
What can Students Get from a Software
Engineering Capstone Course?

Marı́a Cecilia Bastarrica
Computer Science Department

Universidad de Chile

Santiago, Chile

cecilia@dcc.uchile.cl

Daniel Perovich
Computer Science Department

Universidad de Chile

Santiago, Chile

dperovic@dcc.uchile.cl

Maı́ra Marques Samary
Computer Science Department

Universidad de Chile

Santiago, Chile

mairamarques@hotmail.com

Abstract—For the last ten years we have been teaching a
capstone course for fifth year students of the Computer Science
Department of the Universidad de Chile. Five year ago we
redesigned the course, shifting from projects following a waterfall
process and focused on technical aspects, to one centered in
soft skills following agile practices. Since then, we provide out
students a concrete learning outcome: to internalize how relevant
is having and developing critical soft skills to succeed in projects.
Last year, we wondered whether our students were actually
getting what we declared. We conducted a survey on students’
initial and final perception about the relative value and difficulty
of different dimensions involved in their projects: technical
challenge, teamwork, planning, and negotiation with the client.
Also, we applied a one-tailed dependent pair sample t-test to
determine the statistical significance of the surveys result. We
found out that the relative value of soft skills grows while that
of the technical challenge drops, and that the students find that
planning and teamwork are harder than they expected. Also, we
found statistically significant evidence that, for the soft skills we
have measured, the perceived relative relevance actually changes
throughout the course.

Index Terms—software engineering education, computer sci-
ence education, capstone course

I. INTRODUCTION

Several authors report that recently graduated computer

science professionals are not well prepared for facing industrial

work [4], [7], [15]. Universities have tried to deal with this

issue applying Project Based Learning (PBL) strategies [11]

mainly through capstone courses [2], whose main goal is

to make students work in teams to put into practice all the

knowledge they have acquired during their career. One of the

main characteristics of software engineering capstone courses

is that students should deal with real problems similar to those

they will face in industry while still counting on some guidance

on how to address this reality that they are not used to. Capstone

courses are normally one of the last ones in the curriculum and

they demand a lot of work from students. The use of capstone

courses in software engineering education is not new [6], but

since the publication of SE2004 [13], they are gaining more

relevance. SE104 [14] has reinforced this idea.

For the last ten years we have taught Software Project, a

capstone course for fifth year students of Computer Science

Engineering at the Universidad de Chile. Students have to

work in a real world project with a real client, external to

the university, during 15 weeks, devoting 16 hours a week of

effective work in the client’s organization.
Until five years ago students had to follow a waterfall process,

loaded with documentation. However, this was not only boring

for students, but also inefficient since this documentation was

not strictly necessary for all clients. Since then, we started

introducing some agile practices. Three of the most relevant

of these practices are incremental development, timeboxing

and client on site. Timeboxing allowed us to limit the amount

of time spent by students in working for their projects to 16

hours per week per student. Therefore, all the work is done

in this time: software development, documentation, validation,

course presentations, etc. In this way, clients are more careful

when asking for documentation since this would mean less

software. Also, having the team work together with the client

made communication easier and less dependent on documents.
The results have been encouraging: projects are almost

always successfully deployed and operational at the end of

the semester, and both, students and clients, are usually much

happier with the results. These results are consistent with other

reports on capstone courses on software engineering [5], [18].

However, we still wondered what made the difference, and what

specifically the students learned during the course. Therefore,

we formulated the following research question:

RQ What can students get from a software engineering

capstone course?

To this end, we designed a survey that consisted on asking

each team to grade the initial and final perceived value and

difficulty of four dimensions: technical challenge, negotiation

with the client, project planning and teamwork. These values

were expressed as percentages, i.e., all item values add up to

100. Teams provided the initial values just after reading the

project proposal and having a first meeting with the client.

Final values were provided after the end of the course. The

goal was to evaluate the variation of these two measurements,

i.e., what students have learned during the course.
We found that the perceived relative value of correctly

addressing technical challenge dropped significantly after the

course. Therefore, they realized that soft skills were much more

determinant for the success of the project. We also found that

all the analyzed dimensions had a significant change in their

initial and final perception, either in value or difficulty, and

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.15

134

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.15

136

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering and Education Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.15

137

2017 IEEE/ACM 39th International Conference on Software Engineering: Software Engineering Education and Training Track

978-1-5386-2671-9/17 $31.00 © 2017 IEEE

DOI 10.1109/ICSE-SEET.2017.15

137

therefore we can conclude that all of them constitute learning

outcomes of the course.

The rest of the paper is structured as follows. Section II

discusses some related work. Our capstone course is described

in Sec. III. The survey design, application and analysis are

presented in Sec. IV. Section V discusses its results and the

threats to validity. Finally, Sec. VI presents some conclusions

and future work.

II. RELATED WORK

Software engineering is an industry-oriented discipline;

therefore, software engineering curricula need to prepare

students to be ready to enter the world of industrial software

development [3], however, young professionals are not always

well prepared for this purpose. In order to address this issue,

several universities have designed capstone courses, i.e., last

year courses where all the knowledge acquired during the

career has to be applied in practice.

One of the first reports of a software engineering capstone

course was that of Moore and Potts [12]. They designed The
Real World Lab in order to emulate an industrial organization.

The course lasted for three quarters and students from the

last two years were involved. Projects come from industrial

sponsors who act as clients, providing consulting, reviewing,

direction and resources. Students were suggested to use the

Mini-Task, a development process based on the waterfall life

cycle, however, after the first iteration they were allowed to

change this process including methods and techniques they

thought useful. Students answered a survey where they had to

evaluate to what extent they thought they had a real experience

and they feel better prepared for autonomously dealing with

sizable projects, complexity, flexibility and uncertainty. Authors

report that students feel much more confident and motivated

after the course, reinforcing the value of a capstone course.

Even though we have some insights about how students feel

about our Software Process course, in this paper we are more

concerned about measuring its learning outcomes.

Tvedt et al. [19] created the Software Factory, a two semester

course based on the idea of a hands-on experience. There,

students develop projects either from scratch or maintenance

projects. Students enrolled in the Software Factory are assigned

different roles according to their seniority. The goal of the

course is to meet industry needs by educating computer science

engineers that master technology and processes, ensuring a

solid and lasting knowledge. They present a qualitative analysis

intended to validate if they were reaching their goals. They

found that all these goals were fulfilled. They also report that

the beginning was hard on students and instructors, but they

liked the experience and ended with a realistic perspective of

the work of a software engineer. Our Software Project course is

also hand-on, but it is less focused on teaching technology and

processes but in letting students decide about these and other

issues when facing a real project and exercising soft skills.

Germain et al. [8] proposed a capstone course called Studio
in Software Engineering where all teams have to develop the

same project using UPEDU [16], a customized version of RUP

for education. Students enrolled in the course have already

had a previous software engineering course. They reported that

most teams effort was devoted to a few disciplines and that the

learning curve of the process only let development begin after

the middle of the course. The focus was on measuring how

well students adopted the process, so they ended up with very

good documentation but not as much software as expected.

They concluded that a heavy process was not a good strategy

for a capstone course. On this and other similar evidence we

have included a series of agile practices and did not suggest a

fixed process in our course.

Sebern [17] created the Real World Lab where students

enroll after taking two other software engineering courses,

so they already had some experience in developing software

projects. He counted on real clients, but he proposes the use

of reverse engineering of existing software instead of forward

engineering because projects developed from scratch can either

have a limited size or high risk of not achieving a functional

product. Similar to our research approach, he conducted a

survey about student perception of the learning outcomes;

he asked about their perceived ability to: (1) document and

plan changes, (2) work on a small team with specific roles,

(3) apply a defined software process, (4) implement and test

changes to a existing software, and (5) communicate project

and process information to a real client. Students ranked 5 in a

Likert scale their achieved ability for working in small teams,

apply processes and implement and test changes; however,

they ranked 4 their ability to document and plan changes and

communication with the client. In summary, students were

capable of linking together theory and practice, and there were

benefits for both, students and clients that participated on the

Lab. Even though the dimensions surveyed are similar to ours,

the research strategy is different: he only evaluated perception

after the course, and he used a Likert scale.

Mahnic [10] uses an agile approach on his capstone course,

as we do. But, as he says that finding real clients is difficult,

students work on teams developing a quasi-real project with

user requirements provided by a domain expert playing the

role of the Product Owner. Before the course students were

already familiar with traditional software development methods.

While students were enthusiastic about the agile approach, they

sometimes missed a more detailed up-front design that would

provide them the big picture so that development could be

organized and planned more easily. We encourage the use of

agile practices but, since we always have real clients, the clients

themselves make sure that student teams work toward building

the product they want without loosing their path.

Vanhanen et al. [20] reported a capstone course with

industrial clients. They use and ad-hoc agile-based process

and a mentor, who helps and gives advice to students during

the whole semester. In this sense their course is quite similar

to ours. Undergraduate students participate as developers while

master students act as managers. Students considered the course

stressful and laborious, but also extremely rewarding. Course

feedback indicates that the course requires comparatively more

effort per credit unit than most other courses. Similar to our

135137138138

research approach, students answered a survey both, at the

beginning and at the end of the course, about: familiarity with

agility, knowledge about programming, project planning and

management skills, effort estimation, software development

process, teamwork, customer interaction, and communication

skills. The dimensions that presented a larger improvement

were familiarity with agility, knowledge about programming

and communication skills. Even though these are not exactly the

same dimensions we address, they can be mapped, however

our study focuses on both, perceived value and perceived

difficulty because these two characteristics of each dimension

yield different learning outcomes.

Weissberger et al. [21] reported a capstone course where

students have to work on software maintenance projects and the

client is always the university. When they take this course, stu-

dents are already familiar with software engineering concepts.

They apply agile practices such as stand-up meetings, pair

programing, burn-down charts, etc. They evaluate the course

through a risk analysis of classmate schedules, concurrent work

with other courses, college breaks, client schedule, learning a

new framework and technical challenges. These dimensions are

similar to those we consider. Their research approach is also

similar: students rate the relevance of each of these issues and,

a the end of the course, they analyze what actually happened.

They found that teamwork related risks were those that affected

the project results the most. Provided that we address value and

difficulty of each dimension separately, we found that the value

of teamwork did not grow significantly, but students found it

really difficult.

Dunlap [5] conducted a study for measuring the observed

increase of self-efficacy in students during a capstone course,

by using a problem-based learning approach. He presents a

qualitative analysis of open questions, where he asked students

what they perceive they have learned during the course, what

they think they still need to learn, and if they are confident to be

able to deal with a real software project. The design, planning

and continuous improvement of another capstone course on

software engineering is presented by Stettina et al. [18]. They

validate their findings with a survey, where they asks students

about their satisfaction related to: the project, the teamwork,

the communication within the project, the use of stand-up

meetings and the use of meeting minutes. In both papers their

study is similar to ours in several ways: they are based on a

student survey, the sample size is almost the same, and they

follow the same strategy of comparing pre and post course data.

However, the former focuses on evaluating self-efficacy while

the latter is interested in measuring the impact of inter-team

stand-up meeting, on team satisfaction and coaching success.

In our course we apply a series of agile practices: client on site,

incremental development and deployment, and timeboxing, but

other practices such as stand-up meetings, kanban boards, and

planning poker are only suggested. In this work we also try

to be more detailed in the sense of analyzing the perceived

increase in consciousness that students achieve about the value

and difficulty of correctly addressing different dimensions that

may affect project success.

III. CAPSTONE COURSE SETTING

A. The Course

Software Project is a fifth year course for Computer Science

Engineering students at the Universidad de Chile. It is the

last mandatory course in their curriculum, and it is offered

every semester. The curriculum includes a plethora of technical

courses, including computer architecture, operating systems,

computer networks, algorithms and data structures, computing

theory, databases and programming languages. Also, the

course is preceded by two courses about software engineering,

one focused on methods and techniques, and the other on

project development, mainly web-based information systems.

But students have little or no experience on soft skills like

project management, interpersonal communication promoting

healthy and productive work environments, and understanding

and satisfying actual business needs by negotiating with

stakeholders.

We designed the course so as its main learning outcome is

that students internalize how relevant is having and developing
critical soft skills to succeed in software development projects.

To achieve this outcome, we provide students a real-world

environment to work in, but we support their progress by means

of personalized tutoring and, when necessary, by intermediation

with clients. The course is focused in four dimensions: technical

challenge, negotiation with the client, project planning, and

teamwork. While previous courses in the curriculum prepare

the students to cope with the technical challenge, the other three

dimensions are practically not covered or undeveloped. In this

course we promote and encourage the use of agile practices to

enforce exercising people skills, and to allow students succeed

in building an actual usable product in a short period of time.

The learning objective of the course is to provide students a
controlled experience in real professional projects developed in-
company for external clients. The students work in teams of 4

to 7 people. Each team is assigned a project and a client to work

for, to develop a software product in three iterations. Each team

is tutored by an academic or Ph.D. student from the Computer

Science Department. The tutor follows the progress of the

project and provides guidance on technical, management and

people issues. However, the tutor is not part of the team, does

not take part in the product development and does not interact

with the client. There is also an instructor, specifically the

academic responsible for the course, that selects the projects,

negotiates working conditions for students with the clients,

coordinates and monitors all teams and tutors, and intervenes

whenever major problems emerge.

The course has a duration of fifteen weeks and a workload

of sixteen hours a week. Before the beginning of the course,

the teams, tutors and projects are assigned and the iteration

deadlines are defined. During the first week an industry expert

gives a lecture on applying agile practices in real industry

projects. Also, each team presents what they envision for the

project to be developed, based on the project proposal and a

first meeting with the client. During the remaining fourteen

weeks, the teams work at the clients’ office and participate

136138139139

in a weekly meeting with the tutors and the instructor at the

university. Every five weeks an iteration ends, and each team

publicly presents the development experience and the developed

product.

At the beginning and at the end of the course, each

team answers a survey on the relative relevance of the four

dimensions that we defined. The surveys and their results are

discussed in Section IV. Also, at each presentation at the

end of the iterations, students are encouraged to explain their

retrospective analysis referring to these dimensions. Finally,

at each weekly meeting, teams, their tutor and the instructor,

discuss the progress of the project and how the four dimensions

are being addressed and impacted by the practices adopted by

each team.

B. The Teams

Students are randomly assigned to teams from 4 to 7 people,

where the actual size depends on the total numbers of enrolled

students in the semester. Team members have no defined roles,

and they all share the responsibility for the success of the

project. Teams are self-organizing as they assign tasks to

members, and are self-managed as they hold each member

accountable.

C. The Clients

Project proponents are private companies from any industry

sector, governmental institutions and possibly university depart-

ments other than the Computer Science Department. Proposal

submission is free and takes place a month before the semester

starts. Each proposal describes the client organization and the

project context, and states the problem to be addressed and an

approximation to the solution.

The instructor is responsible for selecting which proposals to

work with. The selection is based on the project complexity so

as to exclude simple solutions and favor new clients whenever

possible. The selected clients pay the Department a modest

amount of money that is used for paying tutors and a per diem

for students. The amount paid for the whole project is less than

what a single graduate student would be paid in the industry,

in average, for two months.

Each client provides the work environment to accommodate

the assigned team, including office space and supplies, as well

as development software, workstations and servers.

D. The Projects

The number of selected projects depends on the number

of teams, and ranges from 2 to 6 each semester. Teams are

randomly assigned to projects but supervised by the instructor

to avoid any conflict of interest (e.g. a team member that is

somehow related to the client). Tutors are randomly assigned

to teams, also supervised by the instructor to avoid conflict of

interest.

The project must follow a value-driven approach [1], focus-

ing on what the client needs more than what the client asks

for. Whenever needs and requests do not match, teams are

encouraged to try to understand the actual client’s motivation

TABLE I
COURSE EVALUATION

Aspect Iteration 1 Iteration 2 Iteration 3

Project management Tutor Tutor Tutor
Product quality Tutor Tutor Tutor
Product presentation Instructor Instructor Instructor
Job performance Students Students Not evaluated
Value of the solution Not evaluated Client Client

and to propose and explain alternative courses of action that

the students consider to be better. The client is responsible for

prioritizing the features to be included in the product under

development, while the teams are responsible for estimating

the effort required for the development. Both, the team and its

client, negotiate the scope to be addressed in each iteration.

There are some mandatory agile practices for the teams

to apply, such as timeboxing, client on site, and incremental

development. Also, teams are encouraged to use some other

agile practices such as daily stand-up meeting, Kanban boards

and continuous integration. The industry expert talk at the

beginning of the semester provides the students an insight on

these practices, and tutors guide teams on applying them and

possibly selecting others.

E. The Evaluation

The course evaluation takes place at the end of each of the

three iterations. The client, the instructor, the tutors and the

students participate in the evaluation, each one assessing some

aspects of the project: project management (tutor), product

quality (tutor), product presentation and demo (instructor), job

performance (students), and value of the solution (client) as

described in Table I. Not every aspect is evaluated with the

same weight in each iteration.

By evaluating these aspects, we quantify the perception of

all stakeholders on how successful the projects are, measuring

both the products and the development experience. Thus, these

aspects are a measure on how successful are the practices being

applied by each team, they allow students to adjust or change

some of those practices at each iteration, and to analyze which

kinds of skills need more focus in the remaining of the projects.

By these means, we promote students to reflect on the need

of critical soft skills and encourage them to develop whatever

each team is missing.

IV. SURVEY

A. Survey Design

Students were asked to fill the data depicted in Table II by

assigning a percentage to each of the four items: technical
challenge, negotiation with the client, project planning and

teamwork. The sum of the values for these four items must

be 100 for both, value and for difficulty. The meaning of

these values is the perceived relative value and difficulty of

correctly addressing each dimension for the success of their

project. At the end of the semester, the same student teams

were asked to answer the same survey, but now considering

137139140140

TABLE II
SURVEY INSTRUMENT

Value Difficulty
Technical challenge

Negotiation with the client
Project planning

Teamwork

their experience with the project. For this second survey,

students do not have the information they provided for the

one at the beginning of the semester in order to minimize

bias. Additionally, we analyzed the comments that students

anonymously provided in the university moodle-like platform

at the end of the course looking for qualitative data that could

reinforce or contradict the quantitative data. It is worth mention

that providing comments is not mandatory, and therefore this

information can be considered just anecdotal: there are around

6 to 10 comments each semester both positive and negative.

B. Data Collection

At the beginning of the last two semesters, each of the 7

teams that involved 38 students, was assigned a project and

all of them were asked to answer the survey.

All projects were different in nature and complexity, but

they were comparable in size. Project Conicyt involved the

integration of several diverse legacy systems in a unique

user interface that allowed transparent interaction. SmartCities
required building a mobile application for providing guidance

when using public transportation in Santiago, Chile. Autofact
had to build an application that allow buyers to identify license

plate numbers in car pictures. NIC Labs project developed a

real-time visualizer for a DNS query log. The Hitmap project

involved geo-referencing maps for real state. Unholster required

building a recruiting and hiring system. Finally, DAQ-EQ
referred to the development of a system integrating software

and hardware for managing seismic sensors.

Tables III through VI show the initial and final perceived

value and difficulty of correctly addressing technical challenge,

negotiation with the client, project planning and teamwork

for the success of the project. The last two columns show the

variation in perception of value and difficulty of each dimension

after the course. We also provide the mean and the standard

deviation for each column.

C. Data Analysis

We ran a one-tailed dependent paired samples t-test in order

to compare the students’ perceptions before and after taking

the course. There were 7 teams involved, and thus 6 degrees of

freedom, and we used a value of α = 0.05. Therefore t6,0.95 =
1.943. Tab. VII states the calculated tC for the variation in the

perceived value and difficulty of each dimension.

1) Technical challenge: A capstone course is intended to nail

together the knowledge acquired during all previous courses. If

addressing technical challenges correctly is initially perceived

as a highly valuable dimension, it may mean that students are

not able to foresee the relative relevance of other factors in

the success of the project. Similarly, if after the project, this

value drops, it would mean that they acknowledge that other

issues might be more determinant; it would also show that

students are already technically prepared and that they have

the knowledge required for facing real world software projects.

Hv1 The perceived value of addressing technical chal-
lenges drops after the course.

On the other hand, if dealing with technical challenges is

perceived as difficult, it would mean that students do not feel

prepared for professional work. But, if after the course, this

perceived difficulty drops, it means that they realized they were

actually well prepared for the challenge.

Hd1 The perceived difficulty of addressing the technical
challenges drops after the course

As can be seen in Tab. VII, the perceived value of addressing

technical challenge drops substantially after the course and

therefore we can confirm Hv1, but even though the perception

of difficulty of addressing technical challenge drops in average,

this cannot be considered statistically significant. We have

found some comments in the university platform that reinforce

these findings: “Our curriculum focuses mainly in theoretical

knowledge; this course helps us put this knowledge into

practice.”

2) Negotiation with the client: Our curriculum includes

two short professional internships where students work in a

company mainly as programmers where they are assigned an

activity they must develop with little room for designing and

proposing their own solutions. So undergraduate students are

not expected to be experienced in negotiation with real clients.

However, we have found on the university platform some

comments like: “This course provides very little for students

with some working experience”. Therefore, we wanted to find

out how much students in general learned about negotiation

with the client.

The mean variation of the perceived value of the negotiation

with the client is -3.3, as can be seen in Tab. IV, so we state

the following hypothesis:

Hv2 The perceived value of the negotiation with the client
grows after the course.

However, looking at Tab. VII, we realize that tC is -1.3 for

this dimension, and thus this hypothesis cannot be confirmed.

On the other hand, the perceived difficulty seems to drop in

Tab. IV.

Hd2 The perceived difficulty of the negotiation with the
client drops after the course

Table VII shows a tC of 3.6, and therefore data is statistically

significant to confirm this hypothesis: students are better

prepared for this task than they thought before the course.

138140141141

TABLE III
INITIAL AND FINAL PERCEPTION ABOUT VALUE AND DIFFICULTY OF CORRECTLY ADDRESSING TECHNICAL CHALLENGE

Initial Final Variation
Team Value Difficulty Value Difficulty Value Difficulty
Conicyt 35 20 24 14 11 6
SmartCities 28 25 10 27 18 -2
Autofact 40 50 30 50 10 0
NIC Labs 20 35 10 20 10 15
Hitmap 10 40 10 10 0 30
Unholster 23 15 20 25 3 -10
DAQ-EQ 50 43 25 35 25 8

X̄TC 11.0 6.7

STC 8.5 13.0

TABLE IV
INITIAL AND FINAL PERCEPTION ABOUT VALUE AND DIFFICULTY OF CORRECTLY ADDRESSING THE NEGOTIATION WITH THE CLIENT

Initial Final Variation
Team Value Difficulty Value Difficulty Value Difficulty
Conicyt 35 50 39 43 -4 7
SmartCities 25 25 37 10 -12 15
Autofact 20 20 20 15 0 5
NIC Labs 15 15 20 10 -5 5
Hitmap 40 40 30 20 10 20
Unholster 35 33 40 30 -5 3
DAQ-EQ 13 23 20 0 -7 23

X̄NC -3.3 11.1

SNC 6.9 8.1

TABLE V
INITIAL AND FINAL PERCEPTION ABOUT VALUE AND DIFFICULTY OF CORRECTLY ADDRESSING PROJECT PLANNING

Initial Final Variation
Team Value Difficulty Value Difficulty Value Difficulty
Conicyt 15 20 19 20 -4 0
SmartCities 28 40 30 40 -2 0
Autofact 20 20 25 20 -5 0
NIC Labs 35 35 45 30 -10 5
Hitmap 20 10 30 40 -10 -30
Unholster 25 27 20 30 5 -3
DAQ-EQ 14 20 30 20 -16 0

X̄PP -6.0 -4.0

SPP 6.8 11.7

3) Project planning: Students are taught how to plan a

project in previous courses, and thus they are supposed to

manage this skill when they enroll in our software project

capstone course. But in this course it is the first time that

clients put pressure on the students to finally get the software

product they expect. According to the instructor’s and tutors’

perception, student teams feel this pressure and not always

deal with it in the best way.

According to Tab. V, the mean perceived value for project

planning is -6.0, so we state the following hypothesis:

Hv3 The perceived value of project planning grows after
the course.

Table VII states a value of tC of -2.3, and thus we can reject

the null hypothesis: students realize the actual value of project

planning.

And about the perceived difficulty of addressing project

planning, we hypothesize that it also grows.

Hd3 The perceived difficulty of addressing project planning
grows after the course.

Even though Tab. V shows a growth in the mean perceived

difficulty, in Tab. VII we can see that tC for this dimension

is -0.9 and thus we cannot reject the null hypothesis. This

difference may be due to the fact that students are taught

project planning in previous courses and thus it did not resulted

difficult; however, they just now realized how valuable it is

for having the project under control and also probably manage

the client’s expectations.

4) Teamwork: Once every seven year, the career has

to undergo a certification process. As part of it, surveys

are conducted on students, former students, professors and

employers. One of the major weaknesses found by employers

139141142142

TABLE VI
INITIAL AND FINAL PERCEPTION ABOUT VALUE AND DIFFICULTY OF CORRECTLY ADDRESSING TEAMWORK

Initial Final Variation
Team Value Difficulty Value Difficulty Value Difficulty
Conicyt 15 10 18 23 -3 -13
SmartCities 19 10 23 23 -4 -13
Autofact 20 10 25 15 -5 -5
NIC Labs 30 15 25 40 5 -25
Hitmap 30 10 30 10 0 0
Unholster 18 25 20 15 -2 10
DAQ-EQ 23 15 25 45 -2 -30

X̄TW -1.6 -10.9

STW 3.3 13.9

TABLE VII
T-TEST FOR DEPENDENT SAMPLES OF PERCEIVED VALUE AND DIFFICULTY

Value Difficulty
Dimension tC p Hypothesis YES/NO tC p Hypothesis YES/NO
Technical challenge 3.4 0.01 Hv1 YES 1.4 0.09 Hd1 NO
Negotiation with the client -1.3 0.14 Hv2 NO 3.6 0.01 Hd2 YES
Project planning -2.3 0.04 Hv3 YES -0.9 0.20 Hd3 NO
Teamwork -1.3 0.86 Hv4 NO -2.1 0.04 Hd4 YES

two years ago in their survey was that our professionals lack

skills for teamwork. Therefore, we wonder if our course is

teaching them something about this issue.

According to Tab. VI, there is an increase in the mean

perceived value of teamwork, so our hypothesis is:

Hv4 The perceived value of teamwork grows after the
course.

Apparently, as shown in Tab. VII, students have a realistic

idea about the value of teamwork because there is not enough

statistical evidence that indicate that its perceived value grows.

Therefore we cannot reject the null hypothesis. However, the

mean variation in perception about the difficulty of correctly

addressing teamwork is much higher:

Hd4 The perceived difficulty of addressing teamwork grows
after the course.

Table VII indicates a tC of -2.1, and therefore we can reject

the null hypothesis. Students tend to underestimate the difficulty

involved in teamwork before the course, and therefore we can

assume they will be more alert to this issue when facing a

future project.

V. RESULTS

A. Discussion

We were able to validate some of our hypotheses. However,

some of them, that we expected to be true, such as the perceived

value of teamwork was not. Similarly, we did not expected

that the perception of the value of project planning was not

going to grow as it did.

Even though four of the hypotheses were corroborated, two

of them had the most significant variation: the drop in the

perception of the relative value of correctly addressing technical

challenge, and the perceived difficulty of negotiating with the

client. These two dimensions are the ones with the highest

learning outcome. On the contrary, students had quite a clear

idea about the difficulty of project planning, and thus the course

made little difference.

B. Threats to Validity

According to the recommendation of Kitchenham et al. [9],

we analyze three dimensions of threats to validity of our survey:

content, criterion and construct validity.

1) Content validity: Content validity refers to how appropri-

ate the survey instrument seems to be. We chose the surveyed

dimensions on the effectiveness of software engineering cap-

stone courses from other published reports, so we assume

these dimensions are agreed to be relevant. Also, the perceived

variation in knowledge is a commonly used measure of learning

outcomes. So, we are following a standard approach supported

by the research community in our evaluation.

2) Criterion validity: The only similar study we found in

the literature is that of Vanhanen et al. [20]. They apply a

similar survey but with a different strategy: they ask individual

students about different learning dimensions with a Likert

scale and then data is analyzed using the median instead of

a t distribution. Nevertheless, results are consistent with our

findings: dimensions that improve the most after the course

where those related to technical issues and communication

skills. We can consider this last dimension as a part of our

negotiation with the client. These two dimensions were also

those that improve the most in our survey. Thus, we can say

that our instrument, is consistent with the findings of the only

one we found, even with a much smaller sample.

140142143143

3) Construct validity: Even though results tend to be fairly

consistent for the sample considered, construct validity can

only be assessed with a longer experimentation.

VI. CONCLUSIONS AND FUTURE WORK

We designed our capstone course to provide students a

concrete learning outcome: to internalize how relevant is

having and developing critical soft skills to succeed in software

development projects. Four years after agile practices were

introduced in the course and its structure and operation became

stable, we wonder whether our students were actually getting

the declared outcome. That is, were they realizing the relevance

of soft skills?

To answer this question, for the last two semesters we

conducted a survey with seven participating project teams,

involving 38 students, asking each team their perception on

the relative value and difficulty on four dimensions: technical

challenge, negotiation with client, project planning, and team-

work. Each team answered the survey twice: right after the

project was assigned and the team had a first meeting with

the client, and once right after the project ended. The survey

allowed us to evaluate the variation between the initial and

final perception of each team, and thus to capture what our

students have learned from our course. Also, we applied a one-

tailed dependent pair sample t-test to determine the statistical

significance of the survey results.

We found out that the perceived relative value of soft

skills grows while that of the technical challenge drops. We

also found out that the perceived relative difficulty of soft

skills grows in comparison to that of the technical challenge,

except for the negotiation with the client whose perception

of relative difficulty drops significantly. We cannot argue

statistical significance for all of our findings. However, we

have statistically significant evidence that, for the soft skills

we have measured, the perceived relative relevance actually

changes between the beginning and the end of the course,

either due to a different relative value or to a different relative

difficulty.

Specifically, we have evidence that the perceived relative

value of the technical challenge drops by the end of the course.

Thus, our students are already technically prepared and able to

face real world software projects, and they acknowledge that

soft skills are also determinant for the success of the projects.

Also, our students are better prepared for negotiating with

the client than as they thought before the course. However,

we consider that having an instructor that hold accountable

both teams and clients and that intermediates when necessary,

facilitates and promotes successful negotiations. We also have

evidence that students realize how valuable it is to have

the project under control and also probably managing the

client’s expectations. Finally, students tend to underestimate

the difficulty involved in teamwork before the course, and this

course provides them evidence of the contrary. Therefore, we

can assume that our students will be more alert to this issue

when facing future projects.

Then, considering the research question of what can students

get from a software engineering capstone course, we argue

that, by means of our course setting, students can realize the

relevance of soft skills, when compared with technical aspects,

in order to succeed in software development projects. Moreover,

we have statistically significant evidence to support this fact.

Nevertheless, our study leaves interesting open questions

that require further research. Particularly, what aspects of the

course structure are actually impacting the learning outcome?

Is there a causality relationship between any aspect of practice

of the course and the fact of achieving the learning outcome?

Our assumption is that there are three aspects that are actually

the most relevant. First, the fact that teams have a fixed amount

of time to work in the project (timeboxing) makes clients to

carefully select what to ask for. Second, the fact that each team

works in the client’s office, in direct contact of the client (client

on site) makes students to be responsible in how they use their

time and makes them accountable, both to the client and to

team mates. Third, the fact that we enforce a non-hierarchical

relationship between teams and clients, while providing an

intermediary group of people that play the roles of external

consultants (the tutors) and of arbitrator (the instructor) that

not only intervenes when critical problems emerge, but also

that demands and evaluates the fulfillment of the compromises

of all involved parts, and that manage payments.

ACKNOWLEDGMENT

The work of Maı́ra Marques Samary was partially sup-

ported by the PhD Scholarship Program of Conicyt Chile

(CONICYTPCHA/Doctorado Nacional/2012-21120544). This

work was also partly supported by Project Fondef IDeA, grant:

IT13I20010.

REFERENCES

[1] Stefan Biffl, Aybüke Aurum, Barry Boehm, Hakan Erdogmus, and Paul
Grünbacher. Value-Based Software Engineering: Overview and Agenda.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[2] Chung-Yang Chen and P. Pete Chong. Software engineering education:
A study on conducting collaborative senior project development. Journal
of systems and Software, 84(3):479–491, 2011.

[3] Jianguo Chen, Huijuan Lu, Lixin An, and Yongxia Zhou. Exploring
teaching methods in software engineering education. In Computer Science
& Education, 2009. ICCSE’09. 4th International Conference on, pages
1733–1738. IEEE, 2009.

[4] Peter J Denning. Educating a new engineer. Communications of the
ACM, 35(12):82–97, 1992.

[5] Joanna C. Dunlap. Problem-based learning and self-efficacy: How
a capstone course prepares students for a profession. Educational
Technology Research and Development, 53(1):65–83, 2005.

[6] Alan J. Dutson, Robert H. Todd, Spencer P. Magleby, and Carl D.
Sorensen. A Review of Literature on Teaching Engineering Design
Through Project-Oriented Capstone Courses. Journal of Engineering
Education, 86(1):17–28, 1997.

[7] Gary Ford. The Progress of Undergraduate Software Engineering
Education. ACM SIGCSE Bulletin, 26(4):51–55, December 1994.

[8] Éric Germain, Pierre N. Robillard, and Mihaela Dulipovici. Process
activities in a project based course in software engineering. In 32nd
Annual Conference on Frontiers in Education, FIE 2002, volume 3, pages
S3G–7. IEEE, 2002.

[9] Barbara Kitchenham and Shari Lawrence Pfleeger. Principles of Survey
Research Part 4: Questionnaire Evaluation. ACM SIGSOFT Software
Engineering Notes, 27(3):20–23, 2002.

141143144144

[10] Viljan Mahnic. A capstone course on agile software development using
Scrum. IEEE Transactions on Education, 55(1):99–106, 2012.

[11] Alejandra Martı́nez-Monés, Eduardo Gómez-Sánchez, Yannis A. Dim-
itriadis, Iván M. Jorrı́n-Abellán, Bartolomé Rubia-Avi, and Guillermo
Vega-Gorgojo. Multiple Case Studies to Enhance Project-Based Learning
in a Computer Architecture Course. IEEE Transactions on Education,
48(3):482–489, 2005.

[12] Melody M. Moore and Colin Potts. Learning by Doing: Goals &
Experience of Two Software Engineering Project Courses. In Software
Engineering Education, 7th SEI CSEE Conference, Proceedings, volume
750 of Lecture Notes in Computer Science, pages 151–164, San Antonio,
Texas, USA, January 1994. Springer.

[13] Joint Task Force on Computing Curricula. Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering. Computing Curricula Series. IEEE Computer Society -
ACM, August 2006.

[14] Joint Task Force on Computing Curricula. Software Engineering 2004:
Curriculum Guidelines for Undergraduate Degree Programs in Software
Engineering. Computing Curricula Series. IEEE Computer Society -
ACM, February 2015.

[15] Alex Radermacher, Gursimran Walia, and Dean Knudson. Investigating
the skill gap between graduating students and industry expectations. In
Companion Proceedings of the 36th International Conference on Software
Engineering, pages 291–300. ACM, 2014.

[16] Pierre N. Robillard, Philippe Kruchten, and Patrick d’Astous. Software
Engineering Using the Upedu. Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2002.

[17] Mark J Sebern. The software development laboratory: incorporating
industrial practice in an academic environment. In Software Engineering
Education and Training, 2002.(CSEE&T 2002). Proceedings. 15th
Conference on, pages 118–127. IEEE, 2002.

[18] Christoph Johann Stettina, Zhao Zhou, Thomas Back, and Bernhard Katzy.
Academic education of software engineering practices: towards planning
and improving capstone courses based upon intensive coaching and team
routines. In 26th International Conference on Software Engineering
Education and Training (CSEE&T), pages 169–178, May 2013.

[19] John D Tvedt, Roseanne Tesoriero, and Kevin A Gary. The soft-
ware factory: combining undergraduate computer science and software
engineering education. In Software Engineering, 2001. ICSE 2001.
Proceedings of the 23rd International Conference on, pages 633–642.
IEEE, 2001.

[20] Jari Vanhanen, Timo OA Lehtinen, and Casper Lassenius. Teaching
real-world software engineering through a capstone project course with
industrial customers. In Proceedings of the First International Workshop
on Software Engineering Education Based on Real-World Experiences,
pages 29–32. IEEE Press, 2012.

[21] Ira Weissberger, Abrar Qureshi, Assad Chowhan, Ethan Collins, and
Dakota Gallimore. Incorporating software maintenance in a senior
capstone project. International Journal of Cyber Society and Education,
8(1):31–38, 2015.

142144145145

