On Minimizing the Makespan When Some Jobs
Cannot Be Assigned on the Same Machine*

Syamantak Das! and Andreas Wiese?

1 University of Bremen, Bremen, Germany
syamantaQuni-bremen.de

2 Department of Industrial Engineering and Center for Mathematical Modeling,
Universidad de Chile, Chile
awiese@dii.uchile.cl

—— Abstract

We study the classical scheduling problem of assigning jobs to machines in order to minimize
the makespan. It is well-studied and admits an EPTAS on identical machines and a (2 — 1/m)-
approximation algorithm on unrelated machines. In this paper we study a variation in which
the input jobs are partitioned into bags and no two jobs from the same bag are allowed to be
assigned on the same machine. Such a constraint can easily arise, e.g., due to system stability
and redundancy considerations. Unfortunately, as we demonstrate in this paper, the techniques
of the above results break down in the presence of these additional constraints.

Our first result is a PTAS for the case of identical machines. It enhances the methods from

the known (E)PTASs by a finer classification of the input jobs and careful argumentations why a
good schedule exists after enumerating over the large jobs. For unrelated machines, we prove that
there can be no (log n)l/ 4=¢_approximation algorithm for the problem for any e > 0, assuming
that NP ¢ ZPTIME(2(1°¢ ”)Om). This holds even in the restricted assignment setting. However,
we identify a special case of the latter in which we can do better: if the same set of machines we
give an 8-approximation algorithm. It is based on rounding the LP-relaxation of the problem in
phases and adjusting the residual fractional solution after each phase to order to respect the bag
constraints.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems
Keywords and phrases approximation algorithms, scheduling, makespan minimization

Digital Object Identifier 10.4230/LIPIcs.ESA.2017.31

1 Introduction

Minimizing the makespan is a classical problem in scheduling [8, 9]. Given a set of machines
M and set of jobs J, we seek to assign each job to a machine. In the setting where all
machines are identical, the processing time of each job j is given by a value p; for each job j.
For unrelated machines the processing time of a job j can depend on the machine ¢ on which
it is scheduled. In this case the input contains a value p;; € Rj U {oco} for each combination
of a machine ¢ and a job j. The objective is to minimize the makespan, i.e., the maximum
load of a machine ¢ which is the total processing time of jobs assigned to ¢. The problem is
well-studied, for identical machines it is strongly NP-hard and there are PTASs [11, 17] and
even EPTASS, e.g., [12, 13, 10]. For unrelated machines there is a 2-approximation algorithm

* This work was partially supported by the Millennium Nucleus Information and Coordination in Networks
ICM/FIC RC130003.

© Syamantak Das and Andreas Wiese;
oY licensed under Creative Commons License CC-BY
25th Annual European Symposium on Algorithms (ESA 2017).
Editors: Kirk Pruhs and Christian Sohler; Article No. 31; pp. 31:1-31:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ESA.2017.31
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

31:2

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

due to Lenstra, Shmoys, and Tardos [16], an improvement to 2 — 1/m due to Shchepin and
Vakhania [19], and a lower bound of 3/2 [16].

In practice, one often finds side constraints in addition to the above scheduling setting
that make the problem harder. A typical constraint is that some jobs have to be assigned on
different machines. For instance, on-board computers of aeroplanes typically have several
CPUs (modeled as machines) and for system stability considerations some tasks need to
be executed on different CPUs [6]. The idea is that if one CPU fails then the plane still
continues to operate safely. Minimizing the makespan is closely related to the bin packing
problem where the bins and the items correspond to the machines and the jobs, respectively.
There are several applications of bin packing where the items are partitioned into groups
and no two items from the same group can be assigned to the same bin, for instance in
distributed systems and other settings, see [18].

To model the above, in this paper we assume that the input jobs are partitioned into
bags J = B1UB5U...UBy, and that no two jobs from the same bags are allowed to be assigned
on the same machine. We call these new requirements the bag-constraints.

In this paper we study the problem of minimizing the makespan on identical and unrelated
machines with bag-constraints.

1.1 Identical machines

The known (E)PTASs [12, 13, 10, 11, 17] for minimizing the makespan on identical machines
follow the idea of enumerating the solution for the large jobs, e.g., jobs that are larger
than € - OPT, and then adding the small jobs via a greedy algorithm. More precisely, one
enumerates patterns for the large jobs that indicate how many large jobs of each size are
assigned on each machine. The large jobs are then assigned according to these patterns and
it does not matter which exact job is assigned to which slot of each pattern as long as the
size of the slot is respected. In the case of bag-constraints this unfortunately does not work
directly anymore. One can still enumerate the mentioned patterns and, with some additional
effort, assign the large jobs to them such that they respect the bag-constraints. However,
we cannot guarantee that the large jobs are assigned exactly like in the optimal solution. It
could be that the jobs from the different bags are distributed completely differently on the
machines than in the optimal solution (while still respecting the enumerated slots). In fact,
there are instances for which the above procedure can lead to an assignment of the large jobs
such that any solution for the remaining jobs has a makespan of at least (2 — O(€))OPT, see
Figure 1 for an example.

Hence, we need additional ideas for the setting with bag-constraints. First, we observe
that in the mentioned example many bags have relatively many large jobs (more than € -m
many). There can be only O(1) such large bags and hence we can afford to be more careful
for them when we enumerate their large jobs. Indeed, we manage to assign the large jobs
in such bags as in an optimal solution. Then we assign all other large jobs according to
the enumerated pattern such that we respect the bag-constraints. To assign the remaining
(non-large) jobs, we partition them into medium and small jobs such that the total processing
time of the medium jobs is small, at most €20OPT - m. We find a way to assign the latter
to the machines such that via some swapping and charging arguments we can guarantee
that for the remaining small jobs there exists a solution with small overall makespan. For
the small jobs the argumentation is again not as easy as without the bag-constraints since
some machines already have jobs from some bags which prevents small jobs of such bags
to be assigned to them. We solve the remaining problem with a combination of a dynamic
programming algorithm and a modified greedy routine. Overall, we obtain a PTAS for
minimizing the makespan under bag-constraints. Hence, like without bag-constaints, there is

S. Das and A. Wiese

ZZ7Z

NN

0 1 0 1 2-0(e)

Figure 1 Left: an optimal schedule for the given instance. The bold lines indicate the enumerated
patterns for the big jobs, all of them having size e. The colors show the different bags of the jobs.
Each white (striped) job j is in a (private) bag that contains only j. Right: a schedule in which the
big jobs are assigned according to the same patterns but differently than in OPT. Thus, all non-big
jobs have to be assigned to the last machine in order to satisfy the bag-constraints. This yields an
approximation ratio of 2 — O(e).

a (1 + €)-approximation in polynomial time, but clearly new ideas are necessary to construct
such an algorithm.

» Theorem 1. There is a PTAS for minimizing the makespan on identical machine with
bag-constraints.

1.2 Unrelated machines

For makespan minimization on unrelated machines, the mentioned LP-based 2- and (2—1/m)-
approximation algorithms [16, 19] are known. There are several rounding strategies for the
natural LP such as an argumentation via bipartite matchings [16], rounding via (sparse)
extreme point solutions [19], and, related to the latter, iterated rounding [20]. The bag-
constraints induce a linear constraint for each combination of a bag and a machine. Thus,
it seems natural to enhance the normal LP by these constraints and try to adapt one of
the known rounding techniques. However, in this paper we show that this is deemed to fail.
We prove that on unrelated machines the problem is hard to approximate with a ratio of
(log n)l/ 4=¢ for any € > 0. This holds also in the restricted assignment case where each job j
has a size p; and there are some machines on which it cannot be assigned, i.e, p;; € {p;, 00}
for each job j and each machine i. On the other hand, we show that a randomized rounding
algorithm yields a O(logn/ loglogn)-approximation.

» Theorem 2. For minimizing the makespan on unrelated machines with bag-constraints
there can be no (log 71)1/4*6
NP C ZPTIME(2(0s™ "

-approximation algorithm for any € > 0 unless
). This holds even for the restricted assignment case.

Thus, in contrast to the case of identical machines we see here an increase in complexity
due to the bag-constraints. However, we identify a special case of the restricted assignment
setting where we can do better than in the general case: if all jobs from each bag can be
assigned to exactly the same set of machines then we obtain a 8-approximation algorithm
based on the above mentioned LP. For this we need several new ideas on top of the above
mentioned known rounding techniques. First, we round the job sizes to powers of 2 and
process the jobs in groups according to their sizes. We show that if all jobs have exactly the
same size then even with the bag-constraints the LP is almost exact. We then assign the jobs
with largest size via LP-rounding. Together with the fractional solution of the remaining
jobs this might violate the bag-constraints. However, by carefully exploiting the properties
of our special case we are able to construct a new fractional solution for the remaining jobs

31:3

ESA 2017

31:4

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

that satisfies the bag-constraints. We continue iteratively. When we change the residual
fractional solution after each iteration we employ some careful geometric sum arguments in
order to ensure that the final solution has a makespan that is at most by a factor 8 larger
than the value of the initial LP-solution.

» Theorem 3. There is a 8-approzimation algorithm for minimizing the makespan with
bag-constraints in the restricted assignment case if for each bag all jobs in the bag can be
assigned to the same set of machines.

Due to space constraints we give the statement of several lemmas and theorems without
proofs and details in this extended abstract.

1.3 Other related work

Makespan. For the restricted assignment case without bag-constraints, Svensson [21] gave
an estimation algorithm with a ratio of 33/17 + €, i.e., his algorithm can estimate the optimal
makespan up to this factor in polynomial time but does not necessarily find the corresponding
schedule within this time bound. This algorithm was improved recently by Jansen and
Rohwedder [15] to an (11/6 + €)-estimation algorithm. If there are only two different jobs
sizes, there is even a 5/3-estimation due to Jansen, Land, and Maack [14]. Moreover, for
the special case that each job has either size 1 or size e there is a (2 — §)-approximation
algorithm due to Chakrabarty, Khanna, and Li for a small constant 6 > 0 [2]. In contrast
to the previous algorithms, it computes the actual schedule in polynomial time. All above
algorithms are based on the configuration-LP in the restricted assignment case. Note that for
general unrelated machines the latter LP has an integrality gap of (asympotically) 2 [5, 22].

Scheduling with conflicts. Typically, in these settings, there is an underlying conflict graph
with the jobs forming the vertices; there is an edge between any two vertices if and only if the
corresponding jobs cannot be scheduled on the same machine. In [1], for example, the authors
give a tight 2-approximation algorithm for makespan minimization when the underlying
conflict graph is polynomial time colorable. A slightly different setting is considered in [7].
Here, an edge between any two jobs in the conflict graph dictates that they cannot be
scheduled in overlapping intervals on different machines. The authors, among other results,
prove that the makespan minimization problem is APX-hard even for 4 different job sizes
and give 4/3-approximation algorithms for the case of three different job sizes and an exact
algorithm for two different job sizes. A related setting, called the multi-level bottleneck
assignment is considered in [4]. It can be thought of as a generalization of our setting where
each bag has the same number of jobs and the additional restriction that each machine gets
exactly the same number of jobs in a schedule. The authors prove a 2-approximation for the
special case with 3 bags.

2 A PTAS for identical machines

In this section we present our PTAS for minimizing the makespan under bag-constraints
on an arbitrary number of identical machines. As we will see, the standard techniques of
enumerating over large jobs and then adding small jobs greedily are not sufficient since a bag
can contain large and small jobs and, therefore, these jobs interact with each other much
more than without the bag-constraints.

Let € > 0 and assume for simplicity that 1/e¢ € N. First, we assume that we guess the
optimal makespan 7™ via a binary search framework and we assume by scaling that T* =

S. Das and A. Wiese

We round all job lengths to powers of 1 + ¢, i.e., we assume that for each job j € J we have
that p; = (1 + €)* for some k € N. Due to this we lose at most a factor of 1 + ¢ in the
objective.

2.1 Straight-forward approach

As mentioned in the introduction, a natural approach would be to classify jobs into large and
small jobs, e.g., define a job j to be large if p; > € and small otherwise and to enumerate over
the large jobs. More precisely, one would enumerate over the patterns of the large jobs where
a pattern indicates how many large jobs of each size are assigned to a machine. Since each
machine can have at most 1/¢ large jobs and there are only O(log;, . 1/¢) many different
sizes of large jobs, this yields (1/€)©(°81+¢1/€) = K many different patterns. Thus, in time
(m+ 1)K we can enumerate how many machines follow each pattern and thus enumerate the
machine patterns of the optimal solution (up to permutation of machines). Then, one would
compute a solution for the large jobs following the enumerated patterns, e.g., via assigning
them greedily to the patterns’ slots. However, the computed assignment of jobs to slots
might be different than in the optimal solution and if a large job is assigned to a machine ¢
then a small job from the same bag cannot be assigned to i anymore. Figure 1 shows an
example where such an algorithm enumerates the patterns of some optimal solution but then
assigns the large jobs differently than O PT such that any assignment for the remaining small

jobs yields a makespan of at least (2 — O(e))T™*. Hence, this approach does not work directly.

2.2 Refined job classification and enumeration

Instead, we use a classification of the jobs into large, medium, and small jobs. Using a
standard shifting argument we define these groups such that the medium jobs have small
total processing time.

» Lemma 4. For any given instance we can compute a value k € {1,...,1/€*} such that
2

Zje]:pje[ek‘*'l,e’“)pj Sm-e.

With the value k from Lemma 4 we define a job j to be large if p; > €*, medium if
D; € [eF+1 eF) and small if p; < ¢**1. Note that in the example in Figure 1 there are some
bags that have a large number of large jobs (m — 1 many). We call a bag large if it contains
at least € - m large or medium jobs and small otherwise. The following proposition shows
that there can be only constantly many large bags (since otherwise the total processing time
of their jobs would be bigger than m).

» Proposition 5. There can be at most O(1/€**2) large bags.

In our algorithm, we want to enumerate over patterns that contain large jobs and
additionally medium jobs from large bags. However, for the large and medium jobs in large
bags we want to be more careful: we want to assign them to the slots of the enumerated
pattern like in an optimal solution. Since there are only O.(1) large bags, we can incorporate
the enumeration of this this assignment in to the enumeration of the patterns.

Assume that after our rounding the medium and large jobs have sizes S = {s1, ..., 5|5}
with |S| = O(log;, . (1/€¥*1)). A pattern p consists of at most (1 + €)/e*** slots (note that
each machine can have at most (1 + €)/e¥*! jobs that are medium or large) where each slot
is characterized by a size s € S and a label that specifies either one of the O(1/e¥*+2) large
bags (and then only jobs from that bag can be assigned to the slot) or that the slot can be
used only for jobs from small bags. If s belongs to the size of a medium job then we do not

31:5

ESA 2017

31:6

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

allow the latter type of label, i.e., we allow slots of medium size only for jobs from large bags.
Let K! = O.(1) be the total number of patterns. Hence, in time (m + 1)%¢ we can guess a
pattern for each machine such that all patterns together correspond to an optimal solution.
From these patterns we can directly conclude the complete assignment of medium and large
jobs from the large bags. Hence, we obtain an assignment for the latter jobs and a pattern
for the large jobs in small bags.

» Lemma 6. In time m*, where K = (% log(%))o(e%) we can guess the assignment of the
large and medium jobs from the large bags and a pattern for each machine for the large jobs
in small bags (both corresponding to an optimal solution).

Next, we assign the large jobs of the small bags to the slots given by the enumerated
pattern. We do this via a dynamic program (DP). This DP will successfully assign all
remaining large jobs, however, not necessarily to the slots to which the optimal solution
assigned them.

» Lemma 7. There is a dynamic program that assigns all large jobs in small bags to the
machines such that (i) no two large jobs from the same (small) bag are assigned to the same
machine and (ii) for each size s € S each machine i gets the same number of jobs of size s
as there are slots of size s for jobs from small bags in the pattern assigned to i.

2.3 Assignment of remaining medium jobs

So far we have assigned all large jobs and additionally all medium jobs in large bags. We
want to assign the medium jobs from the small bags now. If we were allowed to assign each
such job to any machine then we could distribute them evenly on the machines (essentially
with some greedy algorithm) such that each machine gets at most #,fil = 1/€*~! jobs with
thus a total load of at most €¥/e*~! = e. For the medium jobs of a small bag B we observe
that up to € - m machines already have a large job from B assigned to them but we can still
use at least (1 — €)m machines for the medium jobs from B. We obtain almost the same
bound as above due to an assignment via a flow network that we use to round a fractional
solution in which each bag distributes its medium jobs evenly among its at least (1 — €)m
available machines.

» Lemma 8. In polynomial time we can compute an assignment of the medium jobs of the
small bags such that each machine gets at most 2/e*=1 medium jobs with a total load of at
most O(e) and no machine has two medium or a medium and a large job from the same bag.

2.4 Assignment of small jobs

It remains to assign all small jobs, from the large as well as from the small bags. Note that
at this point it is not even clear that after the assignment of the large and medium jobs we
can add the small jobs such that the overall makespan is 1 + O(e) (recall the example in
Figure 1). Therefore, we prove this in the following lemma.

» Lemma 9. Given the previously computed assignment of large and medium jobs, there
exists an assignment of the small jobs to the machines such that the overall makespan is
bounded by 1+ O(e).

Proof. Consider the (possibly infeasible) schedule S in which the small jobs are assigned as
in the optimal solution and the large and medium jobs are assigned as in our so far computed
solution. Let B be a bag. There might be a machine i such that two jobs of B are assigned

S. Das and A. Wiese

to ¢ in S. Note that B has to be a small bag. Let m’ be the number of these machines and
call these machines and the corresponding small jobs problematic. Assume w.l.o.g. that B
contains exactly m jobs (if not then we can add some small dummy jobs of zero length). Then

there must be m’ machines on which no job of B was assigned, we call these machines free.

We take the problematic small jobs of B from their (problematic) machines and distribute

them on the free machines such that no two small jobs are assigned to the same machine.

We do this operation for each bag. Denote by S’ the resulting schedule. We argue that our
operation did not increase the load on each machine by more than O(¢). Suppose that we
moved a problematic job j in a small bag B from some machine ¢ to some machine #’. Since
7’ did not have any job from B assigned to it in S and each bag has exactly m jobs, this

means that in OPT machine ¢/ must have a medium or a large job from B assigned to it.

If i’ has a large job j’ from B in OPT then we charge p; to p;/, using that p; < ep;. If ¢/
has a medium job j” from B in OPT then we charge p; to p;». Recall that we assigned the
medium jobs of the small bags to the machines such that the load of each machine due to
medium jobs in small bags is O(¢) (see Lemma 8). Hence, we can still use p;~ to pay for one
other job assigned to ¢’ in S".

For a machine ¢ let OPTZ.largC, OPTmed OPTs™2! denote the load in OPT due to large,

medium, and small jobs, respectively, and by S™¢d the load due to the medium jobs in S.

Thus, in S’ the load of machine 7 is bounded by
OPT™& + OPTM 4 OPTF™ ! 4 cOPTI™™ + 57 < (1 4+ O(e))OPT.

where O PT}*% bounds the load due to large jobs, OPT™ +eOPT;*° hounds the load due
to medium jobs in large bags and reassigned small jobs from small bags, OPT™2!! bounds
the load from non-reassinged small jobs, and S™°¢ bounds the load from medium jobs in
small bags. |

In order to compute an assignment of the small jobs, observe that after assigning the
large and medium jobs the machines have only O, (1) different loads since there are at most
1/€**1 jobs on each machine that are large or medium and the size of each of them comes
from a set of only O(log,, . 1/e*!) different values. Thus, we can partition the machines
into O,(1) different groups such that two machines in the same group have the same load and
their medium and large jobs from large bags come from exactly the same set of large bags
(there are only O(1) possibilities for the latter property). We devise a dynamic program
that assigns the small jobs to these groups of machines, rather than directly to machines.
This DP ensures that the average load of a machine in each group is at most 1 4+ O(e) and
that for each machine group and each bag B we can schedule all small jobs in B assigned to
this group on its machines without violating the bag-constraint. Formally, assume that the
machines are divided into groups My, ..., Mg~ with the above properties where K = O.(1)
and let a denote the load due to medium and large jobs of each machine in group M. Let
Bs denote the load of the small jobs assigned to machines in group M;. For each bag B
and each machine group M, denote by MP C M, the machines in M, that do not have a
medium or large job from B assigned to it.

» Lemma 10. There is a polynomial time algorithm that assigns the small jobs to the
machine groups My, ..., Mgn such that for each s € [K"] we have that from each bag B at
most |MB| jobs are assigned to M and as + % <14 O(€). The algorithm runs in time

B2(m) 0K, here K = (1)21og(L).

Once the jobs are assigned to the groups, we need to assign the jobs to the machines
within each group. For the case without the bag-constraints, one can easily show that a

31:7

ESA 2017

31:8

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

simple greedy algorithm will ensure that the load of the small jobs will be almost equally
distributed among the machines, i.e., the makespan of any two machines will differ by at
most the size of one small job. In the setting of the bag-constraints this is no longer that
easy. Consider a group M, and let Jg denote the small jobs assigned to M due to Lemma 10.
We group the small jobs by their respective bags, denote by J¢ := J, N B, for each bag By.
Assume w.l.o.g. that |J¢| = |MB¢| for each bag By. In each iteration we assign all jobs from
one bag as follows. Consider the /-th iteration in which we assign the jobs in J¢. We order
the jobs in J¢ non-increasingly by length, i.e., assume that J¢ = {j, ja, ...»J1B,|} such that
p1 2> p2 > ... 2 pB,|- We order the machines in M B¢ non-decreasingly by the total load that
they obtained from jobs in By, ..., B¢—1 that we previously assigned to them. Let i1, ...,7p,
be this order. Then for each ¢’ € {1, ...,|J¢|} we assign job j, to machine i,,. We call this
algorithm bag-LPT.

If for each bag B, we have that MP¢ = M, then we can again argue that at the end the
load on any two machines differs by at most the size of one small job, i.e., €*T1. However,
this is no longer the case if MBP¢ # M, for some bag B, since then there is a machine
i € M\ MB¢ that does not gspaet a small job from a bag By. This happens if By is a small
bag and machine ¢ already has a large or medium job from By, assigned to it. However, to
each machine i we assigned in total at most O(1/€*) jobs in small bags that are medium or
large: at most O(1/¢") large jobs since each large job has a size of at least ¢ and at most
O(1/€*~1) medium jobs due to Lemma 8. Hence there can be only O(1/€*) bags B, such that
i € My \ MB¢. This allows us to bound the error due to the above by O(1/€e*) - €¥+1 = O(e).

» Lemma 11. For each group M bag-LPT assigns the small jobs such that each machine
in My has a load of at most as + ‘Ile +O(1/ek) - F*+1 <14 O(e).

Hence, we assigned all large, medium, and small jobs such that each machine has a load
of 1+ O(e). This completes the proof of Theorem 1.

3 Special Case of Restricted Assignment

In this section we present our 8-approximation algorithm for minimizing the makespan
on unrelated machines under bag-constraints in the restricted assignment case where we
additionally assume that all jobs in each bag By can be assigned to the same set of machines.

Our starting point is the LP-relaxation for the minimization the makespan on unrelated
machines as it was used in [16, 19] and we add additional inequalities for the bag-constraints
to it. Let T be a guessed value of the optimal makespan. We define a linear program LP(T)
that models the problem of finding a solution with makespan T'. Recall that for each job j
there is a value p; such that p;; € {p;, 0o} for each machine i. For each job j denote by M;
the set of machines ¢ such that p;; = p;.

LP(T): > ayp; <T VieM (1)
JieM;
dwy=1 VjelJ (2)
i€M;
Y m; <1 Vie MVEE Y] (3)
JEBe
:L‘ijZO VjEJ,iEMj (4)

;=0 ifpy; >T,VjeldieM (5)

S. Das and A. Wiese

[B1 N J(p)| @

1B J(p)] a

|By N J(p)| H

Figure 2 The flow-network for assigning the jobs in J(p). Note that arcs of the type {ve, w;}
exist only if there is a job j € B, N J(q) such that z;; > 0. The values above the arcs indicate their
respective capacities.

[E;‘eﬂq) Ti,ﬂ

Using a binary search framework we determine T* which we define to be the smallest
value T for which LP(T) is feasible. Denote by x* the corresponding fractional solution. In
the remainder of this section, we will prove that from z* we can obtain an integral solution
of makespan at most 47 + 4max; ; p;; < 8OPT.

Assume w.l.o.g. that p;; € N for each machine ¢ € M and each job j € J. We round each
finite job size p;; and each value p; to the next larger power of 2, denote by p;; and p; the
new respective values. This increases the fractional load on each machine by at most a factor
of 2. Based on this, we group the jobs into classes. A job j belongs to class g if p; = 29. We
define cl(j) to be the class of a job j and J(g) to be the set of all jobs of class ¢. Let gmax
denote the highest class of a job in the instance. We compute our integral job assignment
in phases, one phase for each job class in the order ¢max, Gmax — 1, ---, 0. In each phase g we

determine an integral assignment of all jobs of class q.

@}

YV JieM jeic(q)
phase ¢ that satisfies constraints (2)-(5) of LP(T') for all jobs in J<(gq) where for each ¢’ we
define J<(q') := Uy r.qv<y J(¢"). In the first phase where ¢ = gmax this solution 2@ equals
the optimal LP-solution x*.

Assume that we are given a fractional solution {x at the beginning of

3.1 Job assignment via flow network

Similarly as in the proof of Lemma 8 we interpret the fractional assignment of the jobs in
J(q) given by 29 as the fractional solution to an instance of maximum flow with integral
edge capacities. Then, using flow theory we will argue that there exists also an integral
solution to this instance which will then yield our integral job assignment.

Our (directed) flow-network consists of a source node s, a node v, for each bag By, a node
w; for each machine 7, and a sink node ¢ (see Figure 2 for a sketch). For each bag By there is
an arc (s, vg) whose capacity equals the number of jobs in By of class ¢, i.e., |B; N J(q)|. For
each bag By and each machine 7 there is an arc (ve, w;) of capacity 1 if and only if there is a
job j € ByNJ(q) such that z;; > 0. For each machine ¢ there is an arc (w;,t) whose capacity
equals (Zje}(q) mf;?)h i.e., the fractional number of jobs of class ¢ assigned to ¢, rounded
up. Let G be the resulting graph and denote by (G(p), s,t) the overall flow network. The

solution z yields a fractional flow in this network that sends |J(g)| units of flow from s to t.

Hence, standard flow theory implies the following proposition.

31:9

ESA 2017

31:10

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

» Proposition 12. There is an integral flow y for (GP) s, t) that sends |.J(q)| units of flow
from s to t.

The integral flow due to Proposition 12 yields an assignment of the jobs in J(g) that
respects the bag constraints: we assign a job from a bag By to a machine ¢ if and only if
Y(ve,w;) = 1. This yields the following lemma.

» Lemma 13. Given a class q and a solution x'9 that satisfies constraints (2)-(5) of LP(T)
for all jobs in J<(q). Then in polynomial time we can compute an integral assignment
{jg?)}ieM’jej(q) for all jobs in J(q) such that (i) each machine i has at most [} ;¢ 5, xz(-?)]
jobs of J(q) assigned to it and (ii) if for some bag By a job j € By N J(q) is assigned to a
machine i then there is a job j' € By N J(q) with xfj,) >0, and (iii) the solution T9 assigns
at most one job from each bag to each machine.

3.2 Reassignment of jobs

In the next phase ¢ — 1 we cannot directly apply the above procedure to assign the jobs in
J(q — 1) starting with the solution 2(@: it might be that there is a bag B, and two jobs
J,7" € By such that cl(j) = ¢, cl(j') = ¢ — 1, j is assigned to some machine ¢ in phase ¢, and

ngf) > 0. Hence, in phase g — 1 potentially j’ is also assigned to machine 7 which then violates
the bag constraints. Therefore, based on x* we construct a solution {:C,E‘?_l)}iej\/[JeJS(q_l)
E?il) > 0 for a job
j € J<(¢ — 1) in some bag B, then there is no job j’ € B, with cl(j') > ¢ that we assigned

in which all jobs in J<(g — 1) are fractionally assigned such that if =

integrally to machine ¢ in any of the previous phases. As we will see, this might increase the
load on some machines, but only by a bounded amount.

Intuitively, suppose that z7; > 0 for some job j € J<(¢ — 1) in some bag By and some
machine 7, and assume that in phase ¢’ > ¢ we assigned a job j’ € J(¢') N By to machine i.
We call such a pair (i, j) problematic. Then z7;, <1 — z7; due to constraint (3). Hence, at
least a fraction of z7; of job j' was assigned to some machine i’ # i by x*. Therefore, we
can move z;; units of job j to machine 1/ without violating the bag constraints. Even more,
if job j is of class ¢ (note that § < ¢ — 1) then p; < 2‘5_‘1/15]'/, i.e., the additional load on
machine i’ is by a factor 20-4" smaller than the original load due to job j’.

More formally, initially we define 2(¢=1) := 2*. Consider a bag B, and denote by M,
the set of all machines to which the jobs in By can be assigned and to which we did not
assign a job from By in phases ¢, ..., gmax. As long as there is a problematic pair (¢, j) with
xl(g_l) > (0 we reassign the “problematic fracjcion” :vl(?_l) of job j greedily to the machines in
M, while we ensure that each machine ¢ € M, gets at most ZjeBm(J\JS(q—l)) xfj jobs from
By reassigned overall (fractionally). Thus, at the end for each problematic pair (4, ;) we have
that wgg_l) = 0. We perform this reassignment for each bag By.

» Lemma 14. Given the integral assignment {jg?/)}ieM,jeJ(ql) of the jobs in J(q') for each
phase ¢' > q due to Lemma 13. In polynomial time we can compute a (fractional) solution
{xz(-gfl)}ieMyje]S(q_l) for the jobs in J<(q — 1) such that
(i) =9~V satisfies constraints (2)-(5) of LP(T),
(i) for each job j € J(q— 1) in some bag B; we have that ml(-;kl) =0 if ig?:) =1 for some
job j € J(¢') N By for some ¢’ > q,
(iii) for each machine i we have that
Siesa-n O P € Xjesqon) TPis + Lgrsqo1 297070 e g Wi

S. Das and A. Wiese

dte , i my 4 ity i 4
(N Pi o 1.0 N 0
I\ L] L] I\
Jba , Maa maq 74 a ms 4
AN Pi o 1.0 ~ 0
N\, L] L] N\,
it Jia M2 mig it mt
J1 P — 0
N\, L] L] N\,
Jhre 5 Mar2 mad o J8ra 0 mh 4
NP] I\ D
L] L] N\,

Figure 3 Sketch of the reduction from vector scheduling to group-restricted assignment.

We then proceed with phase ¢ — 1 where we start with the fractional solution x(4—1
as computed in Lemma 14. When we finish the last phase, we have computed an integral
assignment {Z;; }ienr,jes of the jobs to the machines. Due to Lemma 13(ii) and Lemma 14(ii)
our assignment respects the bag-constraints. In the next lemma we bound the load on each
machine in the computed assignment which completes the proof of Theorem 3.

» Lemma 15. In the computed assignment each machine has a load of at most 4T* +
4maxi’j Dij S 8T™ S 8OPT.

4 Hardness of restricted assighment with bag-constraints

Our goal is to prove Theorem 2, i.e., we want to show that for minimizing the makespan
on unrelated machines with bag-constraints there can be no (log n)l/ 4=c_approximation
algorithm for any e > 0 unless NP C ZPTIME(2(lcem) ")
case. We reduce the vector scheduling (VS) problem [3] to the problem of minimizing
the makespan in the restricted assignment setting with bag-constraints. In the vector
scheduling problem, we are given a set of identical machines M, a dimension d € N, and
a set of n d-dimensional vectors pi, ..., p, € [0,00)%. The goal is to assign each vector to
a machine, i.e., find a partition Aj, ..., A|ps of the vectors. The objective is to minimize

, even for the restricted assignment

max;en HZ jea, Pi H . Our reduction is gap-preserving and in particular we will show that
o]

any c-approximation algorithm for our problem yields a c-approximation algorithm for vector
scheduling for any value c. In [3] it was shown that the vector scheduling problem does not
admit a c-approximation algorithm for any constant ¢, assuming that P # ZPP (with the
newer in approximability result for Independent Set in [23] it suffices to assume that P # NP).
We are able to prove that one cannot get a (log n)l/ 4=7_approximation for VS for any constant
v > 0 in polynomial time or quasi-polynomial time, assuming that NP ¢ ZPTIME(Q(log n) o).
Then the same inapproximability bound holds for our problem as well.

Given an instance I of vector scheduling, defined by a number of dimensions d, a set of
M identical machines, and n vectors py, ..., p, where for each vector p; we denote by p¥ its
size in the k-th dimension. Denote by OPT(I) its optimal objective value. We define an
instance of makespan minimization on unrelated machines with bag-constraints. For each
combination of a machine ¢ and a dimension k in I we introduce a machine m; y, see Figure 3
for a sketch. For each vector p, we introduce a set of jobs that form a group Jy. There is one
job j§ with size p;. The job j{ can be assigned to each machine m; ; for each 4. Intuitively, if
j% is assigned to machine m; ; this corresponds to assigning the vector p, to machine i in I.

31:11

ESA 2017

31:12

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

We will design the remaining machines and jobs for vector p, such that if j{ is assigned to
machine m; ; then for each dimension &

each machine m; ; will get a load of pé? from the jobs in J; and

each machine m; with ¢’ # ¢ will get a load of 0 from the jobs in J,.
Then, for each combination of a vector py, a dimension k£ < d, and a machine i in I we
introduce

a dummy machine T?Lf >

a dummy job jf,k of size 0 that can be assigned to only m; j and ﬁzﬁ > and

if £ > 2 then we also introduce a job jf’k of size p} that can be assigned to only m; j and

s
Observe that for each dummy machine ﬁlf i there are globally at most two jobs that can
be assigned to it (and both are in J;). Denote by I’ the resulting instance and denote by
OPT(I') its optimal solution value. Intuitively, we want to show that OPT(I) = OPT(I')
and that any solution S(I) to I yields a solution S(I") to I’ with the same objective value.
This needs some preparation. We have the following two lemmas.

» Lemma 16. Let ¢,i,k € N. Consider any feasible solution. If the job ji is assigned to
machine m; 1 then each machine m; . has exactly one job j € Jy assigned to it with p; = p’Z.

The next lemma intuitively states that we can restrict ourselves to solutions to I’ that are of
the form described in the statement of the lemma.

» Lemma 17. Consider any feasible solution S for the instance I' and let i,¢,k € N. Further
let job jp1 is assigned to machine m; 1 in S. Then there exists another feasible solution S’
such that each machine my y, with i’ # i has at most one job from J; assigned to it and this
job has size 0, while all other jobs have exactly the same assignment as that in S. Further,
the makespan of S’ is at most the makespan of S.

» Theorem 18. For any given instance I of the vector scheduling problem, in polynomial time
we can construct an instance I' of the restricted assignment case of makespan minimization
on unrelated machines with bag-constraints such that for any solution S(I) for I there is a
corresponding solution S'(I') for I' with objective value at most that of S(I) and vice versa.
In particular, this implies that OPT(I) = OPT(I').

5 Conclusion

In this paper we showed that for minimizing the makespan on identical machines with
bag-constraints there is a (1 + €)-approximation algorithm like in the setting without the bag-
constraints (and the problem is strongly NP-hard). However, we proved that for unrelated
machines we see a change in complexity since in the classical setting the problem admits a
(2 — 1/m)-approximation [19] while with the bag-constraints it seems unlikely to obtain a
better approximation ratio than (logn)'/4=¢ for any € > 0. It remains open to investigate
more scheduling scenarios under bag-constraints such as makespan minimization on related
machines or minimizing the weighted sum of completion time in any machine model. Also,
for identical machines it remains open whether there is an EPTAS (which exists without the
bag-constraints [12, 13, 10, 11, 17]).

Acknowledgments. We would like to thank the anonymous referees of this paper for many
helpful comments and for pointing us to papers related to the setting of the bag-constraints.

S. Das and A. Wiese

—— References

1

10

11

12

13

14

15

16

17

Hans L. Bodlaender, Klaus Jansen, and Gerhard J. Woeginger. Scheduling with incompat-
ible jobs. Discrete Applied Mathematics, 55(3):219-232, 1994.

Deeparnab Chakrabarty, Sanjeev Khanna, and Shi Li. On (1, &)-restricted assignment
makespan minimization. In Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 1087-1101. STAM, 2015.

Chandra Chekuri and Sanjeev Khanna. On multi-dimensional packing problems. In SODA,
volume 99, pages 185-194. Citeseer, 1999.

Trivikram Dokka, Anastasia Kouvela, and Frits C. R. Spieksma. Approximating the multi-
level bottleneck assignment problem. Oper. Res. Lett., 40(4):282-286, 2012.

Tomas Ebenlendr, Marek Kréal, and Jifi Sgall. Graph balancing: A special case of schedul-
ing unrelated parallel machines. Algorithmica, 68(1):62-80, 2014.

Friedrich Eisenbrand, Karthikeyan Kesavan, Raju S. Mattikalli, Martin Niemeier,
Arnold W. Nordsieck, Martin Skutella, José Verschae, and Andreas Wiese. Solving an
Avionics Real-Time Scheduling Problem by Advanced IP-Methods, pages 11-22. Springer,
2010. doi:10.1007/978-3-642-15775-2_2.

Guy Even, Magnts M. Halldérsson, Lotem Kaplan, and Dana Ron. Scheduling with con-
flicts: online and offline algorithms. J. Scheduling, 12(2):199-224, 2009.

Ronald L Graham. Bounds for certain multiprocessing anomalies. Bell System Technical
Journal, 45(9):1563-1581, 1966.

Ronald L. Graham. Bounds on multiprocessing timing anomalies. STAM journal on Applied
Mathematics, 17(2):416-429, 1969.

D. Hochbaum, editor. Approzimation Algorithms for NP-hard Problems. PWS Publishing
Company, 1997.

Dorit S Hochbaum and David B Shmoys. Using dual approximation algorithms for schedul-
ing problems theoretical and practical results. Journal of the ACM (JACM), 34(1):144-162,
1987.

Klaus Jansen. An eptas for scheduling jobs on uniform processors: using an milp relaxation
with a constant number of integral variables. SIAM Journal on Discrete Mathematics,
24(2):457-485, 2010.

Klaus Jansen, Kim-Manuel Klein, and José Verschae. Closing the Gap for Makespan
Scheduling via Sparsification Techniques. In 43rd International Colloquium on Auto-
mata, Languages, and Programming (ICALP 2016), volume 55 of LIPIcs, pages 72:1-
72:13, Dagstuhl, Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ICALP.2016.72.

Klaus Jansen, Kati Land, and Marten Maack. Estimating The Makespan of The Two-
Valued Restricted Assignment Problem. In 15th Scandinavian Symposium and Workshops
on Algorithm Theory (SWAT 2016), volume 53 of LIPIcs, pages 24:1-24:13, Dagstuhl,
Germany, 2016. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
SWAT.2016.24.

Klaus Jansen and Lars Rohwedder. On the configuration-lp of the restricted assignment
problem. In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2017). STAM, 2017. to appear.

Jan Karel Lenstra, David B. Shmoys, and Eva Tardos. Approximation algorithms for
scheduling unrelated parallel machines. In SFCS’87: Proceedings of the 28th Annual Sym-
posium on Foundations of Computer Science, pages 217-224, Washington, DC, USA, 1987.
IEEE Computer Society. doi:10.1109/SFCS.1987.8.

Joseph YT Leung. Bin packing with restricted piece sizes. Information Processing Letters,
31(3):145-149, 1989.

31:13

ESA 2017

http://dx.doi.org/10.1007/978-3-642-15775-2_2
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.72
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.72
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.24
http://dx.doi.org/10.4230/LIPIcs.SWAT.2016.24
http://dx.doi.org/10.1109/SFCS.1987.8

31:14

Minimizing the Makespan When Some Jobs Cannot Be Assigned on the Same Mach.

18

19

20

21

22

23

Bill McCloskey and AJ Shankar. Approaches to bin packing with clique-graph conflicts.
Computer Science Division, University of California, 2005.

E. V. Shchepin and N. Vakhania. An optimal rounding gives a better approximation for
scheduling unrelated machines. Operations Research Letters, 33:127-133, 2005.

Mohit Singh. Iterative methods in combinatorial optimization. PhD thesis, Carnegie Mellon
University, 2008.

Ola Svensson. Santa claus schedules jobs on unrelated machines. SIAM Journal on Com-
puting, 41(5):1318-1341, 2012.

José Verschae and Andreas Wiese. On the configuration-lp for scheduling on unrelated
machines. Journal of Scheduling, 17(4):371-383, 2014.

D. Zuckerman. Linear degree extractors and the inapproximability of max clique and
chromatic number. Theory of Computing, 3:103-128, 2007.

	Introduction
	Identical machines
	Unrelated machines
	Other related work

	A PTAS for identical machines
	Straight-forward approach
	Refined job classification and enumeration
	Assignment of remaining medium jobs
	Assignment of small jobs

	Special Case of Restricted Assignment
	Job assignment via flow network
	Reassignment of jobs

	Hardness of restricted assignment with bag-constraints
	Conclusion

