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Abstract

We show that any 2-colouring of the 3-uniform complete hypergraph K
(3)
n on n

vertices contains two disjoint monochromatic tight cycles of distinct colours covering
all but o(n) vertices of K(3)

n . The same result holds if we replace tight cycles with
loose cycles.
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1 Introduction

Given a complete r-edge-colouring of graph or hypergraph K, the problem
of partitioning the vertices of K into the smallest number of monochromatic
cycles has received much attention. Central to this area has been an old con-
jecture of Lehel [2] stating that two monochromatic disjoint cycles in different
colours are sufficient to partition the vertex set of the complete graph Kn on
n vertices, for all n. This was confirmed for large n in [10] and [1], and more
recently, for all n, by Bessy and Thomassé [3].

For r ≥ 3, there exist r-edge-colourings of Kn which do not allow for a
partition of the vertex set into r monochromatic cycles [11]. On the other
hand, the currently best bound (see [6]) shows that 100r log r monochromatic
cycles are sufficient to partition the vertex set of Kn.

The problem transforms in the obvious way to hypergraphs, considering
r-edge-colourings of the k-uniform complete hypergraph K(k)

n on n vertices
and partitions into one of the many notions of cycles in hypergraphs. Here
we deal with loose and tight cycles. Loose cycles are uniform hypergraphs
with a cyclic ordering of its edges such that consecutive edges intersect in
exactly one vertex and nonconsecutive edges have empty intersection. On the
other hand, tight cycles are k-uniform hypergraphs with a cyclic ordering of
its vertices such that the edges are all the sets of k consecutive vertices. For
loose cycles, the best bound due to Sárközy in [12] shows that every r-edge-
colouring of K(k)

n admits a partition of its vertices into at most 50rk log(rk)
monochromatic loose cycles. Concerning tight cycles, to our best knowledge,
nothing is known. We refer the reader to [5] for related results.

Our main result establishes an approximate version of the problem for the
case of 3-uniform hypergraphs and two colours.

Theorem 1.1 For every η > 0 there exists n0 such that if n ≥ n0 then every
2-coloring of the edges of the complete 3-uniform hypergraph K(3)

n admits two
vertex-disjoint monochromatic tight cycles, of distinct colours, which cover all
but at most ηn vertices.

We note that a 3-uniform tight cycle on n vertices contains a loose cycle
if n is even. The proof of Theorem 1.1 guarantees that the two tight cy-
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cles obtained each have an even number of vertices. Hence, an analogue of
Theorem 1.1 holds for loose cycles.

We believe that the error term ηn in the theorem can be improved and that
every 2-colouring of the edges of K(3)

n admits two disjoint monochromatic tight
cycles which cover all but at most a constant number c of vertices (for some c
independent of n). Furthermore, we believe that the previous statement holds
for all k and not just k = 3. In a forthcoming article we confirm this for loose
cycles, where the constant c depends only on k.

2 Outline of the proof

Due to lack of space we only give a sketch of the argument, referring to [4] for
full details for the proof of Theorem 1.1.

The argument is inspired by the work of Haxell et al. [8] and relies on
an application of Łuczak’s method [9]. This reduces the problem at hand
to that of finding, in any 2-colouring of the edges of an almost complete 3-
uniform hypergraph, two disjoint monochromatic connected matchings which
cover almost all vertices.

Here, as usual, a matching M in a hypergraph H is a set of pairwise dis-
joint edges and M ⊂ H is called connected if between every pair e, f ∈ M
there is a pseudo-path in H connecting e and f , that is, there is a sequence
(e1, . . . , ep) of not necessarily distinct edges of H such that e = e1, f = ep
and |ei ∩ ei+1| = 2 for each i ∈ [p − 1]. Now, we call a matching M in a
2-coloured hypergraph a monochromatic connected matching if M is a subhy-
pergraph of a monochromatic component induced by the considered relation
of connectedness.

Our main result is the following, which might be of independent interest.

Theorem 2.1 Let H be a 3-uniform hypergraph on t vertices and (1− γ)
(
t
3

)

edges. Then any two-colouring of the edges of H admits two disjoint monochro-
matic connected matchings covering all but o(t) vertices of H.

We first give an outline of the proof of Theorem 1.1 assuming that Theo-
rem 2.1 holds, before dealing with Theorem 2.1 itself.

2.1 Proof of Theorem 1.1

For given η > 0 we apply the Strong Regularity Lemma (see [8] for details)
for 3-uniform hypergraphs to K(3)

n with suitable parameters to obtain a reg-
ular partition and the reduced hypergraph K on t vertices and (1 − γ)

(
t
3

)
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edges, where γ depends on η. Consider the 2-edge-colouring of K given by the
majority colouring over the triples of the regular partition.

Next, apply Theorem 2.1 to K to obtain the monochromatic connected
matchings Mred and Mblue covering all but o(t) vertices of K.

By using Mred and Mblue as a frame and applying a suitable embedding
strategy (see [4]) we find find two monochromatic disjoint tight cycles of even
length covering at least (1− η)n vertices of K(3)

n , as desired.

2.2 Proof of Theorem 2.1

We will need the following result concerning the existence of perfect matchings
in 3-uniform hypergraphs with high minimum vertex degree.

Theorem 2.2 ([7]) For all η > 0 there is a n0 = n0(η) such that for all
n > n0, n ∈ 3Z, the following holds. Suppose H is 3-uniform hypergraph on n
vertices such that every vertex is contained in at least

(
5
9
+ η

) (
n
2

)
edges. Then

H contains a perfect matching.

Denote by ∂H the shadow of H, that is, the set of all pairs xy for which
there exists z such that xyz ∈ H. We call a pair of vertices xy active if there
is an edge of H containing x and y. For convenience, we say that a set of
vertices U ⊆ V (H) is negligible in H if |U | ≤ 240γ1/6|V (H)|.
Lemma 2.3 ([8]) Let γ > 0 and let H be a 3-uniform hypergraph on t vertices
and at least (1 − γ)

(
t
3

)
edges. Then H contains a subhypergraph K such that

the following holds. Every vertex x of K is in an active pair of K, for all active
pairs xy there are at least (1 − 10γ1/6)t edges in K containing both x and y,
and V (H) \ V (K) is negligible in H.

For our proof of Theorem 2.1, suppose we are given a 2-coloured 3-uniform
hypergraph H = Hred ∪ Hblue on tH vertices and (1 − δ)

(
tH
3

)
edges. Ap-

ply Lemma 2.3 to H, with parameter γ depending on δ, to obtain K with
the properties stated in the lemma. We want to find two monochromatic
connected matchings covering all but a negligible set of vertices in K. Let
K = Kred ∪ Kblue be the colouring of K inherited from H.

Proposition 2.4 ([8]) The hypergraph K admits a partition {X, Vred, Vblue}
such that the following holds. The set X is negligible in K and there is a red
component R (a blue component B) such that, for every x ∈ Vred (x ∈ Vblue),
there are at least (1− γ)t vertices y ∈ V (K) with xy ∈ ∂R (xy ∈ ∂B).

We start by choosing two disjoint monochromatic connected matchings,
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Mred ⊆ R and Mblue ⊆ B, where R and B are components from Propo-
sition 2.4, which together cover as many vertices as possible. Let V ′

red =
Vred \ (V (Mred ∪Mblue) and V ′

blue = Vblue \ (V (Mred ∪Mblue)). Notice that if
both V ′

red and V ′
blue are negligible in K we are done. Also, observe that

there is no edge xy with x ∈ V ′
red and y ∈ V ′

blue such that
xy ∈ ∂R∩ ∂B.

(1)

Indeed, any such edge xy constitutes an active pair (by Lemma 2.3), and
as |Vred| > δt + 2, there must be a vertex z ∈ V ′

red such that xyz. This yields
a contradiction with the maximality of the matching Mred ∪Mblue.

We show that if |V ′
red| and |V ′

blue| are both greater than 2δt, then we can find
a pair xy contradicting (1). So we can assume, by symmetry of the argument,
that V ′

blue is negligible in K.
Next, because of the maximality of Mred ∪Mblue, each edge having all its

vertices in V ′
red is blue. By Lemma 2.3, V ′

red is negligible in K (in which case
we are done), or V ′

red is sufficiently large to induce a dense monochromatic
blue component B′ such that V ′

red \ V (B′) is negligible in K and satisfying
the hypothesis of Theorem 2.2. Therefore, the blue component B′ contains a
perfect matching.

At this point, we have three disjoint monochromatic connected matchings,
one in red (Mred ⊆ R) and two in blue (Mblue ⊆ B and M′

blue ⊆ B′).
Together, these matchings cover all but a negligible set of vertices in K. Notice
that B and B′ can not be the same component because of the maximality of
Mred ∪Mblue.

Our aim now is to dissolve the blue matching Mblue and cover all but a
negligible set (in K) of V (Mblue) with edges in R. To this end, we show that
V (Mblue) is negligible in K (in which case we are done) or, as a consequence
of Lemma 2.3, V (Mblue) is contained in Vred. Finally, by using the defect form
of Hall’s theorem, we cover the vertices of Mblue with a matching M′

red in ∂R.
In other words, Mred∪M′

red and M′
blue are the two monochromatic connected

matchings we had to find.
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