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ON THE VARIATIONAL STRUCTURE OF BREATHER SOLUTIONS I:

SINE-GORDON EQUATION

MIGUEL A. ALEJO, CLAUDIO MUÑOZ, AND JOSÉ M. PALACIOS

Abstract. In this paper we describe stability properties of the Sine-gordon breather solution.

These properties are first described by suitable variational elliptic equations, which also implies

that the stability problem reduces in some sense to (i) the study of the spectrum of explicit
linear systems, and (ii) the understanding of how bad directions (if any) can be controlled using

low regularity conservation laws. Then we discuss spectral properties of a fourth-order linear

matrix system. Using numerical methods, we confirm that all spectral assumptions leading to
the H2 × H1 stability of SG breathers are numerically satisfied, even in the ultra-relativistic,

singular regime.

1. Introduction

1.1. Setting of the problem. In this paper we study stability properties of breathers, which are
nontrivial solutions of integrable dispersive equations, different to solitons and multi-solitons. We
will consider the Sine-Gordon (SG) equation

utt − uxx + sinu = 0, (u, ut) = (u, ut)(t, x) ∈ R2, (t, x) ∈ R2. (1.1)

The above equation is a well-known completely integrable model [16, 1, 26], with infinitely many
conserved quantities, and a suitable Lax-pair formulation.

Solutions of (1.1) are invariant under space and time translations. Indeed, for any t0, x0 ∈ R,
u(t − t0, x − x0) is also a solution. Furthermore, an additional feature of the SG equation is the
invariance under Lorentz transformations: given any v ∈ (−1, 1), then

u(γ(t− vx), γ(x− vt)), γ := (1− v2)−1/2, (1.2)

is a new solution of (1.1).

On the other hand, standard conservation laws for the SG equation (1.1) at the H1 × L2-level
are the energy

E[u, ut](t) :=
1

2

∫
R

(u2
x + u2

t )(t, x)dx+

∫
R

(1− cosu(t, x))dx = E[u, ut](0), (1.3)

and the momentum

P [u, ut](t) :=
1

2

∫
R
ut(t, x)ux(t, x)dx = P [u, ut](0). (1.4)

It is well known that any suitable well-posedness theory must deal simultaneously with the pair
(u, ut) and not only u. Since the nonlinear term sinu is uniformly bounded independently of the
size of u, one can find a satisfactory H1 ×L2 global well-posedness theory, see e.g. Bourgain [10].

On the other hand, the SG equation (1.1) has soliton solutions usually referred as kinks. Indeed,
given v ∈ (0, 1), x0 ∈ R and γ defined as in (1.2), SG (1.1) has kinks of the form

u(t, x) = ϕ(γ(x− vt− x0)), ϕ(s) := 4 arctan es. (1.5)

Date: February 8, 2017.
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2 Elliptic equations, breathers, stability

It is not difficult to see that these solutions can be associated to a well known functional defined
in the H1 × L2 topology.

Kink solutions of (1.1) are orbitally stable in the natural energy space H1 × L2. Indeed, the
energy (1.3) is a conserved quantity and kinks can be viewed as relative minimizers of a suitable
energy functional. For the proofs of this result for the SG case and more general equations, we
refer to the works by Henry-Perez-Wreszinski [21], Grillakis-Shatah-Strauss [18], Soffer-Weinstein
[32], Cuccagna [12] and the recent results by Kowalczyk, Martel and the second author [24, 25].

1.2. Breathers and their stability. In addition to the above mentioned special solutions (1.1),
there exists another large family of explicit and oscillatory solutions, known in the physical and
mathematical literature as the breather solution, which is a periodic in time, spatially localized
real function. Although there is no universal definition for a breather, we will adopt the following
convention, that will match the SG case.

Definition 1.1 (Aperiodic breather). We say that B = B(t, x) is a breather solution for a par-
ticular one-dimensional dispersive equation if there are T > 0 and L = L(T ) ∈ R such that, for
all t ∈ R and x ∈ R, one has

B(t+ T, x) = B(t, x− L), (1.6)

and moreover, the infimum among times T > 0 such that property (1.6) is satisfied for such a time
T is uniformly positive in space.

Remark 1.1. Note that the last condition ensures that kinks are not breathers, since e.g. ϕ(γ(x−
v(t+ T ))) = ϕ(γ(x− vt− L)) for L := vT but T can be any real-valued time.1

For the Sine-Gordon (1.1) scalar field equation, the classical standing breather is the following

B(t, x;β) := 4 arctan
(β
α

cos(αt)

cosh(βx)

)
, α2 + β2 = 1. (1.7)

(In Definition 2.1 it is also presented a general formula of the SG breather, involving all symmetries
of the equation.) As far as we know, there is no rigorous proof of stability for this solution.
Moreover, it is believed that SG breathers play an important role in the so-called asymptotic
stability problem for the kink solution, see e.g. [32, 24, 25].

Solutions like (1.7) have become a canonical example of complexity in nonlinear integrable
systems [26, 1]. Moreover, their surprising mixed behavior, combining oscillatory and soliton
character, has focused the attention of many researchers since thirty years ago [31, 9, 13]. From
the physical point of view, breather solutions seem to be relevant to localization-type phenomena
in optics, condensed matter physics and biological processes [8]. They also play an important role
in the modeling of freak and rogue waves events on surface gravity waves and also of internal waves
in the stratified ocean, in Josephson junctions and even in nonlinear optics. See [14, 19, 20, 2] for
a representative set of these examples.

From a mathematical point of view, breather solutions arise in different contexts. In a geo-
metrical setting, modified KdV (mKdV) breathers appear in the evolution of closed planar curves
playing the role of smooth localized deformations traveling along the closed curve [3]. Moreover, it
is interesting to point out that mKdV breather solutions have also been considered by Kenig, Ponce
and Vega in their proof of the non-uniform continuity of the mKdV flow in the Sobolev spaces
Hs, s < 1

4 [23]. On the other hand, they should play an important role in the soliton-resolution
conjecture, according to the analysis developed by Schuur in [31].

1In the case of NLS equations and their solitons, Definition 1.1 must be repaired to exclude them because of the
U(1) invariance.
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1.3. Main results. The purpose of this paper is to present compelling evidence that SG breathers
are stable. We will show that, under two (numerically verified) spectral assumptions, SG breathers
are stable. First of all, we will show the following

Theorem 1.2. Any pair of SG breather (B,Bt) ≡ (B, ∂tB) satisfy the set of matrix-valued,
nonlinear equations

Btxx +
1

8
B3
t +

3

8
B2
xBt −

1

4
Bt cosB − aBt −

b

2
Bx = 0,

B(4x) +
3

8
B2
xBxx +

3

4
BtBtxBx +

3

8
B2
tBxx +

5

8
B2
x sinB − 5

4
Bxx cosB

+
1

4
sinB cosB − 1

8
B2
t sinB − a(Bxx − sinB)− b

2
Btx = 0,

for a set of constants a, b depending only on some particular parameters of the breather.

This last result is, as far as we know, not present in the literature, although some ideas are
sketched in [27] for the case of mKdV solitons and multisolitons (but never rigorously verified for
the case of breathers). See also [17, 4, 5, 6] for a particular stability statement in the “simpler”
mKdV case, both in H1 and H2. For a complete and detailed statement of the previous result,
see Theorem 2.3.

As the main consequence of this result, it is possible to construct the associated linearized
operator around a breather, and try to compute its spectra. However, a rigorous description of
this operator has escaped to us. In the following, we will need two spectral assumptions that are
standard in the literature:

• Assumption 1: The kernel of a linearized operator around a breather is nondegenerate
and it satisfies the gap condition; and

• Assumption 2: There is a unique simple negative eigenvalue associated to this linear
operator.

(See p. 12 for a precise description.) With these assumptions on hand, in this paper we prove
the following conditional result:

Theorem 1.3. Under spectral Assumptions 1 and 2, SG breathers are orbitally stable for small
H2 ×H1 perturbations.

These two spectral conditions are numerically tested, showing agreement and compelling evi-
dence for their validity, for any suitable region of parameters, including the cases of low and high
velocity breathers, see Figs. 2, 3 and 4. In order to clarify the absence of a rigorous proof for
the spectral properties, the main difficulty in proving these two assumptions rests in the fourth
order, coupled, matrix-valued character of the linearized operator around a SG breather solution,
which formally leads to consider the understanding of an eight-order linear scalar operator, instead
of only dealing with a fourth order operator as in mKdV. A rigorous proof of these facts is an
interesting open problem.

Although by using some IST techniques one could possibly obtain a better resolution in Theo-
rem 1.3 (but under additional decay assumptions), working in a variational framework has some
particular advantages. First of all, the methods and ideas are “stable” under variations of the
equation: they also say something about nonintegrable models close to the integrable one, just by
comparing their respective variational formulations. One example of this property is the method
of proof in [9], based on the Bäcklund transformation, which is hard to extrapolate and make it
rigorous for the case of nonintegrable equations.

We should also remark that the original seed of these ideas is certainty not new and it was
introduced in a seminal paper by Lax [27], in the particular case of the two-soliton solution of the
Korteweg-de Vries equation. This method has been generalized to several equations with soliton
solutions [28, 21, 22, 29]. However, no previous result was available in the case of breathers,
apparently because of their dynamics, which do not resemble any type of simple, decoupled 2-
soliton solution. Compared with the previous results, proofs in [4] are more involved, since there
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is no mass splitting as t→ +∞. Further results where this technique has been successfully applied
to the understanding of stability of different soliton solutions are the works [30], see also references
therein.

We also mention that, in addition to Theorem 1.3, the more involved problem of asymptotic
stability for breathers could been also considered, as far as a good and rigorous understanding of
the associated spectral problem is at hand. Usually, these spectral properties are usually harder
to establish than the ones involved in the stability problem (because the convergence problem
requires the use of weighted functions, which destroy most of breather’s algebraic properties). In
addition, breathers can have zero, positive or negative velocity, which means that they do not
necessarily decouple from radiation. However, it is worth to mention that if the velocity of a
periodic mKdV breather is positive, then there is local strong asymptotic stability in the energy
space, see [4].

1.4. Organization of this paper. This paper is organized as follows. In Section 2 we prove that
SG breathers satisfy an elliptic system of differential equations, revealing its variational character
in the proper space H2×H1. Also, in Section 2, we show the validity of Theorem 1.3 (see Theorem
2.5 for more details). In Section 3 we study mathematical properties of the related SG spectral
problem. Finally, in Section 4 we describe, implement and use standard numerical methods to
understand and recover the SG spectral problem, the required assumptions will be showed to hold
numerically.

Acknowledgments. M.A. would like to thank to the Departamento de Ingenieŕıa Matemática
(U. Chile) for the support while doing this work. C.M. was partially funded by ERC Blowdisol
(France), Fondecyt no. 1150202 Chile, Fondo Basal CMM (U. Chile), and Millennium Nu-
cleus Center for Analysis of PDE NC130017. He also would like to thank to the Laboratoire
de Mathématiques d’Orsay for his kind hospitality during past years, and where part of this work
was completed. J.M.P. was partially funded by Fondecyt no. 1150202 Chile.

2. The Sine-Gordon breather

2.1. Preliminaries. One of the most important examples of breather solution is the one obtained
from the SG equation (1.1). For this case, we have the following definition.

-10 -5 5 10 15 20 25
x

-1.5

-1.0

-0.5

0.5

1.0

1.5

B@x,tD
sG Breather

Figure 1. Evolution of a Sine-Gordon breather moving rightward in space as
time evolves (blue color to green color).

Definition 2.1 ([26], see also Fig. 1). Let v ∈ (−1, 1), γ := (1−v2)−1/2, β ∈ (0, γ) and x1, x2 ∈ R.
Any breather solution of Sine-Gordon (1.1) is given by the expression

B := Bβ,v(t, x;x1, x2) := 4 arctan
(β
α

cos(αy1)

cosh(βy2)

)
, (2.1)
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with

y1 := t− vx+ x1, y2 := x− vt+ x2, α :=
√
γ2 − β2. (2.2)

The parameters β and v correspond to the scaling and velocity of the breather, and the case v = 0
represents a standing SG breather.

Note that the SG breather satisfies Definition 1.1 with T = 2π
α(1−v2) > 0 and L = vT ∈ R.

Also, the previous definition takes into account the velocity v of the breather via a Lorentz boost,
therefore it is slightly different to the one written in [26]. However, after redefinition of the
parameters, it is not difficult to check that they represent the same solution. Additionally, note
that in the SG case the two parameters α and β are not independent, unlike the mKdV case. In
order to make sense for a suitable Cauchy theory, our previous definition requires additionally a
description of the time derivative of a breather solution. Since we are going to work with several
time-dependent parameters, it is certainly necessary to give a precise definition of this second
nonlinear mode.

Definition 2.2. For any x1, x2 ∈ R fixed, we define the time derivative of B, denoted by Bt =
(Bβ,v)t, as follows

Bt(t, x;x1, x2) := −4αβ

[
α sin(αy1) cosh(βy2)− βv cos(αy1) sinh(βy2)

α2 cosh2(βy2) + β2 cos2(αy1)

]
. (2.3)

We introduce now some useful notation. Recall that v ∈ (−1, 1), γ = (1 − v2)−1/2 ≥ 1, and
β ∈ (0, γ). Define the parameters

a := −1

4
+ β2 + v2(2γ4 − γ2 + β2), b := 4v(γ4 − β2). (2.4)

Note that a+ 1
4 > 0 and b ∈ R. The reader may observe that whenever v = 0 (the static breather),

we have the simplified expressions a+ 1
4 = β2 ∈ (0, 1), and b = 0.

2.2. Variational characterization. As it was announced in the introduction of this work (see
Theorem 1.2), in this paper we will prove the following generalization of [4, eqn.(3.6)] for the SG
case.

Theorem 2.3. Let (B,Bt) be any SG breather of parameters v ∈ (−1, 1), β ∈ (0, γ), and a, b as
in (2.4). Then, for any fixed t ∈ R, (B,Bt) satisfy the nonlinear equations

Btxx +
1

8
B3
t +

3

8
B2
xBt −

1

4
Bt cosB − aBt −

b

2
Bx = 0, (2.5)

and

B(4x) +
3

8
B2
xBxx +

3

4
BtBtxBx +

3

8
B2
tBxx +

5

8
B2
x sinB − 5

4
Bxx cosB

+
1

4
sinB cosB − 1

8
B2
t sinB − a(Bxx − sinB)− b

2
Btx = 0. (2.6)

In particular, (B,Bt) is a critical point of the functional

H[u, ut] = F [u, ut] + aE[u, ut] + bP [u, ut], (2.7)

where the energy E[u, ut] and momentum P [u, ut] are defined in (1.3) and (1.4) respectively, and

F [u, ut](t) :=
1

2

∫
R

(u2
xx + u2

tx)(t, x)dx− 1

32

∫
R
(u4
t + u4

x)(t, x)dx− 3

16

∫
R
u2
t (t, x)u2

x(t, x)dx

+
5

8

∫
R
u2
x(t, x) cosu(t, x)dx+

1

8

∫
R

(sin2 u(t, x) + u2
t (t, x) cosu(t, x))dx, (2.8)

is the third conserved quantity for the sine-Gordon equation.
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Proof of (2.6), assuming (2.5). Taking time derivative in equation (2.5), and replacing Btt us-
ing (1.1), we have

0 = (Btt)xx +
3

8
B2
tBtt +

3

4
BtBxBtx +

3

8
B2
xBtt − 1

4
Btt cosB +

1

4
B2
t sinB − aBtt −

b

2
Btx

= (Bxx − sinB)xx +
3

8
B2
t (Bxx − sinB) +

3

4
BtBxBtx +

3

8
B2
x(Bxx − sinB)

− 1

4
(Bxx − sinB) cosB +

1

4
B2
t sinB − a(Bxx − sinB)− b

2
Btx

= B(4x) − (Bx cosB)x +
3

8
B2
tBxx −

3

8
B2
t sinB +

3

4
BtBxBtx +

3

8
B2
xBxx −

3

8
B2
x sinB

− 1

4
Bxx cosB +

1

4
sinB cosB +

1

4
B2
t sinB − a(Bxx − sinB)− b

2
Btx

= B(4x) +
3

8
B2
xBxx +

3

4
BtBtxBx +

3

8
B2
tBxx +

5

8
B2
x sinB − 5

4
Bxx cosB

+
1

4
sinB cosB − 1

8
B2
t sinB − a(Bxx − sinB)− b

2
Btx = l.h.s. of (2.6).

For the proof of (2.5), see the Appendix A. Finally, the proof that (B,Bt) is a critical point of
the functional H in (2.7) is given in Appendix B. Finally, the proof that the functional F [u, ut](t)
(2.8) is a conserved quantity is a tedious but direct computation. �

Remark 2.1. The structure of equations (2.5)-(2.6) is inherent to solutions of (1.1). For example,
the static kink solution (ϕ(x), 0) defined in (1.5) is also a solution of the same set of equations, no
matter what are a and b. In some sense, the proof of (2.5) is independent of the breather itself,
but the proof of (2.6) explicitly involves the structure of the breather.

Although the parameters x1, x2 are chosen independent of time, a simple argument ensures that
the previous lemma still hold under time dependent, translation parameters x1(t) and x2(t).

Corollary 2.4. Let (B0, B0
t ) be any SG breather as in (2.1), and x1(t), x2(t) ∈ R two continuous

functions, defined for all t in a given interval I. Consider the modified breather

(B,Bt)(t, x) := (B0, B0
t )(t, x;x1(t), x2(t)), (cf. (2.1)).

Then (B,Bt) satisfy (2.5) and (2.6), for all t in the considered interval I.

Proof. A direct consequence of the invariance of equations (2.5) and (2.6) under translations in
the variables x1 and x2. �

2.3. A rigorous statement for Theorem 1.3. The main consequence of previous results is the
possibility of proving stability, independent of how complicated breather dynamics can be. After
a suitable understanding of the linearized problem associated to (2.5)-(2.6), we are able to prove
the following conditional result:

Theorem 2.5. Under Assumptions 1 and 2 in page 12, SG breathers are stable under small
H2 ×H1 perturbations. More precisely, there are η0 > 0 and K0 > 0, only depending on β, such
that if 0 < η < η0 and

‖(u0, u1)− (Bβ,v, (Bβ,v)t)(t = 0, ·; 0, 0)‖H2×H1 < η, (2.9)

then there are real-valued parameters x1(t) and x2(t) for which the global H2×H1-solution (u, ut)(t)
of (1.1) with initial data (u0, u1) satisfies

sup
t∈R
‖(u, ut)(t)− (Bβ,v, (Bβ,v)t)(t, ·;x1(t), x2(t))‖H2×H1 < K0η,

with similar estimates for the derivatives of the shift parameters x1, x2.
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A mathematical proof of Assumptions 1 and 2 has escaped to us, even in the case v = 0,2 mainly
due to the matrix, highly coupled, fourth-order character of the linearized system associated to
SG breathers. However, as explained in the Introduction, in this paper we present compelling
numerical evidence revealing that Assumptions 1 and 2 do hold for any breather solution, regardless
its size, initial velocity or position, see Figs. 2, 4 and 1.

The proof of Theorem 2.5 follows the ideas of our proof in [4], with some interesting changes
due to the matrix-valued character of the solution. The proof is decomposed in several steps, and
it is finally done in Section 3.4.

Remark 2.2. We find that Theorem 2.5 is in fact a surprise, since from Grillakis-Shatah-Strauss
[18], it was expected that real-valued, non topological solutions to scalar field equations were
certainly unstable. However, the fact that breathers have no sign, do not satisfy a simple second
order ODE, and the more important fact that the equation is completely integrable reveal deep
obstructions to a more general behavior of solutions. We emphasize that our results above are
independent of the velocity v: standing and highly relativistic breathers should be both stable.

Remark 2.3. Looking for previous contributions to the stability problem we have found the work
by Ercolani, Forest and McLaughlin [15], where a sketch of the stability proof is presented. To be
more precise, their argument states that, by using the inverse scattering theory applied to a small
perturbation of the breather, the corresponding solution to (1.1) must remain uniformly close
in time to a modulated breather solution. However, it is important to stress that any rigorous
argument involving the inverse scattering method requires a nontrivial amount of decay on the
initial data, an assumption that is not needed in our case.

The purpose of the next Section is to give the main ingredients for the Proof of Theorem 2.5.
In a first subsection, we prove some energy and momentum identities, allowing us to show that, at
least formally, there is only one negative direction (see Definition 3.6 for a rigorous explanation of
this term), and moreover, it is possible to control such a bad direction by using only the breather
(B,Bt) as replacement.

3. Mathematical Analysis of the SG breather

3.1. Energy identities. In the next lines, we summarize some well known identities for the
energy and momentum of a fixed breather. For the sake of completeness, we give full proofs of
these results. Recall the definition of breather (B,Bt) in (2.1)-(2.3).

Lemma 3.1. Let (B,Bt) be any SG breather, with parameters for β > 0, v ∈ (−1, 1), and
x1, x2 ∈ R. Let P [B,Bt] be the momentum of a breather defined in (1.4). Then

P [B,Bt](t) = −8βv. (3.1)

Proof. From (2.3) and (A.1), we have

P [B,Bt] = −8α2β2

∫
R

hp(t, x)

(α2 cosh2(βy2) + β2 cos2(αy1))2
,

where hp(t, x) is given by the expression

hp(t, x) := α2v sin2(αy1) cosh2(βy2)− αβ(1 + v2) sin(αy1) cos(αy1) sinh(βy2) cosh(βy2)

+β2v cos2(αy1) sinh2(βy2).

2Although we have a proof for the case where v = x1 = x2 = 0 and β = 1
2

, however this particular case is not

sufficient to describe correctly a general dynamics, where nonzero shifts are always present.



8 Elliptic equations, breathers, stability

Now the purpose is to use double angle formulae to avoid the squares.3 We replace these identities
in the previous expression above. We obtain

P [B,Bt] = −8α2β2

∫
R

hp(t, x)(
α2+β2

2 + α2

2 cosh(2βy2) + β2

2 cos(2αy1)
)2 ,

where now hp(t, x) is rewritten as

hp(t, x) :=
v

4
(α2 − β2) +

v

4
(α2 + β2) cosh(2βy2)− v

4
(α2 + β2) cos(2αy1)

−v
4

(α2 − β2) cos(2αy1) cosh(2βy2)− 1

4
αβ(1 + v2) sin(2αy1) sinh(2βy2).

Let fp(t, x) := 1
4αβ [β sin(2αy1) + vα sinh(2βy2)]. Then

(fp)x(t, x) =
1

2
v[cosh(2βy2)− cos(2αy1)].

Recall the definition of g given in (A.6) but rewriten in terms of the double angle formulas
(3.2),(3.3)

g(t, x) :=
1

2
(α2 + β2) +

α2

2
cosh(2βy2) +

β2

2
cos(2αy1). (3.4)

Then (fp)x(t, x)g(t, x)− gx(t, x)fp(t, x) = hp(t, x). From this identity we finally obtain

P [B,Bt] = −8α2β2

∫
R

(fp
g

)
x
(t, x)dx = −8βv.

�

We compute now the energy of a breather. See Lamb [26] for a similar result in the case where
v = 0.

Lemma 3.2. Let (B,Bt) be any SG breather of parameters for β > 0, v ∈ (−1, 1), and x1, x2 ∈ R.
Then

E[B,Bt](t) = 16β. (3.5)

Moreover, this result does not change if we replace x1 and x2 by time dependent parameters.4

Proof. This is a classical result. From (2.3) and (A.1), we have

1

2
(B2

t +B2
x) =

8α2β2

(α2 cosh2(βy2) + β2 cos2(αy1))2
×

×
[
(1 + v2)α2 cosh2(βy2) sin2(αy1) + (1 + v2)β2 sinh2(βy2) cos2(αy1)

−4αβv sin(αy1) cos(αy1) sinh(βy2) cosh(βy2)
]
.

On the other hand, from (A.4),

1− cosB =
8α2β2 cosh2(βy2) cos2(αy1)

(α2 cosh2(βy2) + β2 cos2(αy1))2
.

Therefore using double angle formulas, we have

1

2
(B2

t +B2
x) + (1− cosB) =

8α2β2h̃(t, x)

(α
2+β2

2 + α2

2 cosh(2βy2) + β2

2 cos(2αy1))2
,

3More precisely, it is well known that

cos2(αx) =
1

2
(1 + cos(2αx)), sin2(αx) =

1

2
(1− cos(2αx)), (3.2)

cosh2(βx) =
1

2
(1 + cosh(2βx)), sinh2(βx) =

1

2
(cosh(2βx)− 1). (3.3)

4But now (B,Bt) ceases being an exact solution of SG.
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where

h̃(t, x) :=
1

4
((1 + v2)(α2 − β2) + 1) +

1

4
((1 + v2)(α2 + β2) + 1) cosh(2βy2)

−αβv sin(2αy1) sinh(2βy2)− 1

4
((1 + v2)(α2 + β2)− 1) cos(2αy1)

+
1

4
((1 + v2)(β2 − α2) + 1) cosh(2βy2) cos(2αy1).

Now with the relation among α, β (2.2) and g given by (3.4), a direct computation shows that

h̃ = g(he)x − hegx,
where he(t, x) := 1

2αβ [α sinh(2βy2) + βv sin(2αy1)]. From this identity we obtain

E[B,Bt] = 8α2β2

∫
R

(he
g

)
x

= 16β.

�

Remark 3.1. The reader may compare (3.5) with a similar result for the mass of the mKdV
breather, see [4, eqn. (2.4)], where M [B] = 4β. In that sense, both results reveal that the mass
(or energy) does not depend on the oscillatory parameter, but only on the main scaling β. This
property seems inherent to aperiodic breathers.

3.2. Linear operators and stability tests. Some essential consequences of the last two iden-
tities are the following stability conditions, which will be useful when dealing with coercivity
estimates in Subsection 3.3.

Corollary 3.3. Let (B,Bt) be any SG breather of the form (2.1)-(2.3). For t ∈ R fixed, let

ΛB := ∂βB, ΛBt := ∂βBt. (3.6)

Then (ΛB,ΛBt) are Schwartz in the space variable, and the following identities are satisfied

∂βE[B,Bt] = 16 > 0, ∂βP [B,Bt] = −8v, (3.7)

independently of time.

Proof. By simple inspection one can see that for each time t one has that ΛB and ΛBt are well-
defined Schwartz functions. The proof of (3.7) is consequence of (3.5) and (3.1). �

Now, we introduce the following two directions associated to spatial translations. Let (B,Bt)
as defined in (2.1)-(2.3), with main parameters β > 0 and v ∈ (0, 1). We define{

B1(t;x1, x2) := ∂x1B(t;x1, x2),

B2(t;x1, x2) := ∂x2
B(t;x1, x2).

(3.8)

Similarly, we introduce the terms involving time derivatives{
(Bt)1(t;x1, x2) := ∂x1Bt(t;x1, x2)

(Bt)2(t;x1, x2) := ∂x2
Bt(t;x1, x2).

(3.9)

It is clear that, for all t ∈ R, β > 0 and x1, x2 ∈ R, both B1 and B2 are real valued, Schwartz
functions.5 More explicitly,

B1 =
−4α2β sin(αy1) cosh(βy2)

α2 cosh2(βy2) + β2 cos2(αy1)
, B2 =

−4αβ2 cos(αy1) sinh(βy2)

α2 cosh2(βy2) + β2 cos2(αy1)
. (3.10)

Now we introduce the main linear operator associated to the breather (B,Bt). As it will be
clear below, this matrix operator will be of fourth order in one component (L1), and of second
order in the second one (L2). Two nontrivial nondiagonal terms B1 and B2 couple both previous
components in a nontrivial fashion, which is never zero in general, even in the case v = 0.

5 Additionally, we can express Bt and Bx in terms of B1 and B2: we have

Bt = B1 − vB2, Bx = −vB1 +B2.
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Definition 3.4. Let L be matrix linear operator

L[z, w] :=

(
L1 B1

B2 L2

)(
z
w

)
, (3.11)

where

L1[z] := z(4x) −
[
a− 3

8
(B2

x +B2
t ) +

5

4
cosB

]
zxx +

[3

4
BxBxx +

3

4
BtBtx +

5

4
sinBBx

]
zx

+
[
a cosB +

5

8
B2
x cosB +

5

4
Bxx sinB +

1

4
(cos2B − sin2B)− 1

8
B2
t cosB

]
z,

(3.12)

L2[w] := −wxx +
1

4

[
4a+ cosB − 3

2
(B2

t +B2
x)
]
w, (3.13)

B1[w] :=
1

4

[
3BtxBx + 3BtBxx−Bt sinB

]
w +

1

4

[
3BtBx − 2b

]
wx, (3.14)

and finally

B2[z] :=
1

2
(b− 3

2
BtBx)zx −

1

4
Bt sinBz. (3.15)

In order to ensure a correct definition for L, we will set L on the Hilbert space L2(R)2, with dense
domain H4(R)×H2(R).

A simple consequence of Theorem 2.3 is the following partial kernel description.

Corollary 3.5. Let a, b be defined as in (2.4), and B1, B2 given in (3.10). We have

L[B1, (Bt)1] = L[B2, (Bt)2] =

(
0
0

)
.

Moreover, (B1, (Bt)1)T and (B2, (Bt)2)T are linearly independent in R.

Now we consider the natural directions associated to the scaling parameters. First of all, we
define the quadratic form associated to L, namely

Q[z, w] :=

∫
R

(z, w)L[z, w]. (3.16)

A more detailed version of Q is the following expression, obtained after integration by parts:

Q[z, w] =

∫
R
{zL1[z] + zB1[w] + wB2[z] + wL2[w]}

=

∫
R
z2
xx +

∫
R
w2
x +

∫
R

[
a− 3

8
(B2

x +B2
t ) +

5

4
cosB

]
z2
x

+

∫
R

[5

8
B2
x cosB +

5

4
Bxx sinB +

1

4
(cos2B − sin2B)− 1

8
B2
t cosB + a cosB

]
z2

+

∫
R

[
(a+

1

4
) cosB − 3

8
(B2

t +B2
x) +

3

4
BtxBx +

3

4
BtBxx −

1

4
Bt sinB

]
w2

+

∫
R

[
(b− 3

2
BtBx)zxw −

1

2
Bt sinBzw

]
.

(3.17)

The following concept is standard.

Definition 3.6. Any nonzero pair (z, w) ∈ H4 × H2 is said to be a positive (null, negative)
direction for Q if we have Q[z, w] > 0 (= 0, < 0).

Recall the definitions of ΛB and ΛBt introduced in (3.6). For this direction, one has the result
below.

Corollary 3.7. The following are satisfied:

(1) Let (B,Bt) be any SG breather. Consider the scaling direction (ΛB,ΛBt) introduced in
(3.6). Then (ΛB,ΛBt) is a negative direction for Q. Moreover,

Q[ΛB,ΛBt] = −32(1 + 3v2)β < 0. (3.18)
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(2) The quadratic functional Q is bounded below, namely

Q[z, w] ≥ −cβ,v‖(z, w)‖2H2(R)×H1(R), (3.19)

for some nonnegative constant cβ,v. Moreover, L has at least one negative eigenvalue,
and therefore a minimal one, which is simple.

Proof. The proof of (3.19) is standard. On the other hand, from (2.6), we get after derivation
with respect to β,

L1[ΛB] + B2[ΛBt] = a′(β)(Bxx − sinB) +
1

2
b′(β)Btx, (3.20)

and from (2.5),

L2[ΛBt] + B1[ΛB] = −a′(β)Bt −
1

2
b′(β)Bx. (3.21)

Integrating against ΛB and ΛBt respectively, we get from (3.7),

Q[ΛB,ΛBt] = −1

2
a′(β)∂β

∫
R

(B2
x +B2

t + 1− cosB)− 1

2
b′(β)∂β

∫
R
BtBx

= −a′(β)∂βE[B,Bt]− b′(β)∂βP [B,Bt]

= −32(1 + v2)β − 64v2β

= −32(1 + 3v2)β < 0,

where we have used (2.4) to obtain a′(β) = 2(1+v2)β and b′(β) = −8vβ. This last identity proves
(3.18). �

From the previous result we conclude the following useful identity:

Corollary 3.8. Let (B0, B̃0) denote the following direction

(B0, B̃0) := − 1

2β
(ΛB,ΛBt).

Then

L[B0, B̃0] = (1 + v2)

(
sinB −Bxx

Bt

)
+ 2v

(
Btx
−Bx

)
, (3.22)

and

−
∫
R
(B0, B̃0) · L[B0, B̃0] = − 1

4β2
Q[ΛB,ΛBt] =

8

β
(1 + 3v2) > 0. (3.23)

Proof. A direct consequence of (3.20) and (3.21). �

Remark 3.2. The previous result states that (B0, B̃0) is a very good candidate to replace the first
eigenfunction of L coming from Assumption 2 below. This idea, originally coming from Weinstein
[33], has been recently used in several works (see [4] for example) where no knowledge of the
ground state is at hand.

3.3. Spectral analysis. Let z = z(x) and w = w(x) be two functions, to be specified below, and
let (B,Bt)(t, x;x1, x2) be any breather solution, with parameters x1, x2 possibly depending on
time. In this section we describe part of the spectrum of the operator L defined in (3.11)-(3.13).
We start with the following result.

Lemma 3.9. L is a linear, unbounded operator in L2(R)2, with dense domain H4(R) ×H2(R).
Moreover, L is self-adjoint.

The proof of this result is standard. A consequence of the above result is the fact that the
spectrum of L is real valued. Furthermore, L is a compact perturbation of a constant coefficients
operator. Now we look at the kernel of L. Let us fix t ∈ R, v ∈ (−1, 1) and β ∈ (0, γ). It is not
difficult to check that any breather (B,Bt) as in (2.1)-(2.3) can be seen as a function independent
of time, by considering

(B,Bt)(t, x;x1, x2) = (B,Bt)(0, x; x̃1, x̃2), x̃1 := t+ x1, x̃2 := −vt+ x2,

=: (B,Bt)(x; x̃1, x̃2).
(3.24)
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Moreover, it turns out that if6

(z(x; x̃1, x̃2), w(x; x̃1, x̃2), λ(x̃1, x̃2)) ∈ H4 ×H2 × R

satisfy the eigenvalue-eigenfunction problem L[z, w] = λ(z, w)T with (B,Bt) as in (3.24), then the
new function

(z̃, w̃)(x; x̃1, x̃2) := (z, w)(x− x̃2; x̃1, x̃2)

will satisfy the same spectral equation with (B,Bt) replaced by (B,Bt)(x; x̃1 − x̃2, 0). After
redefining x̃1, we can assume without loss of generality that (B,Bt) is only depending on x, β, v
and x̃1, and therefore (z̃, w̃) will also depend on the same variables. We will have λ = λ(β, v, x̃1)
only. Finally, since the breather was periodic in the variable x1, with period 2π/α, we can also
assume

x̃1 ∈
[
0,

2π

α

]
, α =

√
γ2 − β2.

In conclusion, with no loss of generality we set through this section (B,Bt) = (B,Bt)(0, x;x1, 0),
with x1 lying in the interval [0, 2π/α] and each breather-like potential periodic on that variable.
The same property applies for the functions (B1, (Bt)1) and (B2, (Bt)2).

This being said, in this paper we will need the following two assumptions:

Assumption 1: (Nondegeneracy of the kernel) For each v ∈ (−1, 1), x1 ∈ R and
β ∈ (0, γ), kerL is spanned by the two elements (B1, (Bt)1)T and (B2, (Bt)2)T ; and there
is a (uniform in x1) gap between the kernel and the bottom of the positive spectrum.

Assumption 2: (Unique, simple negative eigenvalue) For each β ∈ (0, γ), v ∈ (−1, 1)
and x1 ∈ [0, 2πα−1], the operator L has a unique simple, negative eigenvalue λ1 =

λ1(β, v, x1) < 0 associated to the unit L2 × L2-norm eigenfunction (B̃, B̂)T . Moreover,
there is λ0

1 < 0 depending on β and v only, such that λ1 ≤ λ0
1 for all x1.

In Section 4 we perform numerical computations that reveals that both conditions are naturally
correct for every set of parameters that we numerically tested. The main consequence of the two
preceding assumptions is the following direct coercivity property (recall the quadratic form Q,
associated to L, and defined in (3.16)):

Lemma 3.10. Let (z, w) ∈ H2(R)×H1(R), and (B,Bt) be any SG breather, and let (B̃, B̂)T be
the first eigenfunction from Assumption 2. If (z, w) are such that they satisfy the orthogonality
conditions ∫

R
(z, w)(B1, (B1)t)

T =

∫
R

(z, w)(B2, (B2)t)
T = 0, (3.25)

then there is µ0 = µ0(β, v) > 0 such that

Q[z, w] ≥ µ0‖(z, w)‖2H2×H1 −
1

µ0

∣∣∣∣∫
R

(z, w)(B̃, B̂)T
∣∣∣∣2 . (3.26)

Following a similar strategy as in [4], we must use a different orthogonality condition in order
to ensure a good control on the scaling parameter β, in such a form that we can run a stability
argument without using modulations, which are very difficult to estimate for breather solutions7

Indeed, consider the new direction(
A

Ã

)
:= (1 + v2)

(
sinB −Bxx

Bt

)
+ 2v

(
Btx
−Bx

)
∈ H2 ×H1. (3.27)

Note that from (3.22), we have

L[B0, B̃0] =

(
A

Ã

)
.

6Of course, we also have a dependence on β and v, but it is not needed at this moment.
7In other words, we control the variations of the scaling parameter β at least at the second order in the error

term (z, w).
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We must have in mind that (A, Ã)T is a sort of generalized negative direction (see (3.23)), that will

replace (B̃, B̂) in (3.26). The advantage of taking this new set of orthogonality conditions comes

from the fact that (A, Ã)T are naturally associated to the energy and momentum conser-
vation laws, which are only H1 × L2 based, and therefore, low-regularity conserved quantities
compared with the H2 ×H1 global dynamics. Indeed, will prove the following

Proposition 3.11. Let (z, w) ∈ H2×H1 satisfying the orthogonality conditions (3.25), and (A, Ã)
the direction defined in (3.27). Then there is ν0 = ν0(β, v) > 0 such that

Q[z, w] ≥ ν0‖(z, w)‖2H2×H1 −
1

ν0

∣∣∣∣∫
R

(z, w)(A, Ã)T
∣∣∣∣2 .

Proof. We follow a similar strategy as stated in [4]. It is enough to prove that, under the orthog-
onality conditions (3.25), and the additional constraint∫

R

(
z
w

)
·
(
A

Ã

)
= 0,

we have

Q[z, w] ≥ ν0‖(z, w)‖2H2×H1 .

We write

(z, w) = (z̃, w̃) + δ0(B̃, B̂), (B0, B̃0) = (b0, b̃0) + γ0(B̃, B̂).

Note that ∫
R

(B0, B̃0)(B1, (Bt)1)T =

∫
R

(B0, B̃0)(B2, (Bt)2)T = 0,

and we can assume ∫
R

(z̃, w̃)(B̃, B̂)T =

∫
R

(b0, b̃0)(B̃, B̂)T = 0.

Therefore,

Q[z, w] = Q[z̃ + δ0B̃, w̃ + δ0B̂]

= Q[z̃, w̃] + δ2
0Q[B̃, B̂] = Q[z̃, w̃]− δ2

0λ
2
0.

(3.28)

Now we must replace δ0 and λ0 by suitable expressions. First of all,

0 =

∫
R
(z, w)(A, Ã)T =

∫
R
(z, w)L[B0, B̃0] =

∫
R

(B0, B̃0)L[z, w].

Since L[z, w] = L[z̃, w̃]− δ0λ2
0(B̃, B̂)T and (B0, B̃0) = (b0, b̃0) + γ0(B̃, B̂), we obtain∫

R
(b0, b̃0)L[z̃, w̃] = γ0δ0λ

2
0. (3.29)

This last expression involves γ0, δ0 and λ0. We want now an expression for γ0. We have∫
R
(A, Ã)(B0, B̃0)T =

∫
R
(B0, B̃0)L[B0, B̃0]

=

∫
R
{(b0, b̃0) + γ0(B̃, B̂)}{L[b0, b̃0]− γ0λ

2
0(B̃, B̂)T }

= Q[b0, b̃0]− γ2
0λ

2
0.

Note in addition that from (3.22) and (3.23),∫
R
(A, Ã)(B0, B̃0)T =

∫
R

(B0, B̃0)L[B0, B̃0] = − 8

β
(1 + 3v2).

Therefore,

γ2
0λ

2
0 = Q[b0, b̃0] +

8

β
(1 + 3v2).
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Replacing this last expression in (3.28), and using (3.29), we get

Q[z, w] = Q[z̃, w̃]− (γ0δ0λ
2
0)2

γ2
0λ

2
0

= Q[z̃, w̃]−

(∫
R

(b0, b̃0)L[z̃, w̃]
)2

Q[b0, b̃0] +
8

β
(1 + 3v2)

.

(3.30)

Note that the denominator above is always positive. If now (z̃, w̃) = λ(b0, b̃0), for some λ 6= 0,
we have (∫

R
(b0, b̃0)L[z̃, w̃]

)2

=
(∫

R
(z̃, w̃)L[z̃, w̃]

)(∫
R

(b0, b̃0)L[b0, b̃0]
)

= Q[z̃, w̃]Q[b0, b̃0],

and therefore, (∫
R

(b0, b̃0)L[z̃, w̃]
)2

Q[b0, b̃0] +
8

β
(1 + 3v2)

=
Q[z̃, w̃]Q[b0, b̃0]

Q[b0, b̃0] +
8

β
(1 + 3v2)

= ρQ[z̃, w̃],

with ρ ∈ (0, 1) independent of (z, w). We have then,

Q[z, w] = (1− ρ)Q[z̃, w̃].

Now if (z̃, w̃) lies in the orthogonal vector space spanned by (b0, b̃0), (B̃, B̂), and the kernel
(B1, (B1)t), (B2, (B2)t), we have that Q[z̃, w̃] defines an internal product, for which the Cauchy-
Schwarz’s inequality holds: (∫

R
(b0, b̃0)L[z̃, w̃]

)2

< Q[z̃, w̃]Q[b0, b̃0],

(note that there is no equality since (b0, b̃0) and (z̃, w̃) are not orthogonal). We conclude now that(∫
R

(b0, b̃0)L[z̃, w̃]
)2

Q[b0, b̃0] +
8

β
(1 + 3v2)

<
Q[z̃, w̃]Q[b0, b̃0]

Q[b0, b̃0] +
8

β
(1 + 3v2)

= ρQ[z̃, w̃],

with ρ ∈ (0, 1). We conclude that

Q[z, w] > (1− ρ)Q[z̃, w̃] ≥ 0.

Therefore, in (3.28) we get

Q[z̃, w̃] ≥ δ2
0λ

2
0.

Finally, we have

Q[z, w] > (1− ρ)Q[z̃, w̃]

=
1

2
(1− ρ)Q[z̃, w̃] +

1

2
(1− ρ)Q[z̃, w̃]

≥ 1

2
(1− ρ)µ0‖(z̃, w̃)‖2H1×L2 +

1

2
(1− ρ)δ2

0λ
2
0

& ‖(z̃, w̃)‖2H2×H1 + ‖(B̃, B̂)‖2H2×H1 & ‖(z, w)‖2H2×H1 .

�
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3.4. Proof of the Main Theorem. In this subsection we prove Theorem 2.5. This proof follows
similar lines as in [4]. Assume (u0, u1) satisfy the hypothesis (2.9), for some η < η0 small. Let
(u, ut) be the associated H2 ×H1 solution to (1.1) with initial data (u0, u1). Given K∗ > 1 to be
chosen later, we denote T ∗ = T ∗(K∗) > 0 as the maximal time for which, for all time T ∈ (0, T ∗],

sup
t∈[0,T ]

‖(u, ut)(t)− (B,Bt)β,v(0, ·; x̃1(t), x̃2(t))‖H2×H1 < K∗η,

is satisfied for some choice of modulation parameters x̃1(t) and x̃2(t), not necessarily unique. For
the sake of simplicity, and if no confusion arises, we denote

(B,Bt) := (B,Bt)β,v.

If we assume that T ∗(K∗) is finite, we can choose (assuming η0 smaller if necessary), using the
Implicit Function Theorem, special parameters x1(t) and x2(t) such that∫

R
(z, w)(B1, (B1)t)

T =

∫
R

(z, w)(B1, (B1)t)
T = 0,

where
z(t, x) := u(t, x)−B(t, x;x1(t), x2(t)), (3.31)

w(t, x) := ut(t, x)−Bt(t, x;x1(t), x2(t)), (3.32)

and B1, B2 are given in (3.8)-(3.9). These conditions are well-defined since the matrix with
coefficients 

∫
R

[
B2

1 + ((B1)t)
2
] ∫

R
B1B2 + (B1)t(B2)t∫

R
B1B2 + (B1)t(B2)t

∫
R
B2

2 + ((B2)t)
2


has nonzero determinant everywhere (cf. Corollary 3.5). Moreover, thanks to (2.9), we have

‖(z, w)(0)‖H2×H1 . η,

with constant independent of K∗.

Consider now the decomposition (3.31)-(3.32), with (B,Bt) depending on the modulation pa-
rameters x1(t) and x2(t). A simple argument reveals that H[B,Bt](t) is still independent of time
(see [4] for a similar proof). Therefore we can apply Corollary 2.4 and Appendix A.9 at times
t = 0 and t > 0 fixed to obtain

Q[z, w](t) ≤ Q[z, w](0) + sup
t∈[0,T∗]

N [z, w](t) . η2 + (K∗)3η3,

Now, from Proposition 3.11 we have

‖(z, w)(t)‖2H2×H1 . η2 + (K∗)3η3
0 +

∣∣∣∣∫
R

(z, w)(A, Ã)T (t)

∣∣∣∣2 , (3.33)

Recall that (A, Ã) was defined in (3.27). Finally, using the energy and momentum conservation
laws (1.3)-(1.4), evaluated at two different times, we obtain a good control on the term∣∣∣∣∫

R
(z, w)(A, Ã)T (t)

∣∣∣∣2 .
Indeed, we have

1

2

∫
R
((Bx + zx)2 + (Bt + w)2)(t) +

∫
R

(1− cos(B + z))(t) =

=
1

2

∫
R

((Bx + zx)2 + (Bt + w)2)(0) +

∫
R
(1− cos(B + z))(0),

from which ∫
R
z(sinB −Bxx)(t) +

∫
R
Btw(t) =

∫
R
z(sinB −Bxx)(0) +

∫
R
Btw(0)

+O
(

sup
t∈[0,T∗]

‖(z, w)(t)‖2H1×L2

)
.
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Similarly, ∫
R
(Bx + zx)(Bt + w)(t) =

∫
R

(Bx + zx)(Bt + w)(0),

so that ∫
R

(Btxz −Bxw)(t) =

∫
R

(Btxz −Bxw)(0) +O
(

sup
t∈[0,T∗]

‖(z, w)(t)‖2H1×L2

)
.

Consequently, reconstructing (A, Ã) as it was defined in (3.27),∣∣∣∣∫
R

(z, w)(A, Ã)T (t)

∣∣∣∣ . ∣∣∣∣∫
R

(z, w)(A, Ã)T (0)

∣∣∣∣+ sup
t∈[0,T∗]

‖(z, w)(t)‖2H2×H1

. η + (K∗)2η2.

Finally, replacing in (3.33), we get

‖(z, w)(t)‖2H2×H1 . η2 + (K∗)3η3.

Taking K∗ large enough, and then η(K∗) > 0 small, we have

‖(z, w)(t)‖2H2×H1 ≤
1

4
(K∗)2η2,

so we improve the original estimate on (z, w), which contradicts the finiteness of T ∗. Therefore,
for all K∗ large enough, T ∗ = +∞.

4. Numerical analysis

The purpose of this paragraph is to give enough evidence of the fact that Assumptions 1 and
2 in page 12 do hold. Since we consider only breather-like solutions, which are exponentially
decreasing in space, non-exact numerical schemes give good approximations of the resulting exact
values.

4.1. Numerical scheme for SG. In order to obtain a numerical approximation of the eigenvalues
of L in (3.11), we follow the approach based in the approximate Galerkin method for the Hilbert
space L2(R)2. First, we consider the subspace VN generated by a finite dimensional subset of an
orthonormal basis of L2(R):

VN := span{f0, f1, f2, . . . , fN} ⊂ L2(R)2.

For practical and computational purposes, the best candidate for an orthonormal basis is the one
generated by the Hermite polynomials: for i = 1, 2, fn = (fn,1, 0) or fn = (0, fn,2), where

fn,i(x) := pn(x)e−x
2/2, x ∈ R, n ≥ 0,

∫
R
f2
n(x)dx = 1.

Here pn(x) are the Hermite polynomials [34] suitably normalized such that the fn have unit norm.

We will approximate the spectrum of L by the spectrum of the finite dimensional operator

LN := PNLPN ,
where PN is the projection operator into the subspace VN . It is expected that, as long as N is
large enough, LN will approach the discrete spectrum, in particular, the eigenvalues of L, any
spectral gap present in the exact operator L, and even the multiplicity of the eigenvalues (seen as
two very close approximate eigenvalues).8

The above scheme reduces matters to the understanding the eigenvalues of the matrix

(MN )i,j :=

∫
R
fiLfj , i, j = 0, . . . , N, fi, fj ∈ VN .

Note that this (N + 1) × (N + 1) matrix is symmetric, so its eigenvalues are real-valued. Using
some symbolic computations done by Mathematica for some simple cases (periodic mKdV, [7]),
we compute MN and its eigenvalues. We emphasize that, similarly to the work in [11], each set

8Additionally, as far as N is large, the continuous spectrum is also discretely approximated on compact intervals.
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of eigenvalues computation took in principle 20-30 minutes, but after some fine code reworking
and improvement of the algorithm, we were able to reduce the time of computations to a more
realistic value.

For the operator (3.11), it was important to understand the first four eigenvalues, ordered
by size. We recovered the two-dimensional kernel, along with the unique negative eigenvalue.
Additionally, at each computation performed, we recovered the spectral gap between the kernel
and the bottom of the positive spectrum.9 As it was revealed in the numerical computations, for
α large the code becomes unstable, and a larger N is needed to recover the expected results.

First test. Recall that we can always assume x2 = 0 and x1 ∈ [0, 2π/α]. We have run a primary
test with v = 0.7, different values of β, and x1 varying between -0.4 and 0.3. It seems that the SG
case is numerically simpler than the mKdV one, because of the fact that the SG breather requires
one derivative less for its definition. Therefore, with N = 25 (that is to say, 50 test functions), we
have obtained the results summarized in Fig. 2, in agreement with Assumptions 1 and 2 up to two
significative digits. We also check the expected oscillatory behavior of the minimal eigenvalue of
the linearized operator L around a SG breather for variations of the shift x1. We show this result
in Fig. 3 where in that example, we consider β = 0.5 and v = 0.7 and shift parameter x1 varying
from −3.0 to 3.0.

Second test. When β is fixed (e.g. β = 0.5), and we move the velocity v of the relativistic
SG breather from 0.0 to 0.7, we obtain the results written in Fig. 1 (table of eigenvalues). The
corresponding graphics are shown in Fig. 4.

v 1st eig. 2nd 3rd 4th x1 1st eig. 2nd 3rd 4th

0.0 -0.3932 0.0020 0.0124 0.2783 -0.4 -5.555 0.0004 0.0011 1.658

0.1 -0.4246 0.0023 0.0107 0.2883 -0.3 -5.404 0.0003 0.0012 1.612

0.2 -0.5206 0.0040 0.0069 0.3191 -0.2 -5.290 0.0002 0.0013 1.576

0.3 -0.6871 0.0037 0.0085 0.3698 -0.1 -5.218 0.0001 0.0014 1.553

0.4 -0.9367 0.0023 0.0162 0.4292 0.0 -5.194 0.0001 0.0014 1.545

0.5 -1.2892 0.0026 0.0180 0.5143 0.1 -5.218 0.0001 0.0014 1.553

0.6 -1.7724 0.0067 0.0094 0.6994 0.2 -5.290 0.0002 0.0013 1.576

0.7 -2.4203 0.0036 0.0254 0.9489 0.3 -5.404 0.0003 0.0012 1.612

Table 1. The first four eigenvalues of L: (left), for β = 0.5, x1 = 0.1, x2 = 0,
and the velocity v of the relativistic SG breather varying from 0.0 to 0.7, as
corresponding to Fig. 4. (right), for β = 0.8, v = 0.7, x2 = 0, and x1 varying
from −0.4 to 0.3, as corresponding to bottom right Fig. 2. All computations
were made with N = 50. The third and fourth columns (left) and eigth and ninth
columns (right) represent the approximate kernel of L respectively.

Additionally, from the numerical tests we have found the following

(1) For v fixed, as long as β approaches zero, we see that the negative eigenvalue converges
to zero, a phenomenon that it is in concordance with the convergence to zero in L∞ norm
of the breather as β → 0.

(2) As v increases to the speed of light 1, the quality and accuracy of the resulting numerical
results strongly decreases, implying that one needs to take N even larger to recover the
desired spectral stability.

In conclusion, our numerical computations reveal that, in any of parameters regime considered,
there is only one negative eigenvalue, as well as a well-defined two dimensional kernel,
and a spectral gap between the kernel and the continuum spectrum, supporting Assumptions 1
and 2 in page 12.

9We compared our results with some standard linear operators that have continuous spectrum [0,+∞) and

resonances at the origin, recovering the absence of a spectral gap by having plenty of numerical eigenvalues near
zero as N was larger and larger.
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Figure 2. The graph of the four minimal eigenvalues (from the first negative
eigenvalue(blue circle), to the double zero kernel (purple box and brown diamond)
and the first positive eigenvalue (green triangle)) of the SG breather with β =
0.5, 0.6, 0.7 and 0.8, with x1 varying between -0.4 and 0.3. The velocity of the
relativistic breather is taken as v = 0.7. Note that two numerical eigenvalues are
placed near zero, see also Fig. 1.

æ
æ

æ

æ æ

æ

æ

æ

æ æ

æ

æ
æ

à à à à à à à à à à à à àì ì ì ì ì ì ì ì ì ì ì ì ì

ò ò
ò

ò ò
ò

ò
ò

ò ò
ò

ò ò

-3 -2 -1 1 2 3
x1

-5

-4

-3

-2

-1

1

Β=0.5, v=0.7

æ MinEig

à 2nd_Eig

ì 3rd_Eig

ò 4th_Eig

Figure 3. The graph of the four minimal eigenvalues of the SG breather case,
with β = 0.5, v = 0.7 and with x1 varying between -3.0 and 3.0.
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Figure 4. The graph of the four minimal eigenvalues of the SG breather with
β = 0.5 and the velocity v of the relativistic breather varying between 0.0 to 0.7.
The shifts x1 = 0.1, x2 = 0 and we take N = 50 eigenfunctions (see also Figs. 5
and 1, the table below left).

0.1 0.2 0.3 0.4 0.5 0.6 0.7
v

0.5

1

1.5

Log(λ_min) + 1

Figure 5. The graph of the logarithm of the absolute value of the minimal eigen-
value, plus one, for the SG breather with β = 0.5 and the velocity v of the rela-
tivistic breather varying between 0.0 to 0.7. The shifts are x1 = 0.1, x2 = 0. The
continuous curve is the set of straight lines that join each pair of points, and the
approximate slope among two adjacent points varies from 3.1 to 3.2.

Appendix A. Proof of (2.5)

We use the specific structure of the breather. From (2.3) and (2.1) we have

Bt = −4αβ
α sin(αy1) cosh(βy2)− βv cos(αy1) sinh(βy2)

α2 cosh2(βy2) + β2 cos2(αy1)
,

and

Bx = 4αβ
vα sin(αy1) cosh(βy2)− β cos(αy1) sinh(βy2)

α2 cosh2(βy2) + β2 cos2(αy1)
. (A.1)
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From here we have

3

8
B2
xBt =

−24α3β3

(α2 cosh2(βy2) + β2 cos2(αy1))3
[vα cosh(βy2) sin(αy1)− β sinh(βy2) cos(αy1)]2 ×

×[α cosh(βy2) sin(αy1)− βv sinh(βy2) cos(αy1)]

=
−24α3β3 h1(t, x)

(α2 cosh2(βy2) + β2 cos2(αy1))3
,

with

h1(t, x) := α3v2 cosh3(βy2) sin3(αy1)− β3v sinh3(βy2) cos3(αy1)

−v(2 + v2)α2β sinh(βy2) cosh2(βy2) sin2(αy1) cos(αy1)

+(1 + 2v2)αβ2 sinh2(βy2) cosh(βy2) sin(αy1) cos2(αy1).

Similarly,

1

8
B3
t =

−8α3β3 h2(t, x)

(α2 cosh2(βy2) + β2 cos2(αy1))3
,

with

h2(t, x) := α3 cosh3(βy2) sin3(αy1)− 3α2βv cosh2(βy2) sin2(αy1) sinh(βy2) cos(αy1)

+3αβ2v2 cosh(βy2) sin(αy1) sinh2(βy2) cos2(αy1)− β3v3 sinh3(βy2) cos3(αy1).

We compute now the term Btxx. From (2.3) we have

Btx =
−4αβ h3(t, x)

(α2 cosh2(βy2) + β2 cos2(αy1))2
,

where

h3(t, x) := [αβ(1− v2) sin(αy1) sinh(βy2)− vγ2 cos(αy1) cosh(βy2)]×
×[α2 cosh2(βy2) + β2 cos2(αy1)]

−2αβ[α sin(αy1) cosh(βy2)− βv cos(αy1) sinh(βy2)]×
×[α sinh(βy2) cosh(βy2) + vβ sin(αy1) cos(αy2)]. (A.2)

Similarly, after a long computation,

Btxx =
−4αβ h4(t, x)

(α2 cosh2(βy2) + β2 cos2(αy1))3
,

where

h4(t, x) := [α2 cosh2(βy2) + β2 cos2(αy1)](h3)x

−4αβ[α sinh(βy2) cosh(βy2) + vβ sin(αy1) cos(αy2)]h3. (A.3)

On the other hand, using the well-known formulae

cos(4θ) = 1− 8 sin2 θ + 8 sin4 θ, sin2 θ =
tan2 θ

1 + tan2 θ
,

we have

cos(4 arctan s) =
(s2 − 2s− 1)(s2 + 2s− 1)

(1 + s2)2
=
s4 − 6s2 + 1

(1 + s2)2
, s ∈ R.

Therefore, from (2.1) we obtain

cosB =
β4 cos4(αy1)− 6α2β2 cosh2(βy2) cos2(αy1) + α4 cosh4(βy2)

(α2 cosh2(βy2) + β2 cos2(αy1))2
, (A.4)
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and thus

−1

4
Bt cosB =

αβ

(α2 cosh2(βy2) + β2 cos2(αy1))3
[α cosh(βy2) sin(αy1)− βv sinh(βy2) cos(αy1)]×

× [β4 cos4(αy1)− 6α2β2 cosh2(βy2) cos2(αy1) + α4 cosh4(βy2)]

=
αβ h5(t, x)

(α2 cosh2(βy2) + β2 cos2(αy1))3
,

where

h5(t, x) := αβ4 sin(αy1) cos4(αy1) cosh(βy2)− α4βv cos(αy1) sinh(βy2) cosh4(βy2)

+α5 sin(αy1) cosh5(βy2)− β5v cos5(αy1) sinh(βy2)

+6α2β3v cos3(αy1) sinh(βy2) cosh2(βy2)− 6α3β2 sin(αy1) cos2(αy1) cosh3(βy2).

Collecting the above identities, we get

Btx +
1

8
B3
t +

3

8
B2
xBt −

1

4
Bt cosB = αβ

[−4h4 − 8α2β2h2 − 24α2β2h1 + h5]

(α2 cosh2(βy2) + β2 cos2(αy1))3
. (A.5)

In the following lines, we simplify the numerator in the previous expression. In order to carry out
this computation, the key point will be the denominator, denoted by g:

g(t, x) := α2 cosh2(βy2) + β2 cos2(αy1). (A.6)

First of all, note from (A.2) that h3 obeys the unique decomposition

h3 =: h31g − h32gx, gx = 2αβ[α sinh(βy2) cosh(βy2) + vβ sin(αy1) cos(αy1)].

Therefore, from (A.3),

h4 = g[h31g − h32gx]x − 2gx[h31g − h32gx]

= g2(h31)x + g[h31gx − (h32gx)x − 2h31gx] + 2h32g
2
x

= g2(h31)x − (h31gx + (h32gx)x)g + 2h32g
2
x. (A.7)

On the other hand,

−8α2β2(h2 + 3h1) = −8α5β2(1 + 3v2) sin3(αy1) cosh3(βy2) + 8α2β5v(3 + v2) cos3(αy1) sinh3(βy2)

+ 24α4β3v(3 + v2) sin2(αy1) cos(αy1) sinh(βy2) cosh2(βy2)

− 24α3β4(3v2 + 1) sin(αy1) cos2(αy1) sinh2(βy2) cosh(βy2).

Therefore, after some simplifications,

h5 − 8α2β2(h2 + 3h1)− 8h32g
2
x =

= g
[
α3(1− 32β2) sin(αy1) cosh3(βy2)− α2βv(1− 32β2) cos(αy1) sinh(βy2) cosh2(βy2)

−β3v(1 + 32α2v2) cos3(αy1) sinh(βy2) + αβ2(1 + 32α2v2) sin(αy1) cos2(αy1) cosh(βy2)

+24α3β2(1− v2) sin(αy1) cosh(βy2)− 24α2β3v(1− v2) cos(αy1) sinh(βy2)
]
. (A.8)

On the other hand, we consider the second term in (A.7). We have

4(h31gx + (h32gx)x)g =

= 8αβg
[
2α2β(2− v2) sin(αy1) cosh3(βy2)− 3α2β(1− v2) sin(αy1) cosh(βy2)

−2αv(β2 + γ2) cos(αy1) sinh(βy2) cosh2(βy2) + 3αβ2v(1− v2) cos(αy1) sinh(βy2)

+2αβ2v(2v2 − 1) cos3(αy1) sinh(βy2)− 2βv2(α2 + γ2) sin(αy1) cos2(αy1) cosh(βy2)
]
.

(A.9)

Collecting the last two estimates, we obtain

(A.8) + (A.9) = g2[α(1− 16β2v2) sin(αy1) cosh(βy2)− βv(1 + 16α2) cos(αy1) sinh(βy2)]. (A.10)
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We finally add the first term in (A.7), such that

−4g2(h31)x + (A.10) = αβg2[α(1 + 4α2v2 − 8β2v2 − 4β2) sin(αy1) cosh(βy2)

−vβ(1 + 8α2 − 4β2 + 4α2v2) cos(αy1) sinh(βy2)].

Comparing with (2.3) and (A.1), in order to obtain (2.5) we have

(A.5) = aBt +
b

2
Bx,

provided a and b are chosen as in (2.4). The proof is complete.

Appendix B. Proof that (B,Bt) is a critical point of the functional H.

Let’s H[u, ut] in (2.7), which is a real-valued, conserved quantity, well-defined for H2 × H1-
solutions of (1.1). Moreover, if (z, w) ∈ H2(R) ×H1(R) is any pair of functions with sufficiently
small H2 ×H1-norm, and (B,Bt) is any breather solution, with corresponding parameters β > 0
and v ∈ (−1, 1), then for all t ∈ R, one has

H[B + z,Bt + w](t)−H[B,Bt](t) =
1

2
Q[z, w] +N [z, w], (B.1)

with Q being the quadratic form defined in (3.16), and N [z, w] a small, nonlinear term satisfying

|N [z, w]| . p(‖z‖H2(R), ‖w‖H1(R)),

where p is a positive, third order monomial on its corresponding variables. In order to prove that,
we compute:

H[B + z,Bt + w] =
1

2

∫
R
[(B + z)2

xx + (Bt + w)2
x]− 1

32

∫
R

[(Bt + w)4 + (B + z)4
x]

− 3

16

∫
R
(Bt + w)2(B + z)2

x +
5

8

∫
R

(B + z)2
x cos(B + z)

+
1

8

∫
R

[sin2(B + z) + (Bt + w)2 cos(B + z)]

+
a

2

∫
R

[(B + z)2
x + (Bt + w)2] + a

∫
R

[1− cos(B + z)] +
b

2

∫
R

(Bt + w)(B + z)x.

Expanding every term above, as is done in [4], we get

H[B + z,Bt + w] = H[B,Bt] +

+

∫
R

[
B4x +

3

8
B2
xBxx +

3

8
B2
tBxx +

5

8
B2
x sinB +

3

4
BtBxBtx −

5

4
Bxx cosB +

1

4
sinB cosB

−1

8
B2
t sinB − a(Bxx − sinB)− b

2
Btx

]
z

−
∫
R

[
Btxx +

1

8
B3
t +

3

8
B2
xBt −

1

4
Bt cosB − aBt −

b

2
Bx

]
w

+
1

2

∫
R

{[
z4x − [a− 3

8
(B2

x +B2
t ) +

5

4
cosB]zxx + [

3

4
BxxBx +

3

4
BtBtx −

5

4
Bx sinB]zx

+[a cosB +
1

4
(cos2B − sin2B)− 5

8
B2
x cosB +

5

4
Bxx sinB − 1

8
B2
t cosB]z

]
z

+[−wxx +
1

4
(cosB − 3

2
(B2

x +B2
t ))]w − 1

2
Bt sinBwz + (b− 3

2
BtBx)zxw

}
−1

8

∫
R

[
Btw

3 +Bxz
3
x +

1

4
(w4 + z4

x) + 3Btwz
2
x + 3Bxzxw

2 +
3

2
w2z2

x +
5

2
cosBz2z2

x

+5 sinBzz2
x −

1

4
sin2Bz4 + sinB cosBz3 +

1

2
cosBw2z2 +Btwz

2 + sinBzw2
]
.
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Therefore, we have the decomposition

H[B + z,Bt + w] = H[B,Bt] +

∫
R

(2.6)z −
∫
R

(2.5)w +
1

2
Q[z, w] +N [z, w],

where Q is defined in (3.16). Taking into account the Lemma 2.3, the second and third term in
the r.h.s of the above equation vanish. Finally, the term N [z, w] is given by

N [z, w] := −1

8

∫
R

[
Btw

3 +Bxz
3
x +

1

4
(w4 + z4

x) + 3Btwz
2
x + 3Bxzxw

2

+
3

2
w2z2

x +
5

2
cosBz2z2

x + 5 sinBzz2
x −

1

4
sin2Bz4

+ sinB cosBz3 +
1

2
cosBw2z2 +Btwz

2 + sinBzw2
]
.

Therefore, from direct estimates one has N [z, w] . p(‖z‖H2(R), ‖w‖H1(R)), where p is a positive,
third order polynomial in its variables, and where the constant is independent of the size of (z, w)
and the time, provided the former are chosen small.
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