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a b s t r a c t

Quality data regarding direct and diffuse solar irradiation is crucial for the proper design and simulation
of solar systems. This information, however, is not available for the entire Brazilian territory. However,
hourly measurements of global irradiation for more than seven hundred stations over the territory are
available. Several mathematical models have been developed over the past few decades aiming to deliver
estimations of solar irradiation components when only measurement of global irradiation is available. In
order to provide reliable estimates of diffuse and direct radiation in Brazil, the recently presented Boland
eRidleyeLaurent (BRL) model is adjusted to the particular features of Brazilian climate data, developing
adjusted BRL models on minute and hourly bases. The model is adjusted using global, diffuse and direct
solar irradiation measurements at nine stations, which are maintained by INPE in the frame of the
SONDA project. The methodology for processing and analyzing the quality of the data-sets and the
procedures to build the adjusted BRL model is thoroughly described. The error indicators show that the
adjusted BRL model performs better or similarly to the original one, for both diffuse and DNI estimates
calculated for each analyzed Brazilian station. For instance, the original BRL model diffuse fraction es-
timates have MeAPE errors ranging from 16% to 51%, while the adjusted BRL model gives errors from 9%
to 26%. Regarding the comparison between the minute and hourly adjusted models, it can be concluded
that both performed similarly, indicating that the logistic behavior of the original BRL model is well
suited to make estimates in sub-hourly data sets. Based on the results, the proposed adjusted model can
be used to provide reliable estimates of the distribution of direct and diffuse irradiation, and therefore,
can help to properly design and reduce the risks associated to solar energy systems.

© 2017 Elsevier Ltd. All rights reserved.
1. Introduction

The design and simulation of solar energy systems require
detailed information about incoming solar radiation at the site in
question. However, in many locations, only information about
global solar radiation is available resulting in a lack of data for direct
normal irradiation (DNI), i.e., the non-scattered and reflected ra-
diation that reaches a surface, which is crucial for the analysis of
concentrating systems among other technologies. DNI measure-
ments are expensive since they require complex tracking devices
tarke).
and significant operational efforts. As a result, the data is not always
available, and in the cases when it is, the measurements are
commonly incomplete due to equipment malfunctions or poor
maintenance. One possible approach to overcome the lack of reli-
able information is to use models to assess DNI. Such models were
initially developed in the 1960s [1] and have been improved to fit
radiation data at different locations worldwide. Ridley et al. [2]
proposed a model that uses global irradiation data to estimate
diffuse irradiation and DNI based on a set of predictors, which are
based on meteorological information commonly available from
weather stations.

Regarding the solar resource information in Brazil, there are
three main sources: the database derived from the Solar and Wind
Resource Assessment (SWERA) project [3], the Brazilian
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Environmental Data Organization System (SONDA) stations [4], and
the radiation measurement network from the National Institute of
Meteorology (INMET) [5]. The SWERA project, funded by the United
Nations Environment Programme (UNEP) and the Global Environ-
mental Facility (GEF), is devoted to building up a reliable database
of solar and wind energy resources, aiming to foster the insertion of
renewables in the energy matrix of developing countries. The data
obtained by the SWERA project is derived by a satellite model and
compiled into a variety of useful geographic and socioeconomic
information in geographic information system (GIS) format,
comprising maps of monthly averages for global and direct solar
radiation, seasonal and annual averages for global, diffuse, and
direct normal irradiation, and the compilation of 20 Typical
Meteorological Years (TMYs) for selected locations [6,7]. The sat-
ellite model was validated using data from the SONDA station
network, an initiative of the National Institute for Space Research
(INPE) consisting of several meteorological monitoring stations
deployed along the Brazilian territory. The stations in the network
measure global, diffuse, and direct normal irradiation on a minute
basis. The spatial distribution of the stations comprising the SONDA
network is shown in Fig. 1.

An extensive radiation measurement network in Brazil is oper-
ated by the National Institute of Meteorology (INMET), whose
spatial distribution is also depicted in Fig. 1. This is the largest
network of meteorological stations in Latin America, comprising
approximately seven hundred stations distributed all over the
country. The stations gauge hourly global solar irradiation and
ambient variables but do not measure diffuse and direct compo-
nents. Despite the high volume of available data, a lack of infor-
mation still exists regarding the characteristics of solar resource in
Brazil and the variability of direct solar radiation. This fact induces
high uncertainties for project developers, discouraging the
deployment of Concentrating Solar Power (CSP) and Concentrating
Fig. 1. Spatial distribution of the SONDA and INME
Photovoltaics (CPV).
Based on this scenario, the present work aims to develop a

diffuse fraction model adapted for Brazilian local conditions, using
irradiation data from stations of the SONDA network. Thus, this
national model can be further used to estimate the hourly diffuse
and direct irradiation at each station of the INMET network, col-
lecting useful information that can help to reduce the risks of
deploying solar energy systems and improving the design process.
Building a model adapted to local conditions is necessary in order
to provide reliable estimates of the distribution of direct and diffuse
irradiation within the Brazilian territory.

To accomplish this objective, the BolandeRidleyeLaurent (BRL)
model [2] is employed. First, the original BRL coefficients are used
to estimate the diffuse fraction for selected locations in Brazil, and
then compared with available diffuse radiation measurements by
the SONDA stations. Thereafter, a new set of coefficients is calcu-
lated by considering data sets from several stations, resulting in a
national model for Brazil. In order to verify the performance of the
model over the Brazilian territory, the national adjusted BRL model
is further applied to each station separately, and then compared
with the results of the original BRL model using formal error
analysis.

The BRL model was originally developed to estimate the diffuse
fraction on an hourly basis. On the other hand, the SONDA network
database consists of minute measurements of solar irradiation,
which make it possible to develop adjusted BRL models for minute
and hourly basis. Therefore, it is possible to perform a detailed
analysis of the performance of the BRL model when used to esti-
mate the diffuse fraction on a minute basis.

This study presents a description of the implementation process
and adaptation of the BRL model with multiple predictors for
estimating the hourly diffuse fraction, and is organized as follows.
The methodology for processing and analyzing the quality of the
T station networks over the Brazilian territory.
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data-sets and the procedures to build the adjusted BRL model is
thoroughly described. The results and performance of the minute
and hourly adjusted model, including the comparison against the
original BRL model, are assessed. Both adjusted and original BRL
model are comparedwhen applied to estimate diffuse irradiation at
selected locations in Brazil. Finally, a detailed discussion of the
results of this study is presented in the light of the results reported
in the related literature.
2. Diffuse radiation model

Because of the passage of solar irradiation through the atmo-
sphere, it is separated into different components. The beam
component of solar irradiation is the part that directly reaches the
surface of Earth, without suffering any change in direction, and is
usually referred to as direct normal irradiation (DNI). The scattering
of the solar irradiation in the atmosphere generates the diffuse
component, which has no defined direction and arrives from the
entire sky dome on a horizontal surface. If fewer sources of
disturbance are present in the atmosphere, lower scattering effects
are expected, which result in higher DNI values.

One measure of the presence of disturbances in the atmosphere
is the clearness index ðkT Þ, defined as the ratio of the global irradi-
ation on a horizontal surface (Ig) to the extraterrestrial irradiation
at the top of the atmosphere (I0), also on a horizontal surface. By
plotting the diffuse fraction ðdÞ e defined as the ratio of the diffuse
irradiation on a horizontal surface ðIdÞ to the Ig e against kT , for a
given location, a correlation can be observed in an S-shaped curve.
Several models using the clearness index as a predictor to estimate
the diffuse fraction have been developed since the 1960s [8e12].
However, by using only one predictor, these models result in a
curve that only fits the radiation data and is not able to properly
model the spread of diffuse fraction values.

By including other input variables in the model, the spread of
data can be modeled. Reindl et al. [11] studied the effects of other
meteorological variables in predicting the distribution of the diffuse
fraction. From a starting set of twenty eight possible variables, the
authors concluded that four of these had a significant effect on
diffuse radiation and should be used as predictors in a correlation;
in particular, the clearness index itself, the solar altitude angle, the
ambient temperature, and the relative humidity have a significant
effect. Using data from two meteorological stations in the United
States and three in Europe, the authors proposed a piece-wise
linear correlation to estimate the diffuse fraction using hourly ra-
diation and environment data. Other authors [11,13e15] have pro-
posed similar multi-variable correlations to estimate both hourly
and daily diffuse radiation fractions. These models consist of either
linear piece-wise or simple nonlinear functions and have been used
in software tools, e.g., TRNSYS [16], when complete diffuse radia-
tion data is not available.

One drawback of these correlations, however, is the fact that
they have been developed using locations in Europe and North
America; hence, they may not function properly in tropical regions
and/or within the southern hemisphere. Moreover, the use of
piece-wise correlations, such as [11,15], give rise to discontinuities
in the predicted diffuse fraction. Additionally, values of kT delim-
iting the clearness intervals on these models vary according to each
correlation. Adjusting such models to specific climate conditions
requires that the boundary points be determined along with the
coefficients that multiply the predictors [17].

An improvement of these piece-wise correlations was proposed
by Ridley et al. [2] by using a continuous logistic function model.
This correlation intends to use a minimum of measured variables;
therefore, ambient temperature and humidity were not used as
model predictors. Instead, the authors used the clearness index,
solar altitude, and three additional variables, which can easily be
calculated by applying solar geometry algorithms and measure-
ments of global irradiation. The diffuse fraction is calculated by the
BRL model as follows,

bd ¼ 1

1þ eðb0þb1kTþb2ASTþb3aþb4KTþb5jÞ
(1)

¼ 1

1þ eð�5:38þ6:63kTþ0:006AST�0:007aþ1:75KTþ1:31jÞ;

where kT is the hourly clearness index, AST is the apparent solar
time, a is the solar altitude, KT is the daily clearness index, and j is a
persistence factor defined in Ref. [2]. The numeric values of the
coefficients ðb1; b2;…; b5Þ listed in Equation (1) were also derived
in Ref. [2] using data from three meteorological stations in the
southern hemisphere and four in the northern hemisphere. The
authors showed that the BRL model performs significantly better in
the southern hemisphere than other models, while presenting
equivalent errors for sites in the northern hemisphere. In addition,
Ridley et al. considered the Bayesian Information Criterion (BIC) to
demonstrate that the BRL model presents a better trade-off be-
tween performance (errors) and complexity (number of pre-
dictors), performing as well as, or better than, other models while
using fewer predictors.

Considering the estimated diffuse fraction and the measured
global irradiation, the direct normal irradiation is estimated by the
following expression,

bIbn ¼
�
1� bd�Ig
sin a

: (2)

Based on the aforementioned features, the BRL model is chosen
for the present study because of its simplicity, good performance
and the least number of variables in Equation (1) to be considered
from existing data. The BRL model is also very flexible since it can
easily be adjusted to new locations by recalculating the bi co-
efficients, while other widely used models, for instance the Perez
model [14], cannot accomplish this adjustment. Moreover, the BRL
model presents significantly smaller errors for locations in the
southern hemisphere when compared to piece-wise models [2],
which impact the proper design and evaluation of solar energy
systems.

It is worth mentioning that this paper also proposes verification
of the usefulness of the BRL model for diffuse fraction estimation
considering minute data. In this context, the same methodology is
applied by consideringminute-based predictors, rather than hourly
ones, where kT , AST , a and j are calculated on aminute basis and KT
is kept as daily clearness index.

The diffuse radiation can also be calculated using theoretical
detailed models such as UniSky [18e20], using atmospheric radi-
ative transfer models such as MODTRAN [21] and SMARTS2 [22], or
using satellite based models such as the developed by Perez et al.
[14]. However, the use of these models in Brazil is troublesome
because of the lack of readily available values of turbidity, aerosol
optical depth (AOD), cloud covers, among other variables
commonly used as inputs in those models. In that sense, using
simpler models such as the original BRL is of special interest since
they can provide reliable estimates by using a set of easily acces-
sible input variables.
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3. Methodology

The following section thoroughly describes the methodology
used in the study, presenting the characteristics of the irradiation
database, the filtering and quality control and the procedures to
build the adjusted BRL model.

3.1. Irradiation data

The SONDA network consists of seventeen stations thatmeasure
solar irradiation, which are divided in three categories, as reference
stations, advanced stations and basic stations. Detailed information
about the instruments and methods are presented by Refs. [4,6,23].
However, only nine stations are considered in this study (depicted
by the index number in Fig. 1). Some stations were disregarded
because they stayed online for less than a year, while other stations
were not considered because only a small amount of data remained
after the quality-control procedures, compromising the proper
development of the Brazilian BRL model. Table 1 summarizes the
station information considered in the present work, while Fig. 2
depicts the monthly data availability for each station from
January of 2004 to November of 2016 as a heat-map representation.
The availability index is calculated as a ratio between measured
minutes and respective total minutes of the month.

3.2. Quality control and outlier removal

In order to guarantee the quality of the database, a validation
procedure was performed on the meteorological data from the
SONDA stations. First, the minute data from each station was
organized in a time-series structure, where the missing data was
Table 1
Geographical information of the SONDA stations considered in the present study.

Index Abbreviation Location Lat. (�) Long. (�) Height (m)

1 BRB Brasília �15.60 �47.71 574
2 CGR Campo Grande �20.44 �54.54 677
3 CBA Cuiab�a �15.56 �56.07 185
4 FLN Florian�opolis �27.60 �48.52 31
5 ORN Ourinhos �22.95 �49.89 446
6 PMA Palmas �10.18 �48.36 216
7 PTR Petrolina �9.07 �40.32 387
8 SLZ S~ao Luís �2.59 �44.21 40
9 SMS S. Martinho da S. �29.44 �53.82 489

Fig. 2. Heat-map of monthly data availability of the stati
replaced by a non-numeric value, setting up an organized and
continuous data set. Then, for each minute, the solar altitude angle
a, apparent solar time AST, extraterrestrial radiation I0, and
persistence factor j were calculated. For an initial assessment, the
datawas integrated to allow the determination of irradiation values
and clearness indexes on an hourly and daily basis. With these
results, a set of filters were applied to the resulting data; in
particular, data were considered with a>7+, 0<j<1, minute,
hourly, and daily clearness index between zero and one�
0< kT ;minute; kT ;hourly;Kt <1

�
, and finally, diffuse fractions of

0<d<1.
Measurements taken at low solar altitudes are prone to high

uncertainties, but are of minor importance in design applications;
therefore, they were not considered in this study. A solar altitude
threshold of 7+ was adopted from the literature [24]. The other
conditions exclude theoretically impossible values of the diffuse
fraction, persistence, and clearness indexes.

After applying the filtering process described above, the data set
was submitted to plausibility and consistency checks. These tests
were adapted from the criteria defined by the Baseline Surface
Radiation Network (BSRN) [25]. These tests compare the measured
global, diffuse, and beam irradiation with extraterrestrial irradia-
tion and also with each other to check consistency in all measured
data, as depicted in Table 2.

A series of tests were then carried out to detect equipment
malfunctions and further remove suspicious irradiation values. The
procedure used to detect tracker malfunctions or misalignment of
shading rings was the same used in the QCRad quality control
routine [25]. Following recommendations from the World Meteo-
rological Organization [26], the extreme variations on consecutive
measured values of global irradiation were removed (when the
minute Ig varies more than 800 W=m2 between successive time-
steps).

Geiger et al. [27] proposed that daily Ig values considered for
diffuse fraction estimation should not be lower than 3% of the daily
extraterrestrial irradiation. However, this approach was developed
for an hourly resolution, and when applied to sub-hourly data a lot
of data can be rejected. Since minute data is used in this work, an
approach valid for a sub-hourly resolution was applied, such as the
methodology presented by Journ�ee and Bertrand [28], which
adapted a lower Ig bound for sub-hourly data sets by stating that
the clearness index should satisfy the criterion Ig=I0 � 10�4ða� 10Þ
for a>10+ and that the average of the clearness index within a day,
m
�
Ig=I0

�
, should not be smaller than 0.03.
ons e fraction of the measured minutes in a month.



Table 2
Quality tests applied to raw data.

Tests Description Criteria

First filters Solar altitude limit. a<7+

Persistence factor plausibility. 0<j<1
Minute and hourly clearness index limits. 0< kT ;minute; kT ;hourly <1
Daily clearness index limit. 0<KT <1
Diffuse fraction limit. 0< d<1

Plausibility checks Physical plausible limits for irradiation adapted 0< Ig <1:5Gðsin aÞ1:2 þ 100
From Ref. [25]. G is the solar constant adjusted to 0< Id <0:95Gðsin aÞ1:2 þ 50
Earth-Sun distance. Irradiation values in W=m2. 0< Ibn <G

Consistency checks Evaluates if irradiation measurements
����Ig�ðIdþIbn sin aÞ

Ig

����<0:08, if a>15+ and Id þ Ibn sin a>50

are mutually consistent [25].
����Ig�ðIdþIbn sin aÞ

Ig

����<0:15, if a<15+ and Id þ Ibn sin a>50

Irradiation values in W=m2. If Id þ Ibn sin a>50, test not possible
Tracker off test Checks for equipment malfunction [25]. If Ig

IgC
>0:85 and Id

Ig
>0:85, measurement rejected

Data variability test Check for excessive variations between successive
time steps [26]. Irradiation values in W=m2.

��Ig;i � Ig;i�1
��<800 and

��Ig;iþ1 � Ig;i
��<800

Overcast condition test Lower bound on Ig [28]. Ig
I0
� 10�4ða� 10Þ, if a>10

m

�
Ig
I0

�
� 0:03, average taken on the whole day

Clear sky Comparison Removal of measured Ig values larger than clear sky conditions.
Solis clear sky model used [32].

Ig
IgC

<1:1

Rayleigh limit Comparison of diffuse irradiation with Rayleigh lower limit [25]. If Ig >50 and d<0:8 and Id <RL � 1, measurement rejected
RL ¼ 209:3sin a� 708:3ðsin aÞ2 þ 1128:7ðsin aÞ3 � 911:2ðsin aÞ4

þ287:87ðsin aÞ5 þ 0:046725ðsin aÞP

Fig. 3. Test and filtering data process for the Florian�opolis station. Approved data points are shown in gray.
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The filtering and test procedures described so far are illustrated
in Fig. 3 for Florian�opolis. The points removed by each step of the
quality control procedure are show in gray.

An additional test was applied to compare global irradiation
measurements with clear-sky numeric values. This approach allows
for the removal of irradiation values caused by cloud enhancement
phenomena, which happens when beam radiation reflected by
clouds is detected as diffuse irradiation [29], leading to an upward
trend of diffuse fraction values for high kT values. In sub-hourly
data sets, this phenomenon is more frequently detected; howev-
er, in hourly data sets, this enhanced diffuse irradiation is not
recurrent since the data is averaged; in fact, the models developed
for diffuse fraction estimation were made for hourly data and do
not consider the cloud enhancement phenomenon, which is the
case of the original BRL model.

Another limitation that arises when hourly models are used to
make estimations with sub-hourly data is that minute-based data
presents higher variability resulting in a larger data spread on the
d� kT chart, which induces larger random errors in the model es-
timations [30]. It is then necessary to evaluate whether the func-
tional form of the model can capture the greater variability of the
minute data. Therefore, cloud enhancement events were removed
from the data sets by comparing the global irradiation measure-
ments with clear sky values, as suggested by Engerer [31]. This
results in a higher variability data set, without enhanced irradiation
values, allowing for the evaluation of themodel's ability to simulate
greater data variability.

The clear-sky conditions were assessed by adopting the Solis
model [32], where the necessary inputs, aerosol optical depth, and
atmospheric water-vapor content were taken from the MACC-II
project database [33]. Global irradiation measured data was
compared with the modeled clear-sky global irradiation, and only
data points that satisfied the condition Ig=IgC <1:1 were accepted.
The Solis model presents high uncertainties when predicting the
diffuse and beam-normal irradiation using inputs from theMACC-II
project [34]. Therefore, no comparisons were made between
measured and clear-sky values of diffuse and beam irradiation.
Instead, to identify a lower bound of diffuse irradiation values, the
Rayleigh diffuse limit was applied using the method described in
Ref. [25]. This limit is the smallest amount of diffuse irradiation that
can reach the surface in ideal clear-sky conditions. Fig. 4 depicts
data removal by the clear-sky and Rayleigh tests showing that the
clear-sky global irradiation criteria remove a large amount of data,
including almost all diffuse fractions, for clear indexes higher than
0.82.

The quality tests stated so far are summarized in Table 2, which
Fig. 4. Clear-Sky and Rayleigh test procedures for the Florian�opolis station.
gives a brief description and the criteria used to qualify the raw
data.

The test previously applied removed several inconsistent mea-
surements; however, the data may still contain inconsistencies,
which can be classified as outliers that affect the process of
computing the new set of BRL coefficients. These outlier values are
difficult to remove by filtering processes. Boland and Ridley [12]
used an empirical likelihood to remove outliers. However, this
method cannot be applied in the present work because of the large
amount of data considered, which leads to an optimization problem
with millions of independent variables. Therefore, an outlier
identification procedure, similar to that proposed by Younes et al.
[24], was applied to address this issue, creating an envelope around
plausible data. Younes et al. developed these envelopes by using
polynomial functions; however, Boland and Ridley [12] proved that
the best curve to model the diffuse fraction versus clearness index
is a logistic function with the form f ¼ 1=ð1þ expðb0 þ b0kT ÞÞ.
Therefore, this logistic function was adopted to create the outlier
envelope.

The outlier removal procedure was divided into two steps. First,
the suspicious data was identified using the value of the absolute
residual for the i-th observation as a figure of merit, measuring the
vertical distance between the measurements and a fitted curve.
Second, the envelope's upper and lower boundswere built. The first
step has a significant importance since it removes unlikely data and
helps identify data that is not physically plausible. It is important to
mention that the first step does not remove any data from the pool;
it only disregards data for building the envelope.

In order to calculate the residuals, a logistic function was fitted
to the data set that passed the filtering and testing steps. The re-
sidual was calculated as the absolute difference between the
measured diffuse fraction and the fitted curve, specifically,
Ri ¼

��di � f
�
kT ;i

���. Then, a new logistic curve was fitted, gðkT Þ, dis-
regarding any point where Ri >0:3. This conservative approach
helps the logistic curve gðkT Þ capture the expected behavior of the
data, as observed in Fig. 5. This new resulting curve was used as
reference to establish the upper and lower bounds for outlier
identification, which were defined by the translation of gðkT Þ on the
d� kT chart, as described by the following expressions:

UpperBound ¼ gðkT � a1Þ þ a2 (3)

LowerBound ¼ gðkT þ b1Þ � b2: (4)

The coefficients a1; a2; b1; and b2 were defined for each station
to efficiently capture the data shape and remove measurements
Fig. 5. Outlier envelop for the Florianop�olis station.
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that were not removed by the filtering process but were visibly
suspect. Fig. 5 depicts the logistic curve gðkT Þ derived for Flo-
rian�opolis and the upper and lower bounds used for outlier
removal.

To clarify and summarize the quality control and outlier removal
routine, Fig. 6 depicts a flowchart of the procedures applied herein.
All qualifying processes shown in the flowchart are described in
Table 2.

3.3. Hourly averaging of data

The processed minute data was then averaged to obtain hourly
Fig. 6. Flowchart of the quality control and outlier routine.
values of irradiation. Averaging was only performed when at least
45 min within the hour were valid. In the case where not enough
minutes were valid, no averaging was performed, and the hour data
point was not considered for further calculations. The approved
minutes within this hour were also not considered for the up-
coming calculations. This approach aims to avoid too many minute
and hourly points being discarded.
3.4. Data merge and model fit

After the qualification and outlier removal procedure, the data
from individual stations were merged to a single data set. This
procedure was done for the minute and hourly sets. However, since
each station is operated for a particular period, the amount of
measurement points varies from location to location, as noted in
Fig. 2. These differences in the size of the data set do not facilitate
the simple aggregation into one single data set since stations pre-
senting more points induce a location bias in the regression. To
solve this problem, the same amount of data was considered from
each station and then subjected to the amalgamation process.
Regarding the number of data points, the amount of data of the
station that presents the lowest amount of qualified data was
chosen; in this case, the station was S~ao Luís - MA. For the other
stations, this same amount of data was randomly pulled from their
respective data sets.

Minute and hourly merged data sets were individually submit-
ted to a regression in order to adjust the BRL model (Equation (1)).
Two thirds of the data points were randomly taken from the set and
used for nonlinear least-square regression, which determined the
new set of bi coefficients for the national adjusted correlation. The
resulting correlationwas then applied to the remaining third of the
data to validate the model and calculate its error indicators.

As a formal error analysis, three statistical indicators were
considered; in particular, the median absolute percentage error
ðMeAPEÞ, the normalized root mean square error ðNRMSEÞ, and the
Kolmogorov-Smirnov test Integral parameter ðKSIÞ were used ac-
cording to the approach adopted in Refs. [2] and [17]. The MeAPE,
NRMSE, and KSI are defined by the following expressions,

MeAPE ¼ median
�jbdi � dij

di
� 100

�
(5)

NRMSE ¼ 1

d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

�bdi � di
�2

n

vuut
(6)

KSI ¼
Zxmax

xmin

Dndx; (7)

where di ¼ ðIdÞi=ðIgÞi is the actual value of the diffuse fraction

calculated frommeasurement i of a set of nmeasurements, bdi is the
estimated value of the diffuse fraction of data point i calculated

using the model, and d is the mean experimental diffuse fraction of
the data set. Finally, xmax and xmin are the extreme values of the
independent variable, while Dn is the difference between the cu-
mulative distribution function (CDF) of the measurements and the
estimated values.

The MeAPE indicates the size of the errors presented by the
correlation, while the NRMSE provides a measure of the overall
goodness of fit. Finally, the KSI was proposed in Ref. [35] as a
measure of the similarity of the cumulative distribution of the
actual and modeled data, which helps to identify if the model fits



Table 4
Coefficients of the adjusted models. BRL model shown for reference.

Constant kT AST a KT j

Minute �6.26 5.97 0.024 �0.00533 2.84 2.41
Hourly �4.41 7.87 �0.088 �0.00490 1.47 1.10

BRL �5.38 6.36 0.006 �0.007 1.75 1.31

Table 5
Error measures for diffuse fraction estimates with exchanged coefficients for
Florian�opolis.

Minute coefficients
on hourly data

Hourly coefficients
on minute data
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the distribution of the data over the whole range of observed
values.

4. Results

A national BRL model was developed for the minute and hourly
merged data, and then a graphical comparison between the fit and
measured data was constructed to observe the goodness of fit. This
process permitted us to observe if the adjusted BRL model can
capture the spread and variation present in the minute data set.

The national adjusted model was applied to make estimations
for each station individually, while the error indicators were
calculated. The original BRL model was also applied to individual
stations, which permitted the qualitative evaluation of error in-
dicators offered by the adjusted model, when compared to the
original. This procedure also allowed us to assess the correlation
Fig. 7. Adjusted models for minute and hourly merged data sets.

Table 3
Errors of the adjusted models on merged data sets.

Statistic Adjusted BRL model

Hourly Minute

d DNI d DN

MeAPE (%) 17.530 10.674 19.941 10.9
nRMSE (%) 25.764 16.078 27.472 16.6
KSI (�) 0.017 11.328 0.018 14.6
when applying the national model for each station separately.
Moreover, it demonstrated the improvements achieved by building
Original BRL model

Hourly Minute

I d DNI d DNI

30 33.949 17.860 31.427 15.048
56 34.856 22.383 30.178 18.488
86 0.077 61.539 0.052 41.244

MeAPE (%) 14.860 16.366
nRMSE (%) 21.592 25.416
KSI(�) 0.019 0.051

Table 6
Hourly model results for analyzed stations.

Location Statistic Original BRL model Adjusted BRL model

d DNI d DNI

All Locations MeAPE (%) 33.949 17.860 17.530 10.674
nRMSE (%) 34.856 22.383 25.764 16.078
KSI(�) 0.077 61.539 0.017 11.328

Brasília MeAPE (%) 26.016 16.002 13.502 12.189
nRMSE (%) 26.756 19.815 20.127 15.089
KSI(�) 0.071 45.893 0.014 15.928

Campo Grande MeAPE (%) 27.681 15.774 17.984 10.971
nRMSE (%) 33.968 22.479 29.366 18.589
KSI(�) 0.046 38.170 0.038 34.810

Cuiab�a MeAPE (%) 38.065 23.458 22.939 15.018
nRMSE (%) 36.792 29.710 27.669 23.045
KSI(�) 0.081 64.367 0.031 24.054

Florian�opolis MeAPE (%) 16.774 18.404 12.402 13.539
nRMSE (%) 22.067 21.358 19.554 17.034
KSI(�) 0.055 44.448 0.030 23.935

Ourinhos MeAPE (%) 50.907 15.314 21.364 7.175
nRMSE (%) 47.750 20.186 34.055 13.260
KSI(�) 0.105 85.880 0.034 20.902

Palmas MeAPE (%) 47.893 22.638 23.337 12.581
nRMSE (%) 46.461 27.034 34.093 18.195
KSI(�) 0.124 97.572 0.045 29.664

Petrolina MeAPE (%) 47.328 16.752 25.700 9.091
nRMSE (%) 54.393 20.975 34.608 13.893
KSI(�) 0.084 80.585 0.030 21.472

S~ao Luis MeAPE (%) 16.503 31.997 9.059 22.670
nRMSE (%) 22.713 41.323 18.128 34.527
KSI(�) 0.071 46.786 0.019 18.208

S~ao Martinho
da Serra

MeAPE (%) 23.249 22.231 11.845 14.997
nRMSE (%) 25.802 23.586 17.830 16.985
KSI(�) 0.064 48.793 0.026 23.990
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the national model.
4.1. Comparison between minute and hourly estimates

A graphical comparison between the adjusted fit and measured
data is shown in Fig. 7 for the merged minute and hourly data sets.
Notice the excellent fit for the entire data set in both cases. The
fitted model captures the shape and spread of the data reasonably
well.

Regarding formal error analysis, Table 3 shows the results for
both minute and hourly regressions considering the estimations of
the diffuse fraction ðdÞ and DNI. When comparing the errors for the
minute and hourly estimates, the adjusted model performs slightly
better when estimating diffuse fraction for hourly data, with both
hourly and minute data presenting diffuse fraction MeAPE and
nRMSE values of around 19% and 26%, respectively. Meanwhile the
DNI estimates present MeAPE and nRMSE measures of around 11%
and 16%, respectively.

The KSI measure shows that both adjusted models present the
same similarity between the CDFs of the actual andmodeled diffuse
fraction data, presenting values of 0.017 for the hourly and 0.018 for
the minute estimated diffuse fractions. For the DNI, the adjusted
model has a slightly better KSI value for hourly data than forminute
data.

Table 3 shows the error measures of the BRL model estimates of
the merged data. By comparing error measures of the adjusted
Fig. 8. Diffuse fraction estimates for Florian�opolis.
model against the errors of the BRL model, a significant improve-
ment is observed. For the hourly data set, it can be observed that for
the diffuse fraction, MeAPE reduces from 33.9% to 17.5%, nRMSE
from 34.8% to 25.7% and the KSI is reduced from 0.077 to 0.017. For
DNI estimates, MeAPE reduces from 17.8% to 10.6%, nRMSE from
22.4% to 16%, and the KSI is also reduced, from 0.052 to 0.018. For
the minute data set, the same behavior was observed, however, the
reduction in error measures of the adjusted model is lower.

The results shown in Table 3 demonstrate that the BRL model
can be used for both the hourly and minute data sets, presenting
similar error measures. However, adjusting the model for local
conditions significantly improves the performance of the model.

Since the model adjustment resulted in smaller errors when
compared to the original BRL model (for both minute and hourly
data), it is possible that the BRL model is able to properly describe
the larger spread of the minute data. Thus, the model should only
be adjusted to include cloud enhancement effects to be used for
sub-hourly data sets.

The coefficients of the adjusted models are given in Table 4. The
parameters of both adjusted models (hourly and minute) are
significantly different than those presented in the original BRL
model.

As shown in Table 3, both minute and hourly adjusted models
performed similarly. Furthermore, the hourly and minute data sets
have similar shapes, despite the larger spread of minute data. It
would be interesting to have a single model to be used regardless of
the data time resolution, thus eliminating the need for different
models for minute and hourly data sets in order to capture the large
Fig. 9. DNI estimates for Florian�opolis.
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spread of theminute data. To further investigate this possibility, the
correlations were interchanged in relation to the data sets, i.e., the
minute correlation was applied to the hourly data set and the
hourly correlation was applied to the minute data set. The error
measures of the diffuse fractions resulting from this analysis are
depicted in Table 5 for the city of Florian�opolis. Observe that when
the models are interchanged, the estimates present similar MeAPE
and nRMSE values, approximately 15% and 23%, respectively.
However, when the hourly coefficients are applied to the minute
data, the error measures are slightly higher. Regarding the KSI
measure, the hourly coefficients applied to the minute data had a
KSI almost three times the value for the minute coefficients applied
to the hourly data. This shows that the hourly coefficients applied to
the minute data do not produce a good fit over the whole range of
data as the opposite did occur.

The results of Table 5 can be further compared to the error
measures of the hourly adjusted model applied to the hourly data
for Florian�opolis (Table 6). It can be seen that using the minute
adjusted model or hourly adjusted model to estimate the diffuse
fraction of hourly data results in similar errors; that is, MeAPE of
14%, nRMSE of 20%, and KSI of 0.02.

4.2. Original and adjusted BRL models

In order to assess the performance of the national adjusted
model for each station individually, we considered all qualified data
points available from each station. The original BRL model was also
applied to each station to quantify the benefits of using the
adjusted one.

To graphically illustrate the results, the city of Florian�opolis was
considered. A comparison of the models' estimations overlaid
Fig. 10. CDF of the hourly diffuse fra
against the measured data is shown in Figs. 8 and 9 for the diffuse
fraction and DNI, respectively. As shown in Fig. 8a, the BRL seems to
fit the data reasonably well for all ranges of the clearness index.
Meanwhile, the adjusted model (Fig. 8b) presents a very good fit to
the data set, adequately capturing the shape of the diffuse fraction
for clearness indexes around 0.7 and 0.8. Inspecting the results
shown in Fig. 9, the same behavior is observed since the adjusted
model presents a better fit for high DNI values.

Fig. 10 allows us to evaluate the goodness of fit over the whole
range of data. For the BRL and the adjusted models, Fig. 10a and c
shows an overlay of the CDFs of the estimated andmeasured diffuse
fractions. Considering the shape of the CDFs, the adjusted model
performs better than the original BRL model for values of the
diffuse fraction below 0.6, but the errors increase for larger diffuse
fraction values. This lower performance for high d values is not
enough to counter better estimates at lower d values, which result
in a lower KSI value for the adjusted BRLmodel, as shown in Table 6.

Similarly, Fig. 10b and d shows the CDFs of the DNI values ob-
tained using bothmodels. In this case, the adjusted BRLmodel gives
slightly worse estimations for DNI values lower than 300 W=m2,
but considerably better results for larger DNI values. This behavior
also results in lower KSI values for the adjusted model, as shown in
Table 6.

These results are highlighted in Fig. 11, which depicts the dif-
ferences between the CDFs of the model estimates and measured
data for the diffuse fraction and DNI. Notice in Fig. 11a that the
adjusted BRL model presents a significant improvement since the
differences are reduced to almost zero for a diffuse fraction lower
than 0.6 when compared to the original BRL model. On the other
hand, Fig. 11b depicts the same analysis for DNI, showing that the
adjusted BRL model has significantly lower differences, i.e., a better
ction and DNI for Florian�opolis.



Fig. 11. Differences Dn between CDFs of the measured and estimated hourly diffuse
fraction and DNI for Florian�opolis.
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fit over the range of data above 300 W=m2, and larger differences
below that value.

The results for all the stations are summarized in Table 6. Notice
that the adjusted model performs better than the BRL one for all of
the locations and for both the diffuse fraction and DNI estimations.
The adjustment of the original BRL model to Brazilian stations
resulted in overall improvements in terms of the percentage error
of the diffuse fraction and DNI estimations. For all locations
analyzed, the adjusted model resulted in a better fit to the
measured data and better similarity between the CDFs of the es-
timates and the data, as evidenced by the decrease in the nRMSE
and KSI values given in Table 6. Therefore, it is possible to affirm
that the new adjusted model is a useful tool for estimating the
diffuse fraction and DNI values in Brazilian locations.
4.3. Discussion

The diffuse fractionMeAPE indicators calculated for the adjusted
BRL model in Table 6 were between 9% and 26%, while for the
original BRL model the range was between 16% and 50%. For the
DNI estimates, theMeAPE for the adjustedmodel ranged from 7% to
23%, while the range for the original BRL model was from 15% to
31%. Therefore, adjusting the model coefficients resulted in
improved model performance.

The MeAPE range for the adjusted model in Brazil is similar to
the MeAPE range of the original BRL model presented for the seven
stations used in Ridley et al. [2], where the BRL model had MeAPE
ranging from 5% to 21%. Thus, the adjusted Brazilian model per-
formed in Brazil similarly to how the original BRL model performed
for the stations it was adjusted from.

The adjusted BRL model performed equally well when adjusted
to both minute and hourly data sets, as shown in Table 3. This in-
dicates that the logistic behavior of the original BRL model is well
suited to make estimates in sub-hourly data sets, as previously
demonstrated for hourly data in Ref. [12]. A further development of
the logistic form model was the equation proposed by Ref. [31],
which used a logistic function along with an additional clear sky
model, to estimate the diffuse fraction for minute data. A review by
Gueymard and Ruiz-Arias [36] analyzing several stations world-
wide showed that the model presented by Engerer [31] delivered
the best DNI estimates in tropical, arid, and temperate climates.
This superior performance was found to be a result of considering
clear-sky models to simulate the radiation enhancement
phenomenon.

However, assessment of the diffuse fraction in Brazil using
models that take clear-sky conditions into account is troublesome
given the lack of readily available ground-measured values of
turbidity and aerosol optical depth (AOD), among other variables
commonly used as inputs to clear-sky models. In this sense, using
simpler models, such as the original BRL model, is of interest if they
can provide reliable estimates by using a set of easily obtainable
input variables.

5. Conclusions

Solar resource in Brazil have yet to be characterized for the
whole territory, thus, compromising the deployment of solar power
facilities throughout the country. To address this issue, the BRL
model was adjusted to Brazilian data to provide better irradiation
estimates in Brazilian locations. To adjust the model, minute data
from nine stations spread across the country was processed using a
methodology based on testing procedures presented in the
literature.

Previous studies [30,36] have assessed if solar radiation models
developed with hourly data, such as the BRL model, are able to
deliver estimates using sub-hourly data sets. A significant increase
of random errors was found when the models were applied to
minute data sets, as expected from the higher variability of minute
data. It was also shown that hourly models are not able to properly
describe cloud enhancement phenomena, which are more frequent
in sub-hourly data.

In light of these facts, the methodology presented in this work
aimed to adapt the coefficients of the BRL model to reduce random
errors when minute data is considered, in order to achieve better
estimations, and simulate the higher spread of minute data. How-
ever, further modifications still need to be included in the BRL
model to improve its performance under radiation enhancement
events.

Hourly integration of the processed data was considered so that
the model could also be adjusted to irradiation measurements on
an hourly basis. The processed datawasmerged, and a regression of
the BRL model equation over the merged data set resulted in an
adjusted BRL model for Brazil. The estimates given by the new
model were compared with the estimates from the original one to
evaluate the model performance improvements resulting from the
adjustments.

The results showed that the original BRL model is able to
properly describe the larger spread of minute data. On an hourly
basis, the adjustments of the BRL model to Brazilian stations
resulted in overall improvements in the estimation error of both
diffuse fraction and DNI. In all of the locations analyzed, the
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adjusted BRL model presented a better fit to the measured data and
better similarity between the cumulative distributions.

The adjusted model represents a significant contribution to es-
timate the components of solar radiation (diffuse and DNI) over the
entire Brazilian territory. Therefore, can be used in the extensive
global irradiation measurement networks of Brazil to assess solar
resources and help to properly design and reduce the risks asso-
ciated to solar energy systems.
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