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Fig. 12. Node Power vs Simulation time for the Industrial Example

Fig. 13. Contention win rate for various routing and MAC combinations

Fig. 14. Power Consumption per Node for PEMAC without and with RPL

Fig. 15. Number of DIO messages received at every node location

VI. CONCLUSION

In this paper we analyzed the impact of different RPL
objective functions, oriented at optimizing latency and power
respectively, on the overall quality of service and network
lifetime for two different applications, from the environmen-
tal and industrial monitoring domains. We also investigated
how the use of different MAC variants, all stemming from
Asynchronous Scheduled MAC, impact power consumption
and latency, and how considering the MAC schedule when
constructing the RPL routing tables can lead to both energy
savings and performance improvements.
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Abstract—Wireless sensor networks are pervasive systems that
continuously demonstrate increase in growth by branching into
diverse applications. The state of charge is an indicator that con-
veys the amount of energy available in the battery, information
that contributes to better decision-making and energy-efficient
protocols by creating smart cross-layer designs. WSN research
trends portray the importance of energy-efficient systems by
prioritizing energy efficiency over other arguably equally impor-
tant aspects as throughput, channel utilization, latency, etc. This
demonstrates the impact of improving the energy conservation
techniques and extending the battery life of the sensor nodes. By
using Bayesian inference, more specifically particle filtering, it is
shown that the state of charge can be accurately estimated within
the linear region of the voltage-SOC curve. Battery discharge
experiments are compared to simulations of the voltage-SOC evo-
lution behavior using a state-space representation model, which
showed good agreement between the results. The SOC estimation
obtained by the particle filter yields essential information that
can, and should, be incorporated into MAC protocols.

I. INTRODUCTION

Wireless sensor networks (WSNs) are widely used in a vast
amount of applications and its use will continue to increase.
Some examples that aid the portrayal of growth in the use of
wireless sensing devices is observed in monitoring systems
for healthcare [1] and environmental phenomena [2] [3].
Despite the advances and improvements exhibited by WSN
technology for energy conservation, this remains a critical
point that directly influences the performance and lifetime of
the network. Several solutions have been proposed to improve
the energy conservation in WSN, some of these have focused
on the MAC protocols [4] [5], as they directly affect the
operating modes of the sensor nodes allowing an improved
power management, therefore reducing the energy consump-
tion and thus prolonging the life of the network. A significant
difference between traditional (oriented to cabled communi-
cations) MAC protocols and those designed for WSN is the
emphasis given to the power management of the network,
thus characteristics such as scalability, adaptability, fairness,
channel utilization, performance, and minimizing latency often

become a secondary priority in the pursue of achieving greater
energy efficiency in these networks [6] [7].

In [8] the lifetime of the network is defined as the lapse
of time between the start of operation of the sensors and
the failure of one or more sensors causing the network to
become inoperative. Various works are developed to estimate
the lifetime of the network, regardless of whether they take
in consideration the overall characteristics of the network or
the individual batteries of each sensor [8] [9]. Having tools to
estimate the lifetime of the network facilitates making timely
decisions regarding its operation, leading to the development
of autonomous and self-sustaining networks. As indicated
above the estimated lifetime of the network can be made
through the incorporation of information from the battery, for
instance, the amount of energy available, commonly denoted
as the state of charge (SOC), the temperature associated with
charging and discharging the battery, the battery cell degra-
dation, and other [10]. The SOC is a widely used indicator
in applications where the amount of energy available in the
battery can affect the proper operation of the device [10].
Due to the physical behavior exhibited by the batteries, the
SOC cannot be measured directly. As a corollary, this induces
the search for estimation methods capable of incorporating
information from measurable variables such as the discharge
current, voltage, and temperature [11]. In [12] authors indicate
that the non-linear characteristics of the battery must be
considered in the lifetime estimation as well as find a technique
which incorporates aspects such as temperature and battery age
that affect the node lifetime. The work in [12] summarizes the
different methods used to estimate the capacity of the battery
(electrochemical, voltage testing, and electromotive force) and
the techniques used for the lifetime estimation in WSN based
on voltage drop rate, quoted capacity and current consumption,
quoted capacity, and energy consumption. Another example is
presented in [13] where authors propose to determine the SOC
through the open circuit voltage (OCV) measurement. The
OCV voltage can be estimated by the power supply voltage of
the sensor node using the Analog to Digital Converter (ADC)



154154

present in the microcontroller of the sensor.
Over the last several years different methods have been used

to estimate the SOC, such as the Ampere-hour meter [14],
Open Circuit Voltage (OCV) measurement [15], Electrochem-
ical Impedance Spectroscopy (EIS) [16] and methods based
on battery modeling [10] [17] [18]. The methods based on
the modeling of the battery allows to estimate the SOC in
real-time and for the implementation of these methods it is
necessary to characterize the battery using a model that can be
electrochemical (physical), stochastic, or empirical [19] [20].
Among the methods based on battery modeling is the Bayesian
inference, which includes techniques such as Kalman Filter
(KF), Extended Kalman Filter (EKF) [21], and Particle Filter
(PF) [22]. These Bayesian-filtering tools require a predicting
step in which a state-space representation model allows us
to estimate the SOC and to have an update layer where the
observations are taken into consideration to further improve
the accuracy of the estimation [23] [24].

This work presents a PF technique to estimate the SOC. PF
is used here because it is a method that is able to estimate
the battery charge in real-time and this facilitates the relevant
information acquisition that may be considered by the MAC
protocols for management control of the operating modes of
the sensor. Moreover the SOC estimation based on PF allows
to consider the non-lineal behavior of the battery, aspects that
in WSN has been oversimplified by working with linear battery
models [25].

II. PARTICLE FILTER

A PF is a sequential Monte Carlo method whose main idea
is to represent the probability density function (pdf) through a
set of random samples with associated weights [22] [26]. The
PF consider to obtain samples from a target state probability
distribution πk(x0:k) and it is oriented to generate a set of
N � 1 particles with weights described by

{
w

(i)
k , x

(i)
0:ki=1...N

, w(i)
k > 0, ∀k ≥ 1, such that:

N∑
i=1

w
(i)
k φk(x

(i)
0:k) −−−−→N→∞

∫
φk(x0:k)πk(x0:k)dx0:k (1)

where x
(i)
0:ki=1...N is a set of support points, w

(i)
k is the

associated weight, x0:k corresponds to the state trajectory
from time 0 to k and φk is any integrable function πk. The
target distribution is chosen as πk(x0:k) = p(x0:k|y1:k−1),
which is the a posteriori pdf state vector, conditioned by the
noisy observations y1:k [22]. As in any Bayesian process,
the estimation process involves two main stages: prediction
and update. In the prediction stage, the trajectories of the
state vector are extended using a distribution of arbitrary
importance q(x̃0:k|x1:k−1), where x̃0:k(i) = (x0:k−1, x̃k).
In the update stage, the new weights w
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[10].

The efficiency of this process is improved if the variance
of the weights of the particles is minimized [22]. A com-
mon problem with the sequential importance sampling is the
phenomenon of degeneration, where a few particles begin
to have higher weights, while others appear with decreasing
weights. The latter case requires a significant computational
cost that is engaged in updating particles whose contribution
to the a posteriori pdf is negligible. A technique to see if this
phenomenon occurs, is to calculate the index:

Neff =
1∑N

i=1(w
i
k)

2
(2)

where wi
k is the normalized particle weight. Neff is a value

between 0 and N , where the degeneration is considered to
occur when the value Neff is less than 0.85N [27].

III. IMPLEMENTATION

To estimate the SOC based on PF it is required to have a
state-space representation model. In this work, it is proposed
to use the phenomenological empirical model presented in [10]
and it is defined according to (3), (4), and (5), where x1(k)
is an unknown parameter associated to internal impedance
and it is estimated applying artificial evolution concept, x2

is the measure of SOC; i(k) and v(k) are the current and
voltage of the battery at time k; ∆t is the sample time;
Ecrit is the expected total energy delivery by the battery;
ω1, ω2 correspond to the noises of the process and n is the
observation noise. The parameter v0, vl, γ, α and β are model
parameters and they are estimated off-line. v0 is the voltage
when the battery is fully charged, vl is the y-intercept of the
extrapolation of the second zone and γ, α, β are parameters
associated to the three zones in which the curve of the open
circuit voltage (OCV) is divided.

State transition equations:

x1(k + 1) = x1(k) + ω1(k) (3)

x2(k + 1) = x2(k)− v(k) ∗ i(k)∆t E−1
crit + ω2(k) (4)

Measurement equation:

v(k) = vl + (vo − vl)e
γ(x2(k)−1) +l (x2(k)− 1)

+ (1− α)vl(e
−β − e−β

√
x2(k))− i(k) ∗ x1 + n(k)

(5)

In [10], the OCV curve is described for (6), where the Voc

is the open-circuit voltage, v(k) is the voltage in the terminal
battery in the time k, i(k) is the current and Zp is the internal
impedance.

Voc = v(k) + i(k)Zp (6)

From (6) we obtain the observation equation of the state
space model, where Voc is defined according three zone, see
Figure (1). The first zone exhibits an exponential decay that
covers the range of SOC > 0.70 and it is mainly dominated
by the parameter γ (see (5)). The second zone covers the
range between 0.25 < SOC ≤ 0.7. This region exhibits a
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linear behavior and it is mainly influenced by the parameter
α. Finally, the third zone, which resides in the remaining range
of SOC ≤ 0.25, shows a sharp drop in voltage. This behavior
is mainly associated to the effect of the parameter β.

Fig. 1: Discharge open circuit voltage

To improve the decision-making process in the use of
available energy in the battery, it is proposed to avoid that
the battery voltage is in the third zone of OCV curve (abrupt
voltage drop), that is to say SOC < 0.25. α is a parameter
that allows to determine if the battery is about to enter the
third zone of OCV curve, shown in Figure 6. As indicated
previously, α is associated with the second region of the OCV
curve and which accounts for longer battery operation. In
this work, the SOC and α parameter are estimated to obtain
information that prevents battery misuse.

The estimation of the parameter α implies making modifi-
cations to the original model, since the state x1 is associated
with the internal impedance of the battery. The state-space
model used (with corresponding changes) is defined by (7),
(8), and (9). For this model the state x1 is associated to the α
parameter, whereα is the variable that defines the linear zone
of the OCV curve.

State transition equations:

α(k + 1) = α(k) + ω1(k) (7)

x2(k + 1) = x2(k)−
(
vl + (vo − vl)e

γ(x2(k)−1)

+α(k)vl(x2(k)−1)+(1−α(k))vl(e
−β−e−β

√
x2(k))

− i(k)Zint + n(k)
)
i(k)∆t E−1

crit + ω2(k)

(8)

Measurement equation:

v(k) = vl + (vo − vl)e
γ(x2(k)−1) + α(k)vl(x2(k)− 1)

+ (1− α(k))vl(e
−β − e−β

√
x2(k))− i(k)Zint + n(k)

(9)

Once the state-space representation model is defined, the
electrical current and voltage data are required as input
variables. The data acquisition is done through the complete
discharge of a LIR2032 battery with a 45 mAh capacity and
a 3.6 V nominal voltage. The battery discharge execution
requires a consumption profile, which indicates the amount
of electrical current demanded from battery by the system at
specific scheduled instances. In this work, two profiles are

deployed that mimic the energy consumption associated with
the operating modes of the CC2500 transceiver. The execution
cutoff voltage condition used is 3 V. The first power usage
profile uses a constant 22-mA-current scenario. This gives
us a baseline for a worse-case scenario where continuous
transmissions occur. The second power usage profile uses a
random generated sequence, with randomly generated intervals
(up to 30 seconds) that has electrical currents alternating
between two values: 14 mA and 22 mA. The current and
voltage values obtained from the first set are used to determine
the parameters offline (not in real-time) and to estimate the
SOC by making adjustments to the PF algorithm, while the
results obtained from the second profile execution are used for
validation. In addition to the state-space representation model,
the electrical current and voltage data is necessary to establish
the filter parameters to estimate the SOC based on the PF. In
this work, the parameters used will be set to 40 particles and
25 embodiments according to the terms of [28].

To validate the decision by the MAC protocol a simulated
test is set up that includes the participation of four sensor
nodes, where the transmission periods of each node are
assigned randomly and the electrical current is only drawn
from the battery during this operating mode. The algorithm is
designed such that after a transmission the amount of available
energy in the battery is estimated and no transmissions occur
after the batteries of the sensors reach a SOC ≤ 0.25.

IV. RESULTS

The discharge tests performed on the LIR2032 battery, using
constant current and the random profile, allow to obtain the
curves Voc vs SOC curves shown in Figure 2.

Fig. 2: Discharge open Circuit Voltage: (a) Constant Current
(b) Random Profile
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The curve Voc vs SOC obtained from the constant current
discharge allow to estimate the model parameters offline (not
real-time), which are shown in Table I.

TABLE I: Model Parameters for Battery LIR2032

Battery vo vl α β γ Ecrit

LIR2032 4.0402 3.881 0.09981 15.53 11.29 519

To estimate the SOC it is important to have adequate
characterization of the regions 1 and 2 of the Voc vs SOC
curve, as those are the governing parameters that determine
the battery behavior. Even though the third region is heavily
influenced by the parameter β and, ideally, this region should
be avoided, estimating the value of β is still beneficial to
increase the accuracy of the model.

For the SOC estimation based on PF it is necessary to define
the noises associated with the model. These parameters were
calculated through the covariance matrix between the exper-
imental and adjusted data, in addition to making empirical
adjustments according to the PF performance. Determining all
parameters of the model, the algorithm was initially executed
using the current and voltage data obtained from the discharge
to the battery at constant current (22mA). Time used for the
estimation of α, voltage and SOC is 6448 seconds, which is
the time it takes the battery to reach the cut condition. Figure
3 shows the results of the voltage and α estimation. In the
Figure 4 we can see the precision in the SOC estimation.

Fig. 3: (a) Evolution of the state x1. (b) Measured Voltage and
Estimated Voltage

To validate the correct operation of the filter, a second set of
data generated from the random profile described in section 2
is used. The estimation of α, voltage and SOC are performed
for a time of 9542 seconds, see Figure 5 and 6. The results
obtained in Figures 3 and 5 show that for values of SOC >

Fig. 4: SOC Estimation

0.7, the α parameter oscillates and that for 0.25 < Soc ≤
0.7, α is able to remain constant. This behavior validates the
theoretical concepts described in section 2. In Figures 4 and
6 we can see that the filter is capable of correcting errors
in the initial condition of the SOC, for example in Figure 6
for SOC > 70%, the filter performs an overestimation but
subsequently adjusts and achieves a more accurate estimate.

Fig. 5: (a) Evolution of the state x1. (b) Measured Voltage and
Estimated Voltage

Fig. 6: SOC Estimation

The results obtained in the estimation of the parameter α
confirm that this parameter can be used as an indicator, since
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The results obtained in the estimation of the parameter α
confirm that this parameter can be used as an indicator, since

for values of 0.25 < Soc ≤ 0.7 the filter can maintain a
constant behavior, which would allow us to establish that some
abrupt change in the value of α would indicate low energy
availability in the battery.

From the data obtained from the estimation of the alpha
parameter and the SOC, a series of simulated tests were
performed to emulate decision making by the MAC protocol.
The results obtained are shown in Figure 7, which clearly
shows that the sensor node 2 reached the cutting condition
SOC ≤ 0.25, hence, it is necessary to cease transmission.
Moreover, the feedback from these results enables the system
to establish a transmission order according to the amount of
energy available in each sensor. For example, sensor node 4
has 58% of the total energy capacity, while the sensor node 3
only has 27% of its energy remaining.

Fig. 7: Amount of energy available in each Sensor

Another advantage that is emphasized is that useful informa-
tion can be delivered to the MAC protocol (shown in Figure 8),
where it can be observed that the sensor-node-3 battery must
temporarily enter a charging mode, while sensor nodes 1 and
4 are prioritized for transmission as these still have energy
(have not reached the cutting condition).

Fig. 8: Amount of energy available in each Sensor

V. CONCLUSION

This work presents the SOC estimation based on the PF
for batteries used in the sensor nodes of WSNs. The proposed
mechanisms generate useful information to MAC protocols
that allows it to improve the energy efficiency of the network
as well as extend the life of the batteries, by preventing these
from fully discharging. From the data obtained, two battery
power consumption profiles are studied and compared taking
two criteria in account: first, a continuous battery usage which

gives us a baseline to establish the worst-case scenario where
the sensor node continuously transmits (drawing constant
current), therefore discharging at the quickest rate possible.
The second profile is generated to establish a usage that is
representative of expected transitions between the operating
modes of the sensor node. Through the simulated tests it
is found that the PF is able to adjust and deliver accurate
and useful SOC estimations. Despite the implications of using
particle-filter algorithms, such as computational overhead, the
benefits in terms of real-time estimation accuracy justify its
implementation in battery-SOC estimation applications.
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