
recall, our methods were well-beaten by those producing large
communities, but our methods outperformed the other two that
produce equivalently-sized communities.

Query-dependent annotation clustering has some unique
benefits: it is applied on smaller graphs and since it can be
applied client-side, it can reduce server load and can even
be used to aggregate results from multiple servers; also, by
clustering only resources relevant to a specific topic, it is
possible that the quality of clusters is improved with respect
to that topic given that polysemous tags are more likely be
used in the sense captured by the query.

There are still some open questions on which resolution
of community detection is most desirable for clustering mul-
timedia resources; our results are still inconclusive as to
which community size is more useful when clustering search
results themselves– whether smaller communities with better
precision, or larger communities with better recall. Also, when
considering online clustering, an important consideration is the
number of results returned by the engine.

Our next major step is to use the results of our tag-clustering
methods to investigate clustering on the level of resources,
asking users to evaluate the topic relatedness of, e.g., image



clusters or video clusters rather than the tags with which they
are annotated. We also plan to investigate the effectiveness of
community detection techniques for identifying topics in other
datasets with tagged multimedia search results.
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